blob: 42ef62aa0a1e078d4b1db93eb20c7cc21054df28 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
* Zheng Yang <zhengyang@rock-chips.com>
* Yakir Yang <ykk@rock-chips.com>
*/
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/hdmi.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include <drm/display/drm_hdmi_helper.h>
#include <drm/display/drm_hdmi_state_helper.h>
#include "rockchip_drm_drv.h"
#include "inno_hdmi.h"
#define INNO_HDMI_MIN_TMDS_CLOCK 25000000U
struct inno_hdmi_phy_config {
unsigned long pixelclock;
u8 pre_emphasis;
u8 voltage_level_control;
};
struct inno_hdmi_variant {
struct inno_hdmi_phy_config *phy_configs;
struct inno_hdmi_phy_config *default_phy_config;
};
struct inno_hdmi_i2c {
struct i2c_adapter adap;
u8 ddc_addr;
u8 segment_addr;
struct mutex lock;
struct completion cmp;
};
struct inno_hdmi {
struct device *dev;
struct clk *pclk;
struct clk *refclk;
void __iomem *regs;
struct drm_connector connector;
struct rockchip_encoder encoder;
struct inno_hdmi_i2c *i2c;
struct i2c_adapter *ddc;
const struct inno_hdmi_variant *variant;
};
struct inno_hdmi_connector_state {
struct drm_connector_state base;
unsigned int colorimetry;
};
static struct inno_hdmi *encoder_to_inno_hdmi(struct drm_encoder *encoder)
{
struct rockchip_encoder *rkencoder = to_rockchip_encoder(encoder);
return container_of(rkencoder, struct inno_hdmi, encoder);
}
static struct inno_hdmi *connector_to_inno_hdmi(struct drm_connector *connector)
{
return container_of(connector, struct inno_hdmi, connector);
}
#define to_inno_hdmi_conn_state(conn_state) \
container_of_const(conn_state, struct inno_hdmi_connector_state, base)
enum {
CSC_RGB_0_255_TO_ITU601_16_235_8BIT,
CSC_RGB_0_255_TO_ITU709_16_235_8BIT,
CSC_RGB_0_255_TO_RGB_16_235_8BIT,
};
static const char coeff_csc[][24] = {
/*
* RGB2YUV:601 SD mode:
* Cb = -0.291G - 0.148R + 0.439B + 128
* Y = 0.504G + 0.257R + 0.098B + 16
* Cr = -0.368G + 0.439R - 0.071B + 128
*/
{
0x11, 0x5f, 0x01, 0x82, 0x10, 0x23, 0x00, 0x80,
0x02, 0x1c, 0x00, 0xa1, 0x00, 0x36, 0x00, 0x1e,
0x11, 0x29, 0x10, 0x59, 0x01, 0x82, 0x00, 0x80
},
/*
* RGB2YUV:709 HD mode:
* Cb = - 0.338G - 0.101R + 0.439B + 128
* Y = 0.614G + 0.183R + 0.062B + 16
* Cr = - 0.399G + 0.439R - 0.040B + 128
*/
{
0x11, 0x98, 0x01, 0xc1, 0x10, 0x28, 0x00, 0x80,
0x02, 0x74, 0x00, 0xbb, 0x00, 0x3f, 0x00, 0x10,
0x11, 0x5a, 0x10, 0x67, 0x01, 0xc1, 0x00, 0x80
},
/*
* RGB[0:255]2RGB[16:235]:
* R' = R x (235-16)/255 + 16;
* G' = G x (235-16)/255 + 16;
* B' = B x (235-16)/255 + 16;
*/
{
0x00, 0x00, 0x03, 0x6F, 0x00, 0x00, 0x00, 0x10,
0x03, 0x6F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
0x00, 0x00, 0x00, 0x00, 0x03, 0x6F, 0x00, 0x10
},
};
static struct inno_hdmi_phy_config rk3036_hdmi_phy_configs[] = {
{ 74250000, 0x3f, 0xbb },
{ 165000000, 0x6f, 0xbb },
{ ~0UL, 0x00, 0x00 }
};
static struct inno_hdmi_phy_config rk3128_hdmi_phy_configs[] = {
{ 74250000, 0x3f, 0xaa },
{ 165000000, 0x5f, 0xaa },
{ ~0UL, 0x00, 0x00 }
};
