blob: 6d1bc9659946df0be15ebc550c84e966a90c9fce [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* ADS1015 - Texas Instruments Analog-to-Digital Converter
*
* Copyright (c) 2016, Intel Corporation.
*
* IIO driver for ADS1015 ADC 7-bit I2C slave address:
* * 0x48 - ADDR connected to Ground
* * 0x49 - ADDR connected to Vdd
* * 0x4A - ADDR connected to SDA
* * 0x4B - ADDR connected to SCL
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/i2c.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/pm_runtime.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/types.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>
#include <linux/iio/buffer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#define ADS1015_DRV_NAME "ads1015"
#define ADS1015_CHANNELS 8
#define ADS1015_CONV_REG 0x00
#define ADS1015_CFG_REG 0x01
#define ADS1015_LO_THRESH_REG 0x02
#define ADS1015_HI_THRESH_REG 0x03
#define ADS1015_CFG_COMP_QUE_SHIFT 0
#define ADS1015_CFG_COMP_LAT_SHIFT 2
#define ADS1015_CFG_COMP_POL_SHIFT 3
#define ADS1015_CFG_COMP_MODE_SHIFT 4
#define ADS1015_CFG_DR_SHIFT 5
#define ADS1015_CFG_MOD_SHIFT 8
#define ADS1015_CFG_PGA_SHIFT 9
#define ADS1015_CFG_MUX_SHIFT 12
#define ADS1015_CFG_COMP_QUE_MASK GENMASK(1, 0)
#define ADS1015_CFG_COMP_LAT_MASK BIT(2)
#define ADS1015_CFG_COMP_POL_MASK BIT(3)
#define ADS1015_CFG_COMP_MODE_MASK BIT(4)
#define ADS1015_CFG_DR_MASK GENMASK(7, 5)
#define ADS1015_CFG_MOD_MASK BIT(8)
#define ADS1015_CFG_PGA_MASK GENMASK(11, 9)
#define ADS1015_CFG_MUX_MASK GENMASK(14, 12)
/* Comparator queue and disable field */
#define ADS1015_CFG_COMP_DISABLE 3
/* Comparator polarity field */
#define ADS1015_CFG_COMP_POL_LOW 0
#define ADS1015_CFG_COMP_POL_HIGH 1
/* Comparator mode field */
#define ADS1015_CFG_COMP_MODE_TRAD 0
#define ADS1015_CFG_COMP_MODE_WINDOW 1
/* device operating modes */
#define ADS1015_CONTINUOUS 0
#define ADS1015_SINGLESHOT 1
#define ADS1015_SLEEP_DELAY_MS 2000
#define ADS1015_DEFAULT_PGA 2
#define ADS1015_DEFAULT_DATA_RATE 4
#define ADS1015_DEFAULT_CHAN 0
struct ads1015_chip_data {
struct iio_chan_spec const *channels;
int num_channels;
const struct iio_info *info;
const int *data_rate;
const int data_rate_len;
const int *scale;
const int scale_len;
bool has_comparator;
};
enum ads1015_channels {
ADS1015_AIN0_AIN1 = 0,
ADS1015_AIN0_AIN3,
ADS1015_AIN1_AIN3,
ADS1015_AIN2_AIN3,
ADS1015_AIN0,
ADS1015_AIN1,
ADS1015_AIN2,
ADS1015_AIN3,
ADS1015_TIMESTAMP,
};
static const int ads1015_data_rate[] = {
128, 250, 490, 920, 1600, 2400, 3300, 3300
};
static const int ads1115_data_rate[] = {
8, 16, 32, 64, 128, 250, 475, 860
};
/*
* Translation from PGA bits to full-scale positive and negative input voltage
* range in mV
*/
static const int ads1015_fullscale_range[] = {
6144, 4096, 2048, 1024, 512, 256, 256, 256
};
static const int ads1015_scale[] = { /* 12bit ADC */
256, 11,
512, 11,
1024, 11,
2048, 11,
4096, 11,
6144, 11
};
static const int ads1115_scale[] = { /* 16bit ADC */
256, 15,
512, 15,
1024, 15,
2048, 15,
4096, 15,
6144, 15
};
/*
* Translation from COMP_QUE field value to the number of successive readings
* exceed the threshold values before an interrupt is generated
*/
static const int ads1015_comp_queue[] = { 1, 2, 4 };
static const struct iio_event_spec ads1015_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_PERIOD),
},
};
/*
* Compile-time check whether _fitbits can accommodate up to _testbits
* bits. Returns _fitbits on success, fails to compile otherwise.
