| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * AD4000 SPI ADC driver |
| * |
| * Copyright 2024 Analog Devices Inc. |
| */ |
| #include <linux/bits.h> |
| #include <linux/bitfield.h> |
| #include <linux/byteorder/generic.h> |
| #include <linux/cleanup.h> |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/math.h> |
| #include <linux/module.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/spi/spi.h> |
| #include <linux/units.h> |
| #include <linux/util_macros.h> |
| #include <linux/iio/iio.h> |
| |
| #include <linux/iio/buffer.h> |
| #include <linux/iio/triggered_buffer.h> |
| #include <linux/iio/trigger_consumer.h> |
| |
| #define AD4000_READ_COMMAND 0x54 |
| #define AD4000_WRITE_COMMAND 0x14 |
| |
| #define AD4000_CONFIG_REG_DEFAULT 0xE1 |
| |
| /* AD4000 Configuration Register programmable bits */ |
| #define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */ |
| #define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */ |
| |
| #define AD4000_SCALE_OPTIONS 2 |
| |
| #define AD4000_TQUIET1_NS 190 |
| #define AD4000_TQUIET2_NS 60 |
| #define AD4000_TCONV_NS 320 |
| |
| #define __AD4000_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access) \ |
| { \ |
| .type = IIO_VOLTAGE, \ |
| .indexed = 1, \ |
| .differential = 1, \ |
| .channel = 0, \ |
| .channel2 = 1, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ |
| BIT(IIO_CHAN_INFO_SCALE), \ |
| .info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\ |
| .scan_type = { \ |
| .sign = _sign, \ |
| .realbits = _real_bits, \ |
| .storagebits = _storage_bits, \ |
| .shift = _storage_bits - _real_bits, \ |
| .endianness = IIO_BE, \ |
| }, \ |
| } |
| |
| #define AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \ |
| __AD4000_DIFF_CHANNEL((_sign), (_real_bits), \ |
| ((_real_bits) > 16 ? 32 : 16), (_reg_access)) |
| |
| #define __AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access)\ |
| { \ |
| .type = IIO_VOLTAGE, \ |
| .indexed = 1, \ |
| .channel = 0, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ |
| BIT(IIO_CHAN_INFO_SCALE) | \ |
| BIT(IIO_CHAN_INFO_OFFSET), \ |
| .info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\ |
| .scan_type = { \ |
| .sign = _sign, \ |
| .realbits = _real_bits, \ |
| .storagebits = _storage_bits, \ |
| .shift = _storage_bits - _real_bits, \ |
| .endianness = IIO_BE, \ |
| }, \ |
| } |
| |
| #define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \ |
| __AD4000_PSEUDO_DIFF_CHANNEL((_sign), (_real_bits), \ |
| ((_real_bits) > 16 ? 32 : 16), (_reg_access)) |
| |
| static const char * const ad4000_power_supplies[] = { |
| "vdd", "vio" |
| }; |
| |
| enum ad4000_sdi { |
| AD4000_SDI_MOSI, |
| AD4000_SDI_VIO, |
| AD4000_SDI_CS, |
| AD4000_SDI_GND, |
| }; |
| |
| /* maps adi,sdi-pin property value to enum */ |
| static const char * const ad4000_sdi_pin[] = { |
| [AD4000_SDI_MOSI] = "sdi", |
| [AD4000_SDI_VIO] = "high", |
| [AD4000_SDI_CS] = "cs", |
| [AD4000_SDI_GND] = "low", |
| }; |
| |
| /* Gains stored as fractions of 1000 so they can be expressed by integers. */ |
| static const int ad4000_gains[] = { |
| 454, 909, 1000, 1900, |
| }; |
| |
| struct ad4000_chip_info { |
| const char *dev_name; |
| struct iio_chan_spec chan_spec; |
| struct iio_chan_spec reg_access_chan_spec; |
| bool has_hardware_gain; |
| }; |
| |
| static const struct ad4000_chip_info ad4000_chip_info = { |
| .dev_name = "ad4000", |
| .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), |
| .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4001_chip_info = { |
| .dev_name = "ad4001", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4002_chip_info = { |
