blob: 374704cce65634ab6b673e17d1ef9dd65c7fdc94 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014, The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#include <linux/delay.h>
#include <linux/interconnect.h>
#include <linux/of_irq.h>
#include <drm/drm_debugfs.h>
#include <drm/drm_drv.h>
#include <drm/drm_file.h>
#include <drm/drm_vblank.h>
#include "msm_drv.h"
#include "msm_gem.h"
#include "msm_mmu.h"
#include "mdp5_kms.h"
static int mdp5_hw_init(struct msm_kms *kms)
{
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
struct device *dev = &mdp5_kms->pdev->dev;
unsigned long flags;
pm_runtime_get_sync(dev);
/* Magic unknown register writes:
*
* W VBIF:0x004 00000001 (mdss_mdp.c:839)
* W MDP5:0x2e0 0xe9 (mdss_mdp.c:839)
* W MDP5:0x2e4 0x55 (mdss_mdp.c:839)
* W MDP5:0x3ac 0xc0000ccc (mdss_mdp.c:839)
* W MDP5:0x3b4 0xc0000ccc (mdss_mdp.c:839)
* W MDP5:0x3bc 0xcccccc (mdss_mdp.c:839)
* W MDP5:0x4a8 0xcccc0c0 (mdss_mdp.c:839)
* W MDP5:0x4b0 0xccccc0c0 (mdss_mdp.c:839)
* W MDP5:0x4b8 0xccccc000 (mdss_mdp.c:839)
*
* Downstream fbdev driver gets these register offsets/values
* from DT.. not really sure what these registers are or if
* different values for different boards/SoC's, etc. I guess
* they are the golden registers.
*
* Not setting these does not seem to cause any problem. But
* we may be getting lucky with the bootloader initializing
* them for us. OTOH, if we can always count on the bootloader
* setting the golden registers, then perhaps we don't need to
* care.
*/
spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, 0);
spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
mdp5_ctlm_hw_reset(mdp5_kms->ctlm);
pm_runtime_put_sync(dev);
return 0;
}
/* Global/shared object state funcs */
/*
* This is a helper that returns the private state currently in operation.
* Note that this would return the "old_state" if called in the atomic check
* path, and the "new_state" after the atomic swap has been done.
*/
struct mdp5_global_state *
mdp5_get_existing_global_state(struct mdp5_kms *mdp5_kms)
{
return to_mdp5_global_state(mdp5_kms->glob_state.state);
}
/*
* This acquires the modeset lock set aside for global state, creates
* a new duplicated private object state.
*/
struct mdp5_global_state *mdp5_get_global_state(struct drm_atomic_state *s)
{
struct msm_drm_private *priv = s->dev->dev_private;
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(priv->kms));
struct drm_private_state *priv_state;
priv_state = drm_atomic_get_private_obj_state(s, &mdp5_kms->glob_state);
if (IS_ERR(priv_state))
return ERR_CAST(priv_state);
return to_mdp5_global_state(priv_state);
}
static struct drm_private_state *
mdp5_global_duplicate_state(struct drm_private_obj *obj)
{
struct mdp5_global_state *state;
state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
return &state->base;
}
static void mdp5_global_destroy_state(struct drm_private_obj *obj,
struct drm_private_state *state)
{
struct mdp5_global_state *mdp5_state = to_mdp5_global_state(state);
kfree(mdp5_state);
}
static void mdp5_global_print_state(struct drm_printer *p,
const struct drm_private_state *state)
