| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2020 Intel Corporation |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/string_helpers.h> |
| |
| #include "i915_reg.h" |
| #include "intel_atomic.h" |
| #include "intel_crtc.h" |
| #include "intel_cx0_phy.h" |
| #include "intel_de.h" |
| #include "intel_display.h" |
| #include "intel_display_types.h" |
| #include "intel_dpio_phy.h" |
| #include "intel_dpll.h" |
| #include "intel_lvds.h" |
| #include "intel_lvds_regs.h" |
| #include "intel_panel.h" |
| #include "intel_pps.h" |
| #include "intel_snps_phy.h" |
| #include "vlv_dpio_phy_regs.h" |
| #include "vlv_sideband.h" |
| |
| struct intel_dpll_funcs { |
| int (*crtc_compute_clock)(struct intel_atomic_state *state, |
| struct intel_crtc *crtc); |
| int (*crtc_get_shared_dpll)(struct intel_atomic_state *state, |
| struct intel_crtc *crtc); |
| }; |
| |
| struct intel_limit { |
| struct { |
| int min, max; |
| } dot, vco, n, m, m1, m2, p, p1; |
| |
| struct { |
| int dot_limit; |
| int p2_slow, p2_fast; |
| } p2; |
| }; |
| static const struct intel_limit intel_limits_i8xx_dac = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 908000, .max = 1512000 }, |
| .n = { .min = 2, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 2, .max = 33 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 4, .p2_fast = 2 }, |
| }; |
| |
| static const struct intel_limit intel_limits_i8xx_dvo = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 908000, .max = 1512000 }, |
| .n = { .min = 2, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 2, .max = 33 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 4, .p2_fast = 4 }, |
| }; |
| |
| static const struct intel_limit intel_limits_i8xx_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 908000, .max = 1512000 }, |
| .n = { .min = 2, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 1, .max = 6 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 14, .p2_fast = 7 }, |
| }; |
| |
| static const struct intel_limit intel_limits_i9xx_sdvo = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1400000, .max = 2800000 }, |
| .n = { .min = 1, .max = 6 }, |
| .m = { .min = 70, .max = 120 }, |
| .m1 = { .min = 8, .max = 18 }, |
| .m2 = { .min = 3, .max = 7 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 200000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const struct intel_limit intel_limits_i9xx_lvds = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1400000, .max = 2800000 }, |
| .n = { .min = 1, .max = 6 }, |
| .m = { .min = 70, .max = 120 }, |
| .m1 = { .min = 8, .max = 18 }, |
| .m2 = { .min = 3, .max = 7 }, |
| .p = { .min = 7, .max = 98 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 112000, |
| .p2_slow = 14, .p2_fast = 7 }, |
| }; |
| |
| |
| static const struct intel_limit intel_limits_g4x_sdvo = { |
| .dot = { .min = 25000, .max = 270000 }, |
| .vco = { .min = 1750000, .max = 3500000}, |
| .n = { .min = 1, .max = 4 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 10, .max = 30 }, |
| .p1 = { .min = 1, .max = 3}, |
| .p2 = { .dot_limit = 270000, |
| .p2_slow = 10, |
| .p2_fast = 10 |
| }, |
| }; |
| |
| static const struct intel_limit intel_limits_g4x_hdmi = { |
| .dot = { .min = 22000, .max = 400000 }, |
| .vco = { .min = 1750000, .max = 3500000}, |
| .n = { .min = 1, .max = 4 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 16, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8}, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const struct intel_limit intel_limits_g4x_single_channel_lvds = { |
| .dot = { .min = 20000, .max = 115000 }, |
| .vco = { .min = 1750000, .max = 3500000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 14, .p2_fast = 14 |
| }, |
| }; |
| |
| static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { |
| .dot = { .min = 80000, .max = 224000 }, |
| .vco = { .min = 1750000, .max = 3500000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 14, .max = 42 }, |
| .p1 = { .min = 2, .max = 6 }, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 7, .p2_fast = 7 |
| }, |
| }; |
| |
| static const struct intel_limit pnv_limits_sdvo = { |
| .dot = { .min = 20000, .max = 400000}, |
| .vco = { .min = 1700000, .max = 3500000 }, |
| /* Pineview's Ncounter is a ring counter */ |
| .n = { .min = 3, .max = 6 }, |
| .m = { .min = 2, .max = 256 }, |
| /* Pineview only has one combined m divider, which we treat as m2. */ |
| .m1 = { .min = 0, .max = 0 }, |
| .m2 = { .min = 0, .max = 254 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 200000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const struct intel_limit pnv_limits_lvds = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1700000, .max = 3500000 }, |
| .n = { .min = 3, .max = 6 }, |
| .m = { .min = 2, .max = 256 }, |
| .m1 = { .min = 0, .max = 0 }, |
| .m2 = { .min = 0, .max = 254 }, |
| .p = { .min = 7, .max = 112 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 112000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| }; |
| |
| /* Ironlake / Sandybridge |
| * |
| * We calculate clock using (register_value + 2) for N/M1/M2, so here |
| * the range value for them is (actual_value - 2). |
| */ |
| static const struct intel_limit ilk_limits_dac = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 5 }, |
| .m = { .min = 79, .max = 127 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const struct intel_limit ilk_limits_single_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 118 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| }; |
| |
| static const struct intel_limit ilk_limits_dual_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 127 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 14, .max = 56 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 7, .p2_fast = 7 }, |
| }; |
| |
| /* LVDS 100mhz refclk limits. */ |
| static const struct intel_limit ilk_limits_single_lvds_100m = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 2 }, |
| .m = { .min = 79, .max = 126 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| }; |
| |
| static const struct intel_limit ilk_limits_dual_lvds_100m = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 126 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 14, .max = 42 }, |
| .p1 = { .min = 2, .max = 6 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 7, .p2_fast = 7 }, |
| }; |
| |
| static const struct intel_limit intel_limits_vlv = { |
| /* |
| * These are based on the data rate limits (measured in fast clocks) |
| * since those are the strictest limits we have. The fast |
| * clock and actual rate limits are more relaxed, so checking |
| * them would make no difference. |
| */ |
| .dot = { .min = 25000, .max = 270000 }, |
| .vco = { .min = 4000000, .max = 6000000 }, |
| .n = { .min = 1, .max = 7 }, |
| .m1 = { .min = 2, .max = 3 }, |
| .m2 = { .min = 11, .max = 156 }, |
| .p1 = { .min = 2, .max = 3 }, |
| .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ |
| }; |
| |
| static const struct intel_limit intel_limits_chv = { |
| /* |
| * These are based on the data rate limits (measured in fast clocks) |
| * since those are the strictest limits we have. The fast |
| * clock and actual rate limits are more relaxed, so checking |
| * them would make no difference. |
| */ |
| .dot = { .min = 25000, .max = 540000 }, |
| .vco = { .min = 4800000, .max = 6480000 }, |
| .n = { .min = 1, .max = 1 }, |
| .m1 = { .min = 2, .max = 2 }, |
| .m2 = { .min = 24 << 22, .max = 175 << 22 }, |
| .p1 = { .min = 2, .max = 4 }, |
| .p2 = { .p2_slow = 1, .p2_fast = 14 }, |
| }; |
| |
| static const struct intel_limit intel_limits_bxt = { |
| .dot = { .min = 25000, .max = 594000 }, |
| .vco = { .min = 4800000, .max = 6700000 }, |
| .n = { .min = 1, .max = 1 }, |
