blob: ce5ca304dba93bb417ada7965397bb71173b7ba3 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright 2014-2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/dma-buf.h>
#include <linux/list.h>
#include <linux/pagemap.h>
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <drm/ttm/ttm_tt.h>
#include <drm/drm_exec.h>
#include "amdgpu_object.h"
#include "amdgpu_gem.h"
#include "amdgpu_vm.h"
#include "amdgpu_hmm.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_dma_buf.h"
#include <uapi/linux/kfd_ioctl.h>
#include "amdgpu_xgmi.h"
#include "kfd_priv.h"
#include "kfd_smi_events.h"
/* Userptr restore delay, just long enough to allow consecutive VM
* changes to accumulate
*/
#define AMDGPU_USERPTR_RESTORE_DELAY_MS 1
#define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29)
/*
* Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB
* BO chunk
*/
#define VRAM_AVAILABLITY_ALIGN (1 << 21)
/* Impose limit on how much memory KFD can use */
static struct {
uint64_t max_system_mem_limit;
uint64_t max_ttm_mem_limit;
int64_t system_mem_used;
int64_t ttm_mem_used;
spinlock_t mem_limit_lock;
} kfd_mem_limit;
static const char * const domain_bit_to_string[] = {
"CPU",
"GTT",
"VRAM",
"GDS",
"GWS",
"OA"
};
#define domain_string(domain) domain_bit_to_string[ffs(domain)-1]
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
struct kgd_mem *mem)
{
struct kfd_mem_attachment *entry;
list_for_each_entry(entry, &mem->attachments, list)
if (entry->bo_va->base.vm == avm)
return true;
return false;
}
/**
* reuse_dmamap() - Check whether adev can share the original
* userptr BO
*
* If both adev and bo_adev are in direct mapping or
* in the same iommu group, they can share the original BO.
*
* @adev: Device to which can or cannot share the original BO
* @bo_adev: Device to which allocated BO belongs to
*
* Return: returns true if adev can share original userptr BO,
* false otherwise.
*/
static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev)
{
return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) ||
(adev->dev->iommu_group == bo_adev->dev->iommu_group);
}
/* Set memory usage limits. Current, limits are
* System (TTM + userptr) memory - 15/16th System RAM
* TTM memory - 3/8th System RAM
*/
void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
{
struct sysinfo si;
uint64_t mem;
if (kfd_mem_limit.max_system_mem_limit)
return;
si_meminfo(&si);
mem = si.totalram - si.totalhigh;
mem *= si.mem_unit;
spin_lock_init(&kfd_mem_limit.mem_limit_lock);
kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6);
if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT)
kfd_mem_limit.max_system_mem_limit >>= 1;
else
kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT;
kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT;
pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
(kfd_mem_limit.max_system_mem_limit >> 20),
(kfd_mem_limit.max_ttm_mem_limit >> 20));
}
void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
{
kfd_mem_limit.system_mem_used += size;
}
/* Estimate page table size needed to represent a given memory size
*
* With 4KB pages, we need one 8 byte PTE for each 4KB of memory
* (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
* of memory (factor 256K, >> 18). ROCm user mode tries to optimize
* for 2MB pages for TLB efficiency. However, small allocations and
* fragmented system memory still need some 4KB pages. We choose a
* compromise that should work in most cases without reserving too
* much memory for page tables unnecessarily (factor 16K, >> 14).
*/
#define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM)
/**
* amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size
* of buffer.
*
* @adev: Device to which allocated BO belongs to
* @size: Size of buffer, in bytes, encapsulated by B0. This should be
* equivalent to amdgpu_bo_size(BO)
* @alloc_flag: Flag used in allocating a BO as noted above
* @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is
* managed as one compute node in driver for app
*
* Return:
* returns -ENOMEM in case of error, ZERO otherwise
*/
int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
uint64_t size, u32 alloc_flag, int8_t xcp_id)
{
uint64_t reserved_for_pt =
ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
size_t system_mem_needed, ttm_mem_needed, vram_needed;
int ret = 0;
uint64_t vram_size = 0;
system_mem_needed = 0;
ttm_mem_needed = 0;
vram_needed = 0;
if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
system_mem_needed = size;
ttm_mem_needed = size;
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
/*
* Conservatively round up the allocation requirement to 2 MB
* to avoid fragmentation caused by 4K allocations in the tail
* 2M BO chunk.
*/
vram_needed = size;
/*
* For GFX 9.4.3, get the VRAM size from XCP structs
*/
if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
return -EINVAL;
vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id);
if (adev->flags & AMD_IS_APU) {
system_mem_needed = size;
ttm_mem_needed = size;
}
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
system_mem_needed = size;
} else if (!(alloc_flag &
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
return -ENOMEM;
}
spin_lock(&kfd_mem_limit.mem_limit_lock);
if (kfd_mem_limit.system_mem_used + system_mem_needed >
kfd_mem_limit.max_system_mem_limit)
pr_debug("Set no_system_mem_limit=1 if using shared memory\n");
if ((kfd_mem_limit.system_mem_used + system_mem_needed >
kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) ||
(kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
kfd_mem_limit.max_ttm_mem_limit) ||
(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed >
vram_size - reserved_for_pt - reserved_for_ras - atomic64_read(&adev->vram_pin_size))) {
ret = -ENOMEM;
goto release;
}
/* Update memory accounting by decreasing available system
* memory, TTM memory and GPU memory as computed above
*/
WARN_ONCE(vram_needed && !adev,
"adev reference can't be null when vram is used");
if (adev && xcp_id >= 0) {
adev->kfd.vram_used[xcp_id] += vram_needed;
adev->kfd.vram_used_aligned[xcp_id] +=
(adev->flags & AMD_IS_APU) ?
vram_needed :
ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN);
}
kfd_mem_limit.system_mem_used += system_mem_needed;
kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
release:
spin_unlock(&kfd_mem_limit.mem_limit_lock);
return ret;
}
void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev,
uint64_t size, u32 alloc_flag, int8_t xcp_id)
{
spin_lock(&kfd_mem_limit.mem_limit_lock);
if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
kfd_mem_limit.system_mem_used -= size;
kfd_mem_limit.ttm_mem_used -= size;
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
WARN_ONCE(!adev,
"adev reference can't be null when alloc mem flags vram is set");
if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
goto release;
if (adev) {
adev->kfd.vram_used[xcp_id] -= size;
if (adev->flags & AMD_IS_APU) {
adev->kfd.vram_used_aligned[xcp_id] -= size;
kfd_mem_limit.system_mem_used -= size;
kfd_mem_limit.ttm_mem_used -= size;
} else {
adev->kfd.vram_used_aligned[xcp_id] -=
ALIGN(size, VRAM_AVAILABLITY_ALIGN);
}
}
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
kfd_mem_limit.system_mem_used -= size;
} else if (!(alloc_flag &
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
goto release;
}
WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0,
"KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id);
WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
"KFD TTM memory accounting unbalanced");
WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
"KFD system memory accounting unbalanced");
release:
spin_unlock(&kfd_mem_limit.mem_limit_lock);
}
void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
u32 alloc_flags = bo->kfd_bo->alloc_flags;
u64 size = amdgpu_bo_size(bo);
amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags,
bo->xcp_id);
kfree(bo->kfd_bo);
}
/**
* create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information
* about USERPTR or DOOREBELL or MMIO BO.
*
* @adev: Device for which dmamap BO is being created
* @mem: BO of peer device that is being DMA mapped. Provides parameters
* in building the dmamap BO
* @bo_out: Output parameter updated with handle of dmamap BO
*/
static int
create_dmamap_sg_bo(struct amdgpu_device *adev,
struct kgd_mem *mem, struct amdgpu_bo **bo_out)
{
struct drm_gem_object *gem_obj;
int ret;
uint64_t flags = 0;
ret = amdgpu_bo_reserve(mem->bo, false);
if (ret)
return ret;
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR)
flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT |
AMDGPU_GEM_CREATE_UNCACHED);
ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1,
AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags,
ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0);
amdgpu_bo_unreserve(mem->bo);
if (ret) {
pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret);
return -EINVAL;
}
*bo_out = gem_to_amdgpu_bo(gem_obj);
(*bo_out)->parent = amdgpu_bo_ref(mem->bo);
return ret;
}
/* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
* reservation object.
*
* @bo: [IN] Remove eviction fence(s) from this BO
* @ef: [IN] This eviction fence is removed if it
* is present in the shared list.
*
* NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
*/
static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
struct amdgpu_amdkfd_fence *ef)
{
struct dma_fence *replacement;
if (!ef)
return -EINVAL;
/* TODO: Instead of block before we should use the fence of the page
* table update and TLB flush here directly.
*/
replacement = dma_fence_get_stub();
dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context,
replacement, DMA_RESV_USAGE_BOOKKEEP);
dma_fence_put(replacement);
return 0;
}
int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo)
{
struct amdgpu_bo *root = bo;
struct amdgpu_vm_bo_base *vm_bo;
struct amdgpu_vm *vm;
struct amdkfd_process_info *info;
struct amdgpu_amdkfd_fence *ef;
int ret;
/* we can always get vm_bo from root PD bo.*/
while (root->parent)
root = root->parent;
vm_bo = root->vm_bo;
if (!vm_bo)
return 0;
vm = vm_bo->vm;
if (!vm)
return 0;
info = vm->process_info;
if (!info || !info->eviction_fence)
return 0;
ef = container_of(dma_fence_get(&info->eviction_fence->base),
struct amdgpu_amdkfd_fence, base);
BUG_ON(!dma_resv_trylock(bo->tbo.base.resv));
ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef);
dma_resv_unlock(bo->tbo.base.resv);
dma_fence_put(&ef->base);
return ret;
}
static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
bool wait)
{
struct ttm_operation_ctx ctx = { false, false };
int ret;
if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
"Called with userptr BO"))
return -EINVAL;
/* bo has been pinned, not need validate it */
if (bo->tbo.pin_count)
return 0;
amdgpu_bo_placement_from_domain(bo, domain);
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (ret)
goto validate_fail;
if (wait)
amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
validate_fail:
return ret;
}
int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo,
uint32_t domain,
struct dma_fence *fence)
{
int ret = amdgpu_bo_reserve(bo, false);
if (ret)
return ret;
ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
if (ret)
goto unreserve_out;
ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
if (ret)
goto unreserve_out;
dma_resv_add_fence(bo->tbo.base.resv, fence,
DMA_RESV_USAGE_BOOKKEEP);
unreserve_out:
amdgpu_bo_unreserve(bo);
return ret;
}
static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo)
{
return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false);
}
/* vm_validate_pt_pd_bos - Validate page table and directory BOs
*
* Page directories are not updated here because huge page handling
* during page table updates can invalidate page directory entries
* again. Page directories are only updated after updating page
* tables.
