| /* |
| * Copyright 2018 Advanced Micro Devices, Inc. |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| */ |
| |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| #ifdef CONFIG_X86 |
| #include <asm/hypervisor.h> |
| #endif |
| |
| #include "amdgpu.h" |
| #include "amdgpu_gmc.h" |
| #include "amdgpu_ras.h" |
| #include "amdgpu_reset.h" |
| #include "amdgpu_xgmi.h" |
| |
| #include <drm/drm_drv.h> |
| #include <drm/ttm/ttm_tt.h> |
| |
| /** |
| * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Allocate video memory for pdb0 and map it for CPU access |
| * Returns 0 for success, error for failure. |
| */ |
| int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) |
| { |
| int r; |
| struct amdgpu_bo_param bp; |
| u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; |
| uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; |
| uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift; |
| |
| memset(&bp, 0, sizeof(bp)); |
| bp.size = PAGE_ALIGN((npdes + 1) * 8); |
| bp.byte_align = PAGE_SIZE; |
| bp.domain = AMDGPU_GEM_DOMAIN_VRAM; |
| bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | |
| AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; |
| bp.type = ttm_bo_type_kernel; |
| bp.resv = NULL; |
| bp.bo_ptr_size = sizeof(struct amdgpu_bo); |
| |
| r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); |
| if (r) |
| return r; |
| |
| r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); |
| if (unlikely(r != 0)) |
| goto bo_reserve_failure; |
| |
| r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); |
| if (r) |
| goto bo_pin_failure; |
| r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); |
| if (r) |
| goto bo_kmap_failure; |
| |
| amdgpu_bo_unreserve(adev->gmc.pdb0_bo); |
| return 0; |
| |
| bo_kmap_failure: |
| amdgpu_bo_unpin(adev->gmc.pdb0_bo); |
| bo_pin_failure: |
| amdgpu_bo_unreserve(adev->gmc.pdb0_bo); |
| bo_reserve_failure: |
| amdgpu_bo_unref(&adev->gmc.pdb0_bo); |
| return r; |
| } |
| |
| /** |
| * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO |
| * |
| * @bo: the BO to get the PDE for |
| * @level: the level in the PD hirarchy |
| * @addr: resulting addr |
| * @flags: resulting flags |
| * |
| * Get the address and flags to be used for a PDE (Page Directory Entry). |
| */ |
| void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, |
| uint64_t *addr, uint64_t *flags) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); |
| |
| switch (bo->tbo.resource->mem_type) { |
| case TTM_PL_TT: |
| *addr = bo->tbo.ttm->dma_address[0]; |
| break; |
| case TTM_PL_VRAM: |
| *addr = amdgpu_bo_gpu_offset(bo); |
| break; |
| default: |
| *addr = 0; |
| break; |
| } |
| *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); |
| amdgpu_gmc_get_vm_pde(adev, level, addr, flags); |
| } |
| |
| /* |
| * amdgpu_gmc_pd_addr - return the address of the root directory |
| */ |
| uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); |
| uint64_t pd_addr; |
| |
| /* TODO: move that into ASIC specific code */ |
| if (adev->asic_type >= CHIP_VEGA10) { |
| uint64_t flags = AMDGPU_PTE_VALID; |
| |
| amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); |
| pd_addr |= flags; |
| } else { |
| pd_addr = amdgpu_bo_gpu_offset(bo); |
| } |
| return pd_addr; |
| } |
| |
| /** |
| * amdgpu_gmc_set_pte_pde - update the page tables using CPU |
| * |
| * @adev: amdgpu_device pointer |
| * @cpu_pt_addr: cpu address of the page table |
| * @gpu_page_idx: entry in the page table to update |
| * @addr: dst addr to write into pte/pde |
| * @flags: access flags |
| * |
| * Update the page tables using CPU. |
| */ |
| int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, |
| uint32_t gpu_page_idx, uint64_t addr, |
| uint64_t flags) |
| { |
| void __iomem *ptr = (void *)cpu_pt_addr; |
| uint64_t value; |
| |
| /* |
| * The following is for PTE only. GART does not have PDEs. |
| */ |
| value = addr & 0x0000FFFFFFFFF000ULL; |
| value |= flags; |
| writeq(value, ptr + (gpu_page_idx * 8)); |
| |
| return 0; |
| } |
| |
| /** |
| * amdgpu_gmc_agp_addr - return the address in the AGP address space |
| * |
| * @bo: TTM BO which needs the address, must be in GTT domain |
| * |
| * Tries to figure out how to access the BO through the AGP aperture. Returns |
| * AMDGPU_BO_INVALID_OFFSET if that is not possible. |
| */ |
| uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); |
| |
| if (!bo->ttm) |
| return AMDGPU_BO_INVALID_OFFSET; |
| |
| if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) |
| return AMDGPU_BO_INVALID_OFFSET; |
| |