| .m1 = { .min = 2, .max = 2 }, |
| /* FIXME: find real m2 limits */ |
| .m2 = { .min = 2 << 22, .max = 255 << 22 }, |
| .p1 = { .min = 2, .max = 4 }, |
| .p2 = { .p2_slow = 1, .p2_fast = 20 }, |
| }; |
| |
| /* |
| * Platform specific helpers to calculate the port PLL loopback- (clock.m), |
| * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast |
| * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. |
| * The helpers' return value is the rate of the clock that is fed to the |
| * display engine's pipe which can be the above fast dot clock rate or a |
| * divided-down version of it. |
| */ |
| /* m1 is reserved as 0 in Pineview, n is a ring counter */ |
| static int pnv_calc_dpll_params(int refclk, struct dpll *clock) |
| { |
| clock->m = clock->m2 + 2; |
| clock->p = clock->p1 * clock->p2; |
| |
| clock->vco = clock->n == 0 ? 0 : |
| DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); |
| clock->dot = clock->p == 0 ? 0 : |
| DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| |
| return clock->dot; |
| } |
| |
| static u32 i9xx_dpll_compute_m(const struct dpll *dpll) |
| { |
| return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); |
| } |
| |
| int i9xx_calc_dpll_params(int refclk, struct dpll *clock) |
| { |
| clock->m = i9xx_dpll_compute_m(clock); |
| clock->p = clock->p1 * clock->p2; |
| |
| clock->vco = clock->n + 2 == 0 ? 0 : |
| DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); |
| clock->dot = clock->p == 0 ? 0 : |
| DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| |
| return clock->dot; |
| } |
| |
| static int vlv_calc_dpll_params(int refclk, struct dpll *clock) |
| { |
| clock->m = clock->m1 * clock->m2; |
| clock->p = clock->p1 * clock->p2 * 5; |
| |
| clock->vco = clock->n == 0 ? 0 : |
| DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); |
| clock->dot = clock->p == 0 ? 0 : |
| DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| |
| return clock->dot; |
| } |
| |
| int chv_calc_dpll_params(int refclk, struct dpll *clock) |
| { |
| clock->m = clock->m1 * clock->m2; |
| clock->p = clock->p1 * clock->p2 * 5; |
| |
| clock->vco = clock->n == 0 ? 0 : |
| DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22); |
| clock->dot = clock->p == 0 ? 0 : |
| DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| |
| return clock->dot; |
| } |
| |
| static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); |
| const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| |
| if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) |
| return i915->display.vbt.lvds_ssc_freq; |
| else if (HAS_PCH_SPLIT(i915)) |
| return 120000; |
| else if (DISPLAY_VER(i915) != 2) |
| return 96000; |
| else |
| return 48000; |
| } |
| |
| void i9xx_dpll_get_hw_state(struct intel_crtc *crtc, |
| struct intel_dpll_hw_state *dpll_hw_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx; |
| |
| if (DISPLAY_VER(dev_priv) >= 4) { |
| u32 tmp; |
| |
| /* No way to read it out on pipes B and C */ |
| if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) |
| tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe]; |
| else |
| tmp = intel_de_read(dev_priv, |
| DPLL_MD(dev_priv, crtc->pipe)); |
| |
| hw_state->dpll_md = tmp; |
| } |
| |
| hw_state->dpll = intel_de_read(dev_priv, DPLL(dev_priv, crtc->pipe)); |
| |
| if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { |
| hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe)); |
| hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe)); |
| } else { |
| /* Mask out read-only status bits. */ |
| hw_state->dpll &= ~(DPLL_LOCK_VLV | |
| DPLL_PORTC_READY_MASK | |
| DPLL_PORTB_READY_MASK); |
| } |
| } |
| |
| /* Returns the clock of the currently programmed mode of the given pipe. */ |
| void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| u32 dpll = hw_state->dpll; |
| u32 fp; |
| struct dpll clock; |
| int port_clock; |
| int refclk = i9xx_pll_refclk(crtc_state); |
| |
| if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| fp = hw_state->fp0; |
| else |
| fp = hw_state->fp1; |
| |
| clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; |
| if (IS_PINEVIEW(dev_priv)) { |
| clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; |
| clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } else { |
| clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; |
| clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } |
| |
| if (DISPLAY_VER(dev_priv) != 2) { |
| if (IS_PINEVIEW(dev_priv)) |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); |
| else |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| |
| switch (dpll & DPLL_MODE_MASK) { |
| case DPLLB_MODE_DAC_SERIAL: |
| clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? |
| 5 : 10; |
| break; |
| case DPLLB_MODE_LVDS: |
| clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? |
| 7 : 14; |
| break; |
| default: |
| drm_dbg_kms(&dev_priv->drm, |
| "Unknown DPLL mode %08x in programmed " |
| "mode\n", (int)(dpll & DPLL_MODE_MASK)); |
| return; |
| } |
| |
| if (IS_PINEVIEW(dev_priv)) |
| port_clock = pnv_calc_dpll_params(refclk, &clock); |
| else |
| port_clock = i9xx_calc_dpll_params(refclk, &clock); |
| } else { |
| enum pipe lvds_pipe; |
| |
| if (IS_I85X(dev_priv) && |
| intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) && |
| lvds_pipe == crtc->pipe) { |
| u32 lvds = intel_de_read(dev_priv, LVDS); |
| |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| |
| if (lvds & LVDS_CLKB_POWER_UP) |
| clock.p2 = 7; |
| else |
| clock.p2 = 14; |
| } else { |
| if (dpll & PLL_P1_DIVIDE_BY_TWO) |
| clock.p1 = 2; |
| else { |
| clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; |
| } |
| if (dpll & PLL_P2_DIVIDE_BY_4) |
| clock.p2 = 4; |
| else |
| clock.p2 = 2; |
| } |
| |
| port_clock = i9xx_calc_dpll_params(refclk, &clock); |
| } |
| |
| /* |
| * This value includes pixel_multiplier. We will use |
| * port_clock to compute adjusted_mode.crtc_clock in the |
| * encoder's get_config() function. |
| */ |
| crtc_state->port_clock = port_clock; |
| } |
| |
| void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); |
| enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); |
| const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| int refclk = 100000; |
| struct dpll clock; |
| u32 tmp; |
| |
| /* In case of DSI, DPLL will not be used */ |
| if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) |
| return; |
| |
| vlv_dpio_get(dev_priv); |
| tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch)); |
| vlv_dpio_put(dev_priv); |
| |
| clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp); |
| clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp); |
| clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp); |
| clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp); |
| clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp); |
| |
| crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock); |
| } |
| |
| void chv_crtc_clock_get(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); |
| enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); |
| const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| struct dpll clock; |
| u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; |
| int refclk = 100000; |
| |
| /* In case of DSI, DPLL will not be used */ |
| if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) |
| return; |
| |
| vlv_dpio_get(dev_priv); |
| cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch)); |
| pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch)); |
| pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch)); |
| pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch)); |
| pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); |
| vlv_dpio_put(dev_priv); |
| |
| clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; |
| clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22; |
| if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) |
| clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2); |
| clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1); |
| clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13); |
| clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13); |
| |
| crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock); |
| } |
| |
| /* |
| * Returns whether the given set of divisors are valid for a given refclk with |
| * the given connectors. |
| */ |
| static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, |
| const struct intel_limit *limit, |
| const struct dpll *clock) |
| { |
| if (clock->n < limit->n.min || limit->n.max < clock->n) |
| return false; |
| if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) |
| return false; |
| if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) |
| return false; |
| if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) |
| return false; |
| |
| if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv)) |
| if (clock->m1 <= clock->m2) |
| return false; |
| |
| if (!IS_LP(dev_priv)) { |
| if (clock->p < limit->p.min || limit->p.max < clock->p) |
| return false; |
| if (clock->m < limit->m.min || limit->m.max < clock->m) |
| return false; |
| } |
| |
| if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) |
| return false; |
| /* XXX: We may need to be checking "Dot clock" depending on the multiplier, |
| * connector, etc., rather than just a single range. |
| */ |
| if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) |
| return false; |
| |
| return true; |
| } |
| |
| static int |
| i9xx_select_p2_div(const struct intel_limit *limit, |
| const struct intel_crtc_state *crtc_state, |
| int target) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| /* |
| * For LVDS just rely on its current settings for dual-channel. |
| * We haven't figured out how to reliably set up different |
| * single/dual channel state, if we even can. |
| */ |
| if (intel_is_dual_link_lvds(dev_priv)) |
| return limit->p2.p2_fast; |
| else |
| return limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| return limit->p2.p2_slow; |
| else |
| return limit->p2.p2_fast; |
| } |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. |
| * |
| * Target and reference clocks are specified in kHz. |
| * |
| * If match_clock is provided, then best_clock P divider must match the P |
| * divider from @match_clock used for LVDS downclocking. |
| */ |
| static bool |
| i9xx_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, |
| const struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct drm_device *dev = crtc_state->uapi.crtc->dev; |
| struct dpll clock; |
| int err = target; |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); |
| |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; |
| clock.m1++) { |
| for (clock.m2 = limit->m2.min; |
| clock.m2 <= limit->m2.max; clock.m2++) { |
| if (clock.m2 >= clock.m1) |
| break; |
| for (clock.n = limit->n.min; |
| clock.n <= limit->n.max; clock.n++) { |
| for (clock.p1 = limit->p1.min; |
| clock.p1 <= limit->p1.max; clock.p1++) { |
| int this_err; |
| |
| i9xx_calc_dpll_params(refclk, &clock); |
| if (!intel_pll_is_valid(to_i915(dev), |
| limit, |
| &clock)) |
| continue; |
| if (match_clock && |
| clock.p != match_clock->p) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err) { |
| *best_clock = clock; |
| err = this_err; |
| } |
| } |
| } |
| } |
| } |
| |
| return (err != target); |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. |
| * |
| * Target and reference clocks are specified in kHz. |
| * |
| * If match_clock is provided, then best_clock P divider must match the P |
| * divider from @match_clock used for LVDS downclocking. |
| */ |
| static bool |
| pnv_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, |
| const struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct drm_device *dev = crtc_state->uapi.crtc->dev; |
| struct dpll clock; |
| int err = target; |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); |
| |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; |
| clock.m1++) { |
| for (clock.m2 = limit->m2.min; |
| clock.m2 <= limit->m2.max; clock.m2++) { |
| for (clock.n = limit->n.min; |
| clock.n <= limit->n.max; clock.n++) { |
| for (clock.p1 = limit->p1.min; |
| clock.p1 <= limit->p1.max; clock.p1++) { |
| int this_err; |
| |
| pnv_calc_dpll_params(refclk, &clock); |
| if (!intel_pll_is_valid(to_i915(dev), |
| limit, |
| &clock)) |
| continue; |
| if (match_clock && |
| clock.p != match_clock->p) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err) { |
| *best_clock = clock; |
| err = this_err; |
| } |
| } |
| } |
| } |
| } |
| |
| return (err != target); |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. |
| * |
| * Target and reference clocks are specified in kHz. |
| * |
| * If match_clock is provided, then best_clock P divider must match the P |
| * divider from @match_clock used for LVDS downclocking. |
| */ |
| static bool |
| g4x_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, |
| const struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct drm_device *dev = crtc_state->uapi.crtc->dev; |
| struct dpll clock; |
| int max_n; |
| bool found = false; |
| /* approximately equals target * 0.00585 */ |
| int err_most = (target >> 8) + (target >> 9); |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); |
| |
| max_n = limit->n.max; |
| /* based on hardware requirement, prefer smaller n to precision */ |
| for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { |
| /* based on hardware requirement, prefere larger m1,m2 */ |
| for (clock.m1 = limit->m1.max; |
| clock.m1 >= limit->m1.min; clock.m1--) { |
| for (clock.m2 = limit->m2.max; |
| clock.m2 >= limit->m2.min; clock.m2--) { |
| for (clock.p1 = limit->p1.max; |
| clock.p1 >= limit->p1.min; clock.p1--) { |
| int this_err; |
| |
| i9xx_calc_dpll_params(refclk, &clock); |
| if (!intel_pll_is_valid(to_i915(dev), |
| limit, |
| &clock)) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err_most) { |
| *best_clock = clock; |
| err_most = this_err; |
| max_n = clock.n; |
| found = true; |
| } |
| } |
| } |
| } |
| } |
| return found; |
| } |
| |
| /* |
| * Check if the calculated PLL configuration is more optimal compared to the |
| * best configuration and error found so far. Return the calculated error. |
| */ |
| static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, |
| const struct dpll *calculated_clock, |
| const struct dpll *best_clock, |
| unsigned int best_error_ppm, |
| unsigned int *error_ppm) |
| { |
| /* |
| * For CHV ignore the error and consider only the P value. |
| * Prefer a bigger P value based on HW requirements. |
| */ |
| if (IS_CHERRYVIEW(to_i915(dev))) { |
| *error_ppm = 0; |
| |
| return calculated_clock->p > best_clock->p; |
| } |
| |
| if (drm_WARN_ON_ONCE(dev, !target_freq)) |
| return false; |
| |
| *error_ppm = div_u64(1000000ULL * |
| abs(target_freq - calculated_clock->dot), |
| target_freq); |
| /* |
| * Prefer a better P value over a better (smaller) error if the error |
| * is small. Ensure this preference for future configurations too by |
| * setting the error to 0. |
| */ |
| if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { |
| *error_ppm = 0; |
| |
| return true; |
| } |
| |
| return *error_ppm + 10 < best_error_ppm; |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. |
| */ |
| static bool |
| vlv_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, |
| const struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_device *dev = crtc->base.dev; |
| struct dpll clock; |
| unsigned int bestppm = 1000000; |