*/
static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm,
struct ww_acquire_ctx *ticket)
{
struct amdgpu_bo *pd = vm->root.bo;
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
int ret;
ret = amdgpu_vm_validate(adev, vm, ticket,
amdgpu_amdkfd_validate_vm_bo, NULL);
if (ret) {
pr_err("failed to validate PT BOs\n");
return ret;
}
vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo);
return 0;
}
static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
{
struct amdgpu_bo *pd = vm->root.bo;
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
int ret;
ret = amdgpu_vm_update_pdes(adev, vm, false);
if (ret)
return ret;
return amdgpu_sync_fence(sync, vm->last_update);
}
static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem)
{
uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE |
AMDGPU_VM_MTYPE_DEFAULT;
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
return amdgpu_gem_va_map_flags(adev, mapping_flags);
}
/**
* create_sg_table() - Create an sg_table for a contiguous DMA addr range
* @addr: The starting address to point to
* @size: Size of memory area in bytes being pointed to
*
* Allocates an instance of sg_table and initializes it to point to memory
* area specified by input parameters. The address used to build is assumed
* to be DMA mapped, if needed.
*
* DOORBELL or MMIO BOs use only one scatterlist node in their sg_table
* because they are physically contiguous.
*
* Return: Initialized instance of SG Table or NULL
*/
static struct sg_table *create_sg_table(uint64_t addr, uint32_t size)
{
struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);
if (!sg)
return NULL;
if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
kfree(sg);
return NULL;
}
sg_dma_address(sg->sgl) = addr;
sg->sgl->length = size;
#ifdef CONFIG_NEED_SG_DMA_LENGTH
sg->sgl->dma_length = size;
#endif
return sg;
}
static int
kfd_mem_dmamap_userptr(struct kgd_mem *mem,
struct kfd_mem_attachment *attachment)
{
enum dma_data_direction direction =
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
struct ttm_operation_ctx ctx = {.interruptible = true};
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
struct amdgpu_device *adev = attachment->adev;
struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
struct ttm_tt *ttm = bo->tbo.ttm;
int ret;
if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
return -EINVAL;
ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
if (unlikely(!ttm->sg))
return -ENOMEM;
/* Same sequence as in amdgpu_ttm_tt_pin_userptr */
ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
ttm->num_pages, 0,
(u64)ttm->num_pages << PAGE_SHIFT,
GFP_KERNEL);
if (unlikely(ret))
goto free_sg;
ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
if (unlikely(ret))
goto release_sg;
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (ret)
goto unmap_sg;
return 0;
unmap_sg:
dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
release_sg:
pr_err("DMA map userptr failed: %d\n", ret);
sg_free_table(ttm->sg);
free_sg:
kfree(ttm->sg);
ttm->sg = NULL;
return ret;
}
static int
kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment)
{
struct ttm_operation_ctx ctx = {.interruptible = true};
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
int ret;
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (ret)
return ret;
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
}
/**
* kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO
* @mem: SG BO of the DOORBELL or MMIO resource on the owning device
* @attachment: Virtual address attachment of the BO on accessing device
*
* An access request from the device that owns DOORBELL does not require DMA mapping.
* This is because the request doesn't go through PCIe root complex i.e. it instead
* loops back. The need to DMA map arises only when accessing peer device's DOORBELL
*
* In contrast, all access requests for MMIO need to be DMA mapped without regard to
* device ownership. This is because access requests for MMIO go through PCIe root
* complex.
*
* This is accomplished in two steps:
* - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used
* in updating requesting device's page table
* - Signal TTM to mark memory pointed to by requesting device's BO as GPU
* accessible. This allows an update of requesting device's page table
* with entries associated with DOOREBELL or MMIO memory
*
* This method is invoked in the following contexts:
* - Mapping of DOORBELL or MMIO BO of same or peer device
* - Validating an evicted DOOREBELL or MMIO BO on device seeking access
*
* Return: ZERO if successful, NON-ZERO otherwise
*/
static int
kfd_mem_dmamap_sg_bo(struct kgd_mem *mem,
struct kfd_mem_attachment *attachment)
{
struct ttm_operation_ctx ctx = {.interruptible = true};
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
struct amdgpu_device *adev = attachment->adev;
struct ttm_tt *ttm = bo->tbo.ttm;
enum dma_data_direction dir;
dma_addr_t dma_addr;
bool mmio;
int ret;
/* Expect SG Table of dmapmap BO to be NULL */
mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP);
if (unlikely(ttm->sg)) {
pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio);
return -EINVAL;
}
dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
dma_addr = mem->bo->tbo.sg->sgl->dma_address;
pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length);
pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr);
dma_addr = dma_map_resource(adev->dev, dma_addr,
mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
ret = dma_mapping_error(adev->dev, dma_addr);
if (unlikely(ret))
return ret;
pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr);
ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length);
if (unlikely(!ttm->sg)) {
ret = -ENOMEM;
goto unmap_sg;
}
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (unlikely(ret))
goto free_sg;
return ret;
free_sg:
sg_free_table(ttm->sg);
kfree(ttm->sg);
ttm->sg = NULL;
unmap_sg:
dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length,
dir, DMA_ATTR_SKIP_CPU_SYNC);
return ret;
}
static int
kfd_mem_dmamap_attachment(struct kgd_mem *mem,
struct kfd_mem_attachment *attachment)
{
switch (attachment->type) {
case KFD_MEM_ATT_SHARED:
return 0;
case KFD_MEM_ATT_USERPTR:
return kfd_mem_dmamap_userptr(mem, attachment);
case KFD_MEM_ATT_DMABUF:
return kfd_mem_dmamap_dmabuf(attachment);
case KFD_MEM_ATT_SG:
return kfd_mem_dmamap_sg_bo(mem, attachment);
default:
WARN_ON_ONCE(1);
}
return -EINVAL;
}
static void
kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
struct kfd_mem_attachment *attachment)
{
enum dma_data_direction direction =
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
struct ttm_operation_ctx ctx = {.interruptible = false};
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
struct amdgpu_device *adev = attachment->adev;
struct ttm_tt *ttm = bo->tbo.ttm;
if (unlikely(!ttm->sg))
return;
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
sg_free_table(ttm->sg);
kfree(ttm->sg);
ttm->sg = NULL;
}
static void
kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment)
{
/* This is a no-op. We don't want to trigger eviction fences when
* unmapping DMABufs. Therefore the invalidation (moving to system
* domain) is done in kfd_mem_dmamap_dmabuf.
*/
}
/**
* kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO
* @mem: SG BO of the DOORBELL or MMIO resource on the owning device
* @attachment: Virtual address attachment of the BO on accessing device
*
* The method performs following steps:
* - Signal TTM to mark memory pointed to by BO as GPU inaccessible
* - Free SG Table that is used to encapsulate DMA mapped memory of
* peer device's DOORBELL or MMIO memory
*
* This method is invoked in the following contexts:
* UNMapping of DOORBELL or MMIO BO on a device having access to its memory
* Eviction of DOOREBELL or MMIO BO on device having access to its memory
*
* Return: void
*/
static void
kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem,
struct kfd_mem_attachment *attachment)
{
struct ttm_operation_ctx ctx = {.interruptible = true};
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
struct amdgpu_device *adev = attachment->adev;
struct ttm_tt *ttm = bo->tbo.ttm;
enum dma_data_direction dir;
if (unlikely(!ttm->sg)) {
pr_debug("SG Table of BO is NULL");
return;
}
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address,
ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
sg_free_table(ttm->sg);
kfree(ttm->sg);
ttm->sg = NULL;
bo->tbo.sg = NULL;
}
static void
kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
struct kfd_mem_attachment *attachment)
{
switch (attachment->type) {
case KFD_MEM_ATT_SHARED:
break;
case KFD_MEM_ATT_USERPTR:
kfd_mem_dmaunmap_userptr(mem, attachment);
break;
case KFD_MEM_ATT_DMABUF:
kfd_mem_dmaunmap_dmabuf(attachment);
break;
case KFD_MEM_ATT_SG:
kfd_mem_dmaunmap_sg_bo(mem, attachment);
break;
default:
WARN_ON_ONCE(1);
}
}
static int kfd_mem_export_dmabuf(struct kgd_mem *mem)
{
if (!mem->dmabuf) {
struct amdgpu_device *bo_adev;
struct dma_buf *dmabuf;
bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file,
mem->gem_handle,
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
DRM_RDWR : 0);
if (IS_ERR(dmabuf))
return PTR_ERR(dmabuf);
mem->dmabuf = dmabuf;
}
return 0;
}
static int
kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem,
struct amdgpu_bo **bo)
{
struct drm_gem_object *gobj;
int ret;
ret = kfd_mem_export_dmabuf(mem);
if (ret)
return ret;
gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf);
if (IS_ERR(gobj))
return PTR_ERR(gobj);
*bo = gem_to_amdgpu_bo(gobj);
(*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE;
return 0;
}
/* kfd_mem_attach - Add a BO to a VM
*
* Everything that needs to bo done only once when a BO is first added
* to a VM. It can later be mapped and unmapped many times without
* repeating these steps.
