| /* |
| * Copyright © 2014-2016 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include "bxt_dpio_phy_regs.h" |
| #include "i915_reg.h" |
| #include "intel_ddi.h" |
| #include "intel_ddi_buf_trans.h" |
| #include "intel_de.h" |
| #include "intel_display_power_well.h" |
| #include "intel_display_types.h" |
| #include "intel_dp.h" |
| #include "intel_dpio_phy.h" |
| #include "vlv_dpio_phy_regs.h" |
| #include "vlv_sideband.h" |
| |
| /** |
| * DOC: DPIO |
| * |
| * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI |
| * ports. DPIO is the name given to such a display PHY. These PHYs |
| * don't follow the standard programming model using direct MMIO |
| * registers, and instead their registers must be accessed trough IOSF |
| * sideband. VLV has one such PHY for driving ports B and C, and CHV |
| * adds another PHY for driving port D. Each PHY responds to specific |
| * IOSF-SB port. |
| * |
| * Each display PHY is made up of one or two channels. Each channel |
| * houses a common lane part which contains the PLL and other common |
| * logic. CH0 common lane also contains the IOSF-SB logic for the |
| * Common Register Interface (CRI) ie. the DPIO registers. CRI clock |
| * must be running when any DPIO registers are accessed. |
| * |
| * In addition to having their own registers, the PHYs are also |
| * controlled through some dedicated signals from the display |
| * controller. These include PLL reference clock enable, PLL enable, |
| * and CRI clock selection, for example. |
| * |
| * Eeach channel also has two splines (also called data lanes), and |
| * each spline is made up of one Physical Access Coding Sub-Layer |
| * (PCS) block and two TX lanes. So each channel has two PCS blocks |
| * and four TX lanes. The TX lanes are used as DP lanes or TMDS |
| * data/clock pairs depending on the output type. |
| * |
| * Additionally the PHY also contains an AUX lane with AUX blocks |
| * for each channel. This is used for DP AUX communication, but |
| * this fact isn't really relevant for the driver since AUX is |
| * controlled from the display controller side. No DPIO registers |
| * need to be accessed during AUX communication, |
| * |
| * Generally on VLV/CHV the common lane corresponds to the pipe and |
| * the spline (PCS/TX) corresponds to the port. |
| * |
| * For dual channel PHY (VLV/CHV): |
| * |
| * pipe A == CMN/PLL/REF CH0 |
| * |
| * pipe B == CMN/PLL/REF CH1 |
| * |
| * port B == PCS/TX CH0 |
| * |
| * port C == PCS/TX CH1 |
| * |
| * This is especially important when we cross the streams |
| * ie. drive port B with pipe B, or port C with pipe A. |
| * |
| * For single channel PHY (CHV): |
| * |
| * pipe C == CMN/PLL/REF CH0 |
| * |
| * port D == PCS/TX CH0 |
| * |
| * On BXT the entire PHY channel corresponds to the port. That means |
| * the PLL is also now associated with the port rather than the pipe, |
| * and so the clock needs to be routed to the appropriate transcoder. |
| * Port A PLL is directly connected to transcoder EDP and port B/C |
| * PLLs can be routed to any transcoder A/B/C. |
| * |
| * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is |
| * digital port D (CHV) or port A (BXT). :: |
| * |
| * |
| * Dual channel PHY (VLV/CHV/BXT) |
| * --------------------------------- |
| * | CH0 | CH1 | |
| * | CMN/PLL/REF | CMN/PLL/REF | |
| * |---------------|---------------| Display PHY |
| * | PCS01 | PCS23 | PCS01 | PCS23 | |
| * |-------|-------|-------|-------| |
| * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3| |
| * --------------------------------- |
| * | DDI0 | DDI1 | DP/HDMI ports |
| * --------------------------------- |
| * |
| * Single channel PHY (CHV/BXT) |
| * ----------------- |
| * | CH0 | |
| * | CMN/PLL/REF | |
| * |---------------| Display PHY |
| * | PCS01 | PCS23 | |
| * |-------|-------| |
| * |TX0|TX1|TX2|TX3| |
| * ----------------- |
| * | DDI2 | DP/HDMI port |
| * ----------------- |
| */ |
| |
| /** |
| * struct bxt_dpio_phy_info - Hold info for a broxton DDI phy |
| */ |
| struct bxt_dpio_phy_info { |
| /** |
| * @dual_channel: true if this phy has a second channel. |
| */ |
| bool dual_channel; |
| |
| /** |
| * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor. |
