| /* |
| * Copyright 2018 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: AMD |
| * |
| */ |
| #include "resource.h" |
| #include "dce_i2c.h" |
| #include "dce_i2c_hw.h" |
| #include "reg_helper.h" |
| #include "include/gpio_service_interface.h" |
| |
| #define CTX \ |
| dce_i2c_hw->ctx |
| #define REG(reg)\ |
| dce_i2c_hw->regs->reg |
| |
| #undef FN |
| #define FN(reg_name, field_name) \ |
| dce_i2c_hw->shifts->field_name, dce_i2c_hw->masks->field_name |
| |
| static void execute_transaction( |
| struct dce_i2c_hw *dce_i2c_hw) |
| { |
| REG_UPDATE_N(SETUP, 5, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_DATA_DRIVE_EN), 0, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_CLK_DRIVE_EN), 0, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_DATA_DRIVE_SEL), 0, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_INTRA_TRANSACTION_DELAY), 0, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_INTRA_BYTE_DELAY), 0); |
| |
| |
| REG_UPDATE_5(DC_I2C_CONTROL, |
| DC_I2C_SOFT_RESET, 0, |
| DC_I2C_SW_STATUS_RESET, 0, |
| DC_I2C_SEND_RESET, 0, |
| DC_I2C_GO, 0, |
| DC_I2C_TRANSACTION_COUNT, dce_i2c_hw->transaction_count - 1); |
| |
| /* start I2C transfer */ |
| REG_UPDATE(DC_I2C_CONTROL, DC_I2C_GO, 1); |
| |
| /* all transactions were executed and HW buffer became empty |
| * (even though it actually happens when status becomes DONE) |
| */ |
| dce_i2c_hw->transaction_count = 0; |
| dce_i2c_hw->buffer_used_bytes = 0; |
| } |
| |
| static enum i2c_channel_operation_result get_channel_status( |
| struct dce_i2c_hw *dce_i2c_hw, |
| uint8_t *returned_bytes) |
| { |
| uint32_t i2c_sw_status = 0; |
| uint32_t value = |
| REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); |
| if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_SW) |
| return I2C_CHANNEL_OPERATION_ENGINE_BUSY; |
| else if (value & dce_i2c_hw->masks->DC_I2C_SW_STOPPED_ON_NACK) |
| return I2C_CHANNEL_OPERATION_NO_RESPONSE; |
| else if (value & dce_i2c_hw->masks->DC_I2C_SW_TIMEOUT) |
| return I2C_CHANNEL_OPERATION_TIMEOUT; |
| else if (value & dce_i2c_hw->masks->DC_I2C_SW_ABORTED) |
| return I2C_CHANNEL_OPERATION_FAILED; |
| else if (value & dce_i2c_hw->masks->DC_I2C_SW_DONE) |
| return I2C_CHANNEL_OPERATION_SUCCEEDED; |
| |
| /* |
| * this is the case when HW used for communication, I2C_SW_STATUS |
| * could be zero |
| */ |
| return I2C_CHANNEL_OPERATION_SUCCEEDED; |
| } |
| |
| static uint32_t get_hw_buffer_available_size( |
| const struct dce_i2c_hw *dce_i2c_hw) |
| { |
| return dce_i2c_hw->buffer_size - |
| dce_i2c_hw->buffer_used_bytes; |
| } |
| |
| static void process_channel_reply( |
| struct dce_i2c_hw *dce_i2c_hw, |
| struct i2c_payload *reply) |
| { |
| uint32_t length = reply->length; |
| uint8_t *buffer = reply->data; |
| |
| REG_SET_3(DC_I2C_DATA, 0, |
| DC_I2C_INDEX, dce_i2c_hw->buffer_used_write, |
| DC_I2C_DATA_RW, 1, |
| DC_I2C_INDEX_WRITE, 1); |
| |
| while (length) { |
| /* after reading the status, |
| * if the I2C operation executed successfully |
| * (i.e. DC_I2C_STATUS_DONE = 1) then the I2C controller |
| * should read data bytes from I2C circular data buffer |
| */ |
| |
| uint32_t i2c_data; |
| |
| REG_GET(DC_I2C_DATA, DC_I2C_DATA, &i2c_data); |
| *buffer++ = i2c_data; |
| |
| --length; |