{
struct mdp5_global_state *mdp5_state = to_mdp5_global_state(state);
if (mdp5_state->mdp5_kms->smp)
mdp5_smp_dump(mdp5_state->mdp5_kms->smp, p, mdp5_state);
}
static const struct drm_private_state_funcs mdp5_global_state_funcs = {
.atomic_duplicate_state = mdp5_global_duplicate_state,
.atomic_destroy_state = mdp5_global_destroy_state,
.atomic_print_state = mdp5_global_print_state,
};
static int mdp5_global_obj_init(struct mdp5_kms *mdp5_kms)
{
struct mdp5_global_state *state;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->mdp5_kms = mdp5_kms;
drm_atomic_private_obj_init(mdp5_kms->dev, &mdp5_kms->glob_state,
&state->base,
&mdp5_global_state_funcs);
return 0;
}
static void mdp5_enable_commit(struct msm_kms *kms)
{
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
pm_runtime_get_sync(&mdp5_kms->pdev->dev);
}
static void mdp5_disable_commit(struct msm_kms *kms)
{
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
pm_runtime_put_sync(&mdp5_kms->pdev->dev);
}
static void mdp5_prepare_commit(struct msm_kms *kms, struct drm_atomic_state *state)
{
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
struct mdp5_global_state *global_state;
global_state = mdp5_get_existing_global_state(mdp5_kms);
if (mdp5_kms->smp)
mdp5_smp_prepare_commit(mdp5_kms->smp, &global_state->smp);
}
static void mdp5_flush_commit(struct msm_kms *kms, unsigned crtc_mask)
{
/* TODO */
}
static void mdp5_wait_flush(struct msm_kms *kms, unsigned crtc_mask)
{
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
struct drm_crtc *crtc;
for_each_crtc_mask(mdp5_kms->dev, crtc, crtc_mask)
mdp5_crtc_wait_for_commit_done(crtc);
}
static void mdp5_complete_commit(struct msm_kms *kms, unsigned crtc_mask)
{
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
struct mdp5_global_state *global_state;
global_state = mdp5_get_existing_global_state(mdp5_kms);
if (mdp5_kms->smp)
mdp5_smp_complete_commit(mdp5_kms->smp, &global_state->smp);
}
static void mdp5_destroy(struct mdp5_kms *mdp5_kms);
static void mdp5_kms_destroy(struct msm_kms *kms)
{
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
struct msm_gem_address_space *aspace = kms->aspace;
if (aspace) {
aspace->mmu->funcs->detach(aspace->mmu);
msm_gem_address_space_put(aspace);
}
mdp_kms_destroy(&mdp5_kms->base);
mdp5_destroy(mdp5_kms);
}
static const struct mdp_kms_funcs kms_funcs = {
.base = {
.hw_init = mdp5_hw_init,
.irq_preinstall = mdp5_irq_preinstall,
.irq_postinstall = mdp5_irq_postinstall,
.irq_uninstall = mdp5_irq_uninstall,
.irq = mdp5_irq,
.enable_vblank = mdp5_enable_vblank,
.disable_vblank = mdp5_disable_vblank,
.flush_commit = mdp5_flush_commit,
.enable_commit = mdp5_enable_commit,
.disable_commit = mdp5_disable_commit,
.prepare_commit = mdp5_prepare_commit,
.wait_flush = mdp5_wait_flush,
.complete_commit = mdp5_complete_commit,
.destroy = mdp5_kms_destroy,
},
.set_irqmask = mdp5_set_irqmask,
};
static int mdp5_disable(struct mdp5_kms *mdp5_kms)
{
DBG("");
mdp5_kms->enable_count--;
WARN_ON(mdp5_kms->enable_count < 0);
clk_disable_unprepare(mdp5_kms->tbu_rt_clk);
clk_disable_unprepare(mdp5_kms->tbu_clk);