| if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) |
| return AMDGPU_BO_INVALID_OFFSET; |
| |
| return adev->gmc.agp_start + bo->ttm->dma_address[0]; |
| } |
| |
| /** |
| * amdgpu_gmc_vram_location - try to find VRAM location |
| * |
| * @adev: amdgpu device structure holding all necessary information |
| * @mc: memory controller structure holding memory information |
| * @base: base address at which to put VRAM |
| * |
| * Function will try to place VRAM at base address provided |
| * as parameter. |
| */ |
| void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, |
| u64 base) |
| { |
| uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20; |
| uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; |
| |
| mc->vram_start = base; |
| mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; |
| if (limit < mc->real_vram_size) |
| mc->real_vram_size = limit; |
| |
| if (vis_limit && vis_limit < mc->visible_vram_size) |
| mc->visible_vram_size = vis_limit; |
| |
| if (mc->real_vram_size < mc->visible_vram_size) |
| mc->visible_vram_size = mc->real_vram_size; |
| |
| if (mc->xgmi.num_physical_nodes == 0) { |
| mc->fb_start = mc->vram_start; |
| mc->fb_end = mc->vram_end; |
| } |
| dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", |
| mc->mc_vram_size >> 20, mc->vram_start, |
| mc->vram_end, mc->real_vram_size >> 20); |
| } |
| |
| /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture |
| * |
| * @adev: amdgpu device structure holding all necessary information |
| * @mc: memory controller structure holding memory information |
| * |
| * This function is only used if use GART for FB translation. In such |
| * case, we use sysvm aperture (vmid0 page tables) for both vram |
| * and gart (aka system memory) access. |
| * |
| * GPUVM (and our organization of vmid0 page tables) require sysvm |
| * aperture to be placed at a location aligned with 8 times of native |
| * page size. For example, if vm_context0_cntl.page_table_block_size |
| * is 12, then native page size is 8G (2M*2^12), sysvm should start |
| * with a 64G aligned address. For simplicity, we just put sysvm at |
| * address 0. So vram start at address 0 and gart is right after vram. |
| */ |
| void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) |
| { |
| u64 hive_vram_start = 0; |
| u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; |
| mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; |
| mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; |
| mc->gart_start = hive_vram_end + 1; |
| mc->gart_end = mc->gart_start + mc->gart_size - 1; |
| mc->fb_start = hive_vram_start; |
| mc->fb_end = hive_vram_end; |
| dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", |
| mc->mc_vram_size >> 20, mc->vram_start, |
| mc->vram_end, mc->real_vram_size >> 20); |
| dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", |
| mc->gart_size >> 20, mc->gart_start, mc->gart_end); |
| } |
| |
| /** |
| * amdgpu_gmc_gart_location - try to find GART location |
| * |
| * @adev: amdgpu device structure holding all necessary information |
| * @mc: memory controller structure holding memory information |
| * @gart_placement: GART placement policy with respect to VRAM |
| * |
| * Function will place try to place GART before or after VRAM. |
| * If GART size is bigger than space left then we ajust GART size. |
| * Thus function will never fails. |
| */ |
| void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, |
| enum amdgpu_gart_placement gart_placement) |
| { |
| const uint64_t four_gb = 0x100000000ULL; |
| u64 size_af, size_bf; |
| /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ |
| u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); |
| |
| /* VCE doesn't like it when BOs cross a 4GB segment, so align |
| * the GART base on a 4GB boundary as well. |
| */ |
| size_bf = mc->fb_start; |
| size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); |
| |
| if (mc->gart_size > max(size_bf, size_af)) { |
| dev_warn(adev->dev, "limiting GART\n"); |
| mc->gart_size = max(size_bf, size_af); |
| } |
| |
| switch (gart_placement) { |
| case AMDGPU_GART_PLACEMENT_HIGH: |
| mc->gart_start = max_mc_address - mc->gart_size + 1; |
| break; |
| case AMDGPU_GART_PLACEMENT_LOW: |
| mc->gart_start = 0; |
| break; |
| case AMDGPU_GART_PLACEMENT_BEST_FIT: |
| default: |
| if ((size_bf >= mc->gart_size && size_bf < size_af) || |
| (size_af < mc->gart_size)) |
| mc->gart_start = 0; |
| else |
| mc->gart_start = max_mc_address - mc->gart_size + 1; |
| break; |
| } |
| |
| mc->gart_start &= ~(four_gb - 1); |