*
* The test works such that it multiplies constant _fitbits by constant
* double-negation of size of a non-empty structure, i.e. it multiplies
* constant _fitbits by constant 1 in each successful compilation case.
* The non-empty structure may contain C11 _Static_assert(), make use of
* this and place the kernel variant of static assert in there, so that
* it performs the compile-time check for _testbits <= _fitbits. Note
* that it is not possible to directly use static_assert in compound
* statements, hence this convoluted construct.
*/
#define FIT_CHECK(_testbits, _fitbits) \
( \
(_fitbits) * \
!!sizeof(struct { \
static_assert((_testbits) <= (_fitbits)); \
int pad; \
}) \
)
#define ADS1015_V_CHAN(_chan, _addr, _realbits, _shift, _event_spec, _num_event_specs) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.address = _addr, \
.channel = _chan, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = _addr, \
.scan_type = { \
.sign = 's', \
.realbits = (_realbits), \
.storagebits = FIT_CHECK((_realbits) + (_shift), 16), \
.shift = (_shift), \
.endianness = IIO_CPU, \
}, \
.event_spec = (_event_spec), \
.num_event_specs = (_num_event_specs), \
.datasheet_name = "AIN"#_chan, \
}
#define ADS1015_V_DIFF_CHAN(_chan, _chan2, _addr, _realbits, _shift, _event_spec, _num_event_specs) { \
.type = IIO_VOLTAGE, \
.differential = 1, \
.indexed = 1, \
.address = _addr, \
.channel = _chan, \
.channel2 = _chan2, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = _addr, \
.scan_type = { \
.sign = 's', \
.realbits = (_realbits), \
.storagebits = FIT_CHECK((_realbits) + (_shift), 16), \
.shift = (_shift), \
.endianness = IIO_CPU, \
}, \
.event_spec = (_event_spec), \
.num_event_specs = (_num_event_specs), \
.datasheet_name = "AIN"#_chan"-AIN"#_chan2, \
}
struct ads1015_channel_data {
bool enabled;
unsigned int pga;
unsigned int data_rate;
};
struct ads1015_thresh_data {
unsigned int comp_queue;
int high_thresh;
int low_thresh;
};
struct ads1015_data {
struct regmap *regmap;
/*
* Protects ADC ops, e.g: concurrent sysfs/buffered
* data reads, configuration updates
*/
struct mutex lock;
struct ads1015_channel_data channel_data[ADS1015_CHANNELS];
unsigned int event_channel;
unsigned int comp_mode;
struct ads1015_thresh_data thresh_data[ADS1015_CHANNELS];
const struct ads1015_chip_data *chip;
/*
* Set to true when the ADC is switched to the continuous-conversion
* mode and exits from a power-down state. This flag is used to avoid
* getting the stale result from the conversion register.