clk_disable_unprepare(mdp5_kms->ahb_clk);
clk_disable_unprepare(mdp5_kms->axi_clk);
clk_disable_unprepare(mdp5_kms->core_clk);
clk_disable_unprepare(mdp5_kms->lut_clk);
return 0;
}
static int mdp5_enable(struct mdp5_kms *mdp5_kms)
{
DBG("");
mdp5_kms->enable_count++;
clk_prepare_enable(mdp5_kms->ahb_clk);
clk_prepare_enable(mdp5_kms->axi_clk);
clk_prepare_enable(mdp5_kms->core_clk);
clk_prepare_enable(mdp5_kms->lut_clk);
clk_prepare_enable(mdp5_kms->tbu_clk);
clk_prepare_enable(mdp5_kms->tbu_rt_clk);
return 0;
}
static struct drm_encoder *construct_encoder(struct mdp5_kms *mdp5_kms,
struct mdp5_interface *intf,
struct mdp5_ctl *ctl)
{
struct drm_device *dev = mdp5_kms->dev;
struct drm_encoder *encoder;
encoder = mdp5_encoder_init(dev, intf, ctl);
if (IS_ERR(encoder)) {
DRM_DEV_ERROR(dev->dev, "failed to construct encoder\n");
return encoder;
}
return encoder;
}
static int get_dsi_id_from_intf(const struct mdp5_cfg_hw *hw_cfg, int intf_num)
{
const enum mdp5_intf_type *intfs = hw_cfg->intf.connect;
const int intf_cnt = ARRAY_SIZE(hw_cfg->intf.connect);
int id = 0, i;
for (i = 0; i < intf_cnt; i++) {
if (intfs[i] == INTF_DSI) {
if (intf_num == i)
return id;
id++;
}
}
return -EINVAL;
}
static int modeset_init_intf(struct mdp5_kms *mdp5_kms,
struct mdp5_interface *intf)
{
struct drm_device *dev = mdp5_kms->dev;
struct msm_drm_private *priv = dev->dev_private;
struct mdp5_ctl_manager *ctlm = mdp5_kms->ctlm;
struct mdp5_ctl *ctl;
struct drm_encoder *encoder;
int ret = 0;
switch (intf->type) {
case INTF_eDP:
DRM_DEV_INFO(dev->dev, "Skipping eDP interface %d\n", intf->num);
break;
case INTF_HDMI:
if (!priv->hdmi)
break;
ctl = mdp5_ctlm_request(ctlm, intf->num);
if (!ctl) {
ret = -EINVAL;
break;
}
encoder = construct_encoder(mdp5_kms, intf, ctl);
if (IS_ERR(encoder)) {
ret = PTR_ERR(encoder);
break;
}
ret = msm_hdmi_modeset_init(priv->hdmi, dev, encoder);
break;
case INTF_DSI:
{
const struct mdp5_cfg_hw *hw_cfg =
mdp5_cfg_get_hw_config(mdp5_kms->cfg);
int dsi_id = get_dsi_id_from_intf(hw_cfg, intf->num);
if ((dsi_id >= ARRAY_SIZE(priv->dsi)) || (dsi_id < 0)) {
DRM_DEV_ERROR(dev->dev, "failed to find dsi from intf %d\n",
intf->num);
ret = -EINVAL;
break;
}
if (!priv->dsi[dsi_id])
break;
ctl = mdp5_ctlm_request(ctlm, intf->num);
if (!ctl) {
ret = -EINVAL;
break;
}
encoder = construct_encoder(mdp5_kms, intf, ctl);
if (IS_ERR(encoder)) {
ret = PTR_ERR(encoder);
break;
}
ret = msm_dsi_modeset_init(priv->dsi[dsi_id], dev, encoder);
if (!ret)
mdp5_encoder_set_intf_mode(encoder, msm_dsi_is_cmd_mode(priv->dsi[dsi_id]));
break;
}
default:
DRM_DEV_ERROR(dev->dev, "unknown intf: %d\n", intf->type);
ret = -EINVAL;
break;
}
return ret;
}
static int modeset_init(struct mdp5_kms *mdp5_kms)
{
struct drm_device *dev = mdp5_kms->dev;
struct msm_drm_private *priv = dev->dev_private;
unsigned int num_crtcs;
int i, ret, pi = 0, ci = 0;
struct drm_plane *primary[MAX_BASES] = { NULL };
struct drm_plane *cursor[MAX_BASES] = { NULL };
struct drm_encoder *encoder;
unsigned int num_encoders;
/*
* Construct encoders and modeset initialize connector devices
* for each external display interface.