| } |
| } |
| |
| static bool is_engine_available(struct dce_i2c_hw *dce_i2c_hw) |
| { |
| unsigned int arbitrate; |
| unsigned int i2c_hw_status; |
| |
| REG_GET(HW_STATUS, DC_I2C_DDC1_HW_STATUS, &i2c_hw_status); |
| if (i2c_hw_status == DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_HW) |
| return false; |
| |
| REG_GET(DC_I2C_ARBITRATION, DC_I2C_REG_RW_CNTL_STATUS, &arbitrate); |
| if (arbitrate == DC_I2C_REG_RW_CNTL_STATUS_DMCU_ONLY) |
| return false; |
| |
| return true; |
| } |
| |
| static bool is_hw_busy(struct dce_i2c_hw *dce_i2c_hw) |
| { |
| uint32_t i2c_sw_status = 0; |
| |
| REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); |
| if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_IDLE) |
| return false; |
| |
| if (is_engine_available(dce_i2c_hw)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool process_transaction( |
| struct dce_i2c_hw *dce_i2c_hw, |
| struct i2c_request_transaction_data *request) |
| { |
| uint32_t length = request->length; |
| uint8_t *buffer = request->data; |
| |
| bool last_transaction = false; |
| uint32_t value = 0; |
| |
| if (is_hw_busy(dce_i2c_hw)) { |
| request->status = I2C_CHANNEL_OPERATION_ENGINE_BUSY; |
| return false; |
| } |
| |
| last_transaction = ((dce_i2c_hw->transaction_count == 3) || |
| (request->action == DCE_I2C_TRANSACTION_ACTION_I2C_WRITE) || |
| (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ)); |
| |
| |
| switch (dce_i2c_hw->transaction_count) { |
| case 0: |
| REG_UPDATE_5(DC_I2C_TRANSACTION0, |
| DC_I2C_STOP_ON_NACK0, 1, |
| DC_I2C_START0, 1, |
| DC_I2C_RW0, 0 != (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ), |
| DC_I2C_COUNT0, length, |
| DC_I2C_STOP0, last_transaction ? 1 : 0); |
| break; |
| case 1: |
| REG_UPDATE_5(DC_I2C_TRANSACTION1, |
| DC_I2C_STOP_ON_NACK0, 1, |
| DC_I2C_START0, 1, |
| DC_I2C_RW0, 0 != (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ), |
| DC_I2C_COUNT0, length, |
| DC_I2C_STOP0, last_transaction ? 1 : 0); |
| break; |
| case 2: |
| REG_UPDATE_5(DC_I2C_TRANSACTION2, |
| DC_I2C_STOP_ON_NACK0, 1, |
| DC_I2C_START0, 1, |
| DC_I2C_RW0, 0 != (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ), |
| DC_I2C_COUNT0, length, |
| DC_I2C_STOP0, last_transaction ? 1 : 0); |
| break; |
| case 3: |
| REG_UPDATE_5(DC_I2C_TRANSACTION3, |
| DC_I2C_STOP_ON_NACK0, 1, |
| DC_I2C_START0, 1, |
| DC_I2C_RW0, 0 != (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ), |
| DC_I2C_COUNT0, length, |
| DC_I2C_STOP0, last_transaction ? 1 : 0); |
| break; |
| default: |
| /* TODO Warning ? */ |
| break; |
| } |
| |
| /* Write the I2C address and I2C data |
| * into the hardware circular buffer, one byte per entry. |
| * As an example, the 7-bit I2C slave address for CRT monitor |
| * for reading DDC/EDID information is 0b1010001. |
| * For an I2C send operation, the LSB must be programmed to 0; |
| * for I2C receive operation, the LSB must be programmed to 1. |
| */ |
| if (dce_i2c_hw->transaction_count == 0) { |
| value = REG_SET_4(DC_I2C_DATA, 0, |
| DC_I2C_DATA_RW, false, |
| DC_I2C_DATA, request->address, |
| DC_I2C_INDEX, 0, |
| DC_I2C_INDEX_WRITE, 1); |
| dce_i2c_hw->buffer_used_write = 0; |
| } else |
| value = REG_SET_2(DC_I2C_DATA, 0, |
| DC_I2C_DATA_RW, false, |