*
* 0. Create BO for DMA mapping, if needed
* 1. Allocate and initialize BO VA entry data structure
* 2. Add BO to the VM
* 3. Determine ASIC-specific PTE flags
* 4. Alloc page tables and directories if needed
* 4a. Validate new page tables and directories
*/
static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
struct amdgpu_vm *vm, bool is_aql)
{
struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
unsigned long bo_size = mem->bo->tbo.base.size;
uint64_t va = mem->va;
struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
struct amdgpu_bo *bo[2] = {NULL, NULL};
struct amdgpu_bo_va *bo_va;
bool same_hive = false;
int i, ret;
if (!va) {
pr_err("Invalid VA when adding BO to VM\n");
return -EINVAL;
}
/* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices
*
* The access path of MMIO and DOORBELL BOs of is always over PCIe.
* In contrast the access path of VRAM BOs depens upon the type of
* link that connects the peer device. Access over PCIe is allowed
* if peer device has large BAR. In contrast, access over xGMI is
* allowed for both small and large BAR configurations of peer device
*/
if ((adev != bo_adev && !(adev->flags & AMD_IS_APU)) &&
((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) ||
(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) ||
(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM)
same_hive = amdgpu_xgmi_same_hive(adev, bo_adev);
if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev))
return -EINVAL;
}
for (i = 0; i <= is_aql; i++) {
attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
if (unlikely(!attachment[i])) {
ret = -ENOMEM;
goto unwind;
}
pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
va + bo_size, vm);
if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) ||
(amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) ||
(mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) ||
same_hive) {
/* Mappings on the local GPU, or VRAM mappings in the
* local hive, or userptr, or GTT mapping can reuse dma map
* address space share the original BO
*/
attachment[i]->type = KFD_MEM_ATT_SHARED;
bo[i] = mem->bo;
drm_gem_object_get(&bo[i]->tbo.base);
} else if (i > 0) {
/* Multiple mappings on the same GPU share the BO */
attachment[i]->type = KFD_MEM_ATT_SHARED;
bo[i] = bo[0];
drm_gem_object_get(&bo[i]->tbo.base);
} else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
/* Create an SG BO to DMA-map userptrs on other GPUs */
attachment[i]->type = KFD_MEM_ATT_USERPTR;
ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
if (ret)
goto unwind;
/* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */
} else if (mem->bo->tbo.type == ttm_bo_type_sg) {
WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL ||
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP),
"Handing invalid SG BO in ATTACH request");
attachment[i]->type = KFD_MEM_ATT_SG;
ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
if (ret)
goto unwind;
/* Enable acces to GTT and VRAM BOs of peer devices */
} else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT ||
mem->domain == AMDGPU_GEM_DOMAIN_VRAM) {
attachment[i]->type = KFD_MEM_ATT_DMABUF;
ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]);
if (ret)
goto unwind;
pr_debug("Employ DMABUF mechanism to enable peer GPU access\n");
} else {
WARN_ONCE(true, "Handling invalid ATTACH request");
ret = -EINVAL;
goto unwind;
}
/* Add BO to VM internal data structures */
ret = amdgpu_bo_reserve(bo[i], false);
if (ret) {
pr_debug("Unable to reserve BO during memory attach");
goto unwind;
}
bo_va = amdgpu_vm_bo_find(vm, bo[i]);
if (!bo_va)
bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
else
++bo_va->ref_count;
attachment[i]->bo_va = bo_va;
amdgpu_bo_unreserve(bo[i]);
if (unlikely(!attachment[i]->bo_va)) {
ret = -ENOMEM;
pr_err("Failed to add BO object to VM. ret == %d\n",
ret);
goto unwind;
}
attachment[i]->va = va;
attachment[i]->pte_flags = get_pte_flags(adev, mem);
attachment[i]->adev = adev;
list_add(&attachment[i]->list, &mem->attachments);
va += bo_size;
}
return 0;
unwind:
for (; i >= 0; i--) {
if (!attachment[i])
continue;
if (attachment[i]->bo_va) {
amdgpu_bo_reserve(bo[i], true);
if (--attachment[i]->bo_va->ref_count == 0)
amdgpu_vm_bo_del(adev, attachment[i]->bo_va);
amdgpu_bo_unreserve(bo[i]);
list_del(&attachment[i]->list);
}
if (bo[i])
drm_gem_object_put(&bo[i]->tbo.base);
kfree(attachment[i]);
}
return ret;
}
static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
{
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
pr_debug("\t remove VA 0x%llx in entry %p\n",
attachment->va, attachment);
if (--attachment->bo_va->ref_count == 0)
amdgpu_vm_bo_del(attachment->adev, attachment->bo_va);
drm_gem_object_put(&bo->tbo.base);
list_del(&attachment->list);
kfree(attachment);
}
static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
struct amdkfd_process_info *process_info,
bool userptr)
{
mutex_lock(&process_info->lock);
if (userptr)
list_add_tail(&mem->validate_list,
&process_info->userptr_valid_list);
else
list_add_tail(&mem->validate_list, &process_info->kfd_bo_list);
mutex_unlock(&process_info->lock);
}
static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
struct amdkfd_process_info *process_info)
{
mutex_lock(&process_info->lock);
list_del(&mem->validate_list);
mutex_unlock(&process_info->lock);
}
/* Initializes user pages. It registers the MMU notifier and validates
* the userptr BO in the GTT domain.
*
* The BO must already be on the userptr_valid_list. Otherwise an
* eviction and restore may happen that leaves the new BO unmapped
* with the user mode queues running.
*
* Takes the process_info->lock to protect against concurrent restore
* workers.
*
* Returns 0 for success, negative errno for errors.
*/
static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr,
bool criu_resume)
{
struct amdkfd_process_info *process_info = mem->process_info;
struct amdgpu_bo *bo = mem->bo;
struct ttm_operation_ctx ctx = { true, false };
struct hmm_range *range;
int ret = 0;
mutex_lock(&process_info->lock);
ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
if (ret) {
pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
goto out;
}
ret = amdgpu_hmm_register(bo, user_addr);
if (ret) {
pr_err("%s: Failed to register MMU notifier: %d\n",
__func__, ret);
goto out;
}
if (criu_resume) {
/*
* During a CRIU restore operation, the userptr buffer objects
* will be validated in the restore_userptr_work worker at a
* later stage when it is scheduled by another ioctl called by
* CRIU master process for the target pid for restore.
*/
mutex_lock(&process_info->notifier_lock);
mem->invalid++;
mutex_unlock(&process_info->notifier_lock);
mutex_unlock(&process_info->lock);
return 0;
}
ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range);
if (ret) {
if (ret == -EAGAIN)
pr_debug("Failed to get user pages, try again\n");
else
pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
goto unregister_out;
}
ret = amdgpu_bo_reserve(bo, true);
if (ret) {
pr_err("%s: Failed to reserve BO\n", __func__);
goto release_out;
}
amdgpu_bo_placement_from_domain(bo, mem->domain);
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (ret)
pr_err("%s: failed to validate BO\n", __func__);
amdgpu_bo_unreserve(bo);
release_out:
amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range);
unregister_out:
if (ret)
amdgpu_hmm_unregister(bo);
out:
mutex_unlock(&process_info->lock);
return ret;
}
/* Reserving a BO and its page table BOs must happen atomically to
* avoid deadlocks. Some operations update multiple VMs at once. Track
* all the reservation info in a context structure. Optionally a sync
* object can track VM updates.
*/
struct bo_vm_reservation_context {
/* DRM execution context for the reservation */
struct drm_exec exec;
/* Number of VMs reserved */
unsigned int n_vms;
/* Pointer to sync object */
struct amdgpu_sync *sync;
};
enum bo_vm_match {
BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */
BO_VM_MAPPED, /* Match VMs where a BO is mapped */
BO_VM_ALL, /* Match all VMs a BO was added to */
};
/**
* reserve_bo_and_vm - reserve a BO and a VM unconditionally.
* @mem: KFD BO structure.
* @vm: the VM to reserve.
* @ctx: the struct that will be used in unreserve_bo_and_vms().
*/
static int reserve_bo_and_vm(struct kgd_mem *mem,
struct amdgpu_vm *vm,
struct bo_vm_reservation_context *ctx)
{
struct amdgpu_bo *bo = mem->bo;
int ret;
WARN_ON(!vm);
ctx->n_vms = 1;
ctx->sync = &mem->sync;
drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
drm_exec_until_all_locked(&ctx->exec) {
ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
drm_exec_retry_on_contention(&ctx->exec);
if (unlikely(ret))
goto error;
ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
drm_exec_retry_on_contention(&ctx->exec);
if (unlikely(ret))
goto error;
}
return 0;
error:
pr_err("Failed to reserve buffers in ttm.\n");
drm_exec_fini(&ctx->exec);
return ret;
}
/**
* reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
* @mem: KFD BO structure.
* @vm: the VM to reserve. If NULL, then all VMs associated with the BO
* is used. Otherwise, a single VM associated with the BO.
* @map_type: the mapping status that will be used to filter the VMs.
* @ctx: the struct that will be used in unreserve_bo_and_vms().
*
* Returns 0 for success, negative for failure.
*/
static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
struct amdgpu_vm *vm, enum bo_vm_match map_type,
struct bo_vm_reservation_context *ctx)
{
struct kfd_mem_attachment *entry;
struct amdgpu_bo *bo = mem->bo;
int ret;
ctx->sync = &mem->sync;
drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT |
DRM_EXEC_IGNORE_DUPLICATES, 0);
drm_exec_until_all_locked(&ctx->exec) {
ctx->n_vms = 0;
list_for_each_entry(entry, &mem->attachments, list) {
if ((vm && vm != entry->bo_va->base.vm) ||
(entry->is_mapped != map_type
&& map_type != BO_VM_ALL))
continue;
ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm,
&ctx->exec, 2);
drm_exec_retry_on_contention(&ctx->exec);
if (unlikely(ret))
goto error;
++ctx->n_vms;
}
ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
drm_exec_retry_on_contention(&ctx->exec);
if (unlikely(ret))
goto error;
}
return 0;
error:
pr_err("Failed to reserve buffers in ttm.\n");
drm_exec_fini(&ctx->exec);
return ret;
}
/**
* unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
* @ctx: Reservation context to unreserve
* @wait: Optionally wait for a sync object representing pending VM updates
* @intr: Whether the wait is interruptible
*
* Also frees any resources allocated in
* reserve_bo_and_(cond_)vm(s). Returns the status from
* amdgpu_sync_wait.