*/
for (i = 0; i < mdp5_kms->num_intfs; i++) {
ret = modeset_init_intf(mdp5_kms, mdp5_kms->intfs[i]);
if (ret)
goto fail;
}
num_encoders = 0;
drm_for_each_encoder(encoder, dev)
num_encoders++;
/*
* We should ideally have less number of encoders (set up by parsing
* the MDP5 interfaces) than the number of layer mixers present in HW,
* but let's be safe here anyway
*/
num_crtcs = min(num_encoders, mdp5_kms->num_hwmixers);
/*
* Construct planes equaling the number of hw pipes, and CRTCs for the
* N encoders set up by the driver. The first N planes become primary
* planes for the CRTCs, with the remainder as overlay planes:
*/
for (i = 0; i < mdp5_kms->num_hwpipes; i++) {
struct mdp5_hw_pipe *hwpipe = mdp5_kms->hwpipes[i];
struct drm_plane *plane;
enum drm_plane_type type;
if (i < num_crtcs)
type = DRM_PLANE_TYPE_PRIMARY;
else if (hwpipe->caps & MDP_PIPE_CAP_CURSOR)
type = DRM_PLANE_TYPE_CURSOR;
else
type = DRM_PLANE_TYPE_OVERLAY;
plane = mdp5_plane_init(dev, type);
if (IS_ERR(plane)) {
ret = PTR_ERR(plane);
DRM_DEV_ERROR(dev->dev, "failed to construct plane %d (%d)\n", i, ret);
goto fail;
}
if (type == DRM_PLANE_TYPE_PRIMARY)
primary[pi++] = plane;
if (type == DRM_PLANE_TYPE_CURSOR)
cursor[ci++] = plane;
}
for (i = 0; i < num_crtcs; i++) {
struct drm_crtc *crtc;
crtc = mdp5_crtc_init(dev, primary[i], cursor[i], i);
if (IS_ERR(crtc)) {
ret = PTR_ERR(crtc);
DRM_DEV_ERROR(dev->dev, "failed to construct crtc %d (%d)\n", i, ret);
goto fail;
}
priv->num_crtcs++;
}
/*
* Now that we know the number of crtcs we've created, set the possible
* crtcs for the encoders
*/
drm_for_each_encoder(encoder, dev)
encoder->possible_crtcs = (1 << priv->num_crtcs) - 1;
return 0;
fail:
return ret;
}
static void read_mdp_hw_revision(struct mdp5_kms *mdp5_kms,
u32 *major, u32 *minor)
{
struct device *dev = &mdp5_kms->pdev->dev;
u32 version;
pm_runtime_get_sync(dev);
version = mdp5_read(mdp5_kms, REG_MDP5_HW_VERSION);
pm_runtime_put_sync(dev);
*major = FIELD(version, MDP5_HW_VERSION_MAJOR);
*minor = FIELD(version, MDP5_HW_VERSION_MINOR);
DRM_DEV_INFO(dev, "MDP5 version v%d.%d", *major, *minor);
}
static int get_clk(struct platform_device *pdev, struct clk **clkp,
const char *name, bool mandatory)
{
struct device *dev = &pdev->dev;
struct clk *clk = msm_clk_get(pdev, name);
if (IS_ERR(clk) && mandatory) {
DRM_DEV_ERROR(dev, "failed to get %s (%ld)\n", name, PTR_ERR(clk));
return PTR_ERR(clk);
}
if (IS_ERR(clk))
DBG("skipping %s", name);
else
*clkp = clk;
return 0;
}
static int mdp5_init(struct platform_device *pdev, struct drm_device *dev);
static int mdp5_kms_init(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct platform_device *pdev;
struct mdp5_kms *mdp5_kms;
struct mdp5_cfg *config;
struct msm_kms *kms = priv->kms;
struct msm_gem_address_space *aspace;
int i, ret;
ret = mdp5_init(to_platform_device(dev->dev), dev);
if (ret)
return ret;
mdp5_kms = to_mdp5_kms(to_mdp_kms(kms));
pdev = mdp5_kms->pdev;
ret = mdp_kms_init(&mdp5_kms->base, &kms_funcs);
if (ret) {
DRM_DEV_ERROR(&pdev->dev, "failed to init kms\n");
goto fail;
}
config = mdp5_cfg_get_config(mdp5_kms->cfg);
/* make sure things are off before attaching iommu (bootloader could
