blob: 11c904ae29586d8b6b179a4011894bb58d6dcc8b [file] [log] [blame]
/* SPDX-License-Identifier: MIT */
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dml2_policy.h"
static void get_optimal_ntuple(
const struct soc_bounding_box_st *socbb,
struct soc_state_bounding_box_st *entry)
{
if (entry->dcfclk_mhz > 0) {
float bw_on_sdp = (float)(entry->dcfclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
entry->fabricclk_mhz = bw_on_sdp / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
entry->dram_speed_mts = bw_on_sdp / (socbb->num_chans *
socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
} else if (entry->fabricclk_mhz > 0) {
float bw_on_fabric = (float)(entry->fabricclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
entry->dcfclk_mhz = bw_on_fabric / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
entry->dram_speed_mts = bw_on_fabric / (socbb->num_chans *
socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
} else if (entry->dram_speed_mts > 0) {
float bw_on_dram = (float)(entry->dram_speed_mts * socbb->num_chans *
socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
entry->fabricclk_mhz = bw_on_dram / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
entry->dcfclk_mhz = bw_on_dram / (socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
}
}
static float calculate_net_bw_in_mbytes_sec(const struct soc_bounding_box_st *socbb,
struct soc_state_bounding_box_st *entry)
{
float memory_bw_mbytes_sec = (float)(entry->dram_speed_mts * socbb->num_chans *
socbb->dram_channel_width_bytes * ((float)socbb->pct_ideal_dram_bw_after_urgent_pixel_only / 100));
float fabric_bw_mbytes_sec = (float)(entry->fabricclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_fabric_bw_after_urgent / 100));
float sdp_bw_mbytes_sec = (float)(entry->dcfclk_mhz * socbb->return_bus_width_bytes * ((float)socbb->pct_ideal_sdp_bw_after_urgent / 100));
float limiting_bw_mbytes_sec = memory_bw_mbytes_sec;
if (fabric_bw_mbytes_sec < limiting_bw_mbytes_sec)
limiting_bw_mbytes_sec = fabric_bw_mbytes_sec;
if (sdp_bw_mbytes_sec < limiting_bw_mbytes_sec)
limiting_bw_mbytes_sec = sdp_bw_mbytes_sec;
return limiting_bw_mbytes_sec;
}
static void insert_entry_into_table_sorted(const struct soc_bounding_box_st *socbb,
struct soc_states_st *table,
struct soc_state_bounding_box_st *entry)
{
int index = 0;
int i = 0;
float net_bw_of_new_state = 0;
get_optimal_ntuple(socbb, entry);
if (table->num_states == 0) {
index = 0;
} else {
net_bw_of_new_state = calculate_net_bw_in_mbytes_sec(socbb, entry);
while (net_bw_of_new_state > calculate_net_bw_in_mbytes_sec(socbb, &table->state_array[index])) {
index++;
if (index >= (int) table->num_states)
break;
}
for (i = table->num_states; i > index; i--) {
table->state_array[i] = table->state_array[i - 1];
}
//ASSERT(index < MAX_CLK_TABLE_SIZE);
}
table->state_array[index] = *entry;
table->state_array[index].dcfclk_mhz = (int)entry->dcfclk_mhz;
table->state_array[index].fabricclk_mhz = (int)entry->fabricclk_mhz;
table->state_array[index].dram_speed_mts = (int)entry->dram_speed_mts;
table->num_states++;
}
static void remove_entry_from_table_at_index(struct soc_states_st *table,
unsigned int index)
{
int i;
if (table->num_states == 0)
return;
for (i = index; i < (int) table->num_states - 1; i++) {
table->state_array[i] = table->state_array[i + 1];
}
memset(&table->state_array[--table->num_states], 0, sizeof(struct soc_state_bounding_box_st));
}
int dml2_policy_build_synthetic_soc_states(struct dml2_policy_build_synthetic_soc_states_scratch *s,
struct dml2_policy_build_synthetic_soc_states_params *p)
{
int i, j;
unsigned int min_fclk_mhz = p->in_states->state_array[0].fabricclk_mhz;
