blob: 293efc1f841dfff5071a19b082b34e63e930f943 [file] [log] [blame]
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Madhav Chauhan <madhav.chauhan@intel.com>
* Jani Nikula <jani.nikula@intel.com>
*/
#include <drm/display/drm_dsc_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fixed.h>
#include <drm/drm_mipi_dsi.h>
#include "i915_reg.h"
#include "icl_dsi.h"
#include "icl_dsi_regs.h"
#include "intel_atomic.h"
#include "intel_backlight.h"
#include "intel_backlight_regs.h"
#include "intel_combo_phy.h"
#include "intel_combo_phy_regs.h"
#include "intel_connector.h"
#include "intel_crtc.h"
#include "intel_ddi.h"
#include "intel_de.h"
#include "intel_dsi.h"
#include "intel_dsi_vbt.h"
#include "intel_panel.h"
#include "intel_vdsc.h"
#include "intel_vdsc_regs.h"
#include "skl_scaler.h"
#include "skl_universal_plane.h"
static int header_credits_available(struct drm_i915_private *dev_priv,
enum transcoder dsi_trans)
{
return (intel_de_read(dev_priv, DSI_CMD_TXCTL(dsi_trans)) & FREE_HEADER_CREDIT_MASK)
>> FREE_HEADER_CREDIT_SHIFT;
}
static int payload_credits_available(struct drm_i915_private *dev_priv,
enum transcoder dsi_trans)
{
return (intel_de_read(dev_priv, DSI_CMD_TXCTL(dsi_trans)) & FREE_PLOAD_CREDIT_MASK)
>> FREE_PLOAD_CREDIT_SHIFT;
}
static bool wait_for_header_credits(struct drm_i915_private *dev_priv,
enum transcoder dsi_trans, int hdr_credit)
{
if (wait_for_us(header_credits_available(dev_priv, dsi_trans) >=
hdr_credit, 100)) {
drm_err(&dev_priv->drm, "DSI header credits not released\n");
return false;
}
return true;
}
static bool wait_for_payload_credits(struct drm_i915_private *dev_priv,
enum transcoder dsi_trans, int payld_credit)
{
if (wait_for_us(payload_credits_available(dev_priv, dsi_trans) >=
payld_credit, 100)) {
drm_err(&dev_priv->drm, "DSI payload credits not released\n");
return false;
}
return true;
}
static enum transcoder dsi_port_to_transcoder(enum port port)
{
if (port == PORT_A)
return TRANSCODER_DSI_0;
else
return TRANSCODER_DSI_1;
}
static void wait_for_cmds_dispatched_to_panel(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct mipi_dsi_device *dsi;
enum port port;
enum transcoder dsi_trans;
int ret;
/* wait for header/payload credits to be released */
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
wait_for_header_credits(dev_priv, dsi_trans, MAX_HEADER_CREDIT);
wait_for_payload_credits(dev_priv, dsi_trans, MAX_PLOAD_CREDIT);
}
/* send nop DCS command */
for_each_dsi_port(port, intel_dsi->ports) {
dsi = intel_dsi->dsi_hosts[port]->device;
dsi->mode_flags |= MIPI_DSI_MODE_LPM;
dsi->channel = 0;
ret = mipi_dsi_dcs_nop(dsi);
if (ret < 0)
drm_err(&dev_priv->drm,
"error sending DCS NOP command\n");
}
/* wait for header credits to be released */
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
wait_for_header_credits(dev_priv, dsi_trans, MAX_HEADER_CREDIT);
}
/* wait for LP TX in progress bit to be cleared */
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
if (wait_for_us(!(intel_de_read(dev_priv, DSI_LP_MSG(dsi_trans)) &
LPTX_IN_PROGRESS), 20))
drm_err(&dev_priv->drm, "LPTX bit not cleared\n");
}
}
static int dsi_send_pkt_payld(struct intel_dsi_host *host,
const struct mipi_dsi_packet *packet)
{
struct intel_dsi *intel_dsi = host->intel_dsi;
struct drm_i915_private *i915 = to_i915(intel_dsi->base.base.dev);
enum transcoder dsi_trans = dsi_port_to_transcoder(host->port);
const u8 *data = packet->payload;
u32 len = packet->payload_length;
int i, j;
/* payload queue can accept *256 bytes*, check limit */
if (len > MAX_PLOAD_CREDIT * 4) {
drm_err(&i915->drm, "payload size exceeds max queue limit\n");
return -EINVAL;
}
for (i = 0; i < len; i += 4) {
u32 tmp = 0;
if (!wait_for_payload_credits(i915, dsi_trans, 1))
return -EBUSY;
for (j = 0; j < min_t(u32, len - i, 4); j++)
tmp |= *data++ << 8 * j;
intel_de_write(i915, DSI_CMD_TXPYLD(dsi_trans), tmp);
}
return 0;
}
static int dsi_send_pkt_hdr(struct intel_dsi_host *host,
const struct mipi_dsi_packet *packet,
bool enable_lpdt)
{
struct intel_dsi *intel_dsi = host->intel_dsi;
struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev);
enum transcoder dsi_trans = dsi_port_to_transcoder(host->port);
u32 tmp;
if (!wait_for_header_credits(dev_priv, dsi_trans, 1))
return -EBUSY;
tmp = intel_de_read(dev_priv, DSI_CMD_TXHDR(dsi_trans));
if (packet->payload)
tmp |= PAYLOAD_PRESENT;
else
tmp &= ~PAYLOAD_PRESENT;
tmp &= ~VBLANK_FENCE;
if (enable_lpdt)
tmp |= LP_DATA_TRANSFER;
else
tmp &= ~LP_DATA_TRANSFER;
tmp &= ~(PARAM_WC_MASK | VC_MASK | DT_MASK);
tmp |= ((packet->header[0] & VC_MASK) << VC_SHIFT);
tmp |= ((packet->header[0] & DT_MASK) << DT_SHIFT);
tmp |= (packet->header[1] << PARAM_WC_LOWER_SHIFT);
tmp |= (packet->header[2] << PARAM_WC_UPPER_SHIFT);
intel_de_write(dev_priv, DSI_CMD_TXHDR(dsi_trans), tmp);
return 0;
}
void icl_dsi_frame_update(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 mode_flags;
enum port port;
mode_flags = crtc_state->mode_flags;
/*
* case 1 also covers dual link
* In case of dual link, frame update should be set on
* DSI_0
*/
if (mode_flags & I915_MODE_FLAG_DSI_USE_TE0)
port = PORT_A;
else if (mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
port = PORT_B;
else
return;
intel_de_rmw(dev_priv, DSI_CMD_FRMCTL(port), 0, DSI_FRAME_UPDATE_REQUEST);
}
static void dsi_program_swing_and_deemphasis(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum phy phy;
u32 tmp, mask, val;
int lane;
for_each_dsi_phy(phy, intel_dsi->phys) {
/*
* Program voltage swing and pre-emphasis level values as per
* table in BSPEC under DDI buffer programing
*/
mask = SCALING_MODE_SEL_MASK | RTERM_SELECT_MASK;
val = SCALING_MODE_SEL(0x2) | TAP2_DISABLE | TAP3_DISABLE |
RTERM_SELECT(0x6);
tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN(0, phy));
tmp &= ~mask;
tmp |= val;
intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), tmp);
intel_de_rmw(dev_priv, ICL_PORT_TX_DW5_AUX(phy), mask, val);
mask = SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK |
RCOMP_SCALAR_MASK;
val = SWING_SEL_UPPER(0x2) | SWING_SEL_LOWER(0x2) |
RCOMP_SCALAR(0x98);
tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW2_LN(0, phy));
tmp &= ~mask;
tmp |= val;
intel_de_write(dev_priv, ICL_PORT_TX_DW2_GRP(phy), tmp);
intel_de_rmw(dev_priv, ICL_PORT_TX_DW2_AUX(phy), mask, val);
mask = POST_CURSOR_1_MASK | POST_CURSOR_2_MASK |
CURSOR_COEFF_MASK;
val = POST_CURSOR_1(0x0) | POST_CURSOR_2(0x0) |
CURSOR_COEFF(0x3f);
intel_de_rmw(dev_priv, ICL_PORT_TX_DW4_AUX(phy), mask, val);
/* Bspec: must not use GRP register for write */
for (lane = 0; lane <= 3; lane++)
intel_de_rmw(dev_priv, ICL_PORT_TX_DW4_LN(lane, phy),
mask, val);
}
}
static void configure_dual_link_mode(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
i915_reg_t dss_ctl1_reg, dss_ctl2_reg;
u32 dss_ctl1;
/* FIXME: Move all DSS handling to intel_vdsc.c */
if (DISPLAY_VER(dev_priv) >= 12) {
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
dss_ctl1_reg = ICL_PIPE_DSS_CTL1(crtc->pipe);
dss_ctl2_reg = ICL_PIPE_DSS_CTL2(crtc->pipe);