*/
static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
bool wait, bool intr)
{
int ret = 0;
if (wait)
ret = amdgpu_sync_wait(ctx->sync, intr);
drm_exec_fini(&ctx->exec);
ctx->sync = NULL;
return ret;
}
static int unmap_bo_from_gpuvm(struct kgd_mem *mem,
struct kfd_mem_attachment *entry,
struct amdgpu_sync *sync)
{
struct amdgpu_bo_va *bo_va = entry->bo_va;
struct amdgpu_device *adev = entry->adev;
struct amdgpu_vm *vm = bo_va->base.vm;
if (bo_va->queue_refcount) {
pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount);
return -EBUSY;
}
amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
amdgpu_sync_fence(sync, bo_va->last_pt_update);
return 0;
}
static int update_gpuvm_pte(struct kgd_mem *mem,
struct kfd_mem_attachment *entry,
struct amdgpu_sync *sync)
{
struct amdgpu_bo_va *bo_va = entry->bo_va;
struct amdgpu_device *adev = entry->adev;
int ret;
ret = kfd_mem_dmamap_attachment(mem, entry);
if (ret)
return ret;
/* Update the page tables */
ret = amdgpu_vm_bo_update(adev, bo_va, false);
if (ret) {
pr_err("amdgpu_vm_bo_update failed\n");
return ret;
}
return amdgpu_sync_fence(sync, bo_va->last_pt_update);
}
static int map_bo_to_gpuvm(struct kgd_mem *mem,
struct kfd_mem_attachment *entry,
struct amdgpu_sync *sync,
bool no_update_pte)
{
int ret;
/* Set virtual address for the allocation */
ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0,
amdgpu_bo_size(entry->bo_va->base.bo),
entry->pte_flags);
if (ret) {
pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
entry->va, ret);
return ret;
}
if (no_update_pte)
return 0;
ret = update_gpuvm_pte(mem, entry, sync);
if (ret) {
pr_err("update_gpuvm_pte() failed\n");
goto update_gpuvm_pte_failed;
}
return 0;
update_gpuvm_pte_failed:
unmap_bo_from_gpuvm(mem, entry, sync);
kfd_mem_dmaunmap_attachment(mem, entry);
return ret;
}
static int process_validate_vms(struct amdkfd_process_info *process_info,
struct ww_acquire_ctx *ticket)
{
struct amdgpu_vm *peer_vm;
int ret;
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
ret = vm_validate_pt_pd_bos(peer_vm, ticket);
if (ret)
return ret;
}
return 0;
}
static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
struct amdgpu_sync *sync)
{
struct amdgpu_vm *peer_vm;
int ret;
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
struct amdgpu_bo *pd = peer_vm->root.bo;
ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
AMDGPU_SYNC_NE_OWNER,
AMDGPU_FENCE_OWNER_KFD);
if (ret)
return ret;
}
return 0;
}
static int process_update_pds(struct amdkfd_process_info *process_info,
struct amdgpu_sync *sync)
{
struct amdgpu_vm *peer_vm;
int ret;
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
ret = vm_update_pds(peer_vm, sync);
if (ret)
return ret;
}
return 0;
}
static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
struct dma_fence **ef)
{
struct amdkfd_process_info *info = NULL;
int ret;
if (!*process_info) {
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
mutex_init(&info->lock);
mutex_init(&info->notifier_lock);
INIT_LIST_HEAD(&info->vm_list_head);
INIT_LIST_HEAD(&info->kfd_bo_list);
INIT_LIST_HEAD(&info->userptr_valid_list);
INIT_LIST_HEAD(&info->userptr_inval_list);
info->eviction_fence =
amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
current->mm,
NULL);
if (!info->eviction_fence) {
pr_err("Failed to create eviction fence\n");
ret = -ENOMEM;
goto create_evict_fence_fail;
}
info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
INIT_DELAYED_WORK(&info->restore_userptr_work,
amdgpu_amdkfd_restore_userptr_worker);
*process_info = info;
}
vm->process_info = *process_info;
/* Validate page directory and attach eviction fence */
ret = amdgpu_bo_reserve(vm->root.bo, true);
if (ret)
goto reserve_pd_fail;
ret = vm_validate_pt_pd_bos(vm, NULL);
if (ret) {
pr_err("validate_pt_pd_bos() failed\n");
goto validate_pd_fail;
}
ret = amdgpu_bo_sync_wait(vm->root.bo,
AMDGPU_FENCE_OWNER_KFD, false);
if (ret)
goto wait_pd_fail;
ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1);
if (ret)
goto reserve_shared_fail;
dma_resv_add_fence(vm->root.bo->tbo.base.resv,
&vm->process_info->eviction_fence->base,
DMA_RESV_USAGE_BOOKKEEP);
amdgpu_bo_unreserve(vm->root.bo);
/* Update process info */
mutex_lock(&vm->process_info->lock);
list_add_tail(&vm->vm_list_node,
&(vm->process_info->vm_list_head));
vm->process_info->n_vms++;
*ef = dma_fence_get(&vm->process_info->eviction_fence->base);
mutex_unlock(&vm->process_info->lock);
return 0;
reserve_shared_fail:
wait_pd_fail:
validate_pd_fail:
amdgpu_bo_unreserve(vm->root.bo);
reserve_pd_fail:
vm->process_info = NULL;
if (info) {
dma_fence_put(&info->eviction_fence->base);
*process_info = NULL;
put_pid(info->pid);
create_evict_fence_fail:
mutex_destroy(&info->lock);
mutex_destroy(&info->notifier_lock);
kfree(info);
}
return ret;
}
/**
* amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria
* @bo: Handle of buffer object being pinned
* @domain: Domain into which BO should be pinned
*
* - USERPTR BOs are UNPINNABLE and will return error
* - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
* PIN count incremented. It is valid to PIN a BO multiple times
*
* Return: ZERO if successful in pinning, Non-Zero in case of error.
*/
static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain)
{
int ret = 0;
ret = amdgpu_bo_reserve(bo, false);
if (unlikely(ret))
return ret;
if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) {
/*
* If bo is not contiguous on VRAM, move to system memory first to ensure
* we can get contiguous VRAM space after evicting other BOs.
*/
if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) {
struct ttm_operation_ctx ctx = { true, false };
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (unlikely(ret)) {
pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret);
goto out;
}
}
}
ret = amdgpu_bo_pin(bo, domain);
if (ret)
pr_err("Error in Pinning BO to domain: %d\n", domain);
amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
out:
amdgpu_bo_unreserve(bo);
return ret;
}
/**
* amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria
* @bo: Handle of buffer object being unpinned
*
* - Is a illegal request for USERPTR BOs and is ignored
* - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
* PIN count decremented. Calls to UNPIN must balance calls to PIN
*/
static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo)
{
int ret = 0;
ret = amdgpu_bo_reserve(bo, false);
if (unlikely(ret))
return;
amdgpu_bo_unpin(bo);
amdgpu_bo_unreserve(bo);
}
int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev,
struct amdgpu_vm *avm, u32 pasid)
{
int ret;
/* Free the original amdgpu allocated pasid,
* will be replaced with kfd allocated pasid.
*/
if (avm->pasid) {
amdgpu_pasid_free(avm->pasid);
amdgpu_vm_set_pasid(adev, avm, 0);
}
ret = amdgpu_vm_set_pasid(adev, avm, pasid);
if (ret)
return ret;
return 0;
}
int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev,
struct amdgpu_vm *avm,
void **process_info,
struct dma_fence **ef)
{
int ret;
/* Already a compute VM? */
if (avm->process_info)
return -EINVAL;
/* Convert VM into a compute VM */
ret = amdgpu_vm_make_compute(adev, avm);
if (ret)
return ret;
/* Initialize KFD part of the VM and process info */
ret = init_kfd_vm(avm, process_info, ef);
if (ret)
return ret;
amdgpu_vm_set_task_info(avm);
return 0;
}
void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct amdkfd_process_info *process_info = vm->process_info;
if (!process_info)
return;
/* Update process info */
mutex_lock(&process_info->lock);
process_info->n_vms--;
list_del(&vm->vm_list_node);
mutex_unlock(&process_info->lock);
vm->process_info = NULL;
/* Release per-process resources when last compute VM is destroyed */
if (!process_info->n_vms) {
WARN_ON(!list_empty(&process_info->kfd_bo_list));
WARN_ON(!list_empty(&process_info->userptr_valid_list));
WARN_ON(!list_empty(&process_info->userptr_inval_list));
dma_fence_put(&process_info->eviction_fence->base);
cancel_delayed_work_sync(&process_info->restore_userptr_work);
put_pid(process_info->pid);
mutex_destroy(&process_info->lock);
mutex_destroy(&process_info->notifier_lock);
kfree(process_info);
}
}
void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev,
void *drm_priv)
{
struct amdgpu_vm *avm;
if (WARN_ON(!adev || !drm_priv))
return;
avm = drm_priv_to_vm(drm_priv);
pr_debug("Releasing process vm %p\n", avm);
/* The original pasid of amdgpu vm has already been
* released during making a amdgpu vm to a compute vm
* The current pasid is managed by kfd and will be
* released on kfd process destroy. Set amdgpu pasid
* to 0 to avoid duplicate release.