| * Otherwise the GRC value will be copied from the phy indicated by |
| * this field. |
| */ |
| enum dpio_phy rcomp_phy; |
| |
| /** |
| * @reset_delay: delay in us to wait before setting the common reset |
| * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy. |
| */ |
| int reset_delay; |
| |
| /** |
| * @pwron_mask: Mask with the appropriate bit set that would cause the |
| * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON. |
| */ |
| u32 pwron_mask; |
| |
| /** |
| * @channel: struct containing per channel information. |
| */ |
| struct { |
| /** |
| * @channel.port: which port maps to this channel. |
| */ |
| enum port port; |
| } channel[2]; |
| }; |
| |
| static const struct bxt_dpio_phy_info bxt_dpio_phy_info[] = { |
| [DPIO_PHY0] = { |
| .dual_channel = true, |
| .rcomp_phy = DPIO_PHY1, |
| .pwron_mask = BIT(0), |
| |
| .channel = { |
| [DPIO_CH0] = { .port = PORT_B }, |
| [DPIO_CH1] = { .port = PORT_C }, |
| } |
| }, |
| [DPIO_PHY1] = { |
| .dual_channel = false, |
| .rcomp_phy = -1, |
| .pwron_mask = BIT(1), |
| |
| .channel = { |
| [DPIO_CH0] = { .port = PORT_A }, |
| } |
| }, |
| }; |
| |
| static const struct bxt_dpio_phy_info glk_dpio_phy_info[] = { |
| [DPIO_PHY0] = { |
| .dual_channel = false, |
| .rcomp_phy = DPIO_PHY1, |
| .pwron_mask = BIT(0), |
| .reset_delay = 20, |
| |
| .channel = { |
| [DPIO_CH0] = { .port = PORT_B }, |
| } |
| }, |
| [DPIO_PHY1] = { |
| .dual_channel = false, |
| .rcomp_phy = -1, |
| .pwron_mask = BIT(3), |
| .reset_delay = 20, |
| |
| .channel = { |
| [DPIO_CH0] = { .port = PORT_A }, |
| } |
| }, |
| [DPIO_PHY2] = { |
| .dual_channel = false, |
| .rcomp_phy = DPIO_PHY1, |
| .pwron_mask = BIT(1), |
| .reset_delay = 20, |
| |
| .channel = { |
| [DPIO_CH0] = { .port = PORT_C }, |
| } |
| }, |
| }; |
| |
| static const struct bxt_dpio_phy_info * |
| bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count) |
| { |
| if (IS_GEMINILAKE(dev_priv)) { |
| *count = ARRAY_SIZE(glk_dpio_phy_info); |
| return glk_dpio_phy_info; |
| } else { |
| *count = ARRAY_SIZE(bxt_dpio_phy_info); |
| return bxt_dpio_phy_info; |
| } |
| } |
| |
| static const struct bxt_dpio_phy_info * |
| bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy) |
| { |
| int count; |
| const struct bxt_dpio_phy_info *phy_list = |
| bxt_get_phy_list(dev_priv, &count); |
| |
| return &phy_list[phy]; |
| } |
| |
| void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port, |
| enum dpio_phy *phy, enum dpio_channel *ch) |
| { |
| const struct bxt_dpio_phy_info *phy_info, *phys; |
| int i, count; |
| |
| phys = bxt_get_phy_list(dev_priv, &count); |
| |
| for (i = 0; i < count; i++) { |
| phy_info = &phys[i]; |
| |
| if (port == phy_info->channel[DPIO_CH0].port) { |
| *phy = i; |
| *ch = DPIO_CH0; |
| return; |
| } |
| |
| if (phy_info->dual_channel && |
| port == phy_info->channel[DPIO_CH1].port) { |
| *phy = i; |
| *ch = DPIO_CH1; |
| return; |
| } |
| } |
| |
| drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c", |
| port_name(port)); |
| *phy = DPIO_PHY0; |
| *ch = DPIO_CH0; |
| } |
| |
| /* |
| * Like intel_de_rmw() but reads from a single per-lane register and |
| * writes to the group register to write the same value to all the lanes. |
| */ |
| static u32 bxt_dpio_phy_rmw_grp(struct drm_i915_private *i915, |
| i915_reg_t reg_single, |
| i915_reg_t reg_group, |
| u32 clear, u32 set) |
| { |
| u32 old, val; |
| |
| old = intel_de_read(i915, reg_single); |
| val = (old & ~clear) | set; |
| intel_de_write(i915, reg_group, val); |
| |
| return old; |
| } |
| |
| void bxt_dpio_phy_set_signal_levels(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| const struct intel_ddi_buf_trans *trans; |
| enum dpio_channel ch; |
| enum dpio_phy phy; |
| int lane, n_entries; |
| |
| trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries); |
| if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans)) |
| return; |
| |
| bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch); |
| |
| /* |
| * While we write to the group register to program all lanes at once we |
| * can read only lane registers and we pick lanes 0/1 for that. |
| */ |
| bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch), |