} else {
dss_ctl1_reg = DSS_CTL1;
dss_ctl2_reg = DSS_CTL2;
}
dss_ctl1 = intel_de_read(dev_priv, dss_ctl1_reg);
dss_ctl1 |= SPLITTER_ENABLE;
dss_ctl1 &= ~OVERLAP_PIXELS_MASK;
dss_ctl1 |= OVERLAP_PIXELS(intel_dsi->pixel_overlap);
if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) {
const struct drm_display_mode *adjusted_mode =
&pipe_config->hw.adjusted_mode;
u16 hactive = adjusted_mode->crtc_hdisplay;
u16 dl_buffer_depth;
dss_ctl1 &= ~DUAL_LINK_MODE_INTERLEAVE;
dl_buffer_depth = hactive / 2 + intel_dsi->pixel_overlap;
if (dl_buffer_depth > MAX_DL_BUFFER_TARGET_DEPTH)
drm_err(&dev_priv->drm,
"DL buffer depth exceed max value\n");
dss_ctl1 &= ~LEFT_DL_BUF_TARGET_DEPTH_MASK;
dss_ctl1 |= LEFT_DL_BUF_TARGET_DEPTH(dl_buffer_depth);
intel_de_rmw(dev_priv, dss_ctl2_reg, RIGHT_DL_BUF_TARGET_DEPTH_MASK,
RIGHT_DL_BUF_TARGET_DEPTH(dl_buffer_depth));
} else {
/* Interleave */
dss_ctl1 |= DUAL_LINK_MODE_INTERLEAVE;
}
intel_de_write(dev_priv, dss_ctl1_reg, dss_ctl1);
}
/* aka DSI 8X clock */
static int afe_clk(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
int bpp;
if (crtc_state->dsc.compression_enable)
bpp = fxp_q4_to_int(crtc_state->dsc.compressed_bpp_x16);
else
bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format);
return DIV_ROUND_CLOSEST(intel_dsi->pclk * bpp, intel_dsi->lane_count);
}
static void gen11_dsi_program_esc_clk_div(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
int afe_clk_khz;
int theo_word_clk, act_word_clk;
u32 esc_clk_div_m, esc_clk_div_m_phy;
afe_clk_khz = afe_clk(encoder, crtc_state);
if (IS_ALDERLAKE_S(dev_priv) || IS_ALDERLAKE_P(dev_priv)) {
theo_word_clk = DIV_ROUND_UP(afe_clk_khz, 8 * DSI_MAX_ESC_CLK);
act_word_clk = max(3, theo_word_clk + (theo_word_clk + 1) % 2);
esc_clk_div_m = act_word_clk * 8;
esc_clk_div_m_phy = (act_word_clk - 1) / 2;
} else {
esc_clk_div_m = DIV_ROUND_UP(afe_clk_khz, DSI_MAX_ESC_CLK);
}
for_each_dsi_port(port, intel_dsi->ports) {
intel_de_write(dev_priv, ICL_DSI_ESC_CLK_DIV(port),
esc_clk_div_m & ICL_ESC_CLK_DIV_MASK);
intel_de_posting_read(dev_priv, ICL_DSI_ESC_CLK_DIV(port));
}
for_each_dsi_port(port, intel_dsi->ports) {
intel_de_write(dev_priv, ICL_DPHY_ESC_CLK_DIV(port),
esc_clk_div_m & ICL_ESC_CLK_DIV_MASK);
intel_de_posting_read(dev_priv, ICL_DPHY_ESC_CLK_DIV(port));
}
if (IS_ALDERLAKE_S(dev_priv) || IS_ALDERLAKE_P(dev_priv)) {
for_each_dsi_port(port, intel_dsi->ports) {
intel_de_write(dev_priv, ADL_MIPIO_DW(port, 8),
esc_clk_div_m_phy & TX_ESC_CLK_DIV_PHY);
intel_de_posting_read(dev_priv, ADL_MIPIO_DW(port, 8));
}
}
}
static void get_dsi_io_power_domains(struct drm_i915_private *dev_priv,
struct intel_dsi *intel_dsi)
{
enum port port;
for_each_dsi_port(port, intel_dsi->ports) {
drm_WARN_ON(&dev_priv->drm, intel_dsi->io_wakeref[port]);
intel_dsi->io_wakeref[port] =
intel_display_power_get(dev_priv,
port == PORT_A ?
POWER_DOMAIN_PORT_DDI_IO_A :
POWER_DOMAIN_PORT_DDI_IO_B);
}
}
static void gen11_dsi_enable_io_power(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(dev_priv, ICL_DSI_IO_MODECTL(port),
0, COMBO_PHY_MODE_DSI);
get_dsi_io_power_domains(dev_priv, intel_dsi);
}
static void gen11_dsi_power_up_lanes(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum phy phy;
for_each_dsi_phy(phy, intel_dsi->phys)
intel_combo_phy_power_up_lanes(dev_priv, phy, true,
intel_dsi->lane_count, false);
}
static void gen11_dsi_config_phy_lanes_sequence(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum phy phy;
u32 tmp;
int lane;
/* Step 4b(i) set loadgen select for transmit and aux lanes */
for_each_dsi_phy(phy, intel_dsi->phys) {
intel_de_rmw(dev_priv, ICL_PORT_TX_DW4_AUX(phy), LOADGEN_SELECT, 0);
for (lane = 0; lane <= 3; lane++)
intel_de_rmw(dev_priv, ICL_PORT_TX_DW4_LN(lane, phy),
LOADGEN_SELECT, lane != 2 ? LOADGEN_SELECT : 0);
}
/* Step 4b(ii) set latency optimization for transmit and aux lanes */
for_each_dsi_phy(phy, intel_dsi->phys) {
intel_de_rmw(dev_priv, ICL_PORT_TX_DW2_AUX(phy),
FRC_LATENCY_OPTIM_MASK, FRC_LATENCY_OPTIM_VAL(0x5));
tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW2_LN(0, phy));
tmp &= ~FRC_LATENCY_OPTIM_MASK;
tmp |= FRC_LATENCY_OPTIM_VAL(0x5);
intel_de_write(dev_priv, ICL_PORT_TX_DW2_GRP(phy), tmp);
/* For EHL, TGL, set latency optimization for PCS_DW1 lanes */
if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv) ||
(DISPLAY_VER(dev_priv) >= 12)) {
intel_de_rmw(dev_priv, ICL_PORT_PCS_DW1_AUX(phy),
LATENCY_OPTIM_MASK, LATENCY_OPTIM_VAL(0));
tmp = intel_de_read(dev_priv,
ICL_PORT_PCS_DW1_LN(0, phy));
tmp &= ~LATENCY_OPTIM_MASK;
tmp |= LATENCY_OPTIM_VAL(0x1);
intel_de_write(dev_priv, ICL_PORT_PCS_DW1_GRP(phy),
tmp);
}
}
}
static void gen11_dsi_voltage_swing_program_seq(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
u32 tmp;
enum phy phy;
/* clear common keeper enable bit */
for_each_dsi_phy(phy, intel_dsi->phys) {
tmp = intel_de_read(dev_priv, ICL_PORT_PCS_DW1_LN(0, phy));
tmp &= ~COMMON_KEEPER_EN;
intel_de_write(dev_priv, ICL_PORT_PCS_DW1_GRP(phy), tmp);
intel_de_rmw(dev_priv, ICL_PORT_PCS_DW1_AUX(phy), COMMON_KEEPER_EN, 0);
}
/*
* Set SUS Clock Config bitfield to 11b
* Note: loadgen select program is done
* as part of lane phy sequence configuration
*/
for_each_dsi_phy(phy, intel_dsi->phys)
intel_de_rmw(dev_priv, ICL_PORT_CL_DW5(phy), 0, SUS_CLOCK_CONFIG);
/* Clear training enable to change swing values */
for_each_dsi_phy(phy, intel_dsi->phys) {
tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN(0, phy));
tmp &= ~TX_TRAINING_EN;
intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), tmp);
intel_de_rmw(dev_priv, ICL_PORT_TX_DW5_AUX(phy), TX_TRAINING_EN, 0);
}
/* Program swing and de-emphasis */
dsi_program_swing_and_deemphasis(encoder);
/* Set training enable to trigger update */
for_each_dsi_phy(phy, intel_dsi->phys) {
tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN(0, phy));
tmp |= TX_TRAINING_EN;
intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), tmp);
intel_de_rmw(dev_priv, ICL_PORT_TX_DW5_AUX(phy), 0, TX_TRAINING_EN);
}
}
static void gen11_dsi_enable_ddi_buffer(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
for_each_dsi_port(port, intel_dsi->ports) {
intel_de_rmw(dev_priv, DDI_BUF_CTL(port), 0, DDI_BUF_CTL_ENABLE);
if (wait_for_us(!(intel_de_read(dev_priv, DDI_BUF_CTL(port)) &
DDI_BUF_IS_IDLE),
500))
drm_err(&dev_priv->drm, "DDI port:%c buffer idle\n",
port_name(port));
}
}
static void
gen11_dsi_setup_dphy_timings(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
enum phy phy;
/* Program DPHY clock lanes timings */
for_each_dsi_port(port, intel_dsi->ports)
intel_de_write(dev_priv, DPHY_CLK_TIMING_PARAM(port),
intel_dsi->dphy_reg);
/* Program DPHY data lanes timings */
for_each_dsi_port(port, intel_dsi->ports)
intel_de_write(dev_priv, DPHY_DATA_TIMING_PARAM(port),
intel_dsi->dphy_data_lane_reg);
/*
* If DSI link operating at or below an 800 MHz,
* TA_SURE should be override and programmed to
* a value '0' inside TA_PARAM_REGISTERS otherwise
* leave all fields at HW default values.