| .dev_name = "ad4002", |
| .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), |
| .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4003_chip_info = { |
| .dev_name = "ad4003", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4004_chip_info = { |
| .dev_name = "ad4004", |
| .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), |
| .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4005_chip_info = { |
| .dev_name = "ad4005", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4006_chip_info = { |
| .dev_name = "ad4006", |
| .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), |
| .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4007_chip_info = { |
| .dev_name = "ad4007", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4008_chip_info = { |
| .dev_name = "ad4008", |
| .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), |
| .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4010_chip_info = { |
| .dev_name = "ad4010", |
| .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), |
| .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4011_chip_info = { |
| .dev_name = "ad4011", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4020_chip_info = { |
| .dev_name = "ad4020", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4021_chip_info = { |
| .dev_name = "ad4021", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), |
| }; |
| |
| static const struct ad4000_chip_info ad4022_chip_info = { |
| .dev_name = "ad4022", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), |
| }; |
| |
| static const struct ad4000_chip_info adaq4001_chip_info = { |
| .dev_name = "adaq4001", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), |
| .has_hardware_gain = true, |
| }; |
| |
| static const struct ad4000_chip_info adaq4003_chip_info = { |
| .dev_name = "adaq4003", |
| .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), |
| .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), |
| .has_hardware_gain = true, |
| }; |
| |
| struct ad4000_state { |
| struct spi_device *spi; |
| struct gpio_desc *cnv_gpio; |
| struct spi_transfer xfers[2]; |
| struct spi_message msg; |
| struct mutex lock; /* Protect read modify write cycle */ |
| int vref_mv; |
| enum ad4000_sdi sdi_pin; |
| bool span_comp; |
| u16 gain_milli; |
| int scale_tbl[AD4000_SCALE_OPTIONS][2]; |
| |
| /* |
| * DMA (thus cache coherency maintenance) requires the transfer buffers |
| * to live in their own cache lines. |
| */ |
| struct { |
| union { |
| __be16 sample_buf16; |
| __be32 sample_buf32; |
| } data; |
| s64 timestamp __aligned(8); |
| } scan __aligned(IIO_DMA_MINALIGN); |
| u8 tx_buf[2]; |
| u8 rx_buf[2]; |
| }; |
| |
| static void ad4000_fill_scale_tbl(struct ad4000_state *st, |
| struct iio_chan_spec const *chan) |
| { |
| int val, tmp0, tmp1; |
| int scale_bits; |
| u64 tmp2; |
| |
| /* |
| * ADCs that output two's complement code have one less bit to express |
| * voltage magnitude. |
| */ |
| if (chan->scan_type.sign == 's') |
| scale_bits = chan->scan_type.realbits - 1; |
| else |
| scale_bits = chan->scan_type.realbits; |
| |
| /* |
| * The gain is stored as a fraction of 1000 and, as we need to |
| * divide vref_mv by the gain, we invert the gain/1000 fraction. |
| * Also multiply by an extra MILLI to preserve precision. |
| * Thus, we have MILLI * MILLI equals MICRO as fraction numerator. |
| */ |
| val = mult_frac(st->vref_mv, MICRO, st->gain_milli); |
| |
| /* Would multiply by NANO here but we multiplied by extra MILLI */ |
| tmp2 = shift_right((u64)val * MICRO, scale_bits); |