| /* min update 19.2 MHz */ |
| int max_n = min(limit->n.max, refclk / 19200); |
| bool found = false; |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| /* based on hardware requirement, prefer smaller n to precision */ |
| for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { |
| for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { |
| for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; |
| clock.p2 -= clock.p2 > 10 ? 2 : 1) { |
| clock.p = clock.p1 * clock.p2 * 5; |
| /* based on hardware requirement, prefer bigger m1,m2 values */ |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { |
| unsigned int ppm; |
| |
| clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, |
| refclk * clock.m1); |
| |
| vlv_calc_dpll_params(refclk, &clock); |
| |
| if (!intel_pll_is_valid(to_i915(dev), |
| limit, |
| &clock)) |
| continue; |
| |
| if (!vlv_PLL_is_optimal(dev, target, |
| &clock, |
| best_clock, |
| bestppm, &ppm)) |
| continue; |
| |
| *best_clock = clock; |
| bestppm = ppm; |
| found = true; |
| } |
| } |
| } |
| } |
| |
| return found; |
| } |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. |
| */ |
| static bool |
| chv_find_best_dpll(const struct intel_limit *limit, |
| struct intel_crtc_state *crtc_state, |
| int target, int refclk, |
| const struct dpll *match_clock, |
| struct dpll *best_clock) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_device *dev = crtc->base.dev; |
| unsigned int best_error_ppm; |
| struct dpll clock; |
| u64 m2; |
| int found = false; |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| best_error_ppm = 1000000; |
| |
| /* |
| * Based on hardware doc, the n always set to 1, and m1 always |
| * set to 2. If requires to support 200Mhz refclk, we need to |
| * revisit this because n may not 1 anymore. |
| */ |
| clock.n = 1; |
| clock.m1 = 2; |
| |
| for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { |
| for (clock.p2 = limit->p2.p2_fast; |
| clock.p2 >= limit->p2.p2_slow; |
| clock.p2 -= clock.p2 > 10 ? 2 : 1) { |
| unsigned int error_ppm; |
| |
| clock.p = clock.p1 * clock.p2 * 5; |
| |
| m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, |
| refclk * clock.m1); |
| |
| if (m2 > INT_MAX/clock.m1) |
| continue; |
| |
| clock.m2 = m2; |
| |
| chv_calc_dpll_params(refclk, &clock); |
| |
| if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) |
| continue; |
| |
| if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, |
| best_error_ppm, &error_ppm)) |
| continue; |
| |
| *best_clock = clock; |
| best_error_ppm = error_ppm; |
| found = true; |
| } |
| } |
| |
| return found; |
| } |
| |
| bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, |
| struct dpll *best_clock) |
| { |
| const struct intel_limit *limit = &intel_limits_bxt; |
| int refclk = 100000; |
| |
| return chv_find_best_dpll(limit, crtc_state, |
| crtc_state->port_clock, refclk, |
| NULL, best_clock); |
| } |
| |
| u32 i9xx_dpll_compute_fp(const struct dpll *dpll) |
| { |
| return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; |
| } |
| |
| static u32 pnv_dpll_compute_fp(const struct dpll *dpll) |
| { |
| return (1 << dpll->n) << 16 | dpll->m2; |
| } |
| |
| static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state) |
| { |
| return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; |
| } |
| |
| static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state, |
| const struct dpll *clock, |
| const struct dpll *reduced_clock) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| u32 dpll; |
| |
| dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| |
| if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || |
| IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { |
| dpll |= (crtc_state->pixel_multiplier - 1) |
| << SDVO_MULTIPLIER_SHIFT_HIRES; |
| } |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| if (intel_crtc_has_dp_encoder(crtc_state)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| /* compute bitmask from p1 value */ |
| if (IS_G4X(dev_priv)) { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| } else if (IS_PINEVIEW(dev_priv)) { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; |
| WARN_ON(reduced_clock->p1 != clock->p1); |
| } else { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| WARN_ON(reduced_clock->p1 != clock->p1); |
| } |
| |
| switch (clock->p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| WARN_ON(reduced_clock->p2 != clock->p2); |
| |
| if (DISPLAY_VER(dev_priv) >= 4) |
| dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); |
| |
| if (crtc_state->sdvo_tv_clock) |
| dpll |= PLL_REF_INPUT_TVCLKINBC; |
| else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv)) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| return dpll; |
| } |
| |
| static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state, |
| const struct dpll *clock, |
| const struct dpll *reduced_clock) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| |
| if (IS_PINEVIEW(dev_priv)) { |
| hw_state->fp0 = pnv_dpll_compute_fp(clock); |
| hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock); |
| } else { |
| hw_state->fp0 = i9xx_dpll_compute_fp(clock); |
| hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); |
| } |
| |
| hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock); |
| |
| if (DISPLAY_VER(dev_priv) >= 4) |
| hw_state->dpll_md = i965_dpll_md(crtc_state); |
| } |
| |
| static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state, |
| const struct dpll *clock, |
| const struct dpll *reduced_clock) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| u32 dpll; |
| |
| dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| } else { |
| if (clock->p1 == 2) |
| dpll |= PLL_P1_DIVIDE_BY_TWO; |
| else |
| dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| if (clock->p2 == 4) |
| dpll |= PLL_P2_DIVIDE_BY_4; |
| } |
| WARN_ON(reduced_clock->p1 != clock->p1); |
| WARN_ON(reduced_clock->p2 != clock->p2); |
| |
| /* |
| * Bspec: |
| * "[Almador Errata}: For the correct operation of the muxed DVO pins |
| * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, |
| * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock |
| * Enable) must be set to “1” in both the DPLL A Control Register |
| * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." |
| * |
| * For simplicity We simply keep both bits always enabled in |
| * both DPLLS. The spec says we should disable the DVO 2X clock |
| * when not needed, but this seems to work fine in practice. |
| */ |
| if (IS_I830(dev_priv) || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) |
| dpll |= DPLL_DVO_2X_MODE; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv)) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| return dpll; |
| } |
| |
| static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state, |
| const struct dpll *clock, |
| const struct dpll *reduced_clock) |
| { |
| struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| |
| hw_state->fp0 = i9xx_dpll_compute_fp(clock); |
| hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); |
| |
| hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock); |
| } |
| |
| static int hsw_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| struct intel_encoder *encoder = |
| intel_get_crtc_new_encoder(state, crtc_state); |
| int ret; |
| |
| if (DISPLAY_VER(dev_priv) < 11 && |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) |
| return 0; |
| |
| ret = intel_compute_shared_dplls(state, crtc, encoder); |
| if (ret) |
| return ret; |
| |
| /* FIXME this is a mess */ |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) |
| return 0; |
| |
| /* CRT dotclock is determined via other means */ |
| if (!crtc_state->has_pch_encoder) |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return 0; |