*/
if (DISPLAY_VER(dev_priv) == 11) {
if (afe_clk(encoder, crtc_state) <= 800000) {
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(dev_priv, DPHY_TA_TIMING_PARAM(port),
TA_SURE_MASK,
TA_SURE_OVERRIDE | TA_SURE(0));
}
}
if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) {
for_each_dsi_phy(phy, intel_dsi->phys)
intel_de_rmw(dev_priv, ICL_DPHY_CHKN(phy),
0, ICL_DPHY_CHKN_AFE_OVER_PPI_STRAP);
}
}
static void
gen11_dsi_setup_timings(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
/* Program T-INIT master registers */
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(dev_priv, ICL_DSI_T_INIT_MASTER(port),
DSI_T_INIT_MASTER_MASK, intel_dsi->init_count);
/* shadow register inside display core */
for_each_dsi_port(port, intel_dsi->ports)
intel_de_write(dev_priv, DSI_CLK_TIMING_PARAM(port),
intel_dsi->dphy_reg);
/* shadow register inside display core */
for_each_dsi_port(port, intel_dsi->ports)
intel_de_write(dev_priv, DSI_DATA_TIMING_PARAM(port),
intel_dsi->dphy_data_lane_reg);
/* shadow register inside display core */
if (DISPLAY_VER(dev_priv) == 11) {
if (afe_clk(encoder, crtc_state) <= 800000) {
for_each_dsi_port(port, intel_dsi->ports) {
intel_de_rmw(dev_priv, DSI_TA_TIMING_PARAM(port),
TA_SURE_MASK,
TA_SURE_OVERRIDE | TA_SURE(0));
}
}
}
}
static void gen11_dsi_gate_clocks(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
u32 tmp;
enum phy phy;
mutex_lock(&dev_priv->display.dpll.lock);
tmp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0);
for_each_dsi_phy(phy, intel_dsi->phys)
tmp |= ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy);
intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, tmp);
mutex_unlock(&dev_priv->display.dpll.lock);
}
static void gen11_dsi_ungate_clocks(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
u32 tmp;
enum phy phy;
mutex_lock(&dev_priv->display.dpll.lock);
tmp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0);
for_each_dsi_phy(phy, intel_dsi->phys)
tmp &= ~ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy);
intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, tmp);
mutex_unlock(&dev_priv->display.dpll.lock);
}
static bool gen11_dsi_is_clock_enabled(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
bool clock_enabled = false;
enum phy phy;
u32 tmp;
tmp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0);
for_each_dsi_phy(phy, intel_dsi->phys) {
if (!(tmp & ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy)))
clock_enabled = true;
}
return clock_enabled;
}
static void gen11_dsi_map_pll(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
enum phy phy;
u32 val;
mutex_lock(&dev_priv->display.dpll.lock);
val = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0);
for_each_dsi_phy(phy, intel_dsi->phys) {
val &= ~ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
val |= ICL_DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, phy);
}
intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, val);
for_each_dsi_phy(phy, intel_dsi->phys) {
val &= ~ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy);
}
intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, val);
intel_de_posting_read(dev_priv, ICL_DPCLKA_CFGCR0);
mutex_unlock(&dev_priv->display.dpll.lock);
}
static void
gen11_dsi_configure_transcoder(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
enum pipe pipe = crtc->pipe;
u32 tmp;
enum port port;
enum transcoder dsi_trans;
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
tmp = intel_de_read(dev_priv, DSI_TRANS_FUNC_CONF(dsi_trans));
if (intel_dsi->eotp_pkt)
tmp &= ~EOTP_DISABLED;
else
tmp |= EOTP_DISABLED;
/* enable link calibration if freq > 1.5Gbps */
if (afe_clk(encoder, pipe_config) >= 1500 * 1000) {
tmp &= ~LINK_CALIBRATION_MASK;
tmp |= CALIBRATION_ENABLED_INITIAL_ONLY;
}
/* configure continuous clock */
tmp &= ~CONTINUOUS_CLK_MASK;
if (intel_dsi->clock_stop)
tmp |= CLK_ENTER_LP_AFTER_DATA;
else
tmp |= CLK_HS_CONTINUOUS;
/* configure buffer threshold limit to minimum */
tmp &= ~PIX_BUF_THRESHOLD_MASK;
tmp |= PIX_BUF_THRESHOLD_1_4;
/* set virtual channel to '0' */
tmp &= ~PIX_VIRT_CHAN_MASK;
tmp |= PIX_VIRT_CHAN(0);
/* program BGR transmission */
if (intel_dsi->bgr_enabled)
tmp |= BGR_TRANSMISSION;
/* select pixel format */
tmp &= ~PIX_FMT_MASK;
if (pipe_config->dsc.compression_enable) {
tmp |= PIX_FMT_COMPRESSED;
} else {
switch (intel_dsi->pixel_format) {
default:
MISSING_CASE(intel_dsi->pixel_format);
fallthrough;
case MIPI_DSI_FMT_RGB565:
tmp |= PIX_FMT_RGB565;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
tmp |= PIX_FMT_RGB666_PACKED;
break;
case MIPI_DSI_FMT_RGB666:
tmp |= PIX_FMT_RGB666_LOOSE;
break;
case MIPI_DSI_FMT_RGB888:
tmp |= PIX_FMT_RGB888;
break;
}
}
if (DISPLAY_VER(dev_priv) >= 12) {
if (is_vid_mode(intel_dsi))
tmp |= BLANKING_PACKET_ENABLE;
}
/* program DSI operation mode */
if (is_vid_mode(intel_dsi)) {
tmp &= ~OP_MODE_MASK;
switch (intel_dsi->video_mode) {
default:
MISSING_CASE(intel_dsi->video_mode);
fallthrough;
case NON_BURST_SYNC_EVENTS:
tmp |= VIDEO_MODE_SYNC_EVENT;
break;
case NON_BURST_SYNC_PULSE:
tmp |= VIDEO_MODE_SYNC_PULSE;
break;
}
} else {
/*
* FIXME: Retrieve this info from VBT.
* As per the spec when dsi transcoder is operating
* in TE GATE mode, TE comes from GPIO
* which is UTIL PIN for DSI 0.