unsigned int min_dcfclk_mhz = p->in_states->state_array[0].dcfclk_mhz;
unsigned int min_socclk_mhz = p->in_states->state_array[0].socclk_mhz;
int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0,
max_uclk_mhz = 0, max_socclk_mhz = 0;
int num_uclk_dpms = 0, num_fclk_dpms = 0;
for (i = 0; i < __DML_MAX_STATE_ARRAY_SIZE__; i++) {
if (p->in_states->state_array[i].dcfclk_mhz > max_dcfclk_mhz)
max_dcfclk_mhz = (int) p->in_states->state_array[i].dcfclk_mhz;
if (p->in_states->state_array[i].fabricclk_mhz > max_fclk_mhz)
max_fclk_mhz = (int) p->in_states->state_array[i].fabricclk_mhz;
if (p->in_states->state_array[i].socclk_mhz > max_socclk_mhz)
max_socclk_mhz = (int) p->in_states->state_array[i].socclk_mhz;
if (p->in_states->state_array[i].dram_speed_mts > max_uclk_mhz)
max_uclk_mhz = (int) p->in_states->state_array[i].dram_speed_mts;
if (p->in_states->state_array[i].dispclk_mhz > max_dispclk_mhz)
max_dispclk_mhz = (int) p->in_states->state_array[i].dispclk_mhz;
if (p->in_states->state_array[i].dppclk_mhz > max_dppclk_mhz)
max_dppclk_mhz = (int) p->in_states->state_array[i].dppclk_mhz;
if (p->in_states->state_array[i].phyclk_mhz > max_phyclk_mhz)
max_phyclk_mhz = (int)p->in_states->state_array[i].phyclk_mhz;
if (p->in_states->state_array[i].dtbclk_mhz > max_dtbclk_mhz)
max_dtbclk_mhz = (int)p->in_states->state_array[i].dtbclk_mhz;
if (p->in_states->state_array[i].fabricclk_mhz > 0)
num_fclk_dpms++;
if (p->in_states->state_array[i].dram_speed_mts > 0)
num_uclk_dpms++;
}
if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dppclk_mhz || !max_phyclk_mhz || !max_dtbclk_mhz)
return -1;
p->out_states->num_states = 0;
s->entry = p->in_states->state_array[0];
s->entry.dispclk_mhz = max_dispclk_mhz;
s->entry.dppclk_mhz = max_dppclk_mhz;
s->entry.dtbclk_mhz = max_dtbclk_mhz;
s->entry.phyclk_mhz = max_phyclk_mhz;
s->entry.dscclk_mhz = max_dispclk_mhz / 3;
s->entry.phyclk_mhz = max_phyclk_mhz;
s->entry.dtbclk_mhz = max_dtbclk_mhz;
// Insert all the DCFCLK STAs first
for (i = 0; i < p->num_dcfclk_stas; i++) {
s->entry.dcfclk_mhz = p->dcfclk_stas_mhz[i];
s->entry.fabricclk_mhz = 0;
s->entry.dram_speed_mts = 0;
if (i > 0)
s->entry.socclk_mhz = max_socclk_mhz;
insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
}
// Insert the UCLK DPMS
for (i = 0; i < num_uclk_dpms; i++) {
s->entry.dcfclk_mhz = 0;
s->entry.fabricclk_mhz = 0;
s->entry.dram_speed_mts = p->in_states->state_array[i].dram_speed_mts;
if (i == 0) {
s->entry.socclk_mhz = min_socclk_mhz;
} else {
s->entry.socclk_mhz = max_socclk_mhz;
}
insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
}
// Insert FCLK DPMs (if present)
if (num_fclk_dpms > 2) {
for (i = 0; i < num_fclk_dpms; i++) {
s->entry.dcfclk_mhz = 0;
s->entry.fabricclk_mhz = p->in_states->state_array[i].fabricclk_mhz;
s->entry.dram_speed_mts = 0;
insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
}
}
// Add max FCLK
else {
s->entry.dcfclk_mhz = 0;
s->entry.fabricclk_mhz = p->in_states->state_array[num_fclk_dpms - 1].fabricclk_mhz;
s->entry.dram_speed_mts = 0;
insert_entry_into_table_sorted(p->in_bbox, p->out_states, &s->entry);
}
// Remove states that require higher clocks than are supported
for (i = p->out_states->num_states - 1; i >= 0; i--) {
if (p->out_states->state_array[i].dcfclk_mhz > max_dcfclk_mhz ||
p->out_states->state_array[i].fabricclk_mhz > max_fclk_mhz ||
p->out_states->state_array[i].dram_speed_mts > max_uclk_mhz)
remove_entry_from_table_at_index(p->out_states, i);
}
// At this point, the table contains all "points of interest" based on
// DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
// ratios (by derate, are exact).