* have left things on, in which case we'll start getting faults if
* we don't disable):
*/
pm_runtime_get_sync(&pdev->dev);
for (i = 0; i < MDP5_INTF_NUM_MAX; i++) {
if (mdp5_cfg_intf_is_virtual(config->hw->intf.connect[i]) ||
!config->hw->intf.base[i])
continue;
mdp5_write(mdp5_kms, REG_MDP5_INTF_TIMING_ENGINE_EN(i), 0);
mdp5_write(mdp5_kms, REG_MDP5_INTF_FRAME_LINE_COUNT_EN(i), 0x3);
}
mdelay(16);
aspace = msm_kms_init_aspace(mdp5_kms->dev);
if (IS_ERR(aspace)) {
ret = PTR_ERR(aspace);
goto fail;
}
kms->aspace = aspace;
pm_runtime_put_sync(&pdev->dev);
ret = modeset_init(mdp5_kms);
if (ret) {
DRM_DEV_ERROR(&pdev->dev, "modeset_init failed: %d\n", ret);
goto fail;
}
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.max_width = 0xffff;
dev->mode_config.max_height = 0xffff;
dev->max_vblank_count = 0; /* max_vblank_count is set on each CRTC */
dev->vblank_disable_immediate = true;
return 0;
fail:
if (kms)
mdp5_kms_destroy(kms);
return ret;
}
static void mdp5_destroy(struct mdp5_kms *mdp5_kms)
{
if (mdp5_kms->rpm_enabled)
pm_runtime_disable(&mdp5_kms->pdev->dev);
drm_atomic_private_obj_fini(&mdp5_kms->glob_state);
}
static int construct_pipes(struct mdp5_kms *mdp5_kms, int cnt,
const enum mdp5_pipe *pipes, const uint32_t *offsets,
uint32_t caps)
{
struct drm_device *dev = mdp5_kms->dev;
int i, ret;
for (i = 0; i < cnt; i++) {
struct mdp5_hw_pipe *hwpipe;
hwpipe = mdp5_pipe_init(dev, pipes[i], offsets[i], caps);
if (IS_ERR(hwpipe)) {
ret = PTR_ERR(hwpipe);
DRM_DEV_ERROR(dev->dev, "failed to construct pipe for %s (%d)\n",
pipe2name(pipes[i]), ret);
return ret;
}
hwpipe->idx = mdp5_kms->num_hwpipes;
mdp5_kms->hwpipes[mdp5_kms->num_hwpipes++] = hwpipe;
}
return 0;
}
static int hwpipe_init(struct mdp5_kms *mdp5_kms)
{
static const enum mdp5_pipe rgb_planes[] = {
SSPP_RGB0, SSPP_RGB1, SSPP_RGB2, SSPP_RGB3,
};
static const enum mdp5_pipe vig_planes[] = {
SSPP_VIG0, SSPP_VIG1, SSPP_VIG2, SSPP_VIG3,
};
static const enum mdp5_pipe dma_planes[] = {
SSPP_DMA0, SSPP_DMA1,
};
static const enum mdp5_pipe cursor_planes[] = {
SSPP_CURSOR0, SSPP_CURSOR1,
};
const struct mdp5_cfg_hw *hw_cfg;
int ret;
hw_cfg = mdp5_cfg_get_hw_config(mdp5_kms->cfg);
/* Construct RGB pipes: */
ret = construct_pipes(mdp5_kms, hw_cfg->pipe_rgb.count, rgb_planes,
hw_cfg->pipe_rgb.base, hw_cfg->pipe_rgb.caps);
if (ret)
return ret;
/* Construct video (VIG) pipes: */
ret = construct_pipes(mdp5_kms, hw_cfg->pipe_vig.count, vig_planes,
hw_cfg->pipe_vig.base, hw_cfg->pipe_vig.caps);
if (ret)
return ret;
/* Construct DMA pipes: */
ret = construct_pipes(mdp5_kms, hw_cfg->pipe_dma.count, dma_planes,
hw_cfg->pipe_dma.base, hw_cfg->pipe_dma.caps);
if (ret)
return ret;
/* Construct cursor pipes: */
ret = construct_pipes(mdp5_kms, hw_cfg->pipe_cursor.count,
cursor_planes, hw_cfg->pipe_cursor.base,
hw_cfg->pipe_cursor.caps);
if (ret)
return ret;
return 0;
}
static int hwmixer_init(struct mdp5_kms *mdp5_kms)
{
struct drm_device *dev = mdp5_kms->dev;
const struct mdp5_cfg_hw *hw_cfg;
int i, ret;
hw_cfg = mdp5_cfg_get_hw_config(mdp5_kms->cfg);
for (i = 0; i < hw_cfg->lm.count; i++) {
struct mdp5_hw_mixer *mixer;