* Also this GPIO would not be used for other
* purposes is an assumption.
*/
tmp &= ~OP_MODE_MASK;
tmp |= CMD_MODE_TE_GATE;
tmp |= TE_SOURCE_GPIO;
}
intel_de_write(dev_priv, DSI_TRANS_FUNC_CONF(dsi_trans), tmp);
}
/* enable port sync mode if dual link */
if (intel_dsi->dual_link) {
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
intel_de_rmw(dev_priv,
TRANS_DDI_FUNC_CTL2(dev_priv, dsi_trans),
0, PORT_SYNC_MODE_ENABLE);
}
/* configure stream splitting */
configure_dual_link_mode(encoder, pipe_config);
}
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
/* select data lane width */
tmp = intel_de_read(dev_priv,
TRANS_DDI_FUNC_CTL(dev_priv, dsi_trans));
tmp &= ~DDI_PORT_WIDTH_MASK;
tmp |= DDI_PORT_WIDTH(intel_dsi->lane_count);
/* select input pipe */
tmp &= ~TRANS_DDI_EDP_INPUT_MASK;
switch (pipe) {
default:
MISSING_CASE(pipe);
fallthrough;
case PIPE_A:
tmp |= TRANS_DDI_EDP_INPUT_A_ON;
break;
case PIPE_B:
tmp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
break;
case PIPE_C:
tmp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
break;
case PIPE_D:
tmp |= TRANS_DDI_EDP_INPUT_D_ONOFF;
break;
}
/* enable DDI buffer */
tmp |= TRANS_DDI_FUNC_ENABLE;
intel_de_write(dev_priv,
TRANS_DDI_FUNC_CTL(dev_priv, dsi_trans), tmp);
}
/* wait for link ready */
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
if (wait_for_us((intel_de_read(dev_priv, DSI_TRANS_FUNC_CONF(dsi_trans)) &
LINK_READY), 2500))
drm_err(&dev_priv->drm, "DSI link not ready\n");
}
}
static void
gen11_dsi_set_transcoder_timings(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
enum port port;
enum transcoder dsi_trans;
/* horizontal timings */
u16 htotal, hactive, hsync_start, hsync_end, hsync_size;
u16 hback_porch;
/* vertical timings */
u16 vtotal, vactive, vsync_start, vsync_end, vsync_shift;
int mul = 1, div = 1;
/*
* Adjust horizontal timings (htotal, hsync_start, hsync_end) to account
* for slower link speed if DSC is enabled.
*
* The compression frequency ratio is the ratio between compressed and
* non-compressed link speeds, and simplifies down to the ratio between
* compressed and non-compressed bpp.
*/
if (crtc_state->dsc.compression_enable) {
mul = fxp_q4_to_int(crtc_state->dsc.compressed_bpp_x16);
div = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format);
}
hactive = adjusted_mode->crtc_hdisplay;
if (is_vid_mode(intel_dsi))
htotal = DIV_ROUND_UP(adjusted_mode->crtc_htotal * mul, div);
else
htotal = DIV_ROUND_UP((hactive + 160) * mul, div);
hsync_start = DIV_ROUND_UP(adjusted_mode->crtc_hsync_start * mul, div);
hsync_end = DIV_ROUND_UP(adjusted_mode->crtc_hsync_end * mul, div);
hsync_size = hsync_end - hsync_start;
hback_porch = (adjusted_mode->crtc_htotal -
adjusted_mode->crtc_hsync_end);
vactive = adjusted_mode->crtc_vdisplay;
if (is_vid_mode(intel_dsi)) {
vtotal = adjusted_mode->crtc_vtotal;
} else {
int bpp, line_time_us, byte_clk_period_ns;
if (crtc_state->dsc.compression_enable)
bpp = fxp_q4_to_int(crtc_state->dsc.compressed_bpp_x16);
else
bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format);
byte_clk_period_ns = 1000000 / afe_clk(encoder, crtc_state);
line_time_us = (htotal * (bpp / 8) * byte_clk_period_ns) / (1000 * intel_dsi->lane_count);
vtotal = vactive + DIV_ROUND_UP(400, line_time_us);
}
vsync_start = adjusted_mode->crtc_vsync_start;
vsync_end = adjusted_mode->crtc_vsync_end;
vsync_shift = hsync_start - htotal / 2;
if (intel_dsi->dual_link) {
hactive /= 2;
if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK)
hactive += intel_dsi->pixel_overlap;
htotal /= 2;
}
/* minimum hactive as per bspec: 256 pixels */
if (adjusted_mode->crtc_hdisplay < 256)
drm_err(&dev_priv->drm, "hactive is less then 256 pixels\n");
/* if RGB666 format, then hactive must be multiple of 4 pixels */
if (intel_dsi->pixel_format == MIPI_DSI_FMT_RGB666 && hactive % 4 != 0)
drm_err(&dev_priv->drm,
"hactive pixels are not multiple of 4\n");
/* program TRANS_HTOTAL register */
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
intel_de_write(dev_priv, TRANS_HTOTAL(dev_priv, dsi_trans),
HACTIVE(hactive - 1) | HTOTAL(htotal - 1));
}
/* TRANS_HSYNC register to be programmed only for video mode */
if (is_vid_mode(intel_dsi)) {
if (intel_dsi->video_mode == NON_BURST_SYNC_PULSE) {
/* BSPEC: hsync size should be atleast 16 pixels */
if (hsync_size < 16)
drm_err(&dev_priv->drm,
"hsync size < 16 pixels\n");
}
if (hback_porch < 16)
drm_err(&dev_priv->drm, "hback porch < 16 pixels\n");
if (intel_dsi->dual_link) {
hsync_start /= 2;
hsync_end /= 2;
}
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
intel_de_write(dev_priv,
TRANS_HSYNC(dev_priv, dsi_trans),
HSYNC_START(hsync_start - 1) | HSYNC_END(hsync_end - 1));
}
}
/* program TRANS_VTOTAL register */
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
/*
* FIXME: Programing this by assuming progressive mode, since
* non-interlaced info from VBT is not saved inside
* struct drm_display_mode.
* For interlace mode: program required pixel minus 2
*/
intel_de_write(dev_priv, TRANS_VTOTAL(dev_priv, dsi_trans),
VACTIVE(vactive - 1) | VTOTAL(vtotal - 1));
}
if (vsync_end < vsync_start || vsync_end > vtotal)
drm_err(&dev_priv->drm, "Invalid vsync_end value\n");
if (vsync_start < vactive)
drm_err(&dev_priv->drm, "vsync_start less than vactive\n");
/* program TRANS_VSYNC register for video mode only */
if (is_vid_mode(intel_dsi)) {
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
intel_de_write(dev_priv,
TRANS_VSYNC(dev_priv, dsi_trans),
VSYNC_START(vsync_start - 1) | VSYNC_END(vsync_end - 1));
}
}
/*
* FIXME: It has to be programmed only for video modes and interlaced
* modes. Put the check condition here once interlaced
* info available as described above.
* program TRANS_VSYNCSHIFT register
*/
if (is_vid_mode(intel_dsi)) {
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
intel_de_write(dev_priv,
TRANS_VSYNCSHIFT(dev_priv, dsi_trans),
vsync_shift);
}
}
/*
* program TRANS_VBLANK register, should be same as vtotal programmed
*
* FIXME get rid of these local hacks and do it right,
* this will not handle eg. delayed vblank correctly.