| DC_I2C_DATA, request->address); |
| |
| dce_i2c_hw->buffer_used_write++; |
| |
| if (!(request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ)) { |
| while (length) { |
| REG_SET_2(DC_I2C_DATA, value, |
| DC_I2C_INDEX_WRITE, 0, |
| DC_I2C_DATA, *buffer++); |
| dce_i2c_hw->buffer_used_write++; |
| --length; |
| } |
| } |
| |
| ++dce_i2c_hw->transaction_count; |
| dce_i2c_hw->buffer_used_bytes += length + 1; |
| |
| return last_transaction; |
| } |
| |
| static inline void reset_hw_engine(struct dce_i2c_hw *dce_i2c_hw) |
| { |
| REG_UPDATE_2(DC_I2C_CONTROL, |
| DC_I2C_SW_STATUS_RESET, 1, |
| DC_I2C_SW_STATUS_RESET, 1); |
| } |
| |
| static void set_speed( |
| struct dce_i2c_hw *dce_i2c_hw, |
| uint32_t speed) |
| { |
| uint32_t xtal_ref_div = 0, ref_base_div = 0; |
| uint32_t prescale = 0; |
| uint32_t i2c_ref_clock = 0; |
| |
| if (speed == 0) |
| return; |
| |
| REG_GET_2(MICROSECOND_TIME_BASE_DIV, MICROSECOND_TIME_BASE_DIV, &ref_base_div, |
| XTAL_REF_DIV, &xtal_ref_div); |
| |
| if (xtal_ref_div == 0) |
| xtal_ref_div = 2; |
| |
| if (ref_base_div == 0) |
| i2c_ref_clock = (dce_i2c_hw->reference_frequency * 2); |
| else |
| i2c_ref_clock = ref_base_div * 1000; |
| |
| prescale = (i2c_ref_clock / xtal_ref_div) / speed; |
| |
| if (dce_i2c_hw->masks->DC_I2C_DDC1_START_STOP_TIMING_CNTL) |
| REG_UPDATE_N(SPEED, 3, |
| FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_PRESCALE), prescale, |
| FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_THRESHOLD), 2, |
| FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_START_STOP_TIMING_CNTL), speed > 50 ? 2:1); |
| else |
| REG_UPDATE_N(SPEED, 2, |
| FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_PRESCALE), prescale, |
| FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_THRESHOLD), 2); |
| } |
| |
| static bool setup_engine( |
| struct dce_i2c_hw *dce_i2c_hw) |
| { |
| uint32_t i2c_setup_limit = I2C_SETUP_TIME_LIMIT_DCE; |
| uint32_t reset_length = 0; |
| |
| if (dce_i2c_hw->ctx->dc->debug.enable_mem_low_power.bits.i2c) { |
| if (dce_i2c_hw->regs->DIO_MEM_PWR_CTRL) { |
| REG_UPDATE(DIO_MEM_PWR_CTRL, I2C_LIGHT_SLEEP_FORCE, 0); |
| REG_WAIT(DIO_MEM_PWR_STATUS, I2C_MEM_PWR_STATE, 0, 0, 5); |
| } |
| } |
| |
| if (dce_i2c_hw->masks->DC_I2C_DDC1_CLK_EN) |
| REG_UPDATE_N(SETUP, 1, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_CLK_EN), 1); |
| |
| /* we have checked I2c not used by DMCU, set SW use I2C REQ to 1 to indicate SW using it*/ |
| REG_UPDATE(DC_I2C_ARBITRATION, DC_I2C_SW_USE_I2C_REG_REQ, 1); |
| |
| /*set SW requested I2c speed to default, if API calls in it will be override later*/ |
| set_speed(dce_i2c_hw, dce_i2c_hw->ctx->dc->caps.i2c_speed_in_khz); |
| |
| if (dce_i2c_hw->setup_limit != 0) |
| i2c_setup_limit = dce_i2c_hw->setup_limit; |
| |
| /* Program pin select */ |
| REG_UPDATE_6(DC_I2C_CONTROL, |
| DC_I2C_GO, 0, |
| DC_I2C_SOFT_RESET, 0, |
| DC_I2C_SEND_RESET, 0, |
| DC_I2C_SW_STATUS_RESET, 1, |
| DC_I2C_TRANSACTION_COUNT, 0, |
| DC_I2C_DDC_SELECT, dce_i2c_hw->engine_id); |
| |
| /* Program time limit */ |
| if (dce_i2c_hw->send_reset_length == 0) { |
| /*pre-dcn*/ |
| REG_UPDATE_N(SETUP, 2, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_TIME_LIMIT), i2c_setup_limit, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_ENABLE), 1); |