| BXT_PORT_PCS_DW10_GRP(phy, ch), |
| TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT, 0); |
| |
| for (lane = 0; lane < crtc_state->lane_count; lane++) { |
| int level = intel_ddi_level(encoder, crtc_state, lane); |
| |
| intel_de_rmw(dev_priv, BXT_PORT_TX_DW2_LN(phy, ch, lane), |
| MARGIN_000_MASK | UNIQ_TRANS_SCALE_MASK, |
| MARGIN_000(trans->entries[level].bxt.margin) | |
| UNIQ_TRANS_SCALE(trans->entries[level].bxt.scale)); |
| } |
| |
| for (lane = 0; lane < crtc_state->lane_count; lane++) { |
| int level = intel_ddi_level(encoder, crtc_state, lane); |
| u32 val; |
| |
| intel_de_rmw(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane), |
| SCALE_DCOMP_METHOD, |
| trans->entries[level].bxt.enable ? |
| SCALE_DCOMP_METHOD : 0); |
| |
| val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN(phy, ch, lane)); |
| if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD)) |
| drm_err(&dev_priv->drm, |
| "Disabled scaling while ouniqetrangenmethod was set"); |
| } |
| |
| for (lane = 0; lane < crtc_state->lane_count; lane++) { |
| int level = intel_ddi_level(encoder, crtc_state, lane); |
| |
| intel_de_rmw(dev_priv, BXT_PORT_TX_DW4_LN(phy, ch, lane), |
| DE_EMPHASIS_MASK, |
| DE_EMPHASIS(trans->entries[level].bxt.deemphasis)); |
| } |
| |
| bxt_dpio_phy_rmw_grp(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch), |
| BXT_PORT_PCS_DW10_GRP(phy, ch), |
| 0, TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT); |
| } |
| |
| bool bxt_dpio_phy_is_enabled(struct drm_i915_private *dev_priv, |
| enum dpio_phy phy) |
| { |
| const struct bxt_dpio_phy_info *phy_info; |
| |
| phy_info = bxt_get_phy_info(dev_priv, phy); |
| |
| if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask)) |
| return false; |
| |
| if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) & |
| (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) { |
| drm_dbg(&dev_priv->drm, |
| "DDI PHY %d powered, but power hasn't settled\n", phy); |
| |
| return false; |
| } |
| |
| if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) { |
| drm_dbg(&dev_priv->drm, |
| "DDI PHY %d powered, but still in reset\n", phy); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy) |
| { |
| u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy)); |
| |
| return REG_FIELD_GET(GRC_CODE_MASK, val); |
| } |
| |
| static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv, |
| enum dpio_phy phy) |
| { |
| if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy), |
| GRC_DONE, 10)) |
| drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n", |
| phy); |
| } |
| |
| static void _bxt_dpio_phy_init(struct drm_i915_private *dev_priv, |
| enum dpio_phy phy) |
| { |
| const struct bxt_dpio_phy_info *phy_info; |
| u32 val; |
| |
| phy_info = bxt_get_phy_info(dev_priv, phy); |
| |
| if (bxt_dpio_phy_is_enabled(dev_priv, phy)) { |
| /* Still read out the GRC value for state verification */ |
| if (phy_info->rcomp_phy != -1) |
| dev_priv->display.state.bxt_phy_grc = bxt_get_grc(dev_priv, phy); |
| |
| if (bxt_dpio_phy_verify_state(dev_priv, phy)) { |
| drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, " |
| "won't reprogram it\n", phy); |
| return; |
| } |
| |
| drm_dbg(&dev_priv->drm, |
| "DDI PHY %d enabled with invalid state, " |
| "force reprogramming it\n", phy); |
| } |
| |
| intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, 0, phy_info->pwron_mask); |
| |
| /* |
| * The PHY registers start out inaccessible and respond to reads with |
| * all 1s. Eventually they become accessible as they power up, then |
| * the reserved bit will give the default 0. Poll on the reserved bit |
| * becoming 0 to find when the PHY is accessible. |
| * The flag should get set in 100us according to the HW team, but |
| * use 1ms due to occasional timeouts observed with that. |
| */ |
| if (intel_de_wait_fw(dev_priv, BXT_PORT_CL1CM_DW0(phy), |
| PHY_RESERVED | PHY_POWER_GOOD, PHY_POWER_GOOD, 1)) |
| drm_err(&dev_priv->drm, "timeout during PHY%d power on\n", |
| phy); |
| |
| /* Program PLL Rcomp code offset */ |
| intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW9(phy), |
| IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xE4)); |
| |
| intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW10(phy), |
| IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xE4)); |
| |
| /* Program power gating */ |
| intel_de_rmw(dev_priv, BXT_PORT_CL1CM_DW28(phy), 0, |
| OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG); |
| |
| if (phy_info->dual_channel) |
| intel_de_rmw(dev_priv, BXT_PORT_CL2CM_DW6(phy), 0, |
| DW6_OLDO_DYN_PWR_DOWN_EN); |
| |
| if (phy_info->rcomp_phy != -1) { |
| u32 grc_code; |
| |
| bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy); |
| |
| /* |
| * PHY0 isn't connected to an RCOMP resistor so copy over |
| * the corresponding calibrated value from PHY1, and disable |
| * the automatic calibration on PHY0. |
| */ |
| val = bxt_get_grc(dev_priv, phy_info->rcomp_phy); |
| dev_priv->display.state.bxt_phy_grc = val; |
| |
| grc_code = GRC_CODE_FAST(val) | |
| GRC_CODE_SLOW(val) | |
| GRC_CODE_NOM(val); |
| intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code); |
| intel_de_rmw(dev_priv, BXT_PORT_REF_DW8(phy), |
| 0, GRC_DIS | GRC_RDY_OVRD); |
| } |
| |
| if (phy_info->reset_delay) |
| udelay(phy_info->reset_delay); |
| |
| intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), 0, COMMON_RESET_DIS); |
| } |
| |
| void bxt_dpio_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy) |
| { |
| const struct bxt_dpio_phy_info *phy_info; |
| |
| phy_info = bxt_get_phy_info(dev_priv, phy); |
| |
| intel_de_rmw(dev_priv, BXT_PHY_CTL_FAMILY(phy), COMMON_RESET_DIS, 0); |
| |
| intel_de_rmw(dev_priv, BXT_P_CR_GT_DISP_PWRON, phy_info->pwron_mask, 0); |
| } |
| |
| void bxt_dpio_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy) |
| { |
| const struct bxt_dpio_phy_info *phy_info = |
| bxt_get_phy_info(dev_priv, phy); |
| enum dpio_phy rcomp_phy = phy_info->rcomp_phy; |
| bool was_enabled; |
| |
| lockdep_assert_held(&dev_priv->display.power.domains.lock); |
| |
| was_enabled = true; |
| if (rcomp_phy != -1) |
| was_enabled = bxt_dpio_phy_is_enabled(dev_priv, rcomp_phy); |
| |
| /* |
| * We need to copy the GRC calibration value from rcomp_phy, |
| * so make sure it's powered up. |
| */ |
| if (!was_enabled) |
| _bxt_dpio_phy_init(dev_priv, rcomp_phy); |
| |
| _bxt_dpio_phy_init(dev_priv, phy); |
| |
| if (!was_enabled) |
| bxt_dpio_phy_uninit(dev_priv, rcomp_phy); |
| } |
| |
| static bool __printf(6, 7) |
| __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy, |
| i915_reg_t reg, u32 mask, u32 expected, |
| const char *reg_fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| u32 val; |
| |
| val = intel_de_read(dev_priv, reg); |
| if ((val & mask) == expected) |
| return true; |
| |
| va_start(args, reg_fmt); |
| vaf.fmt = reg_fmt; |
| vaf.va = &args; |
| |
| drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: " |
| "current %08x, expected %08x (mask %08x)\n", |
| phy, &vaf, reg.reg, val, (val & ~mask) | expected, |
| mask); |
| |
| va_end(args); |
| |
| return false; |
| } |
| |
| bool bxt_dpio_phy_verify_state(struct drm_i915_private *dev_priv, |
| enum dpio_phy phy) |
| { |
| const struct bxt_dpio_phy_info *phy_info; |
| u32 mask; |
| bool ok; |
| |
| phy_info = bxt_get_phy_info(dev_priv, phy); |
| |
| #define _CHK(reg, mask, exp, fmt, ...) \ |
| __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \ |
| ## __VA_ARGS__) |
| |
| if (!bxt_dpio_phy_is_enabled(dev_priv, phy)) |
| return false; |
| |
| ok = true; |
| |
| /* PLL Rcomp code offset */ |
| ok &= _CHK(BXT_PORT_CL1CM_DW9(phy), |
| IREF0RC_OFFSET_MASK, IREF0RC_OFFSET(0xe4), |
| "BXT_PORT_CL1CM_DW9(%d)", phy); |
| ok &= _CHK(BXT_PORT_CL1CM_DW10(phy), |
| IREF1RC_OFFSET_MASK, IREF1RC_OFFSET(0xe4), |
| "BXT_PORT_CL1CM_DW10(%d)", phy); |
| |
| /* Power gating */ |
| mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG; |
| ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask, |
| "BXT_PORT_CL1CM_DW28(%d)", phy); |
| |
| if (phy_info->dual_channel) |
| ok &= _CHK(BXT_PORT_CL2CM_DW6(phy), |
| DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN, |
| "BXT_PORT_CL2CM_DW6(%d)", phy); |
| |
| if (phy_info->rcomp_phy != -1) { |
| u32 grc_code = dev_priv->display.state.bxt_phy_grc; |
| |
| grc_code = GRC_CODE_FAST(grc_code) | |
| GRC_CODE_SLOW(grc_code) | |