*/
if (DISPLAY_VER(dev_priv) >= 12) {
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
intel_de_write(dev_priv,
TRANS_VBLANK(dev_priv, dsi_trans),
VBLANK_START(vactive - 1) | VBLANK_END(vtotal - 1));
}
}
}
static void gen11_dsi_enable_transcoder(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
enum transcoder dsi_trans;
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
intel_de_rmw(dev_priv, TRANSCONF(dev_priv, dsi_trans), 0,
TRANSCONF_ENABLE);
/* wait for transcoder to be enabled */
if (intel_de_wait_for_set(dev_priv, TRANSCONF(dev_priv, dsi_trans),
TRANSCONF_STATE_ENABLE, 10))
drm_err(&dev_priv->drm,
"DSI transcoder not enabled\n");
}
}
static void gen11_dsi_setup_timeouts(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
enum transcoder dsi_trans;
u32 hs_tx_timeout, lp_rx_timeout, ta_timeout, divisor, mul;
/*
* escape clock count calculation:
* BYTE_CLK_COUNT = TIME_NS/(8 * UI)
* UI (nsec) = (10^6)/Bitrate
* TIME_NS = (BYTE_CLK_COUNT * 8 * 10^6)/ Bitrate
* ESCAPE_CLK_COUNT = TIME_NS/ESC_CLK_NS
*/
divisor = intel_dsi_tlpx_ns(intel_dsi) * afe_clk(encoder, crtc_state) * 1000;
mul = 8 * 1000000;
hs_tx_timeout = DIV_ROUND_UP(intel_dsi->hs_tx_timeout * mul,
divisor);
lp_rx_timeout = DIV_ROUND_UP(intel_dsi->lp_rx_timeout * mul, divisor);
ta_timeout = DIV_ROUND_UP(intel_dsi->turn_arnd_val * mul, divisor);
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
/* program hst_tx_timeout */
intel_de_rmw(dev_priv, DSI_HSTX_TO(dsi_trans),
HSTX_TIMEOUT_VALUE_MASK,
HSTX_TIMEOUT_VALUE(hs_tx_timeout));
/* FIXME: DSI_CALIB_TO */
/* program lp_rx_host timeout */
intel_de_rmw(dev_priv, DSI_LPRX_HOST_TO(dsi_trans),
LPRX_TIMEOUT_VALUE_MASK,
LPRX_TIMEOUT_VALUE(lp_rx_timeout));
/* FIXME: DSI_PWAIT_TO */
/* program turn around timeout */
intel_de_rmw(dev_priv, DSI_TA_TO(dsi_trans),
TA_TIMEOUT_VALUE_MASK,
TA_TIMEOUT_VALUE(ta_timeout));
}
}
static void gen11_dsi_config_util_pin(struct intel_encoder *encoder,
bool enable)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
u32 tmp;
/*
* used as TE i/p for DSI0,
* for dual link/DSI1 TE is from slave DSI1
* through GPIO.
*/
if (is_vid_mode(intel_dsi) || (intel_dsi->ports & BIT(PORT_B)))
return;
tmp = intel_de_read(dev_priv, UTIL_PIN_CTL);
if (enable) {
tmp |= UTIL_PIN_DIRECTION_INPUT;
tmp |= UTIL_PIN_ENABLE;
} else {
tmp &= ~UTIL_PIN_ENABLE;
}
intel_de_write(dev_priv, UTIL_PIN_CTL, tmp);
}
static void
gen11_dsi_enable_port_and_phy(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
/* step 4a: power up all lanes of the DDI used by DSI */
gen11_dsi_power_up_lanes(encoder);
/* step 4b: configure lane sequencing of the Combo-PHY transmitters */
gen11_dsi_config_phy_lanes_sequence(encoder);
/* step 4c: configure voltage swing and skew */
gen11_dsi_voltage_swing_program_seq(encoder);
/* setup D-PHY timings */
gen11_dsi_setup_dphy_timings(encoder, crtc_state);
/* enable DDI buffer */
gen11_dsi_enable_ddi_buffer(encoder);
gen11_dsi_gate_clocks(encoder);
gen11_dsi_setup_timings(encoder, crtc_state);
/* Since transcoder is configured to take events from GPIO */
gen11_dsi_config_util_pin(encoder, true);
/* step 4h: setup DSI protocol timeouts */
gen11_dsi_setup_timeouts(encoder, crtc_state);
/* Step (4h, 4i, 4j, 4k): Configure transcoder */
gen11_dsi_configure_transcoder(encoder, crtc_state);
}
static void gen11_dsi_powerup_panel(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct mipi_dsi_device *dsi;
enum port port;
enum transcoder dsi_trans;
u32 tmp;
int ret;
/* set maximum return packet size */
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
/*
* FIXME: This uses the number of DW's currently in the payload
* receive queue. This is probably not what we want here.
*/
tmp = intel_de_read(dev_priv, DSI_CMD_RXCTL(dsi_trans));
tmp &= NUMBER_RX_PLOAD_DW_MASK;
/* multiply "Number Rx Payload DW" by 4 to get max value */
tmp = tmp * 4;
dsi = intel_dsi->dsi_hosts[port]->device;
ret = mipi_dsi_set_maximum_return_packet_size(dsi, tmp);
if (ret < 0)
drm_err(&dev_priv->drm,
"error setting max return pkt size%d\n", tmp);
}
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_INIT_OTP);
/* ensure all panel commands dispatched before enabling transcoder */
wait_for_cmds_dispatched_to_panel(encoder);
}
static void gen11_dsi_pre_pll_enable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
intel_dsi_wait_panel_power_cycle(intel_dsi);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_POWER_ON);
msleep(intel_dsi->panel_on_delay);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DEASSERT_RESET);
/* step2: enable IO power */
gen11_dsi_enable_io_power(encoder);
/* step3: enable DSI PLL */
gen11_dsi_program_esc_clk_div(encoder, crtc_state);
}
static void gen11_dsi_pre_enable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
/* step3b */
gen11_dsi_map_pll(encoder, pipe_config);
/* step4: enable DSI port and DPHY */
gen11_dsi_enable_port_and_phy(encoder, pipe_config);
/* step5: program and powerup panel */
gen11_dsi_powerup_panel(encoder);
intel_dsc_dsi_pps_write(encoder, pipe_config);
/* step6c: configure transcoder timings */
gen11_dsi_set_transcoder_timings(encoder, pipe_config);
}
/*
* Wa_1409054076:icl,jsl,ehl
* When pipe A is disabled and MIPI DSI is enabled on pipe B,
* the AMT KVMR feature will incorrectly see pipe A as enabled.
* Set 0x42080 bit 23=1 before enabling DSI on pipe B and leave
* it set while DSI is enabled on pipe B
*/
static void icl_apply_kvmr_pipe_a_wa(struct intel_encoder *encoder,
enum pipe pipe, bool enable)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (DISPLAY_VER(dev_priv) == 11 && pipe == PIPE_B)
intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
IGNORE_KVMR_PIPE_A,
enable ? IGNORE_KVMR_PIPE_A : 0);
}
/*
* Wa_16012360555:adl-p
* SW will have to program the "LP to HS Wakeup Guardband"
* to account for the repeaters on the HS Request/Ready
* PPI signaling between the Display engine and the DPHY.