| } else { |
| reset_length = dce_i2c_hw->send_reset_length; |
| REG_UPDATE_N(SETUP, 3, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_TIME_LIMIT), i2c_setup_limit, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_SEND_RESET_LENGTH), reset_length, |
| FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_ENABLE), 1); |
| } |
| /* Program HW priority |
| * set to High - interrupt software I2C at any time |
| * Enable restart of SW I2C that was interrupted by HW |
| * disable queuing of software while I2C is in use by HW |
| */ |
| REG_UPDATE(DC_I2C_ARBITRATION, |
| DC_I2C_NO_QUEUED_SW_GO, 0); |
| |
| return true; |
| } |
| |
| static void release_engine( |
| struct dce_i2c_hw *dce_i2c_hw) |
| { |
| bool safe_to_reset; |
| |
| |
| /* Reset HW engine */ |
| { |
| uint32_t i2c_sw_status = 0; |
| |
| REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); |
| /* if used by SW, safe to reset */ |
| safe_to_reset = (i2c_sw_status == 1); |
| } |
| |
| if (safe_to_reset) |
| REG_UPDATE_2(DC_I2C_CONTROL, |
| DC_I2C_SOFT_RESET, 1, |
| DC_I2C_SW_STATUS_RESET, 1); |
| else |
| REG_UPDATE(DC_I2C_CONTROL, DC_I2C_SW_STATUS_RESET, 1); |
| /* HW I2c engine - clock gating feature */ |
| if (!dce_i2c_hw->engine_keep_power_up_count) |
| REG_UPDATE_N(SETUP, 1, FN(SETUP, DC_I2C_DDC1_ENABLE), 0); |
| |
| /*for HW HDCP Ri polling failure w/a test*/ |
| set_speed(dce_i2c_hw, dce_i2c_hw->ctx->dc->caps.i2c_speed_in_khz_hdcp); |
| /* Release I2C after reset, so HW or DMCU could use it */ |
| REG_UPDATE_2(DC_I2C_ARBITRATION, DC_I2C_SW_DONE_USING_I2C_REG, 1, |
| DC_I2C_SW_USE_I2C_REG_REQ, 0); |
| |
| if (dce_i2c_hw->ctx->dc->debug.enable_mem_low_power.bits.i2c) { |
| if (dce_i2c_hw->regs->DIO_MEM_PWR_CTRL) |
| REG_UPDATE(DIO_MEM_PWR_CTRL, I2C_LIGHT_SLEEP_FORCE, 1); |
| } |
| } |
| |
| struct dce_i2c_hw *acquire_i2c_hw_engine( |
| struct resource_pool *pool, |
| struct ddc *ddc) |
| { |
| uint32_t counter = 0; |
| enum gpio_result result; |
| struct dce_i2c_hw *dce_i2c_hw = NULL; |
| |
| if (!ddc) |
| return NULL; |
| |
| if (ddc->hw_info.hw_supported) { |
| enum gpio_ddc_line line = dal_ddc_get_line(ddc); |
| |
| if (line < pool->res_cap->num_ddc) |
| dce_i2c_hw = pool->hw_i2cs[line]; |
| } |
| |
| if (!dce_i2c_hw) |
| return NULL; |
| |
| if (pool->i2c_hw_buffer_in_use || !is_engine_available(dce_i2c_hw)) |
| return NULL; |
| |
| do { |
| result = dal_ddc_open(ddc, GPIO_MODE_HARDWARE, |
| GPIO_DDC_CONFIG_TYPE_MODE_I2C); |
| |
| if (result == GPIO_RESULT_OK) |
| break; |
| |
| /* i2c_engine is busy by VBios, lets wait and retry */ |
| |
| udelay(10); |
| |
| ++counter; |
| } while (counter < 2); |
| |
| if (result != GPIO_RESULT_OK) |
| return NULL; |
| |
| dce_i2c_hw->ddc = ddc; |
| |
| if (!setup_engine(dce_i2c_hw)) { |
| release_engine(dce_i2c_hw); |
| return NULL; |
| } |
| |
| pool->i2c_hw_buffer_in_use = true; |
| return dce_i2c_hw; |
| } |
| |
| static enum i2c_channel_operation_result dce_i2c_hw_engine_wait_on_operation_result(struct dce_i2c_hw *dce_i2c_hw, |
| uint32_t timeout, |
| enum i2c_channel_operation_result expected_result) |
| { |
| enum i2c_channel_operation_result result; |
| uint32_t i = 0; |
| |
| if (!timeout) |
| return I2C_CHANNEL_OPERATION_SUCCEEDED; |
