blob: 757dbe734a47afbdf189cf057af366eb1b51f15e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/efi.h>
#include <asm/efi.h>
#include "efistub.h"
struct efi_unaccepted_memory *unaccepted_table;
efi_status_t allocate_unaccepted_bitmap(__u32 nr_desc,
struct efi_boot_memmap *map)
{
efi_guid_t unaccepted_table_guid = LINUX_EFI_UNACCEPTED_MEM_TABLE_GUID;
u64 unaccepted_start = ULLONG_MAX, unaccepted_end = 0, bitmap_size;
efi_status_t status;
int i;
/* Check if the table is already installed */
unaccepted_table = get_efi_config_table(unaccepted_table_guid);
if (unaccepted_table) {
if (unaccepted_table->version != 1) {
efi_err("Unknown version of unaccepted memory table\n");
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
/* Check if there's any unaccepted memory and find the max address */
for (i = 0; i < nr_desc; i++) {
efi_memory_desc_t *d;
unsigned long m = (unsigned long)map->map;
d = efi_memdesc_ptr(m, map->desc_size, i);
if (d->type != EFI_UNACCEPTED_MEMORY)
continue;
unaccepted_start = min(unaccepted_start, d->phys_addr);
unaccepted_end = max(unaccepted_end,
d->phys_addr + d->num_pages * PAGE_SIZE);
}
if (unaccepted_start == ULLONG_MAX)
return EFI_SUCCESS;
unaccepted_start = round_down(unaccepted_start,
EFI_UNACCEPTED_UNIT_SIZE);
unaccepted_end = round_up(unaccepted_end, EFI_UNACCEPTED_UNIT_SIZE);
/*
* If unaccepted memory is present, allocate a bitmap to track what
* memory has to be accepted before access.
*
* One bit in the bitmap represents 2MiB in the address space:
* A 4k bitmap can track 64GiB of physical address space.
*
* In the worst case scenario -- a huge hole in the middle of the
* address space -- It needs 256MiB to handle 4PiB of the address
* space.
*
* The bitmap will be populated in setup_e820() according to the memory
* map after efi_exit_boot_services().
*/
bitmap_size = DIV_ROUND_UP(unaccepted_end - unaccepted_start,
EFI_UNACCEPTED_UNIT_SIZE * BITS_PER_BYTE);
status = efi_bs_call(allocate_pool, EFI_ACPI_RECLAIM_MEMORY,
sizeof(*unaccepted_table) + bitmap_size,
(void **)&unaccepted_table);
if (status != EFI_SUCCESS) {
efi_err("Failed to allocate unaccepted memory config table\n");
return status;
}
unaccepted_table->version = 1;
unaccepted_table->unit_size = EFI_UNACCEPTED_UNIT_SIZE;
unaccepted_table->phys_base = unaccepted_start;
unaccepted_table->size = bitmap_size;
memset(unaccepted_table->bitmap, 0, bitmap_size);
status = efi_bs_call(install_configuration_table,
&unaccepted_table_guid, unaccepted_table);
if (status != EFI_SUCCESS) {
efi_bs_call(free_pool, unaccepted_table);
efi_err("Failed to install unaccepted memory config table!\n");
}
return status;
}
/*
* The accepted memory bitmap only works at unit_size granularity. Take
* unaligned start/end addresses and either:
* 1. Accepts the memory immediately and in its entirety
* 2. Accepts unaligned parts, and marks *some* aligned part unaccepted
*
* The function will never reach the bitmap_set() with zero bits to set.
*/
void process_unaccepted_memory(u64 start, u64 end)
{
u64 unit_size = unaccepted_table->unit_size;
u64 unit_mask = unaccepted_table->unit_size - 1;
u64 bitmap_size = unaccepted_table->size;
/*
* Ensure that at least one bit will be set in the bitmap by
* immediately accepting all regions under 2*unit_size. This is
* imprecise and may immediately accept some areas that could
* have been represented in the bitmap. But, results in simpler
* code below
*
* Consider case like this (assuming unit_size == 2MB):
*
* | 4k | 2044k | 2048k |
* ^ 0x0 ^ 2MB ^ 4MB
*
* Only the first 4k has been accepted. The 0MB->2MB region can not be
* represented in the bitmap. The 2MB->4MB region can be represented in
* the bitmap. But, the 0MB->4MB region is <2*unit_size and will be
* immediately accepted in its entirety.
*/
if (end - start < 2 * unit_size) {
arch_accept_memory(start, end);
return;
}
/*
* No matter how the start and end are aligned, at least one unaccepted
* unit_size area will remain to be marked in the bitmap.
*/
/* Immediately accept a <unit_size piece at the start: */
if (start & unit_mask) {
arch_accept_memory(start, round_up(start, unit_size));
start = round_up(start, unit_size);
}
/* Immediately accept a <unit_size piece at the end: */
if (end & unit_mask) {
arch_accept_memory(round_down(end, unit_size), end);
end = round_down(end, unit_size);
}
/*
* Accept part of the range that before phys_base and cannot be recorded
* into the bitmap.
*/
if (start < unaccepted_table->phys_base) {
arch_accept_memory(start,
min(unaccepted_table->phys_base, end));
start = unaccepted_table->phys_base;
}
/* Nothing to record */
if (end < unaccepted_table->phys_base)
return;
/* Translate to offsets from the beginning of the bitmap */
start -= unaccepted_table->phys_base;
end -= unaccepted_table->phys_base;
/* Accept memory that doesn't fit into bitmap */
if (end > bitmap_size * unit_size * BITS_PER_BYTE) {
unsigned long phys_start, phys_end;
phys_start = bitmap_size * unit_size * BITS_PER_BYTE +
unaccepted_table->phys_base;
phys_end = end + unaccepted_table->phys_base;
arch_accept_memory(phys_start, phys_end);
end = bitmap_size * unit_size * BITS_PER_BYTE;
}
/*
* 'start' and 'end' are now both unit_size-aligned.
* Record the range as being unaccepted:
*/
bitmap_set(unaccepted_table->bitmap,
start / unit_size, (end - start) / unit_size);
}
void accept_memory(phys_addr_t start, unsigned long size)
{
unsigned long range_start, range_end;
phys_addr_t end = start + size;
unsigned long bitmap_size;
u64 unit_size;
if (!unaccepted_table)
return;
unit_size = unaccepted_table->unit_size;
/*
* Only care for the part of the range that is represented
* in the bitmap.
*/
if (start < unaccepted_table->phys_base)
start = unaccepted_table->phys_base;
if (end < unaccepted_table->phys_base)
return;
/* Translate to offsets from the beginning of the bitmap */
start -= unaccepted_table->phys_base;
end -= unaccepted_table->phys_base;
/* Make sure not to overrun the bitmap */
if (end > unaccepted_table->size * unit_size * BITS_PER_BYTE)
end = unaccepted_table->size * unit_size * BITS_PER_BYTE;
range_start = start / unit_size;
bitmap_size = DIV_ROUND_UP(end, unit_size);
for_each_set_bitrange_from(range_start, range_end,
unaccepted_table->bitmap, bitmap_size) {
unsigned long phys_start, phys_end;
phys_start = range_start * unit_size + unaccepted_table->phys_base;
phys_end = range_end * unit_size + unaccepted_table->phys_base;
arch_accept_memory(phys_start, phys_end);
bitmap_clear(unaccepted_table->bitmap,
range_start, range_end - range_start);
}
}