| mc->gart_end = mc->gart_start + mc->gart_size - 1; |
| dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", |
| mc->gart_size >> 20, mc->gart_start, mc->gart_end); |
| } |
| |
| /** |
| * amdgpu_gmc_agp_location - try to find AGP location |
| * @adev: amdgpu device structure holding all necessary information |
| * @mc: memory controller structure holding memory information |
| * |
| * Function will place try to find a place for the AGP BAR in the MC address |
| * space. |
| * |
| * AGP BAR will be assigned the largest available hole in the address space. |
| * Should be called after VRAM and GART locations are setup. |
| */ |
| void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) |
| { |
| const uint64_t sixteen_gb = 1ULL << 34; |
| const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); |
| u64 size_af, size_bf; |
| |
| if (mc->fb_start > mc->gart_start) { |
| size_bf = (mc->fb_start & sixteen_gb_mask) - |
| ALIGN(mc->gart_end + 1, sixteen_gb); |
| size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); |
| } else { |
| size_bf = mc->fb_start & sixteen_gb_mask; |
| size_af = (mc->gart_start & sixteen_gb_mask) - |
| ALIGN(mc->fb_end + 1, sixteen_gb); |
| } |
| |
| if (size_bf > size_af) { |
| mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; |
| mc->agp_size = size_bf; |
| } else { |
| mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); |
| mc->agp_size = size_af; |
| } |
| |
| mc->agp_end = mc->agp_start + mc->agp_size - 1; |
| dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", |
| mc->agp_size >> 20, mc->agp_start, mc->agp_end); |
| } |
| |
| /** |
| * amdgpu_gmc_set_agp_default - Set the default AGP aperture value. |
| * @adev: amdgpu device structure holding all necessary information |
| * @mc: memory controller structure holding memory information |
| * |
| * To disable the AGP aperture, you need to set the start to a larger |
| * value than the end. This function sets the default value which |
| * can then be overridden using amdgpu_gmc_agp_location() if you want |
| * to enable the AGP aperture on a specific chip. |
| * |
| */ |
| void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev, |
| struct amdgpu_gmc *mc) |
| { |
| mc->agp_start = 0xffffffffffff; |
| mc->agp_end = 0; |
| mc->agp_size = 0; |
| } |
| |
| /** |
| * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid |
| * |
| * @addr: 48 bit physical address, page aligned (36 significant bits) |
| * @pasid: 16 bit process address space identifier |
| */ |
| static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) |
| { |
| return addr << 4 | pasid; |
| } |
| |
| /** |
| * amdgpu_gmc_filter_faults - filter VM faults |
| * |
| * @adev: amdgpu device structure |
| * @ih: interrupt ring that the fault received from |
| * @addr: address of the VM fault |
| * @pasid: PASID of the process causing the fault |
| * @timestamp: timestamp of the fault |
| * |
| * Returns: |
| * True if the fault was filtered and should not be processed further. |
| * False if the fault is a new one and needs to be handled. |
| */ |
| bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, |
| struct amdgpu_ih_ring *ih, uint64_t addr, |
| uint16_t pasid, uint64_t timestamp) |
| { |
| struct amdgpu_gmc *gmc = &adev->gmc; |
| uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); |
| struct amdgpu_gmc_fault *fault; |
| uint32_t hash; |
| |
| /* Stale retry fault if timestamp goes backward */ |
| if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) |
| return true; |
| |
| /* If we don't have space left in the ring buffer return immediately */ |
| stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - |
| AMDGPU_GMC_FAULT_TIMEOUT; |
| if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) |
| return true; |
| |
| /* Try to find the fault in the hash */ |
| hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); |
| fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; |
| while (fault->timestamp >= stamp) { |
| uint64_t tmp; |
| |
| if (atomic64_read(&fault->key) == key) { |
| /* |
| * if we get a fault which is already present in |
| * the fault_ring and the timestamp of |
| * the fault is after the expired timestamp, |
| * then this is a new fault that needs to be added |
| * into the fault ring. |
| */ |
| if (fault->timestamp_expiry != 0 && |
| amdgpu_ih_ts_after(fault->timestamp_expiry, |
| timestamp)) |
| break; |
| else |
| return true; |
| } |
| |
| tmp = fault->timestamp; |
| fault = &gmc->fault_ring[fault->next]; |
| |
| /* Check if the entry was reused */ |