| |
| do { |
| |
| result = get_channel_status( |
| dce_i2c_hw, NULL); |
| |
| if (result != expected_result) |
| break; |
| |
| udelay(1); |
| |
| ++i; |
| } while (i < timeout); |
| return result; |
| } |
| |
| static void submit_channel_request_hw( |
| struct dce_i2c_hw *dce_i2c_hw, |
| struct i2c_request_transaction_data *request) |
| { |
| request->status = I2C_CHANNEL_OPERATION_SUCCEEDED; |
| |
| if (!process_transaction(dce_i2c_hw, request)) |
| return; |
| |
| if (is_hw_busy(dce_i2c_hw)) { |
| request->status = I2C_CHANNEL_OPERATION_ENGINE_BUSY; |
| return; |
| } |
| reset_hw_engine(dce_i2c_hw); |
| |
| execute_transaction(dce_i2c_hw); |
| |
| |
| } |
| |
| static uint32_t get_transaction_timeout_hw( |
| const struct dce_i2c_hw *dce_i2c_hw, |
| uint32_t length, |
| uint32_t speed) |
| { |
| uint32_t period_timeout; |
| uint32_t num_of_clock_stretches; |
| |
| if (!speed) |
| return 0; |
| |
| period_timeout = (1000 * TRANSACTION_TIMEOUT_IN_I2C_CLOCKS) / speed; |
| |
| num_of_clock_stretches = 1 + (length << 3) + 1; |
| num_of_clock_stretches += |
| (dce_i2c_hw->buffer_used_bytes << 3) + |
| (dce_i2c_hw->transaction_count << 1); |
| |
| return period_timeout * num_of_clock_stretches; |
| } |
| |
| static bool dce_i2c_hw_engine_submit_payload(struct dce_i2c_hw *dce_i2c_hw, |
| struct i2c_payload *payload, |
| bool middle_of_transaction, |
| uint32_t speed) |
| { |
| |
| struct i2c_request_transaction_data request; |
| |
| uint32_t transaction_timeout; |
| |
| enum i2c_channel_operation_result operation_result; |
| |
| bool result = false; |
| |
| /* We need following: |
| * transaction length will not exceed |
| * the number of free bytes in HW buffer (minus one for address) |
| */ |
| |
| if (payload->length >= |
| get_hw_buffer_available_size(dce_i2c_hw)) { |
| return false; |
| } |
| |
| if (!payload->write) |
| request.action = middle_of_transaction ? |
| DCE_I2C_TRANSACTION_ACTION_I2C_READ_MOT : |
| DCE_I2C_TRANSACTION_ACTION_I2C_READ; |
| else |
| request.action = middle_of_transaction ? |
| DCE_I2C_TRANSACTION_ACTION_I2C_WRITE_MOT : |
| DCE_I2C_TRANSACTION_ACTION_I2C_WRITE; |
| |
| |
| request.address = (uint8_t) ((payload->address << 1) | !payload->write); |
| request.length = payload->length; |
| request.data = payload->data; |
| |
| /* obtain timeout value before submitting request */ |
| |
| transaction_timeout = get_transaction_timeout_hw( |
| dce_i2c_hw, payload->length + 1, speed); |
| |
| submit_channel_request_hw( |
| dce_i2c_hw, &request); |
| |
| if ((request.status == I2C_CHANNEL_OPERATION_FAILED) || |
| (request.status == I2C_CHANNEL_OPERATION_ENGINE_BUSY)) |
| return false; |
| |
| /* wait until transaction proceed */ |
| |
| operation_result = dce_i2c_hw_engine_wait_on_operation_result( |
| dce_i2c_hw, |
| transaction_timeout, |
| I2C_CHANNEL_OPERATION_ENGINE_BUSY); |
| |
| /* update transaction status */ |
| |
| if (operation_result == I2C_CHANNEL_OPERATION_SUCCEEDED) |
| result = true; |
| |
| if (result && (!payload->write)) |
| process_channel_reply(dce_i2c_hw, payload); |
| |
| return result; |
| } |
| |
| bool dce_i2c_submit_command_hw( |
| struct resource_pool *pool, |
| struct ddc *ddc, |
| struct i2c_command *cmd, |
| struct dce_i2c_hw *dce_i2c_hw) |