| } |
| |
| static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| struct intel_encoder *encoder = |
| intel_get_crtc_new_encoder(state, crtc_state); |
| |
| if (DISPLAY_VER(dev_priv) < 11 && |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) |
| return 0; |
| |
| return intel_reserve_shared_dplls(state, crtc, encoder); |
| } |
| |
| static int dg2_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| struct intel_encoder *encoder = |
| intel_get_crtc_new_encoder(state, crtc_state); |
| int ret; |
| |
| ret = intel_mpllb_calc_state(crtc_state, encoder); |
| if (ret) |
| return ret; |
| |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return 0; |
| } |
| |
| static int mtl_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| struct intel_encoder *encoder = |
| intel_get_crtc_new_encoder(state, crtc_state); |
| int ret; |
| |
| ret = intel_cx0pll_calc_state(crtc_state, encoder); |
| if (ret) |
| return ret; |
| |
| /* TODO: Do the readback via intel_compute_shared_dplls() */ |
| crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll); |
| |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return 0; |
| } |
| |
| static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *i915 = to_i915(crtc->base.dev); |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && |
| ((intel_panel_use_ssc(i915) && i915->display.vbt.lvds_ssc_freq == 100000) || |
| (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915)))) |
| return 25; |
| |
| if (crtc_state->sdvo_tv_clock) |
| return 20; |
| |
| return 21; |
| } |
| |
| static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor) |
| { |
| return dpll->m < factor * dpll->n; |
| } |
| |
| static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor) |
| { |
| u32 fp; |
| |
| fp = i9xx_dpll_compute_fp(clock); |
| if (ilk_needs_fb_cb_tune(clock, factor)) |
| fp |= FP_CB_TUNE; |
| |
| return fp; |
| } |
| |
| static u32 ilk_dpll(const struct intel_crtc_state *crtc_state, |
| const struct dpll *clock, |
| const struct dpll *reduced_clock) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| u32 dpll; |
| |
| dpll = DPLL_VCO_ENABLE; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| |
| dpll |= (crtc_state->pixel_multiplier - 1) |
| << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| if (intel_crtc_has_dp_encoder(crtc_state)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| /* |
| * The high speed IO clock is only really required for |
| * SDVO/HDMI/DP, but we also enable it for CRT to make it |
| * possible to share the DPLL between CRT and HDMI. Enabling |
| * the clock needlessly does no real harm, except use up a |
| * bit of power potentially. |
| * |
| * We'll limit this to IVB with 3 pipes, since it has only two |
| * DPLLs and so DPLL sharing is the only way to get three pipes |
| * driving PCH ports at the same time. On SNB we could do this, |
| * and potentially avoid enabling the second DPLL, but it's not |
| * clear if it''s a win or loss power wise. No point in doing |
| * this on ILK at all since it has a fixed DPLL<->pipe mapping. |
| */ |
| if (INTEL_NUM_PIPES(dev_priv) == 3 && |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| /* compute bitmask from p1 value */ |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| /* also FPA1 */ |
| dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| |
| switch (clock->p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| WARN_ON(reduced_clock->p2 != clock->p2); |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv)) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| return dpll; |
| } |
| |
| static void ilk_compute_dpll(struct intel_crtc_state *crtc_state, |
| const struct dpll *clock, |
| const struct dpll *reduced_clock) |
| { |
| struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| int factor = ilk_fb_cb_factor(crtc_state); |
| |
| hw_state->fp0 = ilk_dpll_compute_fp(clock, factor); |
| hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor); |
| |
| hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock); |
| } |
| |
| static int ilk_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_limit *limit; |
| int refclk = 120000; |
| int ret; |
| |
| /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ |
| if (!crtc_state->has_pch_encoder) |
| return 0; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| drm_dbg_kms(&dev_priv->drm, |
| "using SSC reference clock of %d kHz\n", |
| dev_priv->display.vbt.lvds_ssc_freq); |
| refclk = dev_priv->display.vbt.lvds_ssc_freq; |
| } |
| |
| if (intel_is_dual_link_lvds(dev_priv)) { |
| if (refclk == 100000) |
| limit = &ilk_limits_dual_lvds_100m; |
| else |
| limit = &ilk_limits_dual_lvds; |
| } else { |
| if (refclk == 100000) |
| limit = &ilk_limits_single_lvds_100m; |
| else |
| limit = &ilk_limits_single_lvds; |
| } |
| } else { |
| limit = &ilk_limits_dac; |
| } |
| |
| if (!crtc_state->clock_set && |
| !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) |
| return -EINVAL; |
| |
| i9xx_calc_dpll_params(refclk, &crtc_state->dpll); |
| |
| ilk_compute_dpll(crtc_state, &crtc_state->dpll, |
| &crtc_state->dpll); |
| |
| ret = intel_compute_shared_dplls(state, crtc, NULL); |
| if (ret) |
| return ret; |
| |
| crtc_state->port_clock = crtc_state->dpll.dot; |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return ret; |
| } |
| |
| static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| |
| /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ |
| if (!crtc_state->has_pch_encoder) |
| return 0; |
| |
| return intel_reserve_shared_dplls(state, crtc, NULL); |
| } |
| |
| static u32 vlv_dpll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| u32 dpll; |
| |
| dpll = DPLL_INTEGRATED_REF_CLK_VLV | |
| DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; |
| |
| if (crtc->pipe != PIPE_A) |
| dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| |
| /* DPLL not used with DSI, but still need the rest set up */ |
| if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) |
| dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV; |
| |
| return dpll; |
| } |
| |
| void vlv_compute_dpll(struct intel_crtc_state *crtc_state) |
| { |
| struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| |
| hw_state->dpll = vlv_dpll(crtc_state); |
| hw_state->dpll_md = i965_dpll_md(crtc_state); |
| } |
| |
| static u32 chv_dpll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| u32 dpll; |
| |
| dpll = DPLL_SSC_REF_CLK_CHV | |
| DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; |
| |
| if (crtc->pipe != PIPE_A) |
| dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| |
| /* DPLL not used with DSI, but still need the rest set up */ |
| if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) |
| dpll |= DPLL_VCO_ENABLE; |
| |
| return dpll; |
| } |
| |
| void chv_compute_dpll(struct intel_crtc_state *crtc_state) |
| { |
| struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| |
| hw_state->dpll = chv_dpll(crtc_state); |
| hw_state->dpll_md = i965_dpll_md(crtc_state); |
| } |
| |
| static int chv_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_limit *limit = &intel_limits_chv; |
| int refclk = 100000; |
| |
| if (!crtc_state->clock_set && |
| !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) |
| return -EINVAL; |
| |
| chv_calc_dpll_params(refclk, &crtc_state->dpll); |
| |
| chv_compute_dpll(crtc_state); |
| |
| /* FIXME this is a mess */ |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) |
| return 0; |
| |
| crtc_state->port_clock = crtc_state->dpll.dot; |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return 0; |
| } |
| |
| static int vlv_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_limit *limit = &intel_limits_vlv; |
| int refclk = 100000; |
| |