*/
bool conv_invalid;
};
static bool ads1015_event_channel_enabled(struct ads1015_data *data)
{
return (data->event_channel != ADS1015_CHANNELS);
}
static void ads1015_event_channel_enable(struct ads1015_data *data, int chan,
int comp_mode)
{
WARN_ON(ads1015_event_channel_enabled(data));
data->event_channel = chan;
data->comp_mode = comp_mode;
}
static void ads1015_event_channel_disable(struct ads1015_data *data, int chan)
{
data->event_channel = ADS1015_CHANNELS;
}
static const struct regmap_range ads1015_writeable_ranges[] = {
regmap_reg_range(ADS1015_CFG_REG, ADS1015_HI_THRESH_REG),
};
static const struct regmap_access_table ads1015_writeable_table = {
.yes_ranges = ads1015_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(ads1015_writeable_ranges),
};
static const struct regmap_config ads1015_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.max_register = ADS1015_HI_THRESH_REG,
.wr_table = &ads1015_writeable_table,
};
static const struct regmap_range tla2024_writeable_ranges[] = {
regmap_reg_range(ADS1015_CFG_REG, ADS1015_CFG_REG),
};
static const struct regmap_access_table tla2024_writeable_table = {
.yes_ranges = tla2024_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(tla2024_writeable_ranges),
};
static const struct regmap_config tla2024_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.max_register = ADS1015_CFG_REG,
.wr_table = &tla2024_writeable_table,
};
static const struct iio_chan_spec ads1015_channels[] = {
ADS1015_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1, 12, 4,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3, 12, 4,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3, 12, 4,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3, 12, 4,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_CHAN(0, ADS1015_AIN0, 12, 4,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_CHAN(1, ADS1015_AIN1, 12, 4,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_CHAN(2, ADS1015_AIN2, 12, 4,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_CHAN(3, ADS1015_AIN3, 12, 4,
ads1015_events, ARRAY_SIZE(ads1015_events)),
IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP),
};
static const struct iio_chan_spec ads1115_channels[] = {
ADS1015_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1, 16, 0,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3, 16, 0,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3, 16, 0,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3, 16, 0,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_CHAN(0, ADS1015_AIN0, 16, 0,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_CHAN(1, ADS1015_AIN1, 16, 0,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_CHAN(2, ADS1015_AIN2, 16, 0,
ads1015_events, ARRAY_SIZE(ads1015_events)),
ADS1015_V_CHAN(3, ADS1015_AIN3, 16, 0,
ads1015_events, ARRAY_SIZE(ads1015_events)),
IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP),
};
static const struct iio_chan_spec tla2024_channels[] = {
ADS1015_V_DIFF_CHAN(0, 1, ADS1015_AIN0_AIN1, 12, 4, NULL, 0),
ADS1015_V_DIFF_CHAN(0, 3, ADS1015_AIN0_AIN3, 12, 4, NULL, 0),
ADS1015_V_DIFF_CHAN(1, 3, ADS1015_AIN1_AIN3, 12, 4, NULL, 0),
ADS1015_V_DIFF_CHAN(2, 3, ADS1015_AIN2_AIN3, 12, 4, NULL, 0),
ADS1015_V_CHAN(0, ADS1015_AIN0, 12, 4, NULL, 0),
ADS1015_V_CHAN(1, ADS1015_AIN1, 12, 4, NULL, 0),
ADS1015_V_CHAN(2, ADS1015_AIN2, 12, 4, NULL, 0),
ADS1015_V_CHAN(3, ADS1015_AIN3, 12, 4, NULL, 0),
IIO_CHAN_SOFT_TIMESTAMP(ADS1015_TIMESTAMP),
};
#ifdef CONFIG_PM