*/
static void adlp_set_lp_hs_wakeup_gb(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
if (DISPLAY_VER(i915) == 13) {
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(i915, TGL_DSI_CHKN_REG(port),
TGL_DSI_CHKN_LSHS_GB_MASK,
TGL_DSI_CHKN_LSHS_GB(4));
}
}
static void gen11_dsi_enable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
/* Wa_1409054076:icl,jsl,ehl */
icl_apply_kvmr_pipe_a_wa(encoder, crtc->pipe, true);
/* Wa_16012360555:adl-p */
adlp_set_lp_hs_wakeup_gb(encoder);
/* step6d: enable dsi transcoder */
gen11_dsi_enable_transcoder(encoder);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_ON);
/* step7: enable backlight */
intel_backlight_enable(crtc_state, conn_state);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_BACKLIGHT_ON);
intel_crtc_vblank_on(crtc_state);
}
static void gen11_dsi_disable_transcoder(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
enum transcoder dsi_trans;
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
/* disable transcoder */
intel_de_rmw(dev_priv, TRANSCONF(dev_priv, dsi_trans),
TRANSCONF_ENABLE, 0);
/* wait for transcoder to be disabled */
if (intel_de_wait_for_clear(dev_priv, TRANSCONF(dev_priv, dsi_trans),
TRANSCONF_STATE_ENABLE, 50))
drm_err(&dev_priv->drm,
"DSI trancoder not disabled\n");
}
}
static void gen11_dsi_powerdown_panel(struct intel_encoder *encoder)
{
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_OFF);
/* ensure cmds dispatched to panel */
wait_for_cmds_dispatched_to_panel(encoder);
}
static void gen11_dsi_deconfigure_trancoder(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
enum transcoder dsi_trans;
u32 tmp;
/* disable periodic update mode */
if (is_cmd_mode(intel_dsi)) {
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(dev_priv, DSI_CMD_FRMCTL(port),
DSI_PERIODIC_FRAME_UPDATE_ENABLE, 0);
}
/* put dsi link in ULPS */
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
tmp = intel_de_read(dev_priv, DSI_LP_MSG(dsi_trans));
tmp |= LINK_ENTER_ULPS;
tmp &= ~LINK_ULPS_TYPE_LP11;
intel_de_write(dev_priv, DSI_LP_MSG(dsi_trans), tmp);
if (wait_for_us((intel_de_read(dev_priv, DSI_LP_MSG(dsi_trans)) &
LINK_IN_ULPS),
10))
drm_err(&dev_priv->drm, "DSI link not in ULPS\n");
}
/* disable ddi function */
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
intel_de_rmw(dev_priv,
TRANS_DDI_FUNC_CTL(dev_priv, dsi_trans),
TRANS_DDI_FUNC_ENABLE, 0);
}
/* disable port sync mode if dual link */
if (intel_dsi->dual_link) {
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
intel_de_rmw(dev_priv,
TRANS_DDI_FUNC_CTL2(dev_priv, dsi_trans),
PORT_SYNC_MODE_ENABLE, 0);
}
}
}
static void gen11_dsi_disable_port(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
gen11_dsi_ungate_clocks(encoder);
for_each_dsi_port(port, intel_dsi->ports) {
intel_de_rmw(dev_priv, DDI_BUF_CTL(port), DDI_BUF_CTL_ENABLE, 0);
if (wait_for_us((intel_de_read(dev_priv, DDI_BUF_CTL(port)) &
DDI_BUF_IS_IDLE),
8))
drm_err(&dev_priv->drm,
"DDI port:%c buffer not idle\n",
port_name(port));
}
gen11_dsi_gate_clocks(encoder);
}
static void gen11_dsi_disable_io_power(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum port port;
for_each_dsi_port(port, intel_dsi->ports) {
intel_wakeref_t wakeref;
wakeref = fetch_and_zero(&intel_dsi->io_wakeref[port]);
intel_display_power_put(dev_priv,
port == PORT_A ?
POWER_DOMAIN_PORT_DDI_IO_A :
POWER_DOMAIN_PORT_DDI_IO_B,
wakeref);
}
/* set mode to DDI */
for_each_dsi_port(port, intel_dsi->ports)
intel_de_rmw(dev_priv, ICL_DSI_IO_MODECTL(port),
COMBO_PHY_MODE_DSI, 0);
}
static void gen11_dsi_disable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
/* step1: turn off backlight */
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_BACKLIGHT_OFF);
intel_backlight_disable(old_conn_state);
}
static void gen11_dsi_post_disable(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
intel_crtc_vblank_off(old_crtc_state);
/* step2d,e: disable transcoder and wait */
gen11_dsi_disable_transcoder(encoder);
/* Wa_1409054076:icl,jsl,ehl */
icl_apply_kvmr_pipe_a_wa(encoder, crtc->pipe, false);
/* step2f,g: powerdown panel */
gen11_dsi_powerdown_panel(encoder);
/* step2h,i,j: deconfig trancoder */
gen11_dsi_deconfigure_trancoder(encoder);
intel_dsc_disable(old_crtc_state);
skl_scaler_disable(old_crtc_state);
/* step3: disable port */
gen11_dsi_disable_port(encoder);
gen11_dsi_config_util_pin(encoder, false);
/* step4: disable IO power */
gen11_dsi_disable_io_power(encoder);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_ASSERT_RESET);
msleep(intel_dsi->panel_off_delay);
intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_POWER_OFF);
intel_dsi->panel_power_off_time = ktime_get_boottime();
}
static enum drm_mode_status gen11_dsi_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct drm_i915_private *i915 = to_i915(connector->dev);
enum drm_mode_status status;
status = intel_cpu_transcoder_mode_valid(i915, mode);
if (status != MODE_OK)
return status;
/* FIXME: DSC? */
return intel_dsi_mode_valid(connector, mode);
}
static void gen11_dsi_get_timings(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct drm_display_mode *adjusted_mode =
&pipe_config->hw.adjusted_mode;
if (pipe_config->dsc.compressed_bpp_x16) {
int div = fxp_q4_to_int(pipe_config->dsc.compressed_bpp_x16);
int mul = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format);
adjusted_mode->crtc_htotal =
DIV_ROUND_UP(adjusted_mode->crtc_htotal * mul, div);
adjusted_mode->crtc_hsync_start =
DIV_ROUND_UP(adjusted_mode->crtc_hsync_start * mul, div);
adjusted_mode->crtc_hsync_end =
DIV_ROUND_UP(adjusted_mode->crtc_hsync_end * mul, div);
}
if (intel_dsi->dual_link) {
adjusted_mode->crtc_hdisplay *= 2;
if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK)
adjusted_mode->crtc_hdisplay -=
intel_dsi->pixel_overlap;
adjusted_mode->crtc_htotal *= 2;
}
adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hdisplay;
adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_htotal;
if (intel_dsi->operation_mode == INTEL_DSI_VIDEO_MODE) {
if (intel_dsi->dual_link) {
adjusted_mode->crtc_hsync_start *= 2;
adjusted_mode->crtc_hsync_end *= 2;
}
}
adjusted_mode->crtc_vblank_start = adjusted_mode->crtc_vdisplay;
adjusted_mode->crtc_vblank_end = adjusted_mode->crtc_vtotal;
}
static bool gen11_dsi_is_periodic_cmd_mode(struct intel_dsi *intel_dsi)
{
struct drm_device *dev = intel_dsi->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder dsi_trans;
u32 val;
if (intel_dsi->ports == BIT(PORT_B))
dsi_trans = TRANSCODER_DSI_1;
else
dsi_trans = TRANSCODER_DSI_0;
val = intel_de_read(dev_priv, DSI_TRANS_FUNC_CONF(dsi_trans));
return (val & DSI_PERIODIC_FRAME_UPDATE_ENABLE);
}
static void gen11_dsi_get_cmd_mode_config(struct intel_dsi *intel_dsi,
struct intel_crtc_state *pipe_config)
{
if (intel_dsi->ports == (BIT(PORT_B) | BIT(PORT_A)))
pipe_config->mode_flags |= I915_MODE_FLAG_DSI_USE_TE1 |
I915_MODE_FLAG_DSI_USE_TE0;
else if (intel_dsi->ports == BIT(PORT_B))
pipe_config->mode_flags |= I915_MODE_FLAG_DSI_USE_TE1;
else
pipe_config->mode_flags |= I915_MODE_FLAG_DSI_USE_TE0;
}
static void gen11_dsi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
intel_ddi_get_clock(encoder, pipe_config, icl_ddi_combo_get_pll(encoder));
pipe_config->hw.adjusted_mode.crtc_clock = intel_dsi->pclk;
if (intel_dsi->dual_link)
pipe_config->hw.adjusted_mode.crtc_clock *= 2;
gen11_dsi_get_timings(encoder, pipe_config);
pipe_config->output_types |= BIT(INTEL_OUTPUT_DSI);
pipe_config->pipe_bpp = bdw_get_pipe_misc_bpp(crtc);