| if (!crtc_state->clock_set && |
| !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) |
| return -EINVAL; |
| |
| vlv_calc_dpll_params(refclk, &crtc_state->dpll); |
| |
| vlv_compute_dpll(crtc_state); |
| |
| /* FIXME this is a mess */ |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) |
| return 0; |
| |
| crtc_state->port_clock = crtc_state->dpll.dot; |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return 0; |
| } |
| |
| static int g4x_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_limit *limit; |
| int refclk = 96000; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| refclk = dev_priv->display.vbt.lvds_ssc_freq; |
| drm_dbg_kms(&dev_priv->drm, |
| "using SSC reference clock of %d kHz\n", |
| refclk); |
| } |
| |
| if (intel_is_dual_link_lvds(dev_priv)) |
| limit = &intel_limits_g4x_dual_channel_lvds; |
| else |
| limit = &intel_limits_g4x_single_channel_lvds; |
| } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { |
| limit = &intel_limits_g4x_hdmi; |
| } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { |
| limit = &intel_limits_g4x_sdvo; |
| } else { |
| /* The option is for other outputs */ |
| limit = &intel_limits_i9xx_sdvo; |
| } |
| |
| if (!crtc_state->clock_set && |
| !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) |
| return -EINVAL; |
| |
| i9xx_calc_dpll_params(refclk, &crtc_state->dpll); |
| |
| i9xx_compute_dpll(crtc_state, &crtc_state->dpll, |
| &crtc_state->dpll); |
| |
| crtc_state->port_clock = crtc_state->dpll.dot; |
| /* FIXME this is a mess */ |
| if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return 0; |
| } |
| |
| static int pnv_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_limit *limit; |
| int refclk = 96000; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| refclk = dev_priv->display.vbt.lvds_ssc_freq; |
| drm_dbg_kms(&dev_priv->drm, |
| "using SSC reference clock of %d kHz\n", |
| refclk); |
| } |
| |
| limit = &pnv_limits_lvds; |
| } else { |
| limit = &pnv_limits_sdvo; |
| } |
| |
| if (!crtc_state->clock_set && |
| !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) |
| return -EINVAL; |
| |
| pnv_calc_dpll_params(refclk, &crtc_state->dpll); |
| |
| i9xx_compute_dpll(crtc_state, &crtc_state->dpll, |
| &crtc_state->dpll); |
| |
| crtc_state->port_clock = crtc_state->dpll.dot; |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return 0; |
| } |
| |
| static int i9xx_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_limit *limit; |
| int refclk = 96000; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| refclk = dev_priv->display.vbt.lvds_ssc_freq; |
| drm_dbg_kms(&dev_priv->drm, |
| "using SSC reference clock of %d kHz\n", |
| refclk); |
| } |
| |
| limit = &intel_limits_i9xx_lvds; |
| } else { |
| limit = &intel_limits_i9xx_sdvo; |
| } |
| |
| if (!crtc_state->clock_set && |
| !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) |
| return -EINVAL; |
| |
| i9xx_calc_dpll_params(refclk, &crtc_state->dpll); |
| |
| i9xx_compute_dpll(crtc_state, &crtc_state->dpll, |
| &crtc_state->dpll); |
| |
| crtc_state->port_clock = crtc_state->dpll.dot; |
| /* FIXME this is a mess */ |
| if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return 0; |
| } |
| |
| static int i8xx_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_limit *limit; |
| int refclk = 48000; |
| |
| if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) { |
| refclk = dev_priv->display.vbt.lvds_ssc_freq; |
| drm_dbg_kms(&dev_priv->drm, |
| "using SSC reference clock of %d kHz\n", |
| refclk); |
| } |
| |
| limit = &intel_limits_i8xx_lvds; |
| } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { |
| limit = &intel_limits_i8xx_dvo; |
| } else { |
| limit = &intel_limits_i8xx_dac; |
| } |
| |
| if (!crtc_state->clock_set && |
| !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, |
| refclk, NULL, &crtc_state->dpll)) |
| return -EINVAL; |
| |
| i9xx_calc_dpll_params(refclk, &crtc_state->dpll); |
| |
| i8xx_compute_dpll(crtc_state, &crtc_state->dpll, |
| &crtc_state->dpll); |
| |
| crtc_state->port_clock = crtc_state->dpll.dot; |
| crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); |
| |
| return 0; |
| } |
| |
| static const struct intel_dpll_funcs mtl_dpll_funcs = { |
| .crtc_compute_clock = mtl_crtc_compute_clock, |
| }; |
| |
| static const struct intel_dpll_funcs dg2_dpll_funcs = { |
| .crtc_compute_clock = dg2_crtc_compute_clock, |
| }; |
| |
| static const struct intel_dpll_funcs hsw_dpll_funcs = { |
| .crtc_compute_clock = hsw_crtc_compute_clock, |
| .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll, |
| }; |
| |
| static const struct intel_dpll_funcs ilk_dpll_funcs = { |
| .crtc_compute_clock = ilk_crtc_compute_clock, |
| .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll, |
| }; |
| |
| static const struct intel_dpll_funcs chv_dpll_funcs = { |
| .crtc_compute_clock = chv_crtc_compute_clock, |
| }; |
| |
| static const struct intel_dpll_funcs vlv_dpll_funcs = { |
| .crtc_compute_clock = vlv_crtc_compute_clock, |
| }; |
| |
| static const struct intel_dpll_funcs g4x_dpll_funcs = { |
| .crtc_compute_clock = g4x_crtc_compute_clock, |
| }; |
| |
| static const struct intel_dpll_funcs pnv_dpll_funcs = { |
| .crtc_compute_clock = pnv_crtc_compute_clock, |
| }; |
| |
| static const struct intel_dpll_funcs i9xx_dpll_funcs = { |
| .crtc_compute_clock = i9xx_crtc_compute_clock, |
| }; |
| |
| static const struct intel_dpll_funcs i8xx_dpll_funcs = { |
| .crtc_compute_clock = i8xx_crtc_compute_clock, |
| }; |
| |
| int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *i915 = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| int ret; |
| |
| drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); |
| |
| memset(&crtc_state->dpll_hw_state, 0, |
| sizeof(crtc_state->dpll_hw_state)); |
| |
| if (!crtc_state->hw.enable) |
| return 0; |
| |
| ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc); |
| if (ret) { |
| drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n", |
| crtc->base.base.id, crtc->base.name); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *i915 = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| int ret; |
| |
| drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state)); |
| drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll); |
| |
| if (!crtc_state->hw.enable || crtc_state->shared_dpll) |
| return 0; |
| |
| if (!i915->display.funcs.dpll->crtc_get_shared_dpll) |
| return 0; |
| |
| ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc); |
| if (ret) { |
| drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n", |
| crtc->base.base.id, crtc->base.name); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| void |
| intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv) |
| { |
| if (DISPLAY_VER(dev_priv) >= 14) |
| dev_priv->display.funcs.dpll = &mtl_dpll_funcs; |
| else if (IS_DG2(dev_priv)) |
| dev_priv->display.funcs.dpll = &dg2_dpll_funcs; |
| else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv)) |
| dev_priv->display.funcs.dpll = &hsw_dpll_funcs; |
| else if (HAS_PCH_SPLIT(dev_priv)) |
| dev_priv->display.funcs.dpll = &ilk_dpll_funcs; |
| else if (IS_CHERRYVIEW(dev_priv)) |
| dev_priv->display.funcs.dpll = &chv_dpll_funcs; |
| else if (IS_VALLEYVIEW(dev_priv)) |
| dev_priv->display.funcs.dpll = &vlv_dpll_funcs; |
| else if (IS_G4X(dev_priv)) |
| dev_priv->display.funcs.dpll = &g4x_dpll_funcs; |
| else if (IS_PINEVIEW(dev_priv)) |
| dev_priv->display.funcs.dpll = &pnv_dpll_funcs; |
| else if (DISPLAY_VER(dev_priv) != 2) |
| dev_priv->display.funcs.dpll = &i9xx_dpll_funcs; |
| else |
| dev_priv->display.funcs.dpll = &i8xx_dpll_funcs; |
| } |
| |
| static bool i9xx_has_pps(struct drm_i915_private *dev_priv) |
| { |
| if (IS_I830(dev_priv)) |
| return false; |
| |