static int inno_hdmi_find_phy_config(struct inno_hdmi *hdmi,
unsigned long pixelclk)
{
const struct inno_hdmi_phy_config *phy_configs =
hdmi->variant->phy_configs;
int i;
for (i = 0; phy_configs[i].pixelclock != ~0UL; i++) {
if (pixelclk <= phy_configs[i].pixelclock)
return i;
}
DRM_DEV_DEBUG(hdmi->dev, "No phy configuration for pixelclock %lu\n",
pixelclk);
return -EINVAL;
}
static inline u8 hdmi_readb(struct inno_hdmi *hdmi, u16 offset)
{
return readl_relaxed(hdmi->regs + (offset) * 0x04);
}
static inline void hdmi_writeb(struct inno_hdmi *hdmi, u16 offset, u32 val)
{
writel_relaxed(val, hdmi->regs + (offset) * 0x04);
}
static inline void hdmi_modb(struct inno_hdmi *hdmi, u16 offset,
u32 msk, u32 val)
{
u8 temp = hdmi_readb(hdmi, offset) & ~msk;
temp |= val & msk;
hdmi_writeb(hdmi, offset, temp);
}
static void inno_hdmi_i2c_init(struct inno_hdmi *hdmi, unsigned long long rate)
{
unsigned long long ddc_bus_freq = rate >> 2;
do_div(ddc_bus_freq, HDMI_SCL_RATE);
hdmi_writeb(hdmi, DDC_BUS_FREQ_L, ddc_bus_freq & 0xFF);
hdmi_writeb(hdmi, DDC_BUS_FREQ_H, (ddc_bus_freq >> 8) & 0xFF);
/* Clear the EDID interrupt flag and mute the interrupt */
hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0);
hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY);
}
static void inno_hdmi_sys_power(struct inno_hdmi *hdmi, bool enable)
{
if (enable)
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_ON);
else
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_OFF);
}
static void inno_hdmi_standby(struct inno_hdmi *hdmi)
{
inno_hdmi_sys_power(hdmi, false);
hdmi_writeb(hdmi, HDMI_PHY_DRIVER, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15);
};
static void inno_hdmi_power_up(struct inno_hdmi *hdmi,
unsigned long mpixelclock)
{
struct inno_hdmi_phy_config *phy_config;
int ret = inno_hdmi_find_phy_config(hdmi, mpixelclock);
if (ret < 0) {
phy_config = hdmi->variant->default_phy_config;
DRM_DEV_ERROR(hdmi->dev,
"Using default phy configuration for TMDS rate %lu",
mpixelclock);
} else {
phy_config = &hdmi->variant->phy_configs[ret];
}
inno_hdmi_sys_power(hdmi, false);
hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, phy_config->pre_emphasis);
hdmi_writeb(hdmi, HDMI_PHY_DRIVER, phy_config->voltage_level_control);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x14);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x10);
hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x0f);
hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x01);
inno_hdmi_sys_power(hdmi, true);
};
static void inno_hdmi_reset(struct inno_hdmi *hdmi)
{
u32 val;
u32 msk;
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_DIGITAL, v_NOT_RST_DIGITAL);
udelay(100);
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_ANALOG, v_NOT_RST_ANALOG);
udelay(100);
msk = m_REG_CLK_INV | m_REG_CLK_SOURCE | m_POWER | m_INT_POL;
val = v_REG_CLK_INV | v_REG_CLK_SOURCE_SYS | v_PWR_ON | v_INT_POL_HIGH;
hdmi_modb(hdmi, HDMI_SYS_CTRL, msk, val);
inno_hdmi_standby(hdmi);
}