static int ads1015_set_power_state(struct ads1015_data *data, bool on)
{
int ret;
struct device *dev = regmap_get_device(data->regmap);
if (on) {
ret = pm_runtime_resume_and_get(dev);
} else {
pm_runtime_mark_last_busy(dev);
ret = pm_runtime_put_autosuspend(dev);
}
return ret < 0 ? ret : 0;
}
#else /* !CONFIG_PM */
static int ads1015_set_power_state(struct ads1015_data *data, bool on)
{
return 0;
}
#endif /* !CONFIG_PM */
static
int ads1015_get_adc_result(struct ads1015_data *data, int chan, int *val)
{
const int *data_rate = data->chip->data_rate;
int ret, pga, dr, dr_old, conv_time;
unsigned int old, mask, cfg;
if (chan < 0 || chan >= ADS1015_CHANNELS)
return -EINVAL;
ret = regmap_read(data->regmap, ADS1015_CFG_REG, &old);
if (ret)
return ret;
pga = data->channel_data[chan].pga;
dr = data->channel_data[chan].data_rate;
mask = ADS1015_CFG_MUX_MASK | ADS1015_CFG_PGA_MASK |
ADS1015_CFG_DR_MASK;
cfg = chan << ADS1015_CFG_MUX_SHIFT | pga << ADS1015_CFG_PGA_SHIFT |
dr << ADS1015_CFG_DR_SHIFT;
if (ads1015_event_channel_enabled(data)) {
mask |= ADS1015_CFG_COMP_QUE_MASK | ADS1015_CFG_COMP_MODE_MASK;
cfg |= data->thresh_data[chan].comp_queue <<
ADS1015_CFG_COMP_QUE_SHIFT |
data->comp_mode <<
ADS1015_CFG_COMP_MODE_SHIFT;
}
cfg = (old & ~mask) | (cfg & mask);
if (old != cfg) {
ret = regmap_write(data->regmap, ADS1015_CFG_REG, cfg);
if (ret)
return ret;
data->conv_invalid = true;
}
if (data->conv_invalid) {
dr_old = (old & ADS1015_CFG_DR_MASK) >> ADS1015_CFG_DR_SHIFT;
conv_time = DIV_ROUND_UP(USEC_PER_SEC, data_rate[dr_old]);
conv_time += DIV_ROUND_UP(USEC_PER_SEC, data_rate[dr]);
conv_time += conv_time / 10; /* 10% internal clock inaccuracy */
usleep_range(conv_time, conv_time + 1);
data->conv_invalid = false;
}
return regmap_read(data->regmap, ADS1015_CONV_REG, val);
}
static irqreturn_t ads1015_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ads1015_data *data = iio_priv(indio_dev);
/* Ensure natural alignment of timestamp */
struct {
s16 chan;
s64 timestamp __aligned(8);
} scan;
int chan, ret, res;
memset(&scan, 0, sizeof(scan));
mutex_lock(&data->lock);
chan = find_first_bit(indio_dev->active_scan_mask,
iio_get_masklength(indio_dev));
ret = ads1015_get_adc_result(data, chan, &res);
if (ret < 0) {
mutex_unlock(&data->lock);
goto err;
}
scan.chan = res;
mutex_unlock(&data->lock);
iio_push_to_buffers_with_timestamp(indio_dev, &scan,
iio_get_time_ns(indio_dev));
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int ads1015_set_scale(struct ads1015_data *data,
struct iio_chan_spec const *chan,
int scale, int uscale)
{
int i;
int fullscale = div_s64((scale * 1000000LL + uscale) <<
(chan->scan_type.realbits - 1), 1000000);
for (i = 0; i < ARRAY_SIZE(ads1015_fullscale_range); i++) {
if (ads1015_fullscale_range[i] == fullscale) {
data->channel_data[chan->address].pga = i;
return 0;
}
}
return -EINVAL;
}
static int ads1015_set_data_rate(struct ads1015_data *data, int chan, int rate)
{
int i;
for (i = 0; i < data->chip->data_rate_len; i++) {
if (data->chip->data_rate[i] == rate) {
data->channel_data[chan].data_rate = i;
return 0;
}
}
return -EINVAL;
}
static int ads1015_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct ads1015_data *data = iio_priv(indio_dev);
if (chan->type != IIO_VOLTAGE)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
*type = IIO_VAL_FRACTIONAL_LOG2;
*vals = data->chip->scale;
*length = data->chip->scale_len;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SAMP_FREQ:
*type = IIO_VAL_INT;
*vals = data->chip->data_rate;