// Round up UCLK to DPMs
for (i = p->out_states->num_states - 1; i >= 0; i--) {
for (j = 0; j < num_uclk_dpms; j++) {
if (p->in_states->state_array[j].dram_speed_mts >= p->out_states->state_array[i].dram_speed_mts) {
p->out_states->state_array[i].dram_speed_mts = p->in_states->state_array[j].dram_speed_mts;
break;
}
}
}
// If FCLK is coarse grained, round up to next DPMs
if (num_fclk_dpms > 2) {
for (i = p->out_states->num_states - 1; i >= 0; i--) {
for (j = 0; j < num_fclk_dpms; j++) {
if (p->in_states->state_array[j].fabricclk_mhz >= p->out_states->state_array[i].fabricclk_mhz) {
p->out_states->state_array[i].fabricclk_mhz = p->in_states->state_array[j].fabricclk_mhz;
break;
}
}
}
}
// Clamp to min FCLK/DCFCLK
for (i = p->out_states->num_states - 1; i >= 0; i--) {
if (p->out_states->state_array[i].fabricclk_mhz < min_fclk_mhz) {
p->out_states->state_array[i].fabricclk_mhz = min_fclk_mhz;
}
if (p->out_states->state_array[i].dcfclk_mhz < min_dcfclk_mhz) {
p->out_states->state_array[i].dcfclk_mhz = min_dcfclk_mhz;
}
}
// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
i = 0;
while (i < (int) p->out_states->num_states - 1) {
if (p->out_states->state_array[i].dcfclk_mhz == p->out_states->state_array[i + 1].dcfclk_mhz &&
p->out_states->state_array[i].fabricclk_mhz == p->out_states->state_array[i + 1].fabricclk_mhz &&
p->out_states->state_array[i].dram_speed_mts == p->out_states->state_array[i + 1].dram_speed_mts)
remove_entry_from_table_at_index(p->out_states, i);
else
i++;
}
return 0;
}
void build_unoptimized_policy_settings(enum dml_project_id project, struct dml_mode_eval_policy_st *policy)
{
for (int i = 0; i < __DML_NUM_PLANES__; i++) {
policy->MPCCombineUse[i] = dml_mpc_as_needed_for_voltage; // TOREVIEW: Is this still needed? When is MPCC useful for pstate given CRB?
policy->ODMUse[i] = dml_odm_use_policy_combine_as_needed;
policy->ImmediateFlipRequirement[i] = dml_immediate_flip_required;
policy->AllowForPStateChangeOrStutterInVBlank[i] = dml_prefetch_support_uclk_fclk_and_stutter_if_possible;
}
/* Change the default policy initializations as per spreadsheet. We might need to
* review and change them later on as per Jun's earlier comments.
*/
policy->UseUnboundedRequesting = dml_unbounded_requesting_enable;
policy->UseMinimumRequiredDCFCLK = false;
policy->DRAMClockChangeRequirementFinal = true; // TOREVIEW: What does this mean?
policy->FCLKChangeRequirementFinal = true; // TOREVIEW: What does this mean?
policy->USRRetrainingRequiredFinal = true;
policy->EnhancedPrefetchScheduleAccelerationFinal = true; // TOREVIEW: What does this mean?
policy->NomDETInKByteOverrideEnable = false;
policy->NomDETInKByteOverrideValue = 0;
policy->DCCProgrammingAssumesScanDirectionUnknownFinal = true;
policy->SynchronizeTimingsFinal = true;
policy->SynchronizeDRRDisplaysForUCLKPStateChangeFinal = true;
policy->AssumeModeSupportAtMaxPwrStateEvenDRAMClockChangeNotSupported = true; // TOREVIEW: What does this mean?
policy->AssumeModeSupportAtMaxPwrStateEvenFClockChangeNotSupported = true; // TOREVIEW: What does this mean?
if (project == dml_project_dcn35 ||
project == dml_project_dcn351) {
policy->DCCProgrammingAssumesScanDirectionUnknownFinal = false;
policy->AllowForPStateChangeOrStutterInVBlankFinal = dml_prefetch_support_uclk_fclk_and_stutter_if_possible; /*new*/
policy->UseOnlyMaxPrefetchModes = 1;
}
}