static int inno_hdmi_disable_frame(struct drm_connector *connector,
enum hdmi_infoframe_type type)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
if (type != HDMI_INFOFRAME_TYPE_AVI) {
drm_err(connector->dev,
"Unsupported infoframe type: %u\n", type);
return 0;
}
hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_BUF_INDEX, INFOFRAME_AVI);
return 0;
}
static int inno_hdmi_upload_frame(struct drm_connector *connector,
enum hdmi_infoframe_type type,
const u8 *buffer, size_t len)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
ssize_t i;
if (type != HDMI_INFOFRAME_TYPE_AVI) {
drm_err(connector->dev,
"Unsupported infoframe type: %u\n", type);
return 0;
}
inno_hdmi_disable_frame(connector, type);
for (i = 0; i < len; i++)
hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_ADDR + i, buffer[i]);
return 0;
}
static const struct drm_connector_hdmi_funcs inno_hdmi_hdmi_connector_funcs = {
.clear_infoframe = inno_hdmi_disable_frame,
.write_infoframe = inno_hdmi_upload_frame,
};
static int inno_hdmi_config_video_csc(struct inno_hdmi *hdmi)
{
struct drm_connector *connector = &hdmi->connector;
struct drm_connector_state *conn_state = connector->state;
struct inno_hdmi_connector_state *inno_conn_state =
to_inno_hdmi_conn_state(conn_state);
int c0_c2_change = 0;
int csc_enable = 0;
int csc_mode = 0;
int auto_csc = 0;
int value;
int i;
/* Input video mode is SDR RGB24bit, data enable signal from external */
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL1, v_DE_EXTERNAL |
v_VIDEO_INPUT_FORMAT(VIDEO_INPUT_SDR_RGB444));
/* Input color hardcode to RGB, and output color hardcode to RGB888 */
value = v_VIDEO_INPUT_BITS(VIDEO_INPUT_8BITS) |
v_VIDEO_OUTPUT_COLOR(0) |
v_VIDEO_INPUT_CSP(0);
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL2, value);
if (conn_state->hdmi.output_format == HDMI_COLORSPACE_RGB) {
if (conn_state->hdmi.is_limited_range) {
csc_mode = CSC_RGB_0_255_TO_RGB_16_235_8BIT;
auto_csc = AUTO_CSC_DISABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_ENABLE;
} else {
value = v_SOF_DISABLE | v_COLOR_DEPTH_NOT_INDICATED(1);
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value);
hdmi_modb(hdmi, HDMI_VIDEO_CONTRL,
m_VIDEO_AUTO_CSC | m_VIDEO_C0_C2_SWAP,
v_VIDEO_AUTO_CSC(AUTO_CSC_DISABLE) |
v_VIDEO_C0_C2_SWAP(C0_C2_CHANGE_DISABLE));
return 0;
}
} else {
if (inno_conn_state->colorimetry == HDMI_COLORIMETRY_ITU_601) {
if (conn_state->hdmi.output_format == HDMI_COLORSPACE_YUV444) {
csc_mode = CSC_RGB_0_255_TO_ITU601_16_235_8BIT;
auto_csc = AUTO_CSC_DISABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_ENABLE;
}
} else {
if (conn_state->hdmi.output_format == HDMI_COLORSPACE_YUV444) {
csc_mode = CSC_RGB_0_255_TO_ITU709_16_235_8BIT;
auto_csc = AUTO_CSC_DISABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_ENABLE;
}
}
}
for (i = 0; i < 24; i++)
hdmi_writeb(hdmi, HDMI_VIDEO_CSC_COEF + i,
coeff_csc[csc_mode][i]);
value = v_SOF_DISABLE | csc_enable | v_COLOR_DEPTH_NOT_INDICATED(1);