| GRC_CODE_NOM(grc_code); |
| mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK | |
| GRC_CODE_NOM_MASK; |
| ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code, |
| "BXT_PORT_REF_DW6(%d)", phy); |
| |
| mask = GRC_DIS | GRC_RDY_OVRD; |
| ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask, |
| "BXT_PORT_REF_DW8(%d)", phy); |
| } |
| |
| return ok; |
| #undef _CHK |
| } |
| |
| u8 |
| bxt_dpio_phy_calc_lane_lat_optim_mask(u8 lane_count) |
| { |
| switch (lane_count) { |
| case 1: |
| return 0; |
| case 2: |
| return BIT(2) | BIT(0); |
| case 4: |
| return BIT(3) | BIT(2) | BIT(0); |
| default: |
| MISSING_CASE(lane_count); |
| |
| return 0; |
| } |
| } |
| |
| void bxt_dpio_phy_set_lane_optim_mask(struct intel_encoder *encoder, |
| u8 lane_lat_optim_mask) |
| { |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| enum port port = encoder->port; |
| enum dpio_phy phy; |
| enum dpio_channel ch; |
| int lane; |
| |
| bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); |
| |
| for (lane = 0; lane < 4; lane++) { |
| /* |
| * Note that on CHV this flag is called UPAR, but has |
| * the same function. |
| */ |
| intel_de_rmw(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane), |
| LATENCY_OPTIM, |
| lane_lat_optim_mask & BIT(lane) ? LATENCY_OPTIM : 0); |
| } |
| } |
| |
| u8 |
| bxt_dpio_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder) |
| { |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| enum port port = encoder->port; |
| enum dpio_phy phy; |
| enum dpio_channel ch; |
| int lane; |
| u8 mask; |
| |
| bxt_port_to_phy_channel(dev_priv, port, &phy, &ch); |
| |
| mask = 0; |
| for (lane = 0; lane < 4; lane++) { |
| u32 val = intel_de_read(dev_priv, |
| BXT_PORT_TX_DW14_LN(phy, ch, lane)); |
| |
| if (val & LATENCY_OPTIM) |
| mask |= BIT(lane); |
| } |
| |
| return mask; |
| } |
| |
| enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port) |
| { |
| switch (dig_port->base.port) { |
| default: |
| MISSING_CASE(dig_port->base.port); |
| fallthrough; |
| case PORT_B: |
| case PORT_D: |
| return DPIO_CH0; |
| case PORT_C: |
| return DPIO_CH1; |
| } |
| } |
| |
| enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port) |
| { |
| switch (dig_port->base.port) { |
| default: |
| MISSING_CASE(dig_port->base.port); |
| fallthrough; |
| case PORT_B: |
| case PORT_C: |
| return DPIO_PHY0; |
| case PORT_D: |
| return DPIO_PHY1; |
| } |
| } |
| |
| enum dpio_phy vlv_pipe_to_phy(enum pipe pipe) |
| { |
| switch (pipe) { |
| default: |
| MISSING_CASE(pipe); |
| fallthrough; |
| case PIPE_A: |
| case PIPE_B: |
| return DPIO_PHY0; |
| case PIPE_C: |
| return DPIO_PHY1; |
| } |
| } |
| |
| enum dpio_channel vlv_pipe_to_channel(enum pipe pipe) |
| { |
| switch (pipe) { |
| default: |
| MISSING_CASE(pipe); |
| fallthrough; |
| case PIPE_A: |
| case PIPE_C: |
| return DPIO_CH0; |
| case PIPE_B: |
| return DPIO_CH1; |
| } |
| } |
| |
| void chv_set_phy_signal_level(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| u32 deemph_reg_value, u32 margin_reg_value, |
| bool uniq_trans_scale) |
| { |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); |
| enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); |
| u32 val; |
| int i; |
| |
| vlv_dpio_get(dev_priv); |
| |
| /* Clear calc init */ |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch)); |
| val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); |
| val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); |
| val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val); |
| |
| if (crtc_state->lane_count > 2) { |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch)); |
| val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); |
| val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK); |
| val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val); |
| } |
| |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW9(ch)); |
| val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); |
| val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW9(ch), val); |
| |
| if (crtc_state->lane_count > 2) { |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW9(ch)); |
| val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK); |