*length = data->chip->data_rate_len;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int ads1015_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
int ret, idx;
struct ads1015_data *data = iio_priv(indio_dev);
mutex_lock(&data->lock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
break;
if (ads1015_event_channel_enabled(data) &&
data->event_channel != chan->address) {
ret = -EBUSY;
goto release_direct;
}
ret = ads1015_set_power_state(data, true);
if (ret < 0)
goto release_direct;
ret = ads1015_get_adc_result(data, chan->address, val);
if (ret < 0) {
ads1015_set_power_state(data, false);
goto release_direct;
}
*val = sign_extend32(*val >> chan->scan_type.shift,
chan->scan_type.realbits - 1);
ret = ads1015_set_power_state(data, false);
if (ret < 0)
goto release_direct;
ret = IIO_VAL_INT;
release_direct:
iio_device_release_direct_mode(indio_dev);
break;
case IIO_CHAN_INFO_SCALE:
idx = data->channel_data[chan->address].pga;
*val = ads1015_fullscale_range[idx];
*val2 = chan->scan_type.realbits - 1;
ret = IIO_VAL_FRACTIONAL_LOG2;
break;
case IIO_CHAN_INFO_SAMP_FREQ:
idx = data->channel_data[chan->address].data_rate;
*val = data->chip->data_rate[idx];
ret = IIO_VAL_INT;
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&data->lock);
return ret;
}
static int ads1015_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct ads1015_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->lock);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
ret = ads1015_set_scale(data, chan, val, val2);
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = ads1015_set_data_rate(data, chan->address, val);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&data->lock);
return ret;
}
static int ads1015_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir, enum iio_event_info info, int *val,
int *val2)
{
struct ads1015_data *data = iio_priv(indio_dev);
int ret;
unsigned int comp_queue;
int period;
int dr;
mutex_lock(&data->lock);
switch (info) {
case IIO_EV_INFO_VALUE:
*val = (dir == IIO_EV_DIR_RISING) ?
data->thresh_data[chan->address].high_thresh :
data->thresh_data[chan->address].low_thresh;
ret = IIO_VAL_INT;
break;
case IIO_EV_INFO_PERIOD:
dr = data->channel_data[chan->address].data_rate;
comp_queue = data->thresh_data[chan->address].comp_queue;
period = ads1015_comp_queue[comp_queue] *
USEC_PER_SEC / data->chip->data_rate[dr];
*val = period / USEC_PER_SEC;
*val2 = period % USEC_PER_SEC;
ret = IIO_VAL_INT_PLUS_MICRO;
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&data->lock);
return ret;
}
static int ads1015_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir, enum iio_event_info info, int val,
int val2)
{
struct ads1015_data *data = iio_priv(indio_dev);
const int *data_rate = data->chip->data_rate;
int realbits = chan->scan_type.realbits;
int ret = 0;
long long period;
int i;
int dr;
mutex_lock(&data->lock);
switch (info) {
case IIO_EV_INFO_VALUE:
if (val >= 1 << (realbits - 1) || val < -1 << (realbits - 1)) {
ret = -EINVAL;
break;
}
if (dir == IIO_EV_DIR_RISING)
data->thresh_data[chan->address].high_thresh = val;
else
data->thresh_data[chan->address].low_thresh = val;
break;
case IIO_EV_INFO_PERIOD:
dr = data->channel_data[chan->address].data_rate;
period = val * USEC_PER_SEC + val2;
for (i = 0; i < ARRAY_SIZE(ads1015_comp_queue) - 1; i++) {
if (period <= ads1015_comp_queue[i] *
USEC_PER_SEC / data_rate[dr])
break;
}
data->thresh_data[chan->address].comp_queue = i;
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&data->lock);