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value);
hdmi_modb(hdmi, HDMI_VIDEO_CONTRL, m_VIDEO_AUTO_CSC |
m_VIDEO_C0_C2_SWAP, v_VIDEO_AUTO_CSC(auto_csc) |
v_VIDEO_C0_C2_SWAP(c0_c2_change));
return 0;
}
static int inno_hdmi_config_video_timing(struct inno_hdmi *hdmi,
struct drm_display_mode *mode)
{
int value;
/* Set detail external video timing polarity and interlace mode */
value = v_EXTERANL_VIDEO(1);
value |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
v_HSYNC_POLARITY(1) : v_HSYNC_POLARITY(0);
value |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
v_VSYNC_POLARITY(1) : v_VSYNC_POLARITY(0);
value |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
v_INETLACE(1) : v_INETLACE(0);
hdmi_writeb(hdmi, HDMI_VIDEO_TIMING_CTL, value);
/* Set detail external video timing */
value = mode->htotal;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_H, (value >> 8) & 0xFF);
value = mode->htotal - mode->hdisplay;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_H, (value >> 8) & 0xFF);
value = mode->htotal - mode->hsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_H, (value >> 8) & 0xFF);
value = mode->hsync_end - mode->hsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_H, (value >> 8) & 0xFF);
value = mode->vtotal;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_H, (value >> 8) & 0xFF);
value = mode->vtotal - mode->vdisplay;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VBLANK, value & 0xFF);
value = mode->vtotal - mode->vsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDELAY, value & 0xFF);
value = mode->vsync_end - mode->vsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDURATION, value & 0xFF);
hdmi_writeb(hdmi, HDMI_PHY_PRE_DIV_RATIO, 0x1e);
hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_LOW, 0x2c);
hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_HIGH, 0x01);
return 0;
}
static int inno_hdmi_setup(struct inno_hdmi *hdmi,
struct drm_atomic_state *state)
{
struct drm_connector *connector = &hdmi->connector;
struct drm_display_info *display = &connector->display_info;
struct drm_connector_state *new_conn_state;
struct drm_crtc_state *new_crtc_state;
new_conn_state = drm_atomic_get_new_connector_state(state, connector);
if (WARN_ON(!new_conn_state))
return -EINVAL;
new_crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
if (WARN_ON(!new_crtc_state))
return -EINVAL;
/* Mute video and audio output */
hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK,
v_AUDIO_MUTE(1) | v_VIDEO_MUTE(1));
/* Set HDMI Mode */
hdmi_writeb(hdmi, HDMI_HDCP_CTRL,
v_HDMI_DVI(display->is_hdmi));
inno_hdmi_config_video_timing(hdmi, &new_crtc_state->adjusted_mode);
inno_hdmi_config_video_csc(hdmi);
drm_atomic_helper_connector_hdmi_update_infoframes(connector, state);
/*
* When IP controller have configured to an accurate video
* timing, then the TMDS clock source would be switched to
* DCLK_LCDC, so we need to init the TMDS rate to mode pixel
* clock rate, and reconfigure the DDC clock.