/* Get the details on which TE should be enabled */
if (is_cmd_mode(intel_dsi))
gen11_dsi_get_cmd_mode_config(intel_dsi, pipe_config);
if (gen11_dsi_is_periodic_cmd_mode(intel_dsi))
pipe_config->mode_flags |= I915_MODE_FLAG_DSI_PERIODIC_CMD_MODE;
}
static void gen11_dsi_sync_state(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc;
enum pipe pipe;
if (!crtc_state)
return;
intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
pipe = intel_crtc->pipe;
/* wa verify 1409054076:icl,jsl,ehl */
if (DISPLAY_VER(dev_priv) == 11 && pipe == PIPE_B &&
!(intel_de_read(dev_priv, CHICKEN_PAR1_1) & IGNORE_KVMR_PIPE_A))
drm_dbg_kms(&dev_priv->drm,
"[ENCODER:%d:%s] BIOS left IGNORE_KVMR_PIPE_A cleared with pipe B enabled\n",
encoder->base.base.id,
encoder->base.name);
}
static int gen11_dsi_dsc_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
int dsc_max_bpc = DISPLAY_VER(dev_priv) >= 12 ? 12 : 10;
bool use_dsc;
int ret;
use_dsc = intel_bios_get_dsc_params(encoder, crtc_state, dsc_max_bpc);
if (!use_dsc)
return 0;
if (crtc_state->pipe_bpp < 8 * 3)
return -EINVAL;
/* FIXME: split only when necessary */
if (crtc_state->dsc.slice_count > 1)
crtc_state->dsc.dsc_split = true;
/* FIXME: initialize from VBT */
vdsc_cfg->rc_model_size = DSC_RC_MODEL_SIZE_CONST;
vdsc_cfg->pic_height = crtc_state->hw.adjusted_mode.crtc_vdisplay;
ret = intel_dsc_compute_params(crtc_state);
if (ret)
return ret;
/* DSI specific sanity checks on the common code */
drm_WARN_ON(&dev_priv->drm, vdsc_cfg->vbr_enable);
drm_WARN_ON(&dev_priv->drm, vdsc_cfg->simple_422);
drm_WARN_ON(&dev_priv->drm,
vdsc_cfg->pic_width % vdsc_cfg->slice_width);
drm_WARN_ON(&dev_priv->drm, vdsc_cfg->slice_height < 8);
drm_WARN_ON(&dev_priv->drm,
vdsc_cfg->pic_height % vdsc_cfg->slice_height);
ret = drm_dsc_compute_rc_parameters(vdsc_cfg);
if (ret)
return ret;
crtc_state->dsc.compression_enable = true;
return 0;
}
static int gen11_dsi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
struct intel_connector *intel_connector = intel_dsi->attached_connector;
struct drm_display_mode *adjusted_mode =
&pipe_config->hw.adjusted_mode;
int ret;
pipe_config->sink_format = INTEL_OUTPUT_FORMAT_RGB;
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
ret = intel_panel_compute_config(intel_connector, adjusted_mode);
if (ret)
return ret;
ret = intel_panel_fitting(pipe_config, conn_state);
if (ret)
return ret;
adjusted_mode->flags = 0;
/* Dual link goes to trancoder DSI'0' */
if (intel_dsi->ports == BIT(PORT_B))
pipe_config->cpu_transcoder = TRANSCODER_DSI_1;
else
pipe_config->cpu_transcoder = TRANSCODER_DSI_0;
if (intel_dsi->pixel_format == MIPI_DSI_FMT_RGB888)
pipe_config->pipe_bpp = 24;
else
pipe_config->pipe_bpp = 18;
pipe_config->clock_set = true;
if (gen11_dsi_dsc_compute_config(encoder, pipe_config))
drm_dbg_kms(&i915->drm, "Attempting to use DSC failed\n");
pipe_config->port_clock = afe_clk(encoder, pipe_config) / 5;
/*
* In case of TE GATE cmd mode, we
* receive TE from the slave if
* dual link is enabled
*/
if (is_cmd_mode(intel_dsi))
gen11_dsi_get_cmd_mode_config(intel_dsi, pipe_config);
return 0;
}
static void gen11_dsi_get_power_domains(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
get_dsi_io_power_domains(i915,
enc_to_intel_dsi(encoder));
}
static bool gen11_dsi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder);
enum transcoder dsi_trans;
intel_wakeref_t wakeref;
enum port port;
bool ret = false;
u32 tmp;
wakeref = intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain);
if (!wakeref)
return false;
for_each_dsi_port(port, intel_dsi->ports) {
dsi_trans = dsi_port_to_transcoder(port);
tmp = intel_de_read(dev_priv,
TRANS_DDI_FUNC_CTL(dev_priv, dsi_trans));
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
case TRANS_DDI_EDP_INPUT_A_ON:
*pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
*pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
*pipe = PIPE_C;
break;
case TRANS_DDI_EDP_INPUT_D_ONOFF:
*pipe = PIPE_D;
break;
default:
drm_err(&dev_priv->drm, "Invalid PIPE input\n");
goto out;
}
tmp = intel_de_read(dev_priv, TRANSCONF(dev_priv, dsi_trans));
ret = tmp & TRANSCONF_ENABLE;
}
out:
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
return ret;
}
static bool gen11_dsi_initial_fastset_check(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
if (crtc_state->dsc.compression_enable) {
drm_dbg_kms(encoder->base.dev, "Forcing full modeset due to DSC being enabled\n");
crtc_state->uapi.mode_changed = true;
return false;
}
return true;
}
static void gen11_dsi_encoder_destroy(struct drm_encoder *encoder)
{
intel_encoder_destroy(encoder);
}
static const struct drm_encoder_funcs gen11_dsi_encoder_funcs = {
.destroy = gen11_dsi_encoder_destroy,
};
static const struct drm_connector_funcs gen11_dsi_connector_funcs = {
.detect = intel_panel_detect,
.late_register = intel_connector_register,
.early_unregister = intel_connector_unregister,
.destroy = intel_connector_destroy,
.fill_modes = drm_helper_probe_single_connector_modes,
.atomic_get_property = intel_digital_connector_atomic_get_property,
.atomic_set_property = intel_digital_connector_atomic_set_property,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = intel_digital_connector_duplicate_state,
};
static const struct drm_connector_helper_funcs gen11_dsi_connector_helper_funcs = {
.get_modes = intel_dsi_get_modes,
.mode_valid = gen11_dsi_mode_valid,
.atomic_check = intel_digital_connector_atomic_check,
};
static int gen11_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
return 0;
}
static int gen11_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
return 0;
}
static ssize_t gen11_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct intel_dsi_host *intel_dsi_host = to_intel_dsi_host(host);
struct mipi_dsi_packet dsi_pkt;
ssize_t ret;
bool enable_lpdt = false;
ret = mipi_dsi_create_packet(&dsi_pkt, msg);
if (ret < 0)
return ret;
if (msg->flags & MIPI_DSI_MSG_USE_LPM)
enable_lpdt = true;
/* only long packet contains payload */
if (mipi_dsi_packet_format_is_long(msg->type)) {
ret = dsi_send_pkt_payld(intel_dsi_host, &dsi_pkt);
if (ret < 0)
return ret;
}
/* send packet header */
ret = dsi_send_pkt_hdr(intel_dsi_host, &dsi_pkt, enable_lpdt);
if (ret < 0)
return ret;
//TODO: add payload receive code if needed
ret = sizeof(dsi_pkt.header) + dsi_pkt.payload_length;
return ret;
}
static const struct mipi_dsi_host_ops gen11_dsi_host_ops = {
.attach = gen11_dsi_host_attach,
.detach = gen11_dsi_host_detach,
.transfer = gen11_dsi_host_transfer,
};
#define ICL_PREPARE_CNT_MAX 0x7
#define ICL_CLK_ZERO_CNT_MAX 0xf
#define ICL_TRAIL_CNT_MAX 0x7
#define ICL_TCLK_PRE_CNT_MAX 0x3
#define ICL_TCLK_POST_CNT_MAX 0x7
#define ICL_HS_ZERO_CNT_MAX 0xf
#define ICL_EXIT_ZERO_CNT_MAX 0x7
static void icl_dphy_param_init(struct intel_dsi *intel_dsi)
{
struct drm_device *dev = intel_dsi->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_connector *connector = intel_dsi->attached_connector;
struct mipi_config *mipi_config = connector->panel.vbt.dsi.config;
u32 tlpx_ns;
u32 prepare_cnt, exit_zero_cnt, clk_zero_cnt, trail_cnt;
u32 ths_prepare_ns, tclk_trail_ns;
u32 hs_zero_cnt;
u32 tclk_pre_cnt;
tlpx_ns = intel_dsi_tlpx_ns(intel_dsi);
tclk_trail_ns = max(mipi_config->tclk_trail, mipi_config->ths_trail);
ths_prepare_ns = max(mipi_config->ths_prepare,
mipi_config->tclk_prepare);
/*
* prepare cnt in escape clocks
* this field represents a hexadecimal value with a precision
* of 1.2 – i.e. the most significant bit is the integer
* and the least significant 2 bits are fraction bits.