| tmp0 = div_s64_rem(tmp2, NANO, &tmp1); |
| |
| /* Store scale for when span compression is disabled */ |
| st->scale_tbl[0][0] = tmp0; /* Integer part */ |
| st->scale_tbl[0][1] = abs(tmp1); /* Fractional part */ |
| |
| /* Store scale for when span compression is enabled */ |
| st->scale_tbl[1][0] = tmp0; |
| |
| /* The integer part is always zero so don't bother to divide it. */ |
| if (chan->differential) |
| st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 4, 5); |
| else |
| st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 9, 10); |
| } |
| |
| static int ad4000_write_reg(struct ad4000_state *st, uint8_t val) |
| { |
| st->tx_buf[0] = AD4000_WRITE_COMMAND; |
| st->tx_buf[1] = val; |
| return spi_write(st->spi, st->tx_buf, ARRAY_SIZE(st->tx_buf)); |
| } |
| |
| static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val) |
| { |
| struct spi_transfer t = { |
| .tx_buf = st->tx_buf, |
| .rx_buf = st->rx_buf, |
| .len = 2, |
| }; |
| int ret; |
| |
| st->tx_buf[0] = AD4000_READ_COMMAND; |
| ret = spi_sync_transfer(st->spi, &t, 1); |
| if (ret < 0) |
| return ret; |
| |
| *val = st->rx_buf[1]; |
| return ret; |
| } |
| |
| static int ad4000_convert_and_acquire(struct ad4000_state *st) |
| { |
| int ret; |
| |
| /* |
| * In 4-wire mode, the CNV line is held high for the entire conversion |
| * and acquisition process. In other modes, the CNV GPIO is optional |
| * and, if provided, replaces controller CS. If CNV GPIO is not defined |
| * gpiod_set_value_cansleep() has no effect. |
| */ |
| gpiod_set_value_cansleep(st->cnv_gpio, 1); |
| ret = spi_sync(st->spi, &st->msg); |
| gpiod_set_value_cansleep(st->cnv_gpio, 0); |
| |
| return ret; |
| } |
| |
| static int ad4000_single_conversion(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, int *val) |
| { |
| struct ad4000_state *st = iio_priv(indio_dev); |
| u32 sample; |
| int ret; |
| |
| ret = ad4000_convert_and_acquire(st); |
| if (ret < 0) |
| return ret; |
| |
| if (chan->scan_type.storagebits > 16) |
| sample = be32_to_cpu(st->scan.data.sample_buf32); |
| else |
| sample = be16_to_cpu(st->scan.data.sample_buf16); |
| |
| sample >>= chan->scan_type.shift; |
| |
| if (chan->scan_type.sign == 's') |
| *val = sign_extend32(sample, chan->scan_type.realbits - 1); |
| |
| return IIO_VAL_INT; |
| } |
| |
| static int ad4000_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int *val, |
| int *val2, long info) |
| { |
| struct ad4000_state *st = iio_priv(indio_dev); |
| |
| switch (info) { |
| case IIO_CHAN_INFO_RAW: |
| iio_device_claim_direct_scoped(return -EBUSY, indio_dev) |
| return ad4000_single_conversion(indio_dev, chan, val); |
| unreachable(); |
| case IIO_CHAN_INFO_SCALE: |
| *val = st->scale_tbl[st->span_comp][0]; |
| *val2 = st->scale_tbl[st->span_comp][1]; |
| return IIO_VAL_INT_PLUS_NANO; |
| case IIO_CHAN_INFO_OFFSET: |
| *val = 0; |
| if (st->span_comp) |
| *val = mult_frac(st->vref_mv, 1, 10); |
| |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int ad4000_read_avail(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| const int **vals, int *type, int *length, |
| long info) |
| { |
| struct ad4000_state *st = iio_priv(indio_dev); |
| |
| switch (info) { |
| case IIO_CHAN_INFO_SCALE: |
| *vals = (int *)st->scale_tbl; |
| *length = AD4000_SCALE_OPTIONS * 2; |
| *type = IIO_VAL_INT_PLUS_NANO; |
| return IIO_AVAIL_LIST; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int ad4000_write_raw_get_fmt(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, long mask) |
| { |
| switch (mask) { |
| case IIO_CHAN_INFO_SCALE: |
| return IIO_VAL_INT_PLUS_NANO; |