*/
inno_hdmi_i2c_init(hdmi, new_conn_state->hdmi.tmds_char_rate);
/* Unmute video and audio output */
hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK,
v_AUDIO_MUTE(0) | v_VIDEO_MUTE(0));
inno_hdmi_power_up(hdmi, new_conn_state->hdmi.tmds_char_rate);
return 0;
}
static enum drm_mode_status inno_hdmi_display_mode_valid(struct inno_hdmi *hdmi,
struct drm_display_mode *mode)
{
unsigned long mpixelclk, max_tolerance;
long rounded_refclk;
/* No support for double-clock modes */
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_BAD;
mpixelclk = mode->clock * 1000;
if (mpixelclk < INNO_HDMI_MIN_TMDS_CLOCK)
return MODE_CLOCK_LOW;
if (inno_hdmi_find_phy_config(hdmi, mpixelclk) < 0)
return MODE_CLOCK_HIGH;
if (hdmi->refclk) {
rounded_refclk = clk_round_rate(hdmi->refclk, mpixelclk);
if (rounded_refclk < 0)
return MODE_BAD;
/* Vesa DMT standard mentions +/- 0.5% max tolerance */
max_tolerance = mpixelclk / 200;
if (abs_diff((unsigned long)rounded_refclk, mpixelclk) > max_tolerance)
return MODE_NOCLOCK;
}
return MODE_OK;
}
static void inno_hdmi_encoder_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct inno_hdmi *hdmi = encoder_to_inno_hdmi(encoder);
inno_hdmi_setup(hdmi, state);
}
static void inno_hdmi_encoder_disable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct inno_hdmi *hdmi = encoder_to_inno_hdmi(encoder);
inno_hdmi_standby(hdmi);
}
static int
inno_hdmi_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc_state);
struct drm_display_mode *mode = &crtc_state->adjusted_mode;
u8 vic = drm_match_cea_mode(mode);
struct inno_hdmi_connector_state *inno_conn_state =
to_inno_hdmi_conn_state(conn_state);
s->output_mode = ROCKCHIP_OUT_MODE_P888;
s->output_type = DRM_MODE_CONNECTOR_HDMIA;
if (vic == 6 || vic == 7 ||
vic == 21 || vic == 22 ||
vic == 2 || vic == 3 ||
vic == 17 || vic == 18)
inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_601;
else
inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_709;
return 0;
}
static const struct drm_encoder_helper_funcs inno_hdmi_encoder_helper_funcs = {
.atomic_check = inno_hdmi_encoder_atomic_check,
.atomic_enable = inno_hdmi_encoder_enable,
.atomic_disable = inno_hdmi_encoder_disable,
};
static enum drm_connector_status
inno_hdmi_connector_detect(struct drm_connector *connector, bool force)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
return (hdmi_readb(hdmi, HDMI_STATUS) & m_HOTPLUG) ?
connector_status_connected : connector_status_disconnected;
}
static int inno_hdmi_connector_get_modes(struct drm_connector *connector)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
const struct drm_edid *drm_edid;
int ret = 0;
if (!hdmi->ddc)
return 0;
drm_edid = drm_edid_read_ddc(connector, hdmi->ddc);
drm_edid_connector_update(connector, drm_edid);
ret = drm_edid_connector_add_modes(connector);
drm_edid_free(drm_edid);
return ret;
}
static enum drm_mode_status
inno_hdmi_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
return inno_hdmi_display_mode_valid(hdmi, mode);
}
static void
inno_hdmi_connector_destroy_state(struct drm_connector *connector,
struct drm_connector_state *state)
{
struct inno_hdmi_connector_state *inno_conn_state =
to_inno_hdmi_conn_state(state);
__drm_atomic_helper_connector_destroy_state(&inno_conn_state->base);
kfree(inno_conn_state);
}
static void inno_hdmi_connector_reset(struct drm_connector *connector)
{
struct inno_hdmi_connector_state *inno_conn_state;
if (connector->state) {
inno_hdmi_connector_destroy_state(connector, connector->state);
connector->state = NULL;
}
inno_conn_state = kzalloc(sizeof(*inno_conn_state), GFP_KERNEL);
if (!inno_conn_state)
return;
__drm_atomic_helper_connector_reset(connector, &inno_conn_state->base);
__drm_atomic_helper_connector_hdmi_reset(connector, connector->state);
inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_709;
}
static struct drm_connector_state *
inno_hdmi_connector_duplicate_state(struct drm_connector *connector)
{
struct inno_hdmi_connector_state *inno_conn_state;
if (WARN_ON(!connector->state))
return NULL;
inno_conn_state = kmemdup(to_inno_hdmi_conn_state(connector->state),
sizeof(*inno_conn_state), GFP_KERNEL);
if (!inno_conn_state)
return NULL;
__drm_atomic_helper_connector_duplicate_state(connector,
&inno_conn_state->base);
return &inno_conn_state->base;
}
static const struct drm_connector_funcs inno_hdmi_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = inno_hdmi_connector_detect,
.reset = inno_hdmi_connector_reset,
.atomic_duplicate_state = inno_hdmi_connector_duplicate_state,
.atomic_destroy_state = inno_hdmi_connector_destroy_state,
};
static struct drm_connector_helper_funcs inno_hdmi_connector_helper_funcs = {
.atomic_check = drm_atomic_helper_connector_hdmi_check,
.get_modes = inno_hdmi_connector_get_modes,
.mode_valid = inno_hdmi_connector_mode_valid,
};
static int inno_hdmi_register(struct drm_device *drm, struct inno_hdmi *hdmi)
{
struct drm_encoder *encoder = &hdmi->encoder.encoder;
struct device *dev = hdmi->dev;
encoder->possible_crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
/*
* If we failed to find the CRTC(s) which this encoder is
* supposed to be connected to, it's because the CRTC has
* not been registered yet. Defer probing, and hope that
* the required CRTC is added later.