*/
amdgpu_vm_release_compute(adev, avm);
}
uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
{
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
struct amdgpu_bo *pd = avm->root.bo;
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
if (adev->asic_type < CHIP_VEGA10)
return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
return avm->pd_phys_addr;
}
void amdgpu_amdkfd_block_mmu_notifications(void *p)
{
struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
mutex_lock(&pinfo->lock);
WRITE_ONCE(pinfo->block_mmu_notifications, true);
mutex_unlock(&pinfo->lock);
}
int amdgpu_amdkfd_criu_resume(void *p)
{
int ret = 0;
struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
mutex_lock(&pinfo->lock);
pr_debug("scheduling work\n");
mutex_lock(&pinfo->notifier_lock);
pinfo->evicted_bos++;
mutex_unlock(&pinfo->notifier_lock);
if (!READ_ONCE(pinfo->block_mmu_notifications)) {
ret = -EINVAL;
goto out_unlock;
}
WRITE_ONCE(pinfo->block_mmu_notifications, false);
queue_delayed_work(system_freezable_wq,
&pinfo->restore_userptr_work, 0);
out_unlock:
mutex_unlock(&pinfo->lock);
return ret;
}
size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev,
uint8_t xcp_id)
{
uint64_t reserved_for_pt =
ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
ssize_t available;
uint64_t vram_available, system_mem_available, ttm_mem_available;
spin_lock(&kfd_mem_limit.mem_limit_lock);
vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id)
- adev->kfd.vram_used_aligned[xcp_id]
- atomic64_read(&adev->vram_pin_size)
- reserved_for_pt
- reserved_for_ras;
if (adev->flags & AMD_IS_APU) {
system_mem_available = no_system_mem_limit ?
kfd_mem_limit.max_system_mem_limit :
kfd_mem_limit.max_system_mem_limit -
kfd_mem_limit.system_mem_used;
ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit -
kfd_mem_limit.ttm_mem_used;
available = min3(system_mem_available, ttm_mem_available,
vram_available);
available = ALIGN_DOWN(available, PAGE_SIZE);
} else {
available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN);
}
spin_unlock(&kfd_mem_limit.mem_limit_lock);
if (available < 0)
available = 0;
return available;
}
int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
struct amdgpu_device *adev, uint64_t va, uint64_t size,
void *drm_priv, struct kgd_mem **mem,
uint64_t *offset, uint32_t flags, bool criu_resume)
{
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm);
enum ttm_bo_type bo_type = ttm_bo_type_device;
struct sg_table *sg = NULL;
uint64_t user_addr = 0;
struct amdgpu_bo *bo;
struct drm_gem_object *gobj = NULL;
u32 domain, alloc_domain;
uint64_t aligned_size;
int8_t xcp_id = -1;
u64 alloc_flags;
int ret;
/*
* Check on which domain to allocate BO
*/
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
if (adev->flags & AMD_IS_APU) {
domain = AMDGPU_GEM_DOMAIN_GTT;
alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
alloc_flags = 0;
} else {
alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0;
/* For contiguous VRAM allocation */
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS)
alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
}
xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ?
0 : fpriv->xcp_id;
} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
alloc_flags = 0;
} else {
domain = AMDGPU_GEM_DOMAIN_GTT;
alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE;
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
if (!offset || !*offset)
return -EINVAL;
user_addr = untagged_addr(*offset);
} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
bo_type = ttm_bo_type_sg;
if (size > UINT_MAX)
return -EINVAL;
sg = create_sg_table(*offset, size);
if (!sg)
return -ENOMEM;
} else {
return -EINVAL;
}
}
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT)
alloc_flags |= AMDGPU_GEM_CREATE_COHERENT;
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT)
alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT;
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED)
alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED;
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
if (!*mem) {
ret = -ENOMEM;
goto err;
}
INIT_LIST_HEAD(&(*mem)->attachments);
mutex_init(&(*mem)->lock);
(*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
/* Workaround for AQL queue wraparound bug. Map the same
* memory twice. That means we only actually allocate half
* the memory.
*/
if ((*mem)->aql_queue)
size >>= 1;
aligned_size = PAGE_ALIGN(size);
(*mem)->alloc_flags = flags;
amdgpu_sync_create(&(*mem)->sync);
ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags,
xcp_id);
if (ret) {
pr_debug("Insufficient memory\n");
goto err_reserve_limit;
}
pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n",
va, (*mem)->aql_queue ? size << 1 : size,
domain_string(alloc_domain), xcp_id);
ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags,
bo_type, NULL, &gobj, xcp_id + 1);
if (ret) {
pr_debug("Failed to create BO on domain %s. ret %d\n",
domain_string(alloc_domain), ret);
goto err_bo_create;
}
ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
if (ret) {
pr_debug("Failed to allow vma node access. ret %d\n", ret);
goto err_node_allow;
}
ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle);
if (ret)
goto err_gem_handle_create;
bo = gem_to_amdgpu_bo(gobj);
if (bo_type == ttm_bo_type_sg) {
bo->tbo.sg = sg;
bo->tbo.ttm->sg = sg;
}
bo->kfd_bo = *mem;
(*mem)->bo = bo;
if (user_addr)
bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
(*mem)->va = va;
(*mem)->domain = domain;
(*mem)->mapped_to_gpu_memory = 0;
(*mem)->process_info = avm->process_info;
add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);
if (user_addr) {
pr_debug("creating userptr BO for user_addr = %llx\n", user_addr);
ret = init_user_pages(*mem, user_addr, criu_resume);
if (ret)
goto allocate_init_user_pages_failed;
} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT);
if (ret) {
pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n");
goto err_pin_bo;
}
bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT;
} else {
mutex_lock(&avm->process_info->lock);
if (avm->process_info->eviction_fence &&
!dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain,
&avm->process_info->eviction_fence->base);
mutex_unlock(&avm->process_info->lock);
if (ret)
goto err_validate_bo;
}
if (offset)
*offset = amdgpu_bo_mmap_offset(bo);
return 0;
allocate_init_user_pages_failed:
err_pin_bo:
err_validate_bo:
remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle);
err_gem_handle_create:
drm_vma_node_revoke(&gobj->vma_node, drm_priv);
err_node_allow:
/* Don't unreserve system mem limit twice */
goto err_reserve_limit;
err_bo_create:
amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id);
err_reserve_limit:
amdgpu_sync_free(&(*mem)->sync);
mutex_destroy(&(*mem)->lock);
if (gobj)
drm_gem_object_put(gobj);
else
kfree(*mem);
err:
if (sg) {
sg_free_table(sg);
kfree(sg);
}
return ret;
}
int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv,
uint64_t *size)
{
struct amdkfd_process_info *process_info = mem->process_info;
unsigned long bo_size = mem->bo->tbo.base.size;
bool use_release_notifier = (mem->bo->kfd_bo == mem);
struct kfd_mem_attachment *entry, *tmp;
struct bo_vm_reservation_context ctx;
unsigned int mapped_to_gpu_memory;
int ret;
bool is_imported = false;
mutex_lock(&mem->lock);
/* Unpin MMIO/DOORBELL BO's that were pinned during allocation */
if (mem->alloc_flags &
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo);
}
mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
is_imported = mem->is_imported;
mutex_unlock(&mem->lock);
/* lock is not needed after this, since mem is unused and will
* be freed anyway
*/
if (mapped_to_gpu_memory > 0) {
pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
mem->va, bo_size);
return -EBUSY;
}
/* Make sure restore workers don't access the BO any more */
mutex_lock(&process_info->lock);
list_del(&mem->validate_list);
mutex_unlock(&process_info->lock);
/* Cleanup user pages and MMU notifiers */
if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
amdgpu_hmm_unregister(mem->bo);
mutex_lock(&process_info->notifier_lock);
amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range);
mutex_unlock(&process_info->notifier_lock);
}
ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
if (unlikely(ret))
return ret;
amdgpu_amdkfd_remove_eviction_fence(mem->bo,
process_info->eviction_fence);
pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
mem->va + bo_size * (1 + mem->aql_queue));
/* Remove from VM internal data structures */
list_for_each_entry_safe(entry, tmp, &mem->attachments, list) {
kfd_mem_dmaunmap_attachment(mem, entry);
kfd_mem_detach(entry);
}
ret = unreserve_bo_and_vms(&ctx, false, false);
/* Free the sync object */
amdgpu_sync_free(&mem->sync);
/* If the SG is not NULL, it's one we created for a doorbell or mmio
* remap BO. We need to free it.
*/
if (mem->bo->tbo.sg) {
sg_free_table(mem->bo->tbo.sg);
kfree(mem->bo->tbo.sg);
}
/* Update the size of the BO being freed if it was allocated from
* VRAM and is not imported. For APP APU VRAM allocations are done
* in GTT domain
*/
if (size) {
if (!is_imported &&
(mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM ||
((adev->flags & AMD_IS_APU) &&
mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT)))
*size = bo_size;
else
*size = 0;
}
/* Free the BO*/
drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle);
if (mem->dmabuf) {
dma_buf_put(mem->dmabuf);
mem->dmabuf = NULL;
}
mutex_destroy(&mem->lock);
/* If this releases the last reference, it will end up calling
* amdgpu_amdkfd_release_notify and kfree the mem struct. That's why
* this needs to be the last call here.
*/
drm_gem_object_put(&mem->bo->tbo.base);
/*
* For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(),
* explicitly free it here.