| return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); |
| } |
| |
| void i9xx_enable_pll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| enum pipe pipe = crtc->pipe; |
| int i; |
| |
| assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); |
| |
| /* PLL is protected by panel, make sure we can write it */ |
| if (i9xx_has_pps(dev_priv)) |
| assert_pps_unlocked(display, pipe); |
| |
| intel_de_write(dev_priv, FP0(pipe), hw_state->fp0); |
| intel_de_write(dev_priv, FP1(pipe), hw_state->fp1); |
| |
| /* |
| * Apparently we need to have VGA mode enabled prior to changing |
| * the P1/P2 dividers. Otherwise the DPLL will keep using the old |
| * dividers, even though the register value does change. |
| */ |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), |
| hw_state->dpll & ~DPLL_VGA_MODE_DIS); |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); |
| |
| /* Wait for the clocks to stabilize. */ |
| intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); |
| udelay(150); |
| |
| if (DISPLAY_VER(dev_priv) >= 4) { |
| intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), |
| hw_state->dpll_md); |
| } else { |
| /* The pixel multiplier can only be updated once the |
| * DPLL is enabled and the clocks are stable. |
| * |
| * So write it again. |
| */ |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); |
| } |
| |
| /* We do this three times for luck */ |
| for (i = 0; i < 3; i++) { |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); |
| intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); |
| udelay(150); /* wait for warmup */ |
| } |
| } |
| |
| static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, |
| enum dpio_phy phy, enum dpio_channel ch) |
| { |
| u32 tmp; |
| |
| /* |
| * PLLB opamp always calibrates to max value of 0x3f, force enable it |
| * and set it to a reasonable value instead. |
| */ |
| tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); |
| tmp &= 0xffffff00; |
| tmp |= 0x00000030; |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); |
| |
| tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); |
| tmp &= 0x00ffffff; |
| tmp |= 0x8c000000; |
| vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); |
| |
| tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); |
| tmp &= 0xffffff00; |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); |
| |
| tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); |
| tmp &= 0x00ffffff; |
| tmp |= 0xb0000000; |
| vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); |
| } |
| |
| static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct dpll *clock = &crtc_state->dpll; |
| enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); |
| enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); |
| enum pipe pipe = crtc->pipe; |
| u32 tmp, coreclk; |
| |
| vlv_dpio_get(dev_priv); |
| |
| /* See eDP HDMI DPIO driver vbios notes doc */ |
| |
| /* PLL B needs special handling */ |
| if (pipe == PIPE_B) |
| vlv_pllb_recal_opamp(dev_priv, phy, ch); |
| |
| /* Set up Tx target for periodic Rcomp update */ |
| vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f); |
| |
| /* Disable target IRef on PLL */ |
| tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch)); |
| tmp &= 0x00ffffff; |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp); |
| |
| /* Disable fast lock */ |
| vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610); |
| |
| /* Set idtafcrecal before PLL is enabled */ |
| tmp = DPIO_M1_DIV(clock->m1) | |
| DPIO_M2_DIV(clock->m2) | |
| DPIO_P1_DIV(clock->p1) | |
| DPIO_P2_DIV(clock->p2) | |
| DPIO_N_DIV(clock->n) | |
| DPIO_K_DIV(1); |
| |
| /* |
| * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, |
| * but we don't support that). |
| * Note: don't use the DAC post divider as it seems unstable. |
| */ |
| tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP); |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); |
| |
| tmp |= DPIO_ENABLE_CALIBRATION; |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); |
| |
| /* Set HBR and RBR LPF coefficients */ |
| if (crtc_state->port_clock == 162000 || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) || |
| intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), |
| 0x009f0003); |
| else |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), |
| 0x00d0000f); |
| |
| if (intel_crtc_has_dp_encoder(crtc_state)) { |
| /* Use SSC source */ |
| if (pipe == PIPE_A) |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), |
| 0x0df40000); |
| else |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), |
| 0x0df70000); |
| } else { /* HDMI or VGA */ |
| /* Use bend source */ |
| if (pipe == PIPE_A) |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), |
| 0x0df70000); |
| else |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), |
| 0x0df40000); |
| } |
| |
| coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch)); |
| coreclk = (coreclk & 0x0000ff00) | 0x01c00000; |
| if (intel_crtc_has_dp_encoder(crtc_state)) |
| coreclk |= 0x01000000; |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk); |
| |
| vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000); |
| |
| vlv_dpio_put(dev_priv); |
| } |
| |
| static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| enum pipe pipe = crtc->pipe; |
| |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); |
| intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); |
| udelay(150); |
| |
| if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1)) |
| drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe); |
| } |
| |
| void vlv_enable_pll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| enum pipe pipe = crtc->pipe; |
| |
| assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); |
| |
| /* PLL is protected by panel, make sure we can write it */ |
| assert_pps_unlocked(display, pipe); |
| |
| /* Enable Refclk */ |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), |
| hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); |
| |
| if (hw_state->dpll & DPLL_VCO_ENABLE) { |
| vlv_prepare_pll(crtc_state); |
| _vlv_enable_pll(crtc_state); |
| } |
| |
| intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), hw_state->dpll_md); |
| intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe)); |
| } |
| |
| static void chv_prepare_pll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct dpll *clock = &crtc_state->dpll; |
| enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); |
| enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); |
| u32 tmp, loopfilter, tribuf_calcntr; |
| u32 m2_frac; |
| |
| m2_frac = clock->m2 & 0x3fffff; |
| |
| vlv_dpio_get(dev_priv); |
| |
| /* p1 and p2 divider */ |
| vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch), |
| DPIO_CHV_S1_DIV(5) | |
| DPIO_CHV_P1_DIV(clock->p1) | |
| DPIO_CHV_P2_DIV(clock->p2) | |
| DPIO_CHV_K_DIV(1)); |
| |
| /* Feedback post-divider - m2 */ |
| vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch), |
| DPIO_CHV_M2_DIV(clock->m2 >> 22)); |
| |
| /* Feedback refclk divider - n and m1 */ |
| vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch), |
| DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) | |
| DPIO_CHV_N_DIV(1)); |
| |
| /* M2 fraction division */ |
| vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch), |
| DPIO_CHV_M2_FRAC_DIV(m2_frac)); |
| |
| /* M2 fraction division enable */ |
| tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); |
| tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); |
| tmp |= DPIO_CHV_FEEDFWD_GAIN(2); |
| if (m2_frac) |
| tmp |= DPIO_CHV_FRAC_DIV_EN; |
| vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp); |
| |
| /* Program digital lock detect threshold */ |
| tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch)); |
| tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | |
| DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); |
| tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5); |
| if (!m2_frac) |
| tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; |
| vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp); |
| |
| /* Loop filter */ |
| if (clock->vco == 5400000) { |
| loopfilter = DPIO_CHV_PROP_COEFF(0x3) | |
| DPIO_CHV_INT_COEFF(0x8) | |
| DPIO_CHV_GAIN_CTRL(0x1); |
| tribuf_calcntr = 0x9; |
| } else if (clock->vco <= 6200000) { |
| loopfilter = DPIO_CHV_PROP_COEFF(0x5) | |
| DPIO_CHV_INT_COEFF(0xB) | |
| DPIO_CHV_GAIN_CTRL(0x3); |
| tribuf_calcntr = 0x9; |
| } else if (clock->vco <= 6480000) { |
| loopfilter = DPIO_CHV_PROP_COEFF(0x4) | |
| DPIO_CHV_INT_COEFF(0x9) | |
| DPIO_CHV_GAIN_CTRL(0x3); |
| tribuf_calcntr = 0x8; |
| } else { |
| /* Not supported. Apply the same limits as in the max case */ |
| loopfilter = DPIO_CHV_PROP_COEFF(0x4) | |
| DPIO_CHV_INT_COEFF(0x9) | |
| DPIO_CHV_GAIN_CTRL(0x3); |
| tribuf_calcntr = 0; |
| } |
| vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter); |
| |
| tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch)); |
| tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; |
| tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr); |
| vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp); |
| |
| /* AFC Recal */ |
| vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), |
| vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) | |
| DPIO_AFC_RECAL); |
| |
| vlv_dpio_put(dev_priv); |
| } |
| |
| static void _chv_enable_pll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); |
| enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); |
| enum pipe pipe = crtc->pipe; |
| u32 tmp; |
| |
| vlv_dpio_get(dev_priv); |
| |
| /* Enable back the 10bit clock to display controller */ |
| tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); |
| tmp |= DPIO_DCLKP_EN; |
| vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp); |
| |
| vlv_dpio_put(dev_priv); |
| |
| /* |
| * Need to wait > 100ns between dclkp clock enable bit and PLL enable. |
| */ |
| udelay(1); |
| |
| /* Enable PLL */ |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll); |
| |
| /* Check PLL is locked */ |
| if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1)) |
| drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe); |
| } |
| |
| void chv_enable_pll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_display *display = to_intel_display(crtc_state); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; |
| enum pipe pipe = crtc->pipe; |
| |
| assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); |
| |
| /* PLL is protected by panel, make sure we can write it */ |
| assert_pps_unlocked(display, pipe); |
| |
| /* Enable Refclk and SSC */ |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), |
| hw_state->dpll & ~DPLL_VCO_ENABLE); |
| |
| if (hw_state->dpll & DPLL_VCO_ENABLE) { |
| chv_prepare_pll(crtc_state); |
| _chv_enable_pll(crtc_state); |
| } |
| |
| if (pipe != PIPE_A) { |
| /* |
| * WaPixelRepeatModeFixForC0:chv |
| * |
| * DPLLCMD is AWOL. Use chicken bits to propagate |
| * the value from DPLLBMD to either pipe B or C. |
| */ |
| intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); |
| intel_de_write(dev_priv, DPLL_MD(dev_priv, PIPE_B), |
| hw_state->dpll_md); |
| intel_de_write(dev_priv, CBR4_VLV, 0); |
| dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md; |
| |
| /* |
| * DPLLB VGA mode also seems to cause problems. |
| * We should always have it disabled. |
| */ |
| drm_WARN_ON(&dev_priv->drm, |
| (intel_de_read(dev_priv, DPLL(dev_priv, PIPE_B)) & |
| DPLL_VGA_MODE_DIS) == 0); |
| } else { |
| intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), |
| hw_state->dpll_md); |
| intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe)); |
| } |
| } |
| |
| /** |
| * vlv_force_pll_on - forcibly enable just the PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to enable |
| * @dpll: PLL configuration |
| * |
| * Enable the PLL for @pipe using the supplied @dpll config. To be used |
| * in cases where we need the PLL enabled even when @pipe is not going to |
| * be enabled. |
| */ |
| int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, |
| const struct dpll *dpll) |
| { |
| struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); |
| struct intel_crtc_state *crtc_state; |
| |
| crtc_state = intel_crtc_state_alloc(crtc); |
| if (!crtc_state) |
| return -ENOMEM; |
| |
| crtc_state->cpu_transcoder = (enum transcoder)pipe; |
| crtc_state->pixel_multiplier = 1; |
| crtc_state->dpll = *dpll; |
| crtc_state->output_types = BIT(INTEL_OUTPUT_EDP); |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| chv_compute_dpll(crtc_state); |
| chv_enable_pll(crtc_state); |
| } else { |
| vlv_compute_dpll(crtc_state); |
| vlv_enable_pll(crtc_state); |
| } |
| |
| intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi); |
| |
| return 0; |
| } |
| |
| void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) |
| { |
| u32 val; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_transcoder_disabled(dev_priv, (enum transcoder)pipe); |
| |
| val = DPLL_INTEGRATED_REF_CLK_VLV | |
| DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; |
| if (pipe != PIPE_A) |
| val |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), val); |
| intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); |
| } |
| |
| void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) |
| { |
| enum dpio_channel ch = vlv_pipe_to_channel(pipe); |
| enum dpio_phy phy = vlv_pipe_to_phy(pipe); |
| u32 val; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_transcoder_disabled(dev_priv, (enum transcoder)pipe); |
| |
| val = DPLL_SSC_REF_CLK_CHV | |
| DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; |
| if (pipe != PIPE_A) |
| val |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), val); |
| intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); |
| |
| vlv_dpio_get(dev_priv); |
| |
| /* Disable 10bit clock to display controller */ |
| val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); |
| val &= ~DPIO_DCLKP_EN; |
| vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val); |
| |
| vlv_dpio_put(dev_priv); |
| } |
| |
| void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| |
| /* Don't disable pipe or pipe PLLs if needed */ |
| if (IS_I830(dev_priv)) |
| return; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); |
| |
| intel_de_write(dev_priv, DPLL(dev_priv, pipe), DPLL_VGA_MODE_DIS); |
| intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe)); |
| } |
| |
| |
| /** |
| * vlv_force_pll_off - forcibly disable just the PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to disable |
| * |
| * Disable the PLL for @pipe. To be used in cases where we need |
| * the PLL enabled even when @pipe is not going to be enabled. |
| */ |
| void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) |
| { |
| if (IS_CHERRYVIEW(dev_priv)) |
| chv_disable_pll(dev_priv, pipe); |
| else |
| vlv_disable_pll(dev_priv, pipe); |
| } |
| |
| /* Only for pre-ILK configs */ |
| static void assert_pll(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| bool cur_state; |
| |
| cur_state = intel_de_read(dev_priv, DPLL(dev_priv, pipe)) & DPLL_VCO_ENABLE; |
| I915_STATE_WARN(dev_priv, cur_state != state, |
| "PLL state assertion failure (expected %s, current %s)\n", |
| str_on_off(state), str_on_off(cur_state)); |
| } |
| |
| void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe) |
| { |
| assert_pll(i915, pipe, true); |
| } |
| |
| void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe) |
| { |
| assert_pll(i915, pipe, false); |
| } |