| if (fault->timestamp >= tmp) |
| break; |
| } |
| |
| /* Add the fault to the ring */ |
| fault = &gmc->fault_ring[gmc->last_fault]; |
| atomic64_set(&fault->key, key); |
| fault->timestamp = timestamp; |
| |
| /* And update the hash */ |
| fault->next = gmc->fault_hash[hash].idx; |
| gmc->fault_hash[hash].idx = gmc->last_fault++; |
| return false; |
| } |
| |
| /** |
| * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter |
| * |
| * @adev: amdgpu device structure |
| * @addr: address of the VM fault |
| * @pasid: PASID of the process causing the fault |
| * |
| * Remove the address from fault filter, then future vm fault on this address |
| * will pass to retry fault handler to recover. |
| */ |
| void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, |
| uint16_t pasid) |
| { |
| struct amdgpu_gmc *gmc = &adev->gmc; |
| uint64_t key = amdgpu_gmc_fault_key(addr, pasid); |
| struct amdgpu_ih_ring *ih; |
| struct amdgpu_gmc_fault *fault; |
| uint32_t last_wptr; |
| uint64_t last_ts; |
| uint32_t hash; |
| uint64_t tmp; |
| |
| if (adev->irq.retry_cam_enabled) |
| return; |
| |
| ih = &adev->irq.ih1; |
| /* Get the WPTR of the last entry in IH ring */ |
| last_wptr = amdgpu_ih_get_wptr(adev, ih); |
| /* Order wptr with ring data. */ |
| rmb(); |
| /* Get the timetamp of the last entry in IH ring */ |
| last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1); |
| |
| hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); |
| fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; |
| do { |
| if (atomic64_read(&fault->key) == key) { |
| /* |
| * Update the timestamp when this fault |
| * expired. |
| */ |
| fault->timestamp_expiry = last_ts; |
| break; |
| } |
| |
| tmp = fault->timestamp; |
| fault = &gmc->fault_ring[fault->next]; |
| } while (fault->timestamp < tmp); |
| } |
| |
| int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev) |
| { |
| int r; |
| |
| /* umc ras block */ |
| r = amdgpu_umc_ras_sw_init(adev); |
| if (r) |
| return r; |
| |
| /* mmhub ras block */ |
| r = amdgpu_mmhub_ras_sw_init(adev); |
| if (r) |
| return r; |
| |
| /* hdp ras block */ |
| r = amdgpu_hdp_ras_sw_init(adev); |
| if (r) |
| return r; |
| |
| /* mca.x ras block */ |
| r = amdgpu_mca_mp0_ras_sw_init(adev); |
| if (r) |
| return r; |
| |
| r = amdgpu_mca_mp1_ras_sw_init(adev); |
| if (r) |
| return r; |
| |
| r = amdgpu_mca_mpio_ras_sw_init(adev); |
| if (r) |
| return r; |
| |
| /* xgmi ras block */ |
| r = amdgpu_xgmi_ras_sw_init(adev); |
| if (r) |
| return r; |
| |
| return 0; |
| } |
| |
| int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) |
| { |
| return 0; |
| } |
| |
| void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) |
| { |
| |
| } |
| |
| /* |
| * The latest engine allocation on gfx9/10 is: |
| * Engine 2, 3: firmware |
| * Engine 0, 1, 4~16: amdgpu ring, |
| * subject to change when ring number changes |
| * Engine 17: Gart flushes |
| */ |
| #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3 |
| |
| int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) |
| { |
| struct amdgpu_ring *ring; |
| unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0}; |
| unsigned i; |
| unsigned vmhub, inv_eng; |
| |
| /* init the vm inv eng for all vmhubs */ |
| for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) { |
| vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP; |
| /* reserve engine 5 for firmware */ |
| if (adev->enable_mes) |
| vm_inv_engs[i] &= ~(1 << 5); |
| /* reserve mmhub engine 3 for firmware */ |
| if (adev->enable_umsch_mm) |
| vm_inv_engs[i] &= ~(1 << 3); |
| } |
| |
| for (i = 0; i < adev->num_rings; ++i) { |
| ring = adev->rings[i]; |
| vmhub = ring->vm_hub; |
| |
| if (ring == &adev->mes.ring[0] || |
| ring == &adev->mes.ring[1] || |
| ring == &adev->umsch_mm.ring) |
| continue; |
| |
| inv_eng = ffs(vm_inv_engs[vmhub]); |
| if (!inv_eng) { |
| dev_err(adev->dev, "no VM inv eng for ring %s\n", |
| ring->name); |
| return -EINVAL; |
| } |
| |
| ring->vm_inv_eng = inv_eng - 1; |
| vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); |
| |
| dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", |
| ring->name, ring->vm_inv_eng, ring->vm_hub); |
| } |
| |
| return 0; |
| } |
| |
| void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, |
| uint32_t vmhub, uint32_t flush_type) |
| { |
| struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; |
| struct amdgpu_vmhub *hub = &adev->vmhub[vmhub]; |
| struct dma_fence *fence; |
| struct amdgpu_job *job; |
| int r; |
| |
| if (!hub->sdma_invalidation_workaround || vmid || |