*/
if (!use_release_notifier)
kfree(mem);
return ret;
}
int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
struct amdgpu_device *adev, struct kgd_mem *mem,
void *drm_priv)
{
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
int ret;
struct amdgpu_bo *bo;
uint32_t domain;
struct kfd_mem_attachment *entry;
struct bo_vm_reservation_context ctx;
unsigned long bo_size;
bool is_invalid_userptr = false;
bo = mem->bo;
if (!bo) {
pr_err("Invalid BO when mapping memory to GPU\n");
return -EINVAL;
}
/* Make sure restore is not running concurrently. Since we
* don't map invalid userptr BOs, we rely on the next restore
* worker to do the mapping
*/
mutex_lock(&mem->process_info->lock);
/* Lock notifier lock. If we find an invalid userptr BO, we can be
* sure that the MMU notifier is no longer running
* concurrently and the queues are actually stopped
*/
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
mutex_lock(&mem->process_info->notifier_lock);
is_invalid_userptr = !!mem->invalid;
mutex_unlock(&mem->process_info->notifier_lock);
}
mutex_lock(&mem->lock);
domain = mem->domain;
bo_size = bo->tbo.base.size;
pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
mem->va,
mem->va + bo_size * (1 + mem->aql_queue),
avm, domain_string(domain));
if (!kfd_mem_is_attached(avm, mem)) {
ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
if (ret)
goto out;
}
ret = reserve_bo_and_vm(mem, avm, &ctx);
if (unlikely(ret))
goto out;
/* Userptr can be marked as "not invalid", but not actually be
* validated yet (still in the system domain). In that case
* the queues are still stopped and we can leave mapping for
* the next restore worker
*/
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
bo->tbo.resource->mem_type == TTM_PL_SYSTEM)
is_invalid_userptr = true;
ret = vm_validate_pt_pd_bos(avm, NULL);
if (unlikely(ret))
goto out_unreserve;
list_for_each_entry(entry, &mem->attachments, list) {
if (entry->bo_va->base.vm != avm || entry->is_mapped)
continue;
pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
entry->va, entry->va + bo_size, entry);
ret = map_bo_to_gpuvm(mem, entry, ctx.sync,
is_invalid_userptr);
if (ret) {
pr_err("Failed to map bo to gpuvm\n");
goto out_unreserve;
}
ret = vm_update_pds(avm, ctx.sync);
if (ret) {
pr_err("Failed to update page directories\n");
goto out_unreserve;
}
entry->is_mapped = true;
mem->mapped_to_gpu_memory++;
pr_debug("\t INC mapping count %d\n",
mem->mapped_to_gpu_memory);
}
ret = unreserve_bo_and_vms(&ctx, false, false);
goto out;
out_unreserve:
unreserve_bo_and_vms(&ctx, false, false);
out:
mutex_unlock(&mem->process_info->lock);
mutex_unlock(&mem->lock);
return ret;
}
int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv)
{
struct kfd_mem_attachment *entry;
struct amdgpu_vm *vm;
int ret;
vm = drm_priv_to_vm(drm_priv);
mutex_lock(&mem->lock);
ret = amdgpu_bo_reserve(mem->bo, true);
if (ret)
goto out;
list_for_each_entry(entry, &mem->attachments, list) {
if (entry->bo_va->base.vm != vm)
continue;
if (entry->bo_va->base.bo->tbo.ttm &&
!entry->bo_va->base.bo->tbo.ttm->sg)
continue;
kfd_mem_dmaunmap_attachment(mem, entry);
}
amdgpu_bo_unreserve(mem->bo);
out:
mutex_unlock(&mem->lock);
return ret;
}
int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv)
{
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
unsigned long bo_size = mem->bo->tbo.base.size;
struct kfd_mem_attachment *entry;
struct bo_vm_reservation_context ctx;
int ret;
mutex_lock(&mem->lock);
ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
if (unlikely(ret))
goto out;
/* If no VMs were reserved, it means the BO wasn't actually mapped */
if (ctx.n_vms == 0) {
ret = -EINVAL;
goto unreserve_out;
}
ret = vm_validate_pt_pd_bos(avm, NULL);
if (unlikely(ret))
goto unreserve_out;
pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
mem->va,
mem->va + bo_size * (1 + mem->aql_queue),
avm);
list_for_each_entry(entry, &mem->attachments, list) {
if (entry->bo_va->base.vm != avm || !entry->is_mapped)
continue;
pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
entry->va, entry->va + bo_size, entry);
ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync);
if (ret)
goto unreserve_out;
entry->is_mapped = false;
mem->mapped_to_gpu_memory--;
pr_debug("\t DEC mapping count %d\n",
mem->mapped_to_gpu_memory);
}
unreserve_out:
unreserve_bo_and_vms(&ctx, false, false);
out:
mutex_unlock(&mem->lock);
return ret;
}
int amdgpu_amdkfd_gpuvm_sync_memory(
struct amdgpu_device *adev, struct kgd_mem *mem, bool intr)
{
struct amdgpu_sync sync;
int ret;
amdgpu_sync_create(&sync);
mutex_lock(&mem->lock);
amdgpu_sync_clone(&mem->sync, &sync);
mutex_unlock(&mem->lock);
ret = amdgpu_sync_wait(&sync, intr);
amdgpu_sync_free(&sync);
return ret;
}
/**
* amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count
* @bo: Buffer object to be mapped
* @bo_gart: Return bo reference
*
* Before return, bo reference count is incremented. To release the reference and unpin/
* unmap the BO, call amdgpu_amdkfd_free_gtt_mem.
*/
int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart)
{
int ret;
ret = amdgpu_bo_reserve(bo, true);
if (ret) {
pr_err("Failed to reserve bo. ret %d\n", ret);
goto err_reserve_bo_failed;
}
ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
if (ret) {
pr_err("Failed to pin bo. ret %d\n", ret);
goto err_pin_bo_failed;
}
ret = amdgpu_ttm_alloc_gart(&bo->tbo);
if (ret) {
pr_err("Failed to bind bo to GART. ret %d\n", ret);
goto err_map_bo_gart_failed;
}
amdgpu_amdkfd_remove_eviction_fence(
bo, bo->vm_bo->vm->process_info->eviction_fence);
amdgpu_bo_unreserve(bo);
*bo_gart = amdgpu_bo_ref(bo);
return 0;
err_map_bo_gart_failed:
amdgpu_bo_unpin(bo);
err_pin_bo_failed:
amdgpu_bo_unreserve(bo);
err_reserve_bo_failed:
return ret;
}
/** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access
*
* @mem: Buffer object to be mapped for CPU access
* @kptr[out]: pointer in kernel CPU address space
* @size[out]: size of the buffer
*
* Pins the BO and maps it for kernel CPU access. The eviction fence is removed
* from the BO, since pinned BOs cannot be evicted. The bo must remain on the
* validate_list, so the GPU mapping can be restored after a page table was
* evicted.
*
* Return: 0 on success, error code on failure
*/
int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem,
void **kptr, uint64_t *size)
{
int ret;
struct amdgpu_bo *bo = mem->bo;
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
pr_err("userptr can't be mapped to kernel\n");
return -EINVAL;
}
mutex_lock(&mem->process_info->lock);
ret = amdgpu_bo_reserve(bo, true);
if (ret) {
pr_err("Failed to reserve bo. ret %d\n", ret);
goto bo_reserve_failed;
}
ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
if (ret) {
pr_err("Failed to pin bo. ret %d\n", ret);
goto pin_failed;
}
ret = amdgpu_bo_kmap(bo, kptr);
if (ret) {
pr_err("Failed to map bo to kernel. ret %d\n", ret);
goto kmap_failed;
}
amdgpu_amdkfd_remove_eviction_fence(
bo, mem->process_info->eviction_fence);
if (size)
*size = amdgpu_bo_size(bo);
amdgpu_bo_unreserve(bo);
mutex_unlock(&mem->process_info->lock);
return 0;
kmap_failed:
amdgpu_bo_unpin(bo);
pin_failed:
amdgpu_bo_unreserve(bo);
bo_reserve_failed:
mutex_unlock(&mem->process_info->lock);
return ret;
}
/** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access
*
* @mem: Buffer object to be unmapped for CPU access
*
* Removes the kernel CPU mapping and unpins the BO. It does not restore the
* eviction fence, so this function should only be used for cleanup before the
* BO is destroyed.
*/
void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem)
{
struct amdgpu_bo *bo = mem->bo;
amdgpu_bo_reserve(bo, true);
amdgpu_bo_kunmap(bo);
amdgpu_bo_unpin(bo);
amdgpu_bo_unreserve(bo);
}
int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev,
struct kfd_vm_fault_info *mem)
{
if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) {
*mem = *adev->gmc.vm_fault_info;
mb(); /* make sure read happened */
atomic_set(&adev->gmc.vm_fault_info_updated, 0);
}
return 0;
}
static int import_obj_create(struct amdgpu_device *adev,
struct dma_buf *dma_buf,
struct drm_gem_object *obj,
uint64_t va, void *drm_priv,
struct kgd_mem **mem, uint64_t *size,
uint64_t *mmap_offset)
{
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
struct amdgpu_bo *bo;
int ret;
bo = gem_to_amdgpu_bo(obj);
if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT)))
/* Only VRAM and GTT BOs are supported */
return -EINVAL;
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
if (!*mem)
return -ENOMEM;
ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
if (ret)
goto err_free_mem;
if (size)
*size = amdgpu_bo_size(bo);
if (mmap_offset)
*mmap_offset = amdgpu_bo_mmap_offset(bo);
INIT_LIST_HEAD(&(*mem)->attachments);
mutex_init(&(*mem)->lock);
(*mem)->alloc_flags =
((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
get_dma_buf(dma_buf);
(*mem)->dmabuf = dma_buf;
(*mem)->bo = bo;
(*mem)->va = va;
(*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) &&
!(adev->flags & AMD_IS_APU) ?
AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
(*mem)->mapped_to_gpu_memory = 0;
(*mem)->process_info = avm->process_info;
add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
amdgpu_sync_create(&(*mem)->sync);
(*mem)->is_imported = true;
mutex_lock(&avm->process_info->lock);
if (avm->process_info->eviction_fence &&
!dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain,
&avm->process_info->eviction_fence->base);
mutex_unlock(&avm->process_info->lock);
if (ret)
goto err_remove_mem;
return 0;
err_remove_mem:
remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
drm_vma_node_revoke(&obj->vma_node, drm_priv);
err_free_mem:
kfree(*mem);
return ret;
}
int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd,
uint64_t va, void *drm_priv,
struct kgd_mem **mem, uint64_t *size,
uint64_t *mmap_offset)
{
struct drm_gem_object *obj;
uint32_t handle;
int ret;
ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd,
&handle);
if (ret)
return ret;
obj = drm_gem_object_lookup(adev->kfd.client.file, handle);
if (!obj) {
ret = -EINVAL;
goto err_release_handle;
}
ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size,
mmap_offset);
if (ret)
goto err_put_obj;
(*mem)->gem_handle = handle;
return 0;
err_put_obj:
drm_gem_object_put(obj);
err_release_handle:
drm_gem_handle_delete(adev->kfd.client.file, handle);
return ret;
}
int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem,
struct dma_buf **dma_buf)
{
int ret;
mutex_lock(&mem->lock);
ret = kfd_mem_export_dmabuf(mem);
if (ret)
goto out;
get_dma_buf(mem->dmabuf);
*dma_buf = mem->dmabuf;
out:
mutex_unlock(&mem->lock);
return ret;
}
/* Evict a userptr BO by stopping the queues if necessary
*
* Runs in MMU notifier, may be in RECLAIM_FS context. This means it
* cannot do any memory allocations, and cannot take any locks that
* are held elsewhere while allocating memory.