| val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW9(ch), val); |
| } |
| |
| /* Program swing deemph */ |
| for (i = 0; i < crtc_state->lane_count; i++) { |
| val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW4(ch, i)); |
| val &= ~DPIO_SWING_DEEMPH9P5_MASK; |
| val |= DPIO_SWING_DEEMPH9P5(deemph_reg_value); |
| vlv_dpio_write(dev_priv, phy, CHV_TX_DW4(ch, i), val); |
| } |
| |
| /* Program swing margin */ |
| for (i = 0; i < crtc_state->lane_count; i++) { |
| val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW2(ch, i)); |
| |
| val &= ~DPIO_SWING_MARGIN000_MASK; |
| val |= DPIO_SWING_MARGIN000(margin_reg_value); |
| |
| /* |
| * Supposedly this value shouldn't matter when unique transition |
| * scale is disabled, but in fact it does matter. Let's just |
| * always program the same value and hope it's OK. |
| */ |
| val &= ~DPIO_UNIQ_TRANS_SCALE_MASK; |
| val |= DPIO_UNIQ_TRANS_SCALE(0x9a); |
| |
| vlv_dpio_write(dev_priv, phy, CHV_TX_DW2(ch, i), val); |
| } |
| |
| /* |
| * The document said it needs to set bit 27 for ch0 and bit 26 |
| * for ch1. Might be a typo in the doc. |
| * For now, for this unique transition scale selection, set bit |
| * 27 for ch0 and ch1. |
| */ |
| for (i = 0; i < crtc_state->lane_count; i++) { |
| val = vlv_dpio_read(dev_priv, phy, CHV_TX_DW3(ch, i)); |
| if (uniq_trans_scale) |
| val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; |
| else |
| val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; |
| vlv_dpio_write(dev_priv, phy, CHV_TX_DW3(ch, i), val); |
| } |
| |
| /* Start swing calculation */ |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW10(ch)); |
| val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW10(ch), val); |
| |
| if (crtc_state->lane_count > 2) { |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW10(ch)); |
| val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW10(ch), val); |
| } |
| |
| vlv_dpio_put(dev_priv); |
| } |
| |
| void chv_data_lane_soft_reset(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| bool reset) |
| { |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); |
| enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); |
| u32 val; |
| |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW0(ch)); |
| if (reset) |
| val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| else |
| val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW0(ch), val); |
| |
| if (crtc_state->lane_count > 2) { |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW0(ch)); |
| if (reset) |
| val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| else |
| val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW0(ch), val); |
| } |
| |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| if (reset) |
| val &= ~DPIO_PCS_CLK_SOFT_RESET; |
| else |
| val |= DPIO_PCS_CLK_SOFT_RESET; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW1(ch), val); |
| |
| if (crtc_state->lane_count > 2) { |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| if (reset) |
| val &= ~DPIO_PCS_CLK_SOFT_RESET; |
| else |
| val |= DPIO_PCS_CLK_SOFT_RESET; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW1(ch), val); |
| } |
| } |
| |
| void chv_phy_pre_pll_enable(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); |
| enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); |
| enum pipe pipe = crtc->pipe; |
| unsigned int lane_mask = |
| intel_dp_unused_lane_mask(crtc_state->lane_count); |
| u32 val; |
| |
| /* |
| * Must trick the second common lane into life. |
| * Otherwise we can't even access the PLL. |
| */ |
| if (ch == DPIO_CH0 && pipe == PIPE_B) |
| dig_port->release_cl2_override = |
| !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true); |
| |
| chv_phy_powergate_lanes(encoder, true, lane_mask); |
| |
| vlv_dpio_get(dev_priv); |
| |
| /* Assert data lane reset */ |
| chv_data_lane_soft_reset(encoder, crtc_state, true); |
| |
| /* program left/right clock distribution */ |
| if (pipe != PIPE_B) { |
| val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0); |
| val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); |
| if (ch == DPIO_CH0) |
| val |= CHV_BUFLEFTENA1_FORCE; |
| if (ch == DPIO_CH1) |
| val |= CHV_BUFRIGHTENA1_FORCE; |
| vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val); |
| } else { |
| val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1); |
| val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); |
| if (ch == DPIO_CH0) |
| val |= CHV_BUFLEFTENA2_FORCE; |
| if (ch == DPIO_CH1) |
| val |= CHV_BUFRIGHTENA2_FORCE; |
| vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val); |
| } |
| |
| /* program clock channel usage */ |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW8(ch)); |
| val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE; |
| if (pipe == PIPE_B) |
| val |= DPIO_PCS_USEDCLKCHANNEL; |
| else |
| val &= ~DPIO_PCS_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW8(ch), val); |
| |
| if (crtc_state->lane_count > 2) { |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW8(ch)); |
| val |= DPIO_PCS_USEDCLKCHANNEL_OVRRIDE; |
| if (pipe == PIPE_B) |
| val |= DPIO_PCS_USEDCLKCHANNEL; |
| else |
| val &= ~DPIO_PCS_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW8(ch), val); |
| } |
| |
| /* |
| * This a a bit weird since generally CL |
| * matches the pipe, but here we need to |
| * pick the CL based on the port. |
| */ |
| val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW19(ch)); |
| if (pipe == PIPE_B) |
| val |= CHV_CMN_USEDCLKCHANNEL; |
| else |
| val &= ~CHV_CMN_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, phy, CHV_CMN_DW19(ch), val); |
| |
| vlv_dpio_put(dev_priv); |
| } |
| |
| void chv_phy_pre_encoder_enable(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); |
| enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); |
| int data, i, stagger; |
| u32 val; |
| |
| vlv_dpio_get(dev_priv); |
| |
| /* allow hardware to manage TX FIFO reset source */ |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch)); |
| val &= ~DPIO_LANEDESKEW_STRAP_OVRD; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val); |
| |
| if (crtc_state->lane_count > 2) { |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch)); |
| val &= ~DPIO_LANEDESKEW_STRAP_OVRD; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val); |
| } |
| |
| /* Program Tx lane latency optimal setting*/ |
| for (i = 0; i < crtc_state->lane_count; i++) { |
| /* Set the upar bit */ |
| if (crtc_state->lane_count == 1) |
| data = 0; |
| else |
| data = (i == 1) ? 0 : DPIO_UPAR; |
| vlv_dpio_write(dev_priv, phy, CHV_TX_DW14(ch, i), data); |
| } |
| |
| /* Data lane stagger programming */ |
| if (crtc_state->port_clock > 270000) |
| stagger = 0x18; |
| else if (crtc_state->port_clock > 135000) |
| stagger = 0xd; |
| else if (crtc_state->port_clock > 67500) |
| stagger = 0x7; |
| else if (crtc_state->port_clock > 33750) |
| stagger = 0x4; |
| else |
| stagger = 0x2; |
| |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS01_DW11(ch)); |
| val |= DPIO_TX2_STAGGER_MASK(0x1f); |
| vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW11(ch), val); |
| |
| if (crtc_state->lane_count > 2) { |
| val = vlv_dpio_read(dev_priv, phy, VLV_PCS23_DW11(ch)); |
| val |= DPIO_TX2_STAGGER_MASK(0x1f); |
| vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW11(ch), val); |
| } |
| |
| vlv_dpio_write(dev_priv, phy, VLV_PCS01_DW12(ch), |
| DPIO_LANESTAGGER_STRAP(stagger) | |
| DPIO_LANESTAGGER_STRAP_OVRD | |
| DPIO_TX1_STAGGER_MASK(0x1f) | |
| DPIO_TX1_STAGGER_MULT(6) | |
| DPIO_TX2_STAGGER_MULT(0)); |
| |
| if (crtc_state->lane_count > 2) { |
| vlv_dpio_write(dev_priv, phy, VLV_PCS23_DW12(ch), |
| DPIO_LANESTAGGER_STRAP(stagger) | |
| DPIO_LANESTAGGER_STRAP_OVRD | |
| DPIO_TX1_STAGGER_MASK(0x1f) | |
| DPIO_TX1_STAGGER_MULT(7) | |
| DPIO_TX2_STAGGER_MULT(5)); |
| } |
| |
| /* Deassert data lane reset */ |
| chv_data_lane_soft_reset(encoder, crtc_state, false); |
| |
| vlv_dpio_put(dev_priv); |
| } |
| |
| void chv_phy_release_cl2_override(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| |
| if (dig_port->release_cl2_override) { |
| chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false); |
| dig_port->release_cl2_override = false; |
| } |
| } |
| |
| void chv_phy_post_pll_disable(struct intel_encoder *encoder, |
| const struct intel_crtc_state *old_crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder)); |
| enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe; |
| u32 val; |
| |
| vlv_dpio_get(dev_priv); |
| |
| /* disable left/right clock distribution */ |
| if (pipe != PIPE_B) { |
| val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW5_CH0); |
| val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); |
| vlv_dpio_write(dev_priv, phy, CHV_CMN_DW5_CH0, val); |
| } else { |
| val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW1_CH1); |
| val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); |
| vlv_dpio_write(dev_priv, phy, CHV_CMN_DW1_CH1, val); |
| } |
| |
| vlv_dpio_put(dev_priv); |
| |
| /* |
| * Leave the power down bit cleared for at least one |
| * lane so that chv_powergate_phy_ch() will power |
| * on something when the channel is otherwise unused. |
| * When the port is off and the override is removed |
| * the lanes power down anyway, so otherwise it doesn't |
| * really matter what the state of power down bits is |
| * after this. |
| */ |
| chv_phy_powergate_lanes(encoder, false, 0x0); |
| } |
| |
| void vlv_set_phy_signal_level(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state, |
| u32 demph_reg_value, u32 preemph_reg_value, |
| u32 uniqtranscale_reg_value, u32 tx3_demph) |
| { |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); |
| enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); |
| |
| vlv_dpio_get(dev_priv); |
| |
| vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), 0x00000000); |
| vlv_dpio_write(dev_priv, phy, VLV_TX_DW4_GRP(ch), demph_reg_value); |
| vlv_dpio_write(dev_priv, phy, VLV_TX_DW2_GRP(ch), |
| uniqtranscale_reg_value); |
| vlv_dpio_write(dev_priv, phy, VLV_TX_DW3_GRP(ch), 0x0C782040); |
| |
| if (tx3_demph) |
| vlv_dpio_write(dev_priv, phy, VLV_TX_DW4(ch, 3), tx3_demph); |
| |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW11_GRP(ch), 0x00030000); |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW9_GRP(ch), preemph_reg_value); |
| vlv_dpio_write(dev_priv, phy, VLV_TX_DW5_GRP(ch), DPIO_TX_OCALINIT_EN); |
| |
| vlv_dpio_put(dev_priv); |
| } |
| |
| void vlv_phy_pre_pll_enable(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); |
| enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); |
| |
| /* Program Tx lane resets to default */ |
| vlv_dpio_get(dev_priv); |
| |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), |
| DPIO_PCS_TX_LANE2_RESET | |
| DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), |
| DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | |
| DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | |
| DPIO_PCS_CLK_DATAWIDTH_8_10 | |
| DPIO_PCS_CLK_SOFT_RESET); |
| |
| /* Fix up inter-pair skew failure */ |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW12_GRP(ch), 0x00750f00); |
| vlv_dpio_write(dev_priv, phy, VLV_TX_DW11_GRP(ch), 0x00001500); |
| vlv_dpio_write(dev_priv, phy, VLV_TX_DW14_GRP(ch), 0x40400000); |
| |
| vlv_dpio_put(dev_priv); |
| } |
| |
| void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); |
| enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); |
| enum pipe pipe = crtc->pipe; |
| u32 val; |
| |
| vlv_dpio_get(dev_priv); |
| |
| /* Enable clock channels for this port */ |
| val = DPIO_PCS_USEDCLKCHANNEL_OVRRIDE; |
| if (pipe == PIPE_B) |
| val |= DPIO_PCS_USEDCLKCHANNEL; |
| val |= 0xc4; |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW8_GRP(ch), val); |
| |
| /* Program lane clock */ |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW14_GRP(ch), 0x00760018); |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW23_GRP(ch), 0x00400888); |
| |
| vlv_dpio_put(dev_priv); |
| } |
| |
| void vlv_phy_reset_lanes(struct intel_encoder *encoder, |
| const struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_digital_port *dig_port = enc_to_dig_port(encoder); |
| struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); |
| enum dpio_channel ch = vlv_dig_port_to_channel(dig_port); |
| enum dpio_phy phy = vlv_dig_port_to_phy(dig_port); |
| |
| vlv_dpio_get(dev_priv); |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW0_GRP(ch), 0x00000000); |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW1_GRP(ch), 0x00e00060); |
| vlv_dpio_put(dev_priv); |
| } |