| default: |
| return IIO_VAL_INT_PLUS_MICRO; |
| } |
| } |
| |
| static int ad4000_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int val, int val2, |
| long mask) |
| { |
| struct ad4000_state *st = iio_priv(indio_dev); |
| unsigned int reg_val; |
| bool span_comp_en; |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_SCALE: |
| iio_device_claim_direct_scoped(return -EBUSY, indio_dev) { |
| guard(mutex)(&st->lock); |
| |
| ret = ad4000_read_reg(st, ®_val); |
| if (ret < 0) |
| return ret; |
| |
| span_comp_en = val2 == st->scale_tbl[1][1]; |
| reg_val &= ~AD4000_CFG_SPAN_COMP; |
| reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en); |
| |
| ret = ad4000_write_reg(st, reg_val); |
| if (ret < 0) |
| return ret; |
| |
| st->span_comp = span_comp_en; |
| return 0; |
| } |
| unreachable(); |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static irqreturn_t ad4000_trigger_handler(int irq, void *p) |
| { |
| struct iio_poll_func *pf = p; |
| struct iio_dev *indio_dev = pf->indio_dev; |
| struct ad4000_state *st = iio_priv(indio_dev); |
| int ret; |
| |
| ret = ad4000_convert_and_acquire(st); |
| if (ret < 0) |
| goto err_out; |
| |
| iio_push_to_buffers_with_timestamp(indio_dev, &st->scan, pf->timestamp); |
| |
| err_out: |
| iio_trigger_notify_done(indio_dev->trig); |
| return IRQ_HANDLED; |
| } |
| |
| static const struct iio_info ad4000_reg_access_info = { |
| .read_raw = &ad4000_read_raw, |
| .read_avail = &ad4000_read_avail, |
| .write_raw = &ad4000_write_raw, |
| .write_raw_get_fmt = &ad4000_write_raw_get_fmt, |
| }; |
| |
| static const struct iio_info ad4000_info = { |
| .read_raw = &ad4000_read_raw, |
| }; |
| |
| /* |
| * This executes a data sample transfer for when the device connections are |
| * in "3-wire" mode, selected when the adi,sdi-pin device tree property is |
| * absent or set to "high". In this connection mode, the ADC SDI pin is |
| * connected to MOSI or to VIO and ADC CNV pin is connected either to a SPI |
| * controller CS or to a GPIO. |
| * AD4000 series of devices initiate conversions on the rising edge of CNV pin. |
| * |
| * If the CNV pin is connected to an SPI controller CS line (which is by default |
| * active low), the ADC readings would have a latency (delay) of one read. |
| * Moreover, since we also do ADC sampling for filling the buffer on triggered |
| * buffer mode, the timestamps of buffer readings would be disarranged. |
| * To prevent the read latency and reduce the time discrepancy between the |
| * sample read request and the time of actual sampling by the ADC, do a |
| * preparatory transfer to pulse the CS/CNV line. |
| */ |
| static int ad4000_prepare_3wire_mode_message(struct ad4000_state *st, |
| const struct iio_chan_spec *chan) |
| { |
| unsigned int cnv_pulse_time = AD4000_TCONV_NS; |
| struct spi_transfer *xfers = st->xfers; |
| |
| xfers[0].cs_change = 1; |
| xfers[0].cs_change_delay.value = cnv_pulse_time; |
| xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS; |
| |
| xfers[1].rx_buf = &st->scan.data; |
| xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); |
| xfers[1].delay.value = AD4000_TQUIET2_NS; |
| xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS; |
| |
| spi_message_init_with_transfers(&st->msg, st->xfers, 2); |
| |
| return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg); |
| } |
| |
| /* |
| * This executes a data sample transfer for when the device connections are |
| * in "4-wire" mode, selected when the adi,sdi-pin device tree property is |
| * set to "cs". In this connection mode, the controller CS pin is connected to |