*/
if (encoder->possible_crtcs == 0)
return -EPROBE_DEFER;
drm_encoder_helper_add(encoder, &inno_hdmi_encoder_helper_funcs);
drm_simple_encoder_init(drm, encoder, DRM_MODE_ENCODER_TMDS);
hdmi->connector.polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_helper_add(&hdmi->connector,
&inno_hdmi_connector_helper_funcs);
drmm_connector_hdmi_init(drm, &hdmi->connector,
"Rockchip", "Inno HDMI",
&inno_hdmi_connector_funcs,
&inno_hdmi_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA,
hdmi->ddc,
BIT(HDMI_COLORSPACE_RGB),
8);
drm_connector_attach_encoder(&hdmi->connector, encoder);
return 0;
}
static irqreturn_t inno_hdmi_i2c_irq(struct inno_hdmi *hdmi)
{
struct inno_hdmi_i2c *i2c = hdmi->i2c;
u8 stat;
stat = hdmi_readb(hdmi, HDMI_INTERRUPT_STATUS1);
if (!(stat & m_INT_EDID_READY))
return IRQ_NONE;
/* Clear HDMI EDID interrupt flag */
hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY);
complete(&i2c->cmp);
return IRQ_HANDLED;
}
static irqreturn_t inno_hdmi_hardirq(int irq, void *dev_id)
{
struct inno_hdmi *hdmi = dev_id;
irqreturn_t ret = IRQ_NONE;
u8 interrupt;
if (hdmi->i2c)
ret = inno_hdmi_i2c_irq(hdmi);
interrupt = hdmi_readb(hdmi, HDMI_STATUS);
if (interrupt & m_INT_HOTPLUG) {
hdmi_modb(hdmi, HDMI_STATUS, m_INT_HOTPLUG, m_INT_HOTPLUG);
ret = IRQ_WAKE_THREAD;
}
return ret;
}
static irqreturn_t inno_hdmi_irq(int irq, void *dev_id)
{
struct inno_hdmi *hdmi = dev_id;
drm_helper_hpd_irq_event(hdmi->connector.dev);
return IRQ_HANDLED;
}
static int inno_hdmi_i2c_read(struct inno_hdmi *hdmi, struct i2c_msg *msgs)
{
int length = msgs->len;
u8 *buf = msgs->buf;
int ret;
ret = wait_for_completion_timeout(&hdmi->i2c->cmp, HZ / 10);
if (!ret)
return -EAGAIN;
while (length--)
*buf++ = hdmi_readb(hdmi, HDMI_EDID_FIFO_ADDR);
return 0;
}
static int inno_hdmi_i2c_write(struct inno_hdmi *hdmi, struct i2c_msg *msgs)
{
/*
* The DDC module only support read EDID message, so
* we assume that each word write to this i2c adapter
* should be the offset of EDID word address.