| !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready || |
| !ring->sched.ready) { |
| /* |
| * A GPU reset should flush all TLBs anyway, so no need to do |
| * this while one is ongoing. |
| */ |
| if (!down_read_trylock(&adev->reset_domain->sem)) |
| return; |
| |
| if (adev->gmc.flush_tlb_needs_extra_type_2) |
| adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, |
| vmhub, 2); |
| |
| if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) |
| adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, |
| vmhub, 0); |
| |
| adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, |
| flush_type); |
| up_read(&adev->reset_domain->sem); |
| return; |
| } |
| |
| /* The SDMA on Navi 1x has a bug which can theoretically result in memory |
| * corruption if an invalidation happens at the same time as an VA |
| * translation. Avoid this by doing the invalidation from the SDMA |
| * itself at least for GART. |
| */ |
| mutex_lock(&adev->mman.gtt_window_lock); |
| r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr, |
| AMDGPU_FENCE_OWNER_UNDEFINED, |
| 16 * 4, AMDGPU_IB_POOL_IMMEDIATE, |
| &job); |
| if (r) |
| goto error_alloc; |
| |
| job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); |
| job->vm_needs_flush = true; |
| job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop; |
| amdgpu_ring_pad_ib(ring, &job->ibs[0]); |
| fence = amdgpu_job_submit(job); |
| mutex_unlock(&adev->mman.gtt_window_lock); |
| |
| dma_fence_wait(fence, false); |
| dma_fence_put(fence); |
| |
| return; |
| |
| error_alloc: |
| mutex_unlock(&adev->mman.gtt_window_lock); |
| dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r); |
| } |
| |
| int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid, |
| uint32_t flush_type, bool all_hub, |
| uint32_t inst) |
| { |
| u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT : |
| adev->usec_timeout; |
| struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring; |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst]; |
| unsigned int ndw; |
| int r; |
| uint32_t seq; |
| |
| /* |
| * A GPU reset should flush all TLBs anyway, so no need to do |
| * this while one is ongoing. |
| */ |
| if (!down_read_trylock(&adev->reset_domain->sem)) |
| return 0; |
| |
| if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) { |
| if (adev->gmc.flush_tlb_needs_extra_type_2) |
| adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, |
| 2, all_hub, |
| inst); |
| |
| if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) |
| adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, |
| 0, all_hub, |
| inst); |
| |
| adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, |
| flush_type, all_hub, |
| inst); |
| r = 0; |
| } else { |
| /* 2 dwords flush + 8 dwords fence */ |
| ndw = kiq->pmf->invalidate_tlbs_size + 8; |
| |
| if (adev->gmc.flush_tlb_needs_extra_type_2) |
| ndw += kiq->pmf->invalidate_tlbs_size; |
| |
| if (adev->gmc.flush_tlb_needs_extra_type_0) |
| ndw += kiq->pmf->invalidate_tlbs_size; |
| |
| spin_lock(&adev->gfx.kiq[inst].ring_lock); |
| r = amdgpu_ring_alloc(ring, ndw); |
| if (r) { |
| spin_unlock(&adev->gfx.kiq[inst].ring_lock); |
| goto error_unlock_reset; |
| } |
| if (adev->gmc.flush_tlb_needs_extra_type_2) |
| kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub); |
| |
| if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0) |
| kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub); |
| |
| kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub); |
| r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); |
| if (r) { |
| amdgpu_ring_undo(ring); |
| spin_unlock(&adev->gfx.kiq[inst].ring_lock); |
| goto error_unlock_reset; |
| } |
| |
| amdgpu_ring_commit(ring); |
| spin_unlock(&adev->gfx.kiq[inst].ring_lock); |
| if (amdgpu_fence_wait_polling(ring, seq, usec_timeout) < 1) { |
| dev_err(adev->dev, "timeout waiting for kiq fence\n"); |
| r = -ETIME; |
| } |
| } |
| |
| error_unlock_reset: |
| up_read(&adev->reset_domain->sem); |
| return r; |
| } |
| |
| void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev, |
| uint32_t reg0, uint32_t reg1, |
| uint32_t ref, uint32_t mask, |
| uint32_t xcc_inst) |
| { |
| struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst]; |
| struct amdgpu_ring *ring = &kiq->ring; |
| signed long r, cnt = 0; |
| unsigned long flags; |
| uint32_t seq; |
| |
| if (adev->mes.ring[0].sched.ready) { |
| amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1, |
| ref, mask); |
| return; |
| } |
| |
| spin_lock_irqsave(&kiq->ring_lock, flags); |