| * ADC SDI pin and a GPIO is connected to ADC CNV pin. |
| * The GPIO connected to ADC CNV pin is set outside of the SPI transfer. |
| */ |
| static int ad4000_prepare_4wire_mode_message(struct ad4000_state *st, |
| const struct iio_chan_spec *chan) |
| { |
| unsigned int cnv_to_sdi_time = AD4000_TCONV_NS; |
| struct spi_transfer *xfers = st->xfers; |
| |
| /* |
| * Dummy transfer to cause enough delay between CNV going high and SDI |
| * going low. |
| */ |
| xfers[0].cs_off = 1; |
| xfers[0].delay.value = cnv_to_sdi_time; |
| xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS; |
| |
| xfers[1].rx_buf = &st->scan.data; |
| xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); |
| |
| spi_message_init_with_transfers(&st->msg, st->xfers, 2); |
| |
| return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg); |
| } |
| |
| static int ad4000_config(struct ad4000_state *st) |
| { |
| unsigned int reg_val = AD4000_CONFIG_REG_DEFAULT; |
| |
| if (device_property_present(&st->spi->dev, "adi,high-z-input")) |
| reg_val |= FIELD_PREP(AD4000_CFG_HIGHZ, 1); |
| |
| return ad4000_write_reg(st, reg_val); |
| } |
| |
| static int ad4000_probe(struct spi_device *spi) |
| { |
| const struct ad4000_chip_info *chip; |
| struct device *dev = &spi->dev; |
| struct iio_dev *indio_dev; |
| struct ad4000_state *st; |
| int gain_idx, ret; |
| |
| indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| chip = spi_get_device_match_data(spi); |
| if (!chip) |
| return -EINVAL; |
| |
| st = iio_priv(indio_dev); |
| st->spi = spi; |
| |
| ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(ad4000_power_supplies), |
| ad4000_power_supplies); |
| if (ret) |
| return dev_err_probe(dev, ret, "Failed to enable power supplies\n"); |
| |
| ret = devm_regulator_get_enable_read_voltage(dev, "ref"); |
| if (ret < 0) |
| return dev_err_probe(dev, ret, |
| "Failed to get ref regulator reference\n"); |
| st->vref_mv = ret / 1000; |
| |
| st->cnv_gpio = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_HIGH); |
| if (IS_ERR(st->cnv_gpio)) |
| return dev_err_probe(dev, PTR_ERR(st->cnv_gpio), |
| "Failed to get CNV GPIO"); |
| |
| ret = device_property_match_property_string(dev, "adi,sdi-pin", |
| ad4000_sdi_pin, |
| ARRAY_SIZE(ad4000_sdi_pin)); |
| if (ret < 0 && ret != -EINVAL) |
| return dev_err_probe(dev, ret, |
| "getting adi,sdi-pin property failed\n"); |
| |
| /* Default to usual SPI connections if pin properties are not present */ |
| st->sdi_pin = ret == -EINVAL ? AD4000_SDI_MOSI : ret; |
| switch (st->sdi_pin) { |
| case AD4000_SDI_MOSI: |
| indio_dev->info = &ad4000_reg_access_info; |
| indio_dev->channels = &chip->reg_access_chan_spec; |
| |
| /* |
| * In "3-wire mode", the ADC SDI line must be kept high when |
| * data is not being clocked out of the controller. |
| * Request the SPI controller to make MOSI idle high. |
| */ |
| spi->mode |= SPI_MOSI_IDLE_HIGH; |
| ret = spi_setup(spi); |
| if (ret < 0) |
| return ret; |
| |
| ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels); |
| if (ret) |
| return ret; |
| |
| ret = ad4000_config(st); |
| if (ret < 0) |
| return dev_err_probe(dev, ret, "Failed to config device\n"); |
| |
| break; |
| case AD4000_SDI_VIO: |
| indio_dev->info = &ad4000_info; |
| indio_dev->channels = &chip->chan_spec; |
| ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels); |
| if (ret) |
| return ret; |
| |
| break; |
| case AD4000_SDI_CS: |
| indio_dev->info = &ad4000_info; |
| indio_dev->channels = &chip->chan_spec; |
| ret = ad4000_prepare_4wire_mode_message(st, indio_dev->channels); |
| if (ret) |
| return ret; |