*/
if ((msgs->len != 1) ||
((msgs->addr != DDC_ADDR) && (msgs->addr != DDC_SEGMENT_ADDR)))
return -EINVAL;
reinit_completion(&hdmi->i2c->cmp);
if (msgs->addr == DDC_SEGMENT_ADDR)
hdmi->i2c->segment_addr = msgs->buf[0];
if (msgs->addr == DDC_ADDR)
hdmi->i2c->ddc_addr = msgs->buf[0];
/* Set edid fifo first addr */
hdmi_writeb(hdmi, HDMI_EDID_FIFO_OFFSET, 0x00);
/* Set edid word address 0x00/0x80 */
hdmi_writeb(hdmi, HDMI_EDID_WORD_ADDR, hdmi->i2c->ddc_addr);
/* Set edid segment pointer */
hdmi_writeb(hdmi, HDMI_EDID_SEGMENT_POINTER, hdmi->i2c->segment_addr);
return 0;
}
static int inno_hdmi_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
struct inno_hdmi *hdmi = i2c_get_adapdata(adap);
struct inno_hdmi_i2c *i2c = hdmi->i2c;
int i, ret = 0;
mutex_lock(&i2c->lock);
/* Clear the EDID interrupt flag and unmute the interrupt */
hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, m_INT_EDID_READY);
hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY);
for (i = 0; i < num; i++) {
DRM_DEV_DEBUG(hdmi->dev,
"xfer: num: %d/%d, len: %d, flags: %#x\n",
i + 1, num, msgs[i].len, msgs[i].flags);
if (msgs[i].flags & I2C_M_RD)
ret = inno_hdmi_i2c_read(hdmi, &msgs[i]);
else
ret = inno_hdmi_i2c_write(hdmi, &msgs[i]);
if (ret < 0)
break;
}
if (!ret)
ret = num;
/* Mute HDMI EDID interrupt */
hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0);
mutex_unlock(&i2c->lock);
return ret;
}
static u32 inno_hdmi_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm inno_hdmi_algorithm = {
.master_xfer = inno_hdmi_i2c_xfer,
.functionality = inno_hdmi_i2c_func,
};
static struct i2c_adapter *inno_hdmi_i2c_adapter(struct inno_hdmi *hdmi)
{
struct i2c_adapter *adap;
struct inno_hdmi_i2c *i2c;
int ret;
i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return ERR_PTR(-ENOMEM);
mutex_init(&i2c->lock);
init_completion(&i2c->cmp);
adap = &i2c->adap;
adap->owner = THIS_MODULE;
adap->dev.parent = hdmi->dev;
adap->dev.of_node = hdmi->dev->of_node;
adap->algo = &inno_hdmi_algorithm;
strscpy(adap->name, "Inno HDMI", sizeof(adap->name));
i2c_set_adapdata(adap, hdmi);
ret = i2c_add_adapter(adap);
if (ret) {
dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
devm_kfree(hdmi->dev, i2c);
return ERR_PTR(ret);
}
hdmi->i2c = i2c;
DRM_DEV_INFO(hdmi->dev, "registered %s I2C bus driver\n", adap->name);
return adap;
}
static int inno_hdmi_bind(struct device *dev, struct device *master,
void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = data;
struct inno_hdmi *hdmi;
const struct inno_hdmi_variant *variant;
int irq;
int ret;
hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
if (!hdmi)
return -ENOMEM;
hdmi->dev = dev;
variant = of_device_get_match_data(hdmi->dev);
if (!variant)
return -EINVAL;
hdmi->variant = variant;
hdmi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hdmi->regs))
return PTR_ERR(hdmi->regs);
hdmi->pclk = devm_clk_get(hdmi->dev, "pclk");
if (IS_ERR(hdmi->pclk)) {
DRM_DEV_ERROR(hdmi->dev, "Unable to get HDMI pclk clk\n");
return PTR_ERR(hdmi->pclk);
}
ret = clk_prepare_enable(hdmi->pclk);
if (ret) {
DRM_DEV_ERROR(hdmi->dev,
"Cannot enable HDMI pclk clock: %d\n", ret);
return ret;
}
hdmi->refclk = devm_clk_get_optional(hdmi->dev, "ref");
if (IS_ERR(hdmi->refclk)) {
DRM_DEV_ERROR(hdmi->dev, "Unable to get HDMI reference clock\n");
ret = PTR_ERR(hdmi->refclk);
goto err_disable_pclk;
}
ret = clk_prepare_enable(hdmi->refclk);
if (ret) {
DRM_DEV_ERROR(hdmi->dev,
"Cannot enable HDMI reference clock: %d\n", ret);
goto err_disable_pclk;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto err_disable_clk;
}
inno_hdmi_reset(hdmi);
hdmi->ddc = inno_hdmi_i2c_adapter(hdmi);
if (IS_ERR(hdmi->ddc)) {
ret = PTR_ERR(hdmi->ddc);
hdmi->ddc = NULL;
goto err_disable_clk;
}
/*
* When the controller isn't configured to an accurate
* video timing and there is no reference clock available,
* then the TMDS clock source would be switched to PCLK_HDMI,
* so we need to init the TMDS rate to PCLK rate, and
* reconfigure the DDC clock.