mixer = mdp5_mixer_init(dev, &hw_cfg->lm.instances[i]);
if (IS_ERR(mixer)) {
ret = PTR_ERR(mixer);
DRM_DEV_ERROR(dev->dev, "failed to construct LM%d (%d)\n",
i, ret);
return ret;
}
mixer->idx = mdp5_kms->num_hwmixers;
mdp5_kms->hwmixers[mdp5_kms->num_hwmixers++] = mixer;
}
return 0;
}
static int interface_init(struct mdp5_kms *mdp5_kms)
{
struct drm_device *dev = mdp5_kms->dev;
const struct mdp5_cfg_hw *hw_cfg;
const enum mdp5_intf_type *intf_types;
int i;
hw_cfg = mdp5_cfg_get_hw_config(mdp5_kms->cfg);
intf_types = hw_cfg->intf.connect;
for (i = 0; i < ARRAY_SIZE(hw_cfg->intf.connect); i++) {
struct mdp5_interface *intf;
if (intf_types[i] == INTF_DISABLED)
continue;
intf = devm_kzalloc(dev->dev, sizeof(*intf), GFP_KERNEL);
if (!intf) {
DRM_DEV_ERROR(dev->dev, "failed to construct INTF%d\n", i);
return -ENOMEM;
}
intf->num = i;
intf->type = intf_types[i];
intf->mode = MDP5_INTF_MODE_NONE;
intf->idx = mdp5_kms->num_intfs;
mdp5_kms->intfs[mdp5_kms->num_intfs++] = intf;
}
return 0;
}
static int mdp5_init(struct platform_device *pdev, struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(priv->kms));
struct mdp5_cfg *config;
u32 major, minor;
int ret;
mdp5_kms->dev = dev;
ret = mdp5_global_obj_init(mdp5_kms);
if (ret)
goto fail;
/* we need to set a default rate before enabling. Set a safe
* rate first, then figure out hw revision, and then set a
* more optimal rate:
*/
clk_set_rate(mdp5_kms->core_clk, 200000000);
pm_runtime_enable(&pdev->dev);
mdp5_kms->rpm_enabled = true;
read_mdp_hw_revision(mdp5_kms, &major, &minor);
mdp5_kms->cfg = mdp5_cfg_init(mdp5_kms, major, minor);
if (IS_ERR(mdp5_kms->cfg)) {
ret = PTR_ERR(mdp5_kms->cfg);
mdp5_kms->cfg = NULL;
goto fail;
}
config = mdp5_cfg_get_config(mdp5_kms->cfg);
mdp5_kms->caps = config->hw->mdp.caps;
/* TODO: compute core clock rate at runtime */
clk_set_rate(mdp5_kms->core_clk, config->hw->max_clk);
/*
* Some chipsets have a Shared Memory Pool (SMP), while others
* have dedicated latency buffering per source pipe instead;
* this section initializes the SMP:
*/
if (mdp5_kms->caps & MDP_CAP_SMP) {
mdp5_kms->smp = mdp5_smp_init(mdp5_kms, &config->hw->smp);
if (IS_ERR(mdp5_kms->smp)) {
ret = PTR_ERR(mdp5_kms->smp);
mdp5_kms->smp = NULL;
goto fail;
}
}
mdp5_kms->ctlm = mdp5_ctlm_init(dev, mdp5_kms->mmio, mdp5_kms->cfg);
if (IS_ERR(mdp5_kms->ctlm)) {
ret = PTR_ERR(mdp5_kms->ctlm);
mdp5_kms->ctlm = NULL;
goto fail;
}
ret = hwpipe_init(mdp5_kms);
if (ret)
goto fail;
ret = hwmixer_init(mdp5_kms);
if (ret)
goto fail;
ret = interface_init(mdp5_kms);
if (ret)
goto fail;
return 0;
fail:
mdp5_destroy(mdp5_kms);
return ret;
}
static int mdp5_setup_interconnect(struct platform_device *pdev)
{
struct icc_path *path0 = msm_icc_get(&pdev->dev, "mdp0-mem");
struct icc_path *path1 = msm_icc_get(&pdev->dev, "mdp1-mem");
struct icc_path *path_rot = msm_icc_get(&pdev->dev, "rotator-mem");
if (IS_ERR(path0))
return PTR_ERR(path0);
if (!path0) {
/* no interconnect support is not necessarily a fatal
* condition, the platform may simply not have an
* interconnect driver yet. But warn about it in case
* bootloader didn't setup bus clocks high enough for
* scanout.