| amdgpu_ring_alloc(ring, 32); |
| amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1, |
| ref, mask); |
| r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); |
| if (r) |
| goto failed_undo; |
| |
| amdgpu_ring_commit(ring); |
| spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| |
| r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| |
| /* don't wait anymore for IRQ context */ |
| if (r < 1 && in_interrupt()) |
| goto failed_kiq; |
| |
| might_sleep(); |
| while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && |
| !amdgpu_reset_pending(adev->reset_domain)) { |
| |
| msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); |
| r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); |
| } |
| |
| if (cnt > MAX_KIQ_REG_TRY) |
| goto failed_kiq; |
| |
| return; |
| |
| failed_undo: |
| amdgpu_ring_undo(ring); |
| spin_unlock_irqrestore(&kiq->ring_lock, flags); |
| failed_kiq: |
| dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1); |
| } |
| |
| /** |
| * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ |
| * @adev: amdgpu_device pointer |
| * |
| * Check and set if an the device @adev supports Trusted Memory |
| * Zones (TMZ). |
| */ |
| void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) |
| { |
| switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { |
| /* RAVEN */ |
| case IP_VERSION(9, 2, 2): |
| case IP_VERSION(9, 1, 0): |
| /* RENOIR looks like RAVEN */ |
| case IP_VERSION(9, 3, 0): |
| /* GC 10.3.7 */ |
| case IP_VERSION(10, 3, 7): |
| /* GC 11.0.1 */ |
| case IP_VERSION(11, 0, 1): |
| if (amdgpu_tmz == 0) { |
| adev->gmc.tmz_enabled = false; |
| dev_info(adev->dev, |
| "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); |
| } else { |
| adev->gmc.tmz_enabled = true; |
| dev_info(adev->dev, |
| "Trusted Memory Zone (TMZ) feature enabled\n"); |
| } |
| break; |
| case IP_VERSION(10, 1, 10): |
| case IP_VERSION(10, 1, 1): |
| case IP_VERSION(10, 1, 2): |
| case IP_VERSION(10, 1, 3): |
| case IP_VERSION(10, 3, 0): |
| case IP_VERSION(10, 3, 2): |
| case IP_VERSION(10, 3, 4): |
| case IP_VERSION(10, 3, 5): |
| case IP_VERSION(10, 3, 6): |
| /* VANGOGH */ |
| case IP_VERSION(10, 3, 1): |
| /* YELLOW_CARP*/ |
| case IP_VERSION(10, 3, 3): |
| case IP_VERSION(11, 0, 4): |
| case IP_VERSION(11, 5, 0): |
| case IP_VERSION(11, 5, 1): |
| case IP_VERSION(11, 5, 2): |
| /* Don't enable it by default yet. |
| */ |
| if (amdgpu_tmz < 1) { |
| adev->gmc.tmz_enabled = false; |
| dev_info(adev->dev, |
| "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); |
| } else { |
| adev->gmc.tmz_enabled = true; |
| dev_info(adev->dev, |
| "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); |
| } |
| break; |
| default: |
| adev->gmc.tmz_enabled = false; |
| dev_info(adev->dev, |
| "Trusted Memory Zone (TMZ) feature not supported\n"); |
| break; |
| } |
| } |
| |
| /** |
| * amdgpu_gmc_noretry_set -- set per asic noretry defaults |
| * @adev: amdgpu_device pointer |
| * |
| * Set a per asic default for the no-retry parameter. |
| * |
| */ |
| void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) |
| { |
| struct amdgpu_gmc *gmc = &adev->gmc; |
| uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); |
| bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) || |
| gc_ver == IP_VERSION(9, 4, 0) || |
| gc_ver == IP_VERSION(9, 4, 1) || |
| gc_ver == IP_VERSION(9, 4, 2) || |
| gc_ver == IP_VERSION(9, 4, 3) || |
| gc_ver == IP_VERSION(9, 4, 4) || |
| gc_ver >= IP_VERSION(10, 3, 0)); |
| |
| if (!amdgpu_sriov_xnack_support(adev)) |
| gmc->noretry = 1; |
| else |
| gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry; |
| } |
| |
| void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, |
| bool enable) |
| { |
| struct amdgpu_vmhub *hub; |
| u32 tmp, reg, i; |
| |
| hub = &adev->vmhub[hub_type]; |
| for (i = 0; i < 16; i++) { |
| reg = hub->vm_context0_cntl + hub->ctx_distance * i; |
| |
| tmp = (hub_type == AMDGPU_GFXHUB(0)) ? |
| RREG32_SOC15_IP(GC, reg) : |
| RREG32_SOC15_IP(MMHUB, reg); |
| |
| if (enable) |
| tmp |= hub->vm_cntx_cntl_vm_fault; |
| else |
| tmp &= ~hub->vm_cntx_cntl_vm_fault; |
| |
| (hub_type == AMDGPU_GFXHUB(0)) ? |
| WREG32_SOC15_IP(GC, reg, tmp) : |
| WREG32_SOC15_IP(MMHUB, reg, tmp); |
| } |
| } |
| |
| void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) |
| { |
| unsigned size; |
| |
| /* |
| * Some ASICs need to reserve a region of video memory to avoid access |
| * from driver |
| */ |
| adev->mman.stolen_reserved_offset = 0; |
| adev->mman.stolen_reserved_size = 0; |