*/
if (hdmi->refclk)
inno_hdmi_i2c_init(hdmi, clk_get_rate(hdmi->refclk));
else
inno_hdmi_i2c_init(hdmi, clk_get_rate(hdmi->pclk));
ret = inno_hdmi_register(drm, hdmi);
if (ret)
goto err_put_adapter;
dev_set_drvdata(dev, hdmi);
/* Unmute hotplug interrupt */
hdmi_modb(hdmi, HDMI_STATUS, m_MASK_INT_HOTPLUG, v_MASK_INT_HOTPLUG(1));
ret = devm_request_threaded_irq(dev, irq, inno_hdmi_hardirq,
inno_hdmi_irq, IRQF_SHARED,
dev_name(dev), hdmi);
if (ret < 0)
goto err_cleanup_hdmi;
return 0;
err_cleanup_hdmi:
hdmi->connector.funcs->destroy(&hdmi->connector);
hdmi->encoder.encoder.funcs->destroy(&hdmi->encoder.encoder);
err_put_adapter:
i2c_put_adapter(hdmi->ddc);
err_disable_clk:
clk_disable_unprepare(hdmi->refclk);
err_disable_pclk:
clk_disable_unprepare(hdmi->pclk);
return ret;
}
static void inno_hdmi_unbind(struct device *dev, struct device *master,
void *data)
{
struct inno_hdmi *hdmi = dev_get_drvdata(dev);
hdmi->connector.funcs->destroy(&hdmi->connector);
hdmi->encoder.encoder.funcs->destroy(&hdmi->encoder.encoder);
i2c_put_adapter(hdmi->ddc);
clk_disable_unprepare(hdmi->refclk);
clk_disable_unprepare(hdmi->pclk);
}
static const struct component_ops inno_hdmi_ops = {
.bind = inno_hdmi_bind,
.unbind = inno_hdmi_unbind,
};
static int inno_hdmi_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &inno_hdmi_ops);
}
static void inno_hdmi_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &inno_hdmi_ops);
}
static const struct inno_hdmi_variant rk3036_inno_hdmi_variant = {
.phy_configs = rk3036_hdmi_phy_configs,
.default_phy_config = &rk3036_hdmi_phy_configs[1],
};
static const struct inno_hdmi_variant rk3128_inno_hdmi_variant = {
.phy_configs = rk3128_hdmi_phy_configs,
.default_phy_config = &rk3128_hdmi_phy_configs[1],
};
static const struct of_device_id inno_hdmi_dt_ids[] = {
{ .compatible = "rockchip,rk3036-inno-hdmi",
.data = &rk3036_inno_hdmi_variant,
},
{ .compatible = "rockchip,rk3128-inno-hdmi",
.data = &rk3128_inno_hdmi_variant,
},
{},
};
MODULE_DEVICE_TABLE(of, inno_hdmi_dt_ids);
struct platform_driver inno_hdmi_driver = {
.probe = inno_hdmi_probe,
.remove_new = inno_hdmi_remove,
.driver = {
.name = "innohdmi-rockchip",
.of_match_table = inno_hdmi_dt_ids,
},
};