*/
dev_warn(&pdev->dev, "No interconnect support may cause display underflows!\n");
return 0;
}
icc_set_bw(path0, 0, MBps_to_icc(6400));
if (!IS_ERR_OR_NULL(path1))
icc_set_bw(path1, 0, MBps_to_icc(6400));
if (!IS_ERR_OR_NULL(path_rot))
icc_set_bw(path_rot, 0, MBps_to_icc(6400));
return 0;
}
static int mdp5_dev_probe(struct platform_device *pdev)
{
struct mdp5_kms *mdp5_kms;
int ret, irq;
DBG("");
if (!msm_disp_drv_should_bind(&pdev->dev, false))
return -ENODEV;
mdp5_kms = devm_kzalloc(&pdev->dev, sizeof(*mdp5_kms), GFP_KERNEL);
if (!mdp5_kms)
return -ENOMEM;
ret = mdp5_setup_interconnect(pdev);
if (ret)
return ret;
mdp5_kms->pdev = pdev;
spin_lock_init(&mdp5_kms->resource_lock);
mdp5_kms->mmio = msm_ioremap(pdev, "mdp_phys");
if (IS_ERR(mdp5_kms->mmio))
return PTR_ERR(mdp5_kms->mmio);
/* mandatory clocks: */
ret = get_clk(pdev, &mdp5_kms->axi_clk, "bus", true);
if (ret)
return ret;
ret = get_clk(pdev, &mdp5_kms->ahb_clk, "iface", true);
if (ret)
return ret;
ret = get_clk(pdev, &mdp5_kms->core_clk, "core", true);
if (ret)
return ret;
ret = get_clk(pdev, &mdp5_kms->vsync_clk, "vsync", true);
if (ret)
return ret;
/* optional clocks: */
get_clk(pdev, &mdp5_kms->lut_clk, "lut", false);
get_clk(pdev, &mdp5_kms->tbu_clk, "tbu", false);
get_clk(pdev, &mdp5_kms->tbu_rt_clk, "tbu_rt", false);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return dev_err_probe(&pdev->dev, irq, "failed to get irq\n");
mdp5_kms->base.base.irq = irq;
return msm_drv_probe(&pdev->dev, mdp5_kms_init, &mdp5_kms->base.base);
}
static void mdp5_dev_remove(struct platform_device *pdev)
{
DBG("");
component_master_del(&pdev->dev, &msm_drm_ops);
}
static __maybe_unused int mdp5_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(priv->kms));
DBG("");
return mdp5_disable(mdp5_kms);
}
static __maybe_unused int mdp5_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct mdp5_kms *mdp5_kms = to_mdp5_kms(to_mdp_kms(priv->kms));
DBG("");
return mdp5_enable(mdp5_kms);
}
static const struct dev_pm_ops mdp5_pm_ops = {
SET_RUNTIME_PM_OPS(mdp5_runtime_suspend, mdp5_runtime_resume, NULL)
.prepare = msm_kms_pm_prepare,
.complete = msm_kms_pm_complete,
};
static const struct of_device_id mdp5_dt_match[] = {
{ .compatible = "qcom,mdp5", },
/* to support downstream DT files */
{ .compatible = "qcom,mdss_mdp", },
{}
};
MODULE_DEVICE_TABLE(of, mdp5_dt_match);
static struct platform_driver mdp5_driver = {
.probe = mdp5_dev_probe,
.remove_new = mdp5_dev_remove,
.shutdown = msm_kms_shutdown,
.driver = {
.name = "msm_mdp",
.of_match_table = mdp5_dt_match,
.pm = &mdp5_pm_ops,
},
};
void __init msm_mdp_register(void)
{
DBG("");
platform_driver_register(&mdp5_driver);
}
void __exit msm_mdp_unregister(void)
{
DBG("");
platform_driver_unregister(&mdp5_driver);
}