*
* It doesn't do anything to the BO itself. The real work happens in
* restore, where we get updated page addresses. This function only
* ensures that GPU access to the BO is stopped.
*/
int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni,
unsigned long cur_seq, struct kgd_mem *mem)
{
struct amdkfd_process_info *process_info = mem->process_info;
int r = 0;
/* Do not process MMU notifications during CRIU restore until
* KFD_CRIU_OP_RESUME IOCTL is received
*/
if (READ_ONCE(process_info->block_mmu_notifications))
return 0;
mutex_lock(&process_info->notifier_lock);
mmu_interval_set_seq(mni, cur_seq);
mem->invalid++;
if (++process_info->evicted_bos == 1) {
/* First eviction, stop the queues */
r = kgd2kfd_quiesce_mm(mni->mm,
KFD_QUEUE_EVICTION_TRIGGER_USERPTR);
if (r)
pr_err("Failed to quiesce KFD\n");
queue_delayed_work(system_freezable_wq,
&process_info->restore_userptr_work,
msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
}
mutex_unlock(&process_info->notifier_lock);
return r;
}
/* Update invalid userptr BOs
*
* Moves invalidated (evicted) userptr BOs from userptr_valid_list to
* userptr_inval_list and updates user pages for all BOs that have
* been invalidated since their last update.
*/
static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
struct mm_struct *mm)
{
struct kgd_mem *mem, *tmp_mem;
struct amdgpu_bo *bo;
struct ttm_operation_ctx ctx = { false, false };
uint32_t invalid;
int ret = 0;
mutex_lock(&process_info->notifier_lock);
/* Move all invalidated BOs to the userptr_inval_list */
list_for_each_entry_safe(mem, tmp_mem,
&process_info->userptr_valid_list,
validate_list)
if (mem->invalid)
list_move_tail(&mem->validate_list,
&process_info->userptr_inval_list);
/* Go through userptr_inval_list and update any invalid user_pages */
list_for_each_entry(mem, &process_info->userptr_inval_list,
validate_list) {
invalid = mem->invalid;
if (!invalid)
/* BO hasn't been invalidated since the last
* revalidation attempt. Keep its page list.
*/
continue;
bo = mem->bo;
amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range);
mem->range = NULL;
/* BO reservations and getting user pages (hmm_range_fault)
* must happen outside the notifier lock
*/
mutex_unlock(&process_info->notifier_lock);
/* Move the BO to system (CPU) domain if necessary to unmap
* and free the SG table
*/
if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) {
if (amdgpu_bo_reserve(bo, true))
return -EAGAIN;
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
amdgpu_bo_unreserve(bo);
if (ret) {
pr_err("%s: Failed to invalidate userptr BO\n",
__func__);
return -EAGAIN;
}
}
/* Get updated user pages */
ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages,
&mem->range);
if (ret) {
pr_debug("Failed %d to get user pages\n", ret);
/* Return -EFAULT bad address error as success. It will
* fail later with a VM fault if the GPU tries to access
* it. Better than hanging indefinitely with stalled
* user mode queues.
*
* Return other error -EBUSY or -ENOMEM to retry restore
*/
if (ret != -EFAULT)
return ret;
ret = 0;
}
mutex_lock(&process_info->notifier_lock);
/* Mark the BO as valid unless it was invalidated
* again concurrently.
*/
if (mem->invalid != invalid) {
ret = -EAGAIN;
goto unlock_out;
}
/* set mem valid if mem has hmm range associated */
if (mem->range)
mem->invalid = 0;
}
unlock_out:
mutex_unlock(&process_info->notifier_lock);
return ret;
}
/* Validate invalid userptr BOs
*
* Validates BOs on the userptr_inval_list. Also updates GPUVM page tables
* with new page addresses and waits for the page table updates to complete.
*/
static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
{
struct ttm_operation_ctx ctx = { false, false };
struct amdgpu_sync sync;
struct drm_exec exec;
struct amdgpu_vm *peer_vm;
struct kgd_mem *mem, *tmp_mem;
struct amdgpu_bo *bo;
int ret;
amdgpu_sync_create(&sync);
drm_exec_init(&exec, 0, 0);
/* Reserve all BOs and page tables for validation */
drm_exec_until_all_locked(&exec) {
/* Reserve all the page directories */
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
drm_exec_retry_on_contention(&exec);
if (unlikely(ret))
goto unreserve_out;
}
/* Reserve the userptr_inval_list entries to resv_list */
list_for_each_entry(mem, &process_info->userptr_inval_list,
validate_list) {
struct drm_gem_object *gobj;
gobj = &mem->bo->tbo.base;
ret = drm_exec_prepare_obj(&exec, gobj, 1);
drm_exec_retry_on_contention(&exec);
if (unlikely(ret))
goto unreserve_out;
}
}
ret = process_validate_vms(process_info, NULL);
if (ret)
goto unreserve_out;
/* Validate BOs and update GPUVM page tables */
list_for_each_entry_safe(mem, tmp_mem,
&process_info->userptr_inval_list,
validate_list) {
struct kfd_mem_attachment *attachment;
bo = mem->bo;
/* Validate the BO if we got user pages */
if (bo->tbo.ttm->pages[0]) {
amdgpu_bo_placement_from_domain(bo, mem->domain);
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (ret) {
pr_err("%s: failed to validate BO\n", __func__);
goto unreserve_out;
}
}
/* Update mapping. If the BO was not validated
* (because we couldn't get user pages), this will
* clear the page table entries, which will result in
* VM faults if the GPU tries to access the invalid
* memory.
*/
list_for_each_entry(attachment, &mem->attachments, list) {
if (!attachment->is_mapped)
continue;
kfd_mem_dmaunmap_attachment(mem, attachment);
ret = update_gpuvm_pte(mem, attachment, &sync);
if (ret) {
pr_err("%s: update PTE failed\n", __func__);
/* make sure this gets validated again */
mutex_lock(&process_info->notifier_lock);
mem->invalid++;
mutex_unlock(&process_info->notifier_lock);
goto unreserve_out;
}
}
}
/* Update page directories */
ret = process_update_pds(process_info, &sync);
unreserve_out:
drm_exec_fini(&exec);
amdgpu_sync_wait(&sync, false);
amdgpu_sync_free(&sync);
return ret;
}
/* Confirm that all user pages are valid while holding the notifier lock
*
* Moves valid BOs from the userptr_inval_list back to userptr_val_list.
*/
static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info)
{
struct kgd_mem *mem, *tmp_mem;
int ret = 0;
list_for_each_entry_safe(mem, tmp_mem,
&process_info->userptr_inval_list,
validate_list) {
bool valid;
/* keep mem without hmm range at userptr_inval_list */
if (!mem->range)
continue;
/* Only check mem with hmm range associated */
valid = amdgpu_ttm_tt_get_user_pages_done(
mem->bo->tbo.ttm, mem->range);
mem->range = NULL;
if (!valid) {
WARN(!mem->invalid, "Invalid BO not marked invalid");
ret = -EAGAIN;
continue;
}
if (mem->invalid) {
WARN(1, "Valid BO is marked invalid");
ret = -EAGAIN;
continue;
}
list_move_tail(&mem->validate_list,
&process_info->userptr_valid_list);
}
return ret;
}
/* Worker callback to restore evicted userptr BOs
*
* Tries to update and validate all userptr BOs. If successful and no
* concurrent evictions happened, the queues are restarted. Otherwise,
* reschedule for another attempt later.
*/
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct amdkfd_process_info *process_info =
container_of(dwork, struct amdkfd_process_info,
restore_userptr_work);
struct task_struct *usertask;
struct mm_struct *mm;
uint32_t evicted_bos;
mutex_lock(&process_info->notifier_lock);
evicted_bos = process_info->evicted_bos;
mutex_unlock(&process_info->notifier_lock);
if (!evicted_bos)
return;
/* Reference task and mm in case of concurrent process termination */
usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
if (!usertask)
return;
mm = get_task_mm(usertask);
if (!mm) {
put_task_struct(usertask);
return;
}
mutex_lock(&process_info->lock);
if (update_invalid_user_pages(process_info, mm))
goto unlock_out;
/* userptr_inval_list can be empty if all evicted userptr BOs
* have been freed. In that case there is nothing to validate
* and we can just restart the queues.
*/
if (!list_empty(&process_info->userptr_inval_list)) {
if (validate_invalid_user_pages(process_info))
goto unlock_out;
}
/* Final check for concurrent evicton and atomic update. If
* another eviction happens after successful update, it will
* be a first eviction that calls quiesce_mm. The eviction
* reference counting inside KFD will handle this case.
*/
mutex_lock(&process_info->notifier_lock);
if (process_info->evicted_bos != evicted_bos)
goto unlock_notifier_out;
if (confirm_valid_user_pages_locked(process_info)) {
WARN(1, "User pages unexpectedly invalid");
goto unlock_notifier_out;
}
process_info->evicted_bos = evicted_bos = 0;
if (kgd2kfd_resume_mm(mm)) {
pr_err("%s: Failed to resume KFD\n", __func__);
/* No recovery from this failure. Probably the CP is
* hanging. No point trying again.
*/
}
unlock_notifier_out:
mutex_unlock(&process_info->notifier_lock);
unlock_out:
mutex_unlock(&process_info->lock);
/* If validation failed, reschedule another attempt */
if (evicted_bos) {
queue_delayed_work(system_freezable_wq,
&process_info->restore_userptr_work,
msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
kfd_smi_event_queue_restore_rescheduled(mm);
}
mmput(mm);
put_task_struct(usertask);
}
static void replace_eviction_fence(struct dma_fence __rcu **ef,
struct dma_fence *new_ef)
{
struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true
/* protected by process_info->lock */);
/* If we're replacing an unsignaled eviction fence, that fence will
* never be signaled, and if anyone is still waiting on that fence,
* they will hang forever. This should never happen. We should only
* replace the fence in restore_work that only gets scheduled after
* eviction work signaled the fence.
*/
WARN_ONCE(!dma_fence_is_signaled(old_ef),
"Replacing unsignaled eviction fence");
dma_fence_put(old_ef);
}
/** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
* KFD process identified by process_info
*
* @process_info: amdkfd_process_info of the KFD process
*
* After memory eviction, restore thread calls this function. The function
* should be called when the Process is still valid. BO restore involves -
*
* 1. Release old eviction fence and create new one
* 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
* 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of
* BOs that need to be reserved.