| { |
| uint8_t index_of_payload = 0; |
| bool result; |
| |
| set_speed(dce_i2c_hw, cmd->speed); |
| |
| result = true; |
| |
| while (index_of_payload < cmd->number_of_payloads) { |
| bool mot = (index_of_payload != cmd->number_of_payloads - 1); |
| |
| struct i2c_payload *payload = cmd->payloads + index_of_payload; |
| |
| if (!dce_i2c_hw_engine_submit_payload( |
| dce_i2c_hw, payload, mot, cmd->speed)) { |
| result = false; |
| break; |
| } |
| |
| ++index_of_payload; |
| } |
| |
| pool->i2c_hw_buffer_in_use = false; |
| |
| release_engine(dce_i2c_hw); |
| dal_ddc_close(dce_i2c_hw->ddc); |
| |
| dce_i2c_hw->ddc = NULL; |
| |
| return result; |
| } |
| |
| void dce_i2c_hw_construct( |
| struct dce_i2c_hw *dce_i2c_hw, |
| struct dc_context *ctx, |
| uint32_t engine_id, |
| const struct dce_i2c_registers *regs, |
| const struct dce_i2c_shift *shifts, |
| const struct dce_i2c_mask *masks) |
| { |
| dce_i2c_hw->ctx = ctx; |
| dce_i2c_hw->engine_id = engine_id; |
| dce_i2c_hw->reference_frequency = (ctx->dc_bios->fw_info.pll_info.crystal_frequency) >> 1; |
| dce_i2c_hw->regs = regs; |
| dce_i2c_hw->shifts = shifts; |
| dce_i2c_hw->masks = masks; |
| dce_i2c_hw->buffer_used_bytes = 0; |
| dce_i2c_hw->transaction_count = 0; |
| dce_i2c_hw->engine_keep_power_up_count = 1; |
| dce_i2c_hw->default_speed = DEFAULT_I2C_HW_SPEED; |
| dce_i2c_hw->send_reset_length = 0; |
| dce_i2c_hw->setup_limit = I2C_SETUP_TIME_LIMIT_DCE; |
| dce_i2c_hw->buffer_size = I2C_HW_BUFFER_SIZE_DCE; |
| } |
| |
| void dce100_i2c_hw_construct( |
| struct dce_i2c_hw *dce_i2c_hw, |
| struct dc_context *ctx, |
| uint32_t engine_id, |
| const struct dce_i2c_registers *regs, |
| const struct dce_i2c_shift *shifts, |
| const struct dce_i2c_mask *masks) |
| { |
| dce_i2c_hw_construct(dce_i2c_hw, |
| ctx, |
| engine_id, |
| regs, |
| shifts, |
| masks); |
| dce_i2c_hw->buffer_size = I2C_HW_BUFFER_SIZE_DCE100; |
| } |
| |
| void dce112_i2c_hw_construct( |
| struct dce_i2c_hw *dce_i2c_hw, |
| struct dc_context *ctx, |
| uint32_t engine_id, |
| const struct dce_i2c_registers *regs, |
| const struct dce_i2c_shift *shifts, |
| const struct dce_i2c_mask *masks) |
| { |
| dce100_i2c_hw_construct(dce_i2c_hw, |
| ctx, |
| engine_id, |
| regs, |
| shifts, |
| masks); |
| dce_i2c_hw->default_speed = DEFAULT_I2C_HW_SPEED_100KHZ; |
| } |
| |
| void dcn1_i2c_hw_construct( |
| struct dce_i2c_hw *dce_i2c_hw, |
| struct dc_context *ctx, |
| uint32_t engine_id, |
| const struct dce_i2c_registers *regs, |
| const struct dce_i2c_shift *shifts, |
| const struct dce_i2c_mask *masks) |
| { |
| dce112_i2c_hw_construct(dce_i2c_hw, |
| ctx, |
| engine_id, |
| regs, |
| shifts, |
| masks); |
| dce_i2c_hw->setup_limit = I2C_SETUP_TIME_LIMIT_DCN; |
| } |
| |
| void dcn2_i2c_hw_construct( |
| struct dce_i2c_hw *dce_i2c_hw, |
| struct dc_context *ctx, |
| uint32_t engine_id, |
| const struct dce_i2c_registers *regs, |
| const struct dce_i2c_shift *shifts, |
| const struct dce_i2c_mask *masks) |
| { |
| dcn1_i2c_hw_construct(dce_i2c_hw, |
| ctx, |
| engine_id, |
| regs, |
| shifts, |
| masks); |
| dce_i2c_hw->send_reset_length = I2C_SEND_RESET_LENGTH_9; |
| if (ctx->dc->debug.scl_reset_length10) |
| dce_i2c_hw->send_reset_length = I2C_SEND_RESET_LENGTH_10; |
| } |