| |
| break; |
| case AD4000_SDI_GND: |
| return dev_err_probe(dev, -EPROTONOSUPPORT, |
| "Unsupported connection mode\n"); |
| |
| default: |
| return dev_err_probe(dev, -EINVAL, "Unrecognized connection mode\n"); |
| } |
| |
| indio_dev->name = chip->dev_name; |
| indio_dev->num_channels = 1; |
| |
| devm_mutex_init(dev, &st->lock); |
| |
| st->gain_milli = 1000; |
| if (chip->has_hardware_gain) { |
| ret = device_property_read_u16(dev, "adi,gain-milli", |
| &st->gain_milli); |
| if (!ret) { |
| /* Match gain value from dt to one of supported gains */ |
| gain_idx = find_closest(st->gain_milli, ad4000_gains, |
| ARRAY_SIZE(ad4000_gains)); |
| st->gain_milli = ad4000_gains[gain_idx]; |
| } else { |
| return dev_err_probe(dev, ret, |
| "Failed to read gain property\n"); |
| } |
| } |
| |
| ad4000_fill_scale_tbl(st, indio_dev->channels); |
| |
| ret = devm_iio_triggered_buffer_setup(dev, indio_dev, |
| &iio_pollfunc_store_time, |
| &ad4000_trigger_handler, NULL); |
| if (ret) |
| return ret; |
| |
| return devm_iio_device_register(dev, indio_dev); |
| } |
| |
| static const struct spi_device_id ad4000_id[] = { |
| { "ad4000", (kernel_ulong_t)&ad4000_chip_info }, |
| { "ad4001", (kernel_ulong_t)&ad4001_chip_info }, |
| { "ad4002", (kernel_ulong_t)&ad4002_chip_info }, |
| { "ad4003", (kernel_ulong_t)&ad4003_chip_info }, |
| { "ad4004", (kernel_ulong_t)&ad4004_chip_info }, |
| { "ad4005", (kernel_ulong_t)&ad4005_chip_info }, |
| { "ad4006", (kernel_ulong_t)&ad4006_chip_info }, |
| { "ad4007", (kernel_ulong_t)&ad4007_chip_info }, |
| { "ad4008", (kernel_ulong_t)&ad4008_chip_info }, |
| { "ad4010", (kernel_ulong_t)&ad4010_chip_info }, |
| { "ad4011", (kernel_ulong_t)&ad4011_chip_info }, |
| { "ad4020", (kernel_ulong_t)&ad4020_chip_info }, |
| { "ad4021", (kernel_ulong_t)&ad4021_chip_info }, |
| { "ad4022", (kernel_ulong_t)&ad4022_chip_info }, |
| { "adaq4001", (kernel_ulong_t)&adaq4001_chip_info }, |
| { "adaq4003", (kernel_ulong_t)&adaq4003_chip_info }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(spi, ad4000_id); |
| |
| static const struct of_device_id ad4000_of_match[] = { |
| { .compatible = "adi,ad4000", .data = &ad4000_chip_info }, |
| { .compatible = "adi,ad4001", .data = &ad4001_chip_info }, |
| { .compatible = "adi,ad4002", .data = &ad4002_chip_info }, |
| { .compatible = "adi,ad4003", .data = &ad4003_chip_info }, |
| { .compatible = "adi,ad4004", .data = &ad4004_chip_info }, |
| { .compatible = "adi,ad4005", .data = &ad4005_chip_info }, |
| { .compatible = "adi,ad4006", .data = &ad4006_chip_info }, |
| { .compatible = "adi,ad4007", .data = &ad4007_chip_info }, |
| { .compatible = "adi,ad4008", .data = &ad4008_chip_info }, |
| { .compatible = "adi,ad4010", .data = &ad4010_chip_info }, |
| { .compatible = "adi,ad4011", .data = &ad4011_chip_info }, |
| { .compatible = "adi,ad4020", .data = &ad4020_chip_info }, |
| { .compatible = "adi,ad4021", .data = &ad4021_chip_info }, |
| { .compatible = "adi,ad4022", .data = &ad4022_chip_info }, |
| { .compatible = "adi,adaq4001", .data = &adaq4001_chip_info }, |
| { .compatible = "adi,adaq4003", .data = &adaq4003_chip_info }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, ad4000_of_match); |
| |
| static struct spi_driver ad4000_driver = { |
| .driver = { |
| .name = "ad4000", |
| .of_match_table = ad4000_of_match, |
| }, |
| .probe = ad4000_probe, |
| .id_table = ad4000_id, |
| }; |
| module_spi_driver(ad4000_driver); |
| |
| MODULE_AUTHOR("Marcelo Schmitt <marcelo.schmitt@analog.com>"); |
| MODULE_DESCRIPTION("Analog Devices AD4000 ADC driver"); |
| MODULE_LICENSE("GPL"); |