| |
| /* |
| * TODO: |
| * Currently there is a bug where some memory client outside |
| * of the driver writes to first 8M of VRAM on S3 resume, |
| * this overrides GART which by default gets placed in first 8M and |
| * causes VM_FAULTS once GTT is accessed. |
| * Keep the stolen memory reservation until the while this is not solved. |
| */ |
| switch (adev->asic_type) { |
| case CHIP_VEGA10: |
| adev->mman.keep_stolen_vga_memory = true; |
| /* |
| * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area. |
| */ |
| #ifdef CONFIG_X86 |
| if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) { |
| adev->mman.stolen_reserved_offset = 0x500000; |
| adev->mman.stolen_reserved_size = 0x200000; |
| } |
| #endif |
| break; |
| case CHIP_RAVEN: |
| case CHIP_RENOIR: |
| adev->mman.keep_stolen_vga_memory = true; |
| break; |
| default: |
| adev->mman.keep_stolen_vga_memory = false; |
| break; |
| } |
| |
| if (amdgpu_sriov_vf(adev) || |
| !amdgpu_device_has_display_hardware(adev)) { |
| size = 0; |
| } else { |
| size = amdgpu_gmc_get_vbios_fb_size(adev); |
| |
| if (adev->mman.keep_stolen_vga_memory) |
| size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); |
| } |
| |
| /* set to 0 if the pre-OS buffer uses up most of vram */ |
| if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) |
| size = 0; |
| |
| if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { |
| adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; |
| adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; |
| } else { |
| adev->mman.stolen_vga_size = size; |
| adev->mman.stolen_extended_size = 0; |
| } |
| } |
| |
| /** |
| * amdgpu_gmc_init_pdb0 - initialize PDB0 |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * This function is only used when GART page table is used |
| * for FB address translatioin. In such a case, we construct |
| * a 2-level system VM page table: PDB0->PTB, to cover both |
| * VRAM of the hive and system memory. |
| * |
| * PDB0 is static, initialized once on driver initialization. |
| * The first n entries of PDB0 are used as PTE by setting |
| * P bit to 1, pointing to VRAM. The n+1'th entry points |
| * to a big PTB covering system memory. |
| * |
| */ |
| void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) |
| { |
| int i; |
| uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? |
| /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M |
| */ |
| u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; |
| u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21; |
| u64 vram_addr = adev->vm_manager.vram_base_offset - |
| adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; |
| u64 vram_end = vram_addr + vram_size; |
| u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); |
| int idx; |
| |
| if (!drm_dev_enter(adev_to_drm(adev), &idx)) |
| return; |
| |
| flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; |
| flags |= AMDGPU_PTE_WRITEABLE; |
| flags |= AMDGPU_PTE_SNOOPED; |
| flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); |
| flags |= AMDGPU_PDE_PTE_FLAG(adev); |
| |
| /* The first n PDE0 entries are used as PTE, |
| * pointing to vram |
| */ |
| for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) |
| amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); |
| |
| /* The n+1'th PDE0 entry points to a huge |
| * PTB who has more than 512 entries each |
| * pointing to a 4K system page |
| */ |
| flags = AMDGPU_PTE_VALID; |
| flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0); |
| /* Requires gart_ptb_gpu_pa to be 4K aligned */ |
| amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); |
| drm_dev_exit(idx); |
| } |
| |
| /** |
| * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC |
| * address |
| * |
| * @adev: amdgpu_device pointer |
| * @mc_addr: MC address of buffer |
| */ |
| uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) |
| { |
| return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; |
| } |
| |
| /** |
| * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from |
| * GPU's view |
| * |
| * @adev: amdgpu_device pointer |
| * @bo: amdgpu buffer object |
| */ |
| uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) |
| { |
| return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); |
| } |
| |
| /** |
| * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address |
| * from CPU's view |
| * |
| * @adev: amdgpu_device pointer |
| * @bo: amdgpu buffer object |
| */ |
| uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) |
| { |