* 4. Reserve all the BOs
* 5. Validate of PD and PT BOs.
* 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence
* 7. Add fence to all PD and PT BOs.
* 8. Unreserve all BOs
*/
int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef)
{
struct amdkfd_process_info *process_info = info;
struct amdgpu_vm *peer_vm;
struct kgd_mem *mem;
struct list_head duplicate_save;
struct amdgpu_sync sync_obj;
unsigned long failed_size = 0;
unsigned long total_size = 0;
struct drm_exec exec;
int ret;
INIT_LIST_HEAD(&duplicate_save);
mutex_lock(&process_info->lock);
drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0);
drm_exec_until_all_locked(&exec) {
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
drm_exec_retry_on_contention(&exec);
if (unlikely(ret)) {
pr_err("Locking VM PD failed, ret: %d\n", ret);
goto ttm_reserve_fail;
}
}
/* Reserve all BOs and page tables/directory. Add all BOs from
* kfd_bo_list to ctx.list
*/
list_for_each_entry(mem, &process_info->kfd_bo_list,
validate_list) {
struct drm_gem_object *gobj;
gobj = &mem->bo->tbo.base;
ret = drm_exec_prepare_obj(&exec, gobj, 1);
drm_exec_retry_on_contention(&exec);
if (unlikely(ret)) {
pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret);
goto ttm_reserve_fail;
}
}
}
amdgpu_sync_create(&sync_obj);
/* Validate BOs managed by KFD */
list_for_each_entry(mem, &process_info->kfd_bo_list,
validate_list) {
struct amdgpu_bo *bo = mem->bo;
uint32_t domain = mem->domain;
struct dma_resv_iter cursor;
struct dma_fence *fence;
total_size += amdgpu_bo_size(bo);
ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
if (ret) {
pr_debug("Memory eviction: Validate BOs failed\n");
failed_size += amdgpu_bo_size(bo);
ret = amdgpu_amdkfd_bo_validate(bo,
AMDGPU_GEM_DOMAIN_GTT, false);
if (ret) {
pr_debug("Memory eviction: Try again\n");
goto validate_map_fail;
}
}
dma_resv_for_each_fence(&cursor, bo->tbo.base.resv,
DMA_RESV_USAGE_KERNEL, fence) {
ret = amdgpu_sync_fence(&sync_obj, fence);
if (ret) {
pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
goto validate_map_fail;
}
}
}
if (failed_size)
pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);
/* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO
* validations above would invalidate DMABuf imports again.
*/
ret = process_validate_vms(process_info, &exec.ticket);
if (ret) {
pr_debug("Validating VMs failed, ret: %d\n", ret);
goto validate_map_fail;
}
/* Update mappings managed by KFD. */
list_for_each_entry(mem, &process_info->kfd_bo_list,
validate_list) {
struct kfd_mem_attachment *attachment;
list_for_each_entry(attachment, &mem->attachments, list) {
if (!attachment->is_mapped)
continue;
kfd_mem_dmaunmap_attachment(mem, attachment);
ret = update_gpuvm_pte(mem, attachment, &sync_obj);
if (ret) {
pr_debug("Memory eviction: update PTE failed. Try again\n");
goto validate_map_fail;
}
}
}
/* Update mappings not managed by KFD */
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
struct amdgpu_device *adev = amdgpu_ttm_adev(
peer_vm->root.bo->tbo.bdev);
ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket);
if (ret) {
pr_debug("Memory eviction: handle moved failed. Try again\n");
goto validate_map_fail;
}
}
/* Update page directories */
ret = process_update_pds(process_info, &sync_obj);
if (ret) {
pr_debug("Memory eviction: update PDs failed. Try again\n");
goto validate_map_fail;
}
/* Sync with fences on all the page tables. They implicitly depend on any
* move fences from amdgpu_vm_handle_moved above.
*/
ret = process_sync_pds_resv(process_info, &sync_obj);
if (ret) {
pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
goto validate_map_fail;
}
/* Wait for validate and PT updates to finish */
amdgpu_sync_wait(&sync_obj, false);
/* The old eviction fence may be unsignaled if restore happens
* after a GPU reset or suspend/resume. Keep the old fence in that
* case. Otherwise release the old eviction fence and create new
* one, because fence only goes from unsignaled to signaled once
* and cannot be reused. Use context and mm from the old fence.
*
* If an old eviction fence signals after this check, that's OK.
* Anyone signaling an eviction fence must stop the queues first
* and schedule another restore worker.
*/
if (dma_fence_is_signaled(&process_info->eviction_fence->base)) {
struct amdgpu_amdkfd_fence *new_fence =
amdgpu_amdkfd_fence_create(
process_info->eviction_fence->base.context,
process_info->eviction_fence->mm,
NULL);
if (!new_fence) {
pr_err("Failed to create eviction fence\n");
ret = -ENOMEM;
goto validate_map_fail;
}
dma_fence_put(&process_info->eviction_fence->base);
process_info->eviction_fence = new_fence;
replace_eviction_fence(ef, dma_fence_get(&new_fence->base));
} else {
WARN_ONCE(*ef != &process_info->eviction_fence->base,
"KFD eviction fence doesn't match KGD process_info");
}
/* Attach new eviction fence to all BOs except pinned ones */
list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) {
if (mem->bo->tbo.pin_count)
continue;
dma_resv_add_fence(mem->bo->tbo.base.resv,
&process_info->eviction_fence->base,
DMA_RESV_USAGE_BOOKKEEP);
}
/* Attach eviction fence to PD / PT BOs and DMABuf imports */
list_for_each_entry(peer_vm, &process_info->vm_list_head,
vm_list_node) {
struct amdgpu_bo *bo = peer_vm->root.bo;
dma_resv_add_fence(bo->tbo.base.resv,
&process_info->eviction_fence->base,
DMA_RESV_USAGE_BOOKKEEP);
}
validate_map_fail:
amdgpu_sync_free(&sync_obj);
ttm_reserve_fail:
drm_exec_fini(&exec);
mutex_unlock(&process_info->lock);
return ret;
}
int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
{
struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
int ret;
if (!info || !gws)
return -EINVAL;
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
if (!*mem)
return -ENOMEM;
mutex_init(&(*mem)->lock);
INIT_LIST_HEAD(&(*mem)->attachments);
(*mem)->bo = amdgpu_bo_ref(gws_bo);
(*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
(*mem)->process_info = process_info;
add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
amdgpu_sync_create(&(*mem)->sync);
/* Validate gws bo the first time it is added to process */
mutex_lock(&(*mem)->process_info->lock);
ret = amdgpu_bo_reserve(gws_bo, false);
if (unlikely(ret)) {
pr_err("Reserve gws bo failed %d\n", ret);
goto bo_reservation_failure;
}
ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
if (ret) {
pr_err("GWS BO validate failed %d\n", ret);
goto bo_validation_failure;
}
/* GWS resource is shared b/t amdgpu and amdkfd
* Add process eviction fence to bo so they can
* evict each other.
*/
ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1);
if (ret)
goto reserve_shared_fail;
dma_resv_add_fence(gws_bo->tbo.base.resv,
&process_info->eviction_fence->base,
DMA_RESV_USAGE_BOOKKEEP);
amdgpu_bo_unreserve(gws_bo);
mutex_unlock(&(*mem)->process_info->lock);
return ret;
reserve_shared_fail:
bo_validation_failure:
amdgpu_bo_unreserve(gws_bo);
bo_reservation_failure:
mutex_unlock(&(*mem)->process_info->lock);
amdgpu_sync_free(&(*mem)->sync);
remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
amdgpu_bo_unref(&gws_bo);
mutex_destroy(&(*mem)->lock);
kfree(*mem);
*mem = NULL;
return ret;
}
int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
{
int ret;
struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
struct amdgpu_bo *gws_bo = kgd_mem->bo;
/* Remove BO from process's validate list so restore worker won't touch
* it anymore
*/
remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);
ret = amdgpu_bo_reserve(gws_bo, false);
if (unlikely(ret)) {
pr_err("Reserve gws bo failed %d\n", ret);
//TODO add BO back to validate_list?
return ret;
}
amdgpu_amdkfd_remove_eviction_fence(gws_bo,
process_info->eviction_fence);
amdgpu_bo_unreserve(gws_bo);
amdgpu_sync_free(&kgd_mem->sync);
amdgpu_bo_unref(&gws_bo);
mutex_destroy(&kgd_mem->lock);
kfree(mem);
return 0;
}
/* Returns GPU-specific tiling mode information */
int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev,
struct tile_config *config)
{
config->gb_addr_config = adev->gfx.config.gb_addr_config;
config->tile_config_ptr = adev->gfx.config.tile_mode_array;
config->num_tile_configs =
ARRAY_SIZE(adev->gfx.config.tile_mode_array);
config->macro_tile_config_ptr =
adev->gfx.config.macrotile_mode_array;
config->num_macro_tile_configs =
ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
/* Those values are not set from GFX9 onwards */
config->num_banks = adev->gfx.config.num_banks;
config->num_ranks = adev->gfx.config.num_ranks;
return 0;
}
bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem)
{
struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv);
struct kfd_mem_attachment *entry;
list_for_each_entry(entry, &mem->attachments, list) {
if (entry->is_mapped && entry->bo_va->base.vm == vm)
return true;
}
return false;
}
#if defined(CONFIG_DEBUG_FS)
int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data)
{
spin_lock(&kfd_mem_limit.mem_limit_lock);
seq_printf(m, "System mem used %lldM out of %lluM\n",
(kfd_mem_limit.system_mem_used >> 20),
(kfd_mem_limit.max_system_mem_limit >> 20));
seq_printf(m, "TTM mem used %lldM out of %lluM\n",
(kfd_mem_limit.ttm_mem_used >> 20),
(kfd_mem_limit.max_ttm_mem_limit >> 20));
spin_unlock(&kfd_mem_limit.mem_limit_lock);
return 0;
}
#endif