* so, the field can represent a range of 0.25 to 1.75
*/
prepare_cnt = DIV_ROUND_UP(ths_prepare_ns * 4, tlpx_ns);
if (prepare_cnt > ICL_PREPARE_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm, "prepare_cnt out of range (%d)\n",
prepare_cnt);
prepare_cnt = ICL_PREPARE_CNT_MAX;
}
/* clk zero count in escape clocks */
clk_zero_cnt = DIV_ROUND_UP(mipi_config->tclk_prepare_clkzero -
ths_prepare_ns, tlpx_ns);
if (clk_zero_cnt > ICL_CLK_ZERO_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm,
"clk_zero_cnt out of range (%d)\n", clk_zero_cnt);
clk_zero_cnt = ICL_CLK_ZERO_CNT_MAX;
}
/* trail cnt in escape clocks*/
trail_cnt = DIV_ROUND_UP(tclk_trail_ns, tlpx_ns);
if (trail_cnt > ICL_TRAIL_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm, "trail_cnt out of range (%d)\n",
trail_cnt);
trail_cnt = ICL_TRAIL_CNT_MAX;
}
/* tclk pre count in escape clocks */
tclk_pre_cnt = DIV_ROUND_UP(mipi_config->tclk_pre, tlpx_ns);
if (tclk_pre_cnt > ICL_TCLK_PRE_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm,
"tclk_pre_cnt out of range (%d)\n", tclk_pre_cnt);
tclk_pre_cnt = ICL_TCLK_PRE_CNT_MAX;
}
/* hs zero cnt in escape clocks */
hs_zero_cnt = DIV_ROUND_UP(mipi_config->ths_prepare_hszero -
ths_prepare_ns, tlpx_ns);
if (hs_zero_cnt > ICL_HS_ZERO_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm, "hs_zero_cnt out of range (%d)\n",
hs_zero_cnt);
hs_zero_cnt = ICL_HS_ZERO_CNT_MAX;
}
/* hs exit zero cnt in escape clocks */
exit_zero_cnt = DIV_ROUND_UP(mipi_config->ths_exit, tlpx_ns);
if (exit_zero_cnt > ICL_EXIT_ZERO_CNT_MAX) {
drm_dbg_kms(&dev_priv->drm,
"exit_zero_cnt out of range (%d)\n",
exit_zero_cnt);
exit_zero_cnt = ICL_EXIT_ZERO_CNT_MAX;
}
/* clock lane dphy timings */
intel_dsi->dphy_reg = (CLK_PREPARE_OVERRIDE |
CLK_PREPARE(prepare_cnt) |
CLK_ZERO_OVERRIDE |
CLK_ZERO(clk_zero_cnt) |
CLK_PRE_OVERRIDE |
CLK_PRE(tclk_pre_cnt) |
CLK_TRAIL_OVERRIDE |
CLK_TRAIL(trail_cnt));
/* data lanes dphy timings */
intel_dsi->dphy_data_lane_reg = (HS_PREPARE_OVERRIDE |
HS_PREPARE(prepare_cnt) |
HS_ZERO_OVERRIDE |
HS_ZERO(hs_zero_cnt) |
HS_TRAIL_OVERRIDE |
HS_TRAIL(trail_cnt) |
HS_EXIT_OVERRIDE |
HS_EXIT(exit_zero_cnt));
intel_dsi_log_params(intel_dsi);
}
static void icl_dsi_add_properties(struct intel_connector *connector)
{
const struct drm_display_mode *fixed_mode =
intel_panel_preferred_fixed_mode(connector);
intel_attach_scaling_mode_property(&connector->base);
drm_connector_set_panel_orientation_with_quirk(&connector->base,
intel_dsi_get_panel_orientation(connector),
fixed_mode->hdisplay,
fixed_mode->vdisplay);
}
void icl_dsi_init(struct drm_i915_private *dev_priv,
const struct intel_bios_encoder_data *devdata)
{
struct intel_display *display = &dev_priv->display;
struct intel_dsi *intel_dsi;
struct intel_encoder *encoder;
struct intel_connector *intel_connector;
struct drm_connector *connector;
enum port port;
port = intel_bios_encoder_port(devdata);
if (port == PORT_NONE)
return;
intel_dsi = kzalloc(sizeof(*intel_dsi), GFP_KERNEL);
if (!intel_dsi)
return;
intel_connector = intel_connector_alloc();
if (!intel_connector) {
kfree(intel_dsi);
return;
}
encoder = &intel_dsi->base;
intel_dsi->attached_connector = intel_connector;
connector = &intel_connector->base;
encoder->devdata = devdata;
/* register DSI encoder with DRM subsystem */
drm_encoder_init(&dev_priv->drm, &encoder->base, &gen11_dsi_encoder_funcs,
DRM_MODE_ENCODER_DSI, "DSI %c", port_name(port));
encoder->pre_pll_enable = gen11_dsi_pre_pll_enable;
encoder->pre_enable = gen11_dsi_pre_enable;
encoder->enable = gen11_dsi_enable;
encoder->disable = gen11_dsi_disable;
encoder->post_disable = gen11_dsi_post_disable;
encoder->port = port;
encoder->get_config = gen11_dsi_get_config;
encoder->sync_state = gen11_dsi_sync_state;
encoder->update_pipe = intel_backlight_update;
encoder->compute_config = gen11_dsi_compute_config;
encoder->get_hw_state = gen11_dsi_get_hw_state;
encoder->initial_fastset_check = gen11_dsi_initial_fastset_check;
encoder->type = INTEL_OUTPUT_DSI;
encoder->cloneable = 0;
encoder->pipe_mask = ~0;
encoder->power_domain = POWER_DOMAIN_PORT_DSI;
encoder->get_power_domains = gen11_dsi_get_power_domains;
encoder->disable_clock = gen11_dsi_gate_clocks;
encoder->is_clock_enabled = gen11_dsi_is_clock_enabled;
encoder->shutdown = intel_dsi_shutdown;
/* register DSI connector with DRM subsystem */
drm_connector_init(&dev_priv->drm, connector, &gen11_dsi_connector_funcs,
DRM_MODE_CONNECTOR_DSI);
drm_connector_helper_add(connector, &gen11_dsi_connector_helper_funcs);
connector->display_info.subpixel_order = SubPixelHorizontalRGB;
intel_connector->get_hw_state = intel_connector_get_hw_state;
/* attach connector to encoder */
intel_connector_attach_encoder(intel_connector, encoder);
intel_dsi->panel_power_off_time = ktime_get_boottime();
intel_bios_init_panel_late(display, &intel_connector->panel, encoder->devdata, NULL);
mutex_lock(&dev_priv->drm.mode_config.mutex);
intel_panel_add_vbt_lfp_fixed_mode(intel_connector);
mutex_unlock(&dev_priv->drm.mode_config.mutex);
if (!intel_panel_preferred_fixed_mode(intel_connector)) {
drm_err(&dev_priv->drm, "DSI fixed mode info missing\n");
goto err;
}
intel_panel_init(intel_connector, NULL);
intel_backlight_setup(intel_connector, INVALID_PIPE);
if (intel_connector->panel.vbt.dsi.config->dual_link)
intel_dsi->ports = BIT(PORT_A) | BIT(PORT_B);
else
intel_dsi->ports = BIT(port);
if (drm_WARN_ON(&dev_priv->drm, intel_connector->panel.vbt.dsi.bl_ports & ~intel_dsi->ports))
intel_connector->panel.vbt.dsi.bl_ports &= intel_dsi->ports;
if (drm_WARN_ON(&dev_priv->drm, intel_connector->panel.vbt.dsi.cabc_ports & ~intel_dsi->ports))
intel_connector->panel.vbt.dsi.cabc_ports &= intel_dsi->ports;
for_each_dsi_port(port, intel_dsi->ports) {
struct intel_dsi_host *host;
host = intel_dsi_host_init(intel_dsi, &gen11_dsi_host_ops, port);
if (!host)
goto err;
intel_dsi->dsi_hosts[port] = host;
}
if (!intel_dsi_vbt_init(intel_dsi, MIPI_DSI_GENERIC_PANEL_ID)) {
drm_dbg_kms(&dev_priv->drm, "no device found\n");
goto err;
}
icl_dphy_param_init(intel_dsi);
icl_dsi_add_properties(intel_connector);
return;
err:
drm_connector_cleanup(connector);
drm_encoder_cleanup(&encoder->base);
kfree(intel_dsi);
kfree(intel_connector);
}