| return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base; |
| } |
| |
| int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) |
| { |
| struct amdgpu_bo *vram_bo = NULL; |
| uint64_t vram_gpu = 0; |
| void *vram_ptr = NULL; |
| |
| int ret, size = 0x100000; |
| uint8_t cptr[10]; |
| |
| ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, |
| AMDGPU_GEM_DOMAIN_VRAM, |
| &vram_bo, |
| &vram_gpu, |
| &vram_ptr); |
| if (ret) |
| return ret; |
| |
| memset(vram_ptr, 0x86, size); |
| memset(cptr, 0x86, 10); |
| |
| /** |
| * Check the start, the mid, and the end of the memory if the content of |
| * each byte is the pattern "0x86". If yes, we suppose the vram bo is |
| * workable. |
| * |
| * Note: If check the each byte of whole 1M bo, it will cost too many |
| * seconds, so here, we just pick up three parts for emulation. |
| */ |
| ret = memcmp(vram_ptr, cptr, 10); |
| if (ret) { |
| ret = -EIO; |
| goto release_buffer; |
| } |
| |
| ret = memcmp(vram_ptr + (size / 2), cptr, 10); |
| if (ret) { |
| ret = -EIO; |
| goto release_buffer; |
| } |
| |
| ret = memcmp(vram_ptr + size - 10, cptr, 10); |
| if (ret) { |
| ret = -EIO; |
| goto release_buffer; |
| } |
| |
| release_buffer: |
| amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, |
| &vram_ptr); |
| |
| return ret; |
| } |
| |
| static ssize_t current_memory_partition_show( |
| struct device *dev, struct device_attribute *addr, char *buf) |
| { |
| struct drm_device *ddev = dev_get_drvdata(dev); |
| struct amdgpu_device *adev = drm_to_adev(ddev); |
| enum amdgpu_memory_partition mode; |
| |
| mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); |
| switch (mode) { |
| case AMDGPU_NPS1_PARTITION_MODE: |
| return sysfs_emit(buf, "NPS1\n"); |
| case AMDGPU_NPS2_PARTITION_MODE: |
| return sysfs_emit(buf, "NPS2\n"); |
| case AMDGPU_NPS3_PARTITION_MODE: |
| return sysfs_emit(buf, "NPS3\n"); |
| case AMDGPU_NPS4_PARTITION_MODE: |
| return sysfs_emit(buf, "NPS4\n"); |
| case AMDGPU_NPS6_PARTITION_MODE: |
| return sysfs_emit(buf, "NPS6\n"); |
| case AMDGPU_NPS8_PARTITION_MODE: |
| return sysfs_emit(buf, "NPS8\n"); |
| default: |
| return sysfs_emit(buf, "UNKNOWN\n"); |
| } |
| } |
| |
| static DEVICE_ATTR_RO(current_memory_partition); |
| |
| int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev) |
| { |
| if (!adev->gmc.gmc_funcs->query_mem_partition_mode) |
| return 0; |
| |
| return device_create_file(adev->dev, |
| &dev_attr_current_memory_partition); |
| } |
| |
| void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev) |
| { |
| device_remove_file(adev->dev, &dev_attr_current_memory_partition); |
| } |
| |
| int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev, |
| struct amdgpu_mem_partition_info *mem_ranges, |
| int exp_ranges) |
| { |
| struct amdgpu_gmc_memrange *ranges; |
| int range_cnt, ret, i, j; |
| uint32_t nps_type; |
| |
| if (!mem_ranges) |
| return -EINVAL; |
| |
| ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges, |
| &range_cnt); |
| |
| if (ret) |
| return ret; |
| |
| /* TODO: For now, expect ranges and partition count to be the same. |
| * Adjust if there are holes expected in any NPS domain. |
| */ |
| if (range_cnt != exp_ranges) { |
| dev_warn( |
| adev->dev, |
| "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d", |
| exp_ranges, nps_type, range_cnt); |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| for (i = 0; i < exp_ranges; ++i) { |
| if (ranges[i].base_address >= ranges[i].limit_address) { |
| dev_warn( |
| adev->dev, |
| "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx", |
| nps_type, i, ranges[i].base_address, |
| ranges[i].limit_address); |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| /* Check for overlaps, not expecting any now */ |
| for (j = i - 1; j >= 0; j--) { |
| if (max(ranges[j].base_address, |
| ranges[i].base_address) <= |
| min(ranges[j].limit_address, |
| ranges[i].limit_address)) { |
| dev_warn( |
| adev->dev, |
| "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]", |
| ranges[j].base_address, |
| ranges[j].limit_address, |
| ranges[i].base_address, |
| ranges[i].limit_address); |
| ret = -EINVAL; |
| goto err; |
| } |
| } |
| |
| mem_ranges[i].range.fpfn = |
| (ranges[i].base_address - |
| adev->vm_manager.vram_base_offset) >> |
| AMDGPU_GPU_PAGE_SHIFT; |
| mem_ranges[i].range.lpfn = |
| (ranges[i].limit_address - |
| adev->vm_manager.vram_base_offset) >> |
| AMDGPU_GPU_PAGE_SHIFT; |
| mem_ranges[i].size = |
| ranges[i].limit_address - ranges[i].base_address + 1; |
| } |
| |
| err: |
| kfree(ranges); |
| |
| return ret; |
| } |