return ret;
}
static int ads1015_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir)
{
struct ads1015_data *data = iio_priv(indio_dev);
int ret = 0;
mutex_lock(&data->lock);
if (data->event_channel == chan->address) {
switch (dir) {
case IIO_EV_DIR_RISING:
ret = 1;
break;
case IIO_EV_DIR_EITHER:
ret = (data->comp_mode == ADS1015_CFG_COMP_MODE_WINDOW);
break;
default:
ret = -EINVAL;
break;
}
}
mutex_unlock(&data->lock);
return ret;
}
static int ads1015_enable_event_config(struct ads1015_data *data,
const struct iio_chan_spec *chan, int comp_mode)
{
int low_thresh = data->thresh_data[chan->address].low_thresh;
int high_thresh = data->thresh_data[chan->address].high_thresh;
int ret;
unsigned int val;
if (ads1015_event_channel_enabled(data)) {
if (data->event_channel != chan->address ||
(data->comp_mode == ADS1015_CFG_COMP_MODE_TRAD &&
comp_mode == ADS1015_CFG_COMP_MODE_WINDOW))
return -EBUSY;
return 0;
}
if (comp_mode == ADS1015_CFG_COMP_MODE_TRAD) {
low_thresh = max(-1 << (chan->scan_type.realbits - 1),
high_thresh - 1);
}
ret = regmap_write(data->regmap, ADS1015_LO_THRESH_REG,
low_thresh << chan->scan_type.shift);
if (ret)
return ret;
ret = regmap_write(data->regmap, ADS1015_HI_THRESH_REG,
high_thresh << chan->scan_type.shift);
if (ret)
return ret;
ret = ads1015_set_power_state(data, true);
if (ret < 0)
return ret;
ads1015_event_channel_enable(data, chan->address, comp_mode);
ret = ads1015_get_adc_result(data, chan->address, &val);
if (ret) {
ads1015_event_channel_disable(data, chan->address);
ads1015_set_power_state(data, false);
}
return ret;
}
static int ads1015_disable_event_config(struct ads1015_data *data,
const struct iio_chan_spec *chan, int comp_mode)
{
int ret;
if (!ads1015_event_channel_enabled(data))
return 0;
if (data->event_channel != chan->address)
return 0;
if (data->comp_mode == ADS1015_CFG_COMP_MODE_TRAD &&
comp_mode == ADS1015_CFG_COMP_MODE_WINDOW)
return 0;
ret = regmap_update_bits(data->regmap, ADS1015_CFG_REG,
ADS1015_CFG_COMP_QUE_MASK,
ADS1015_CFG_COMP_DISABLE <<
ADS1015_CFG_COMP_QUE_SHIFT);
if (ret)
return ret;
ads1015_event_channel_disable(data, chan->address);
return ads1015_set_power_state(data, false);
}
static int ads1015_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir, int state)
{
struct ads1015_data *data = iio_priv(indio_dev);
int ret;
int comp_mode = (dir == IIO_EV_DIR_EITHER) ?
ADS1015_CFG_COMP_MODE_WINDOW : ADS1015_CFG_COMP_MODE_TRAD;
mutex_lock(&data->lock);
/* Prevent from enabling both buffer and event at a time */
ret = iio_device_claim_direct_mode(indio_dev);
if (ret) {
mutex_unlock(&data->lock);
return ret;
}
if (state)
ret = ads1015_enable_event_config(data, chan, comp_mode);
else
ret = ads1015_disable_event_config(data, chan, comp_mode);
iio_device_release_direct_mode(indio_dev);
mutex_unlock(&data->lock);
return ret;
}
static irqreturn_t ads1015_event_handler(int irq, void *priv)
{
struct iio_dev *indio_dev = priv;
struct ads1015_data *data = iio_priv(indio_dev);
int val;
int ret;
/* Clear the latched ALERT/RDY pin */
ret = regmap_read(data->regmap, ADS1015_CONV_REG, &val);
if (ret)
return IRQ_HANDLED;
if (ads1015_event_channel_enabled(data)) {
enum iio_event_direction dir;
u64 code;
dir = data->comp_mode == ADS1015_CFG_COMP_MODE_TRAD ?
IIO_EV_DIR_RISING : IIO_EV_DIR_EITHER;
code = IIO_UNMOD_EVENT_CODE(IIO_VOLTAGE, data->event_channel,
IIO_EV_TYPE_THRESH, dir);
iio_push_event(indio_dev, code, iio_get_time_ns(indio_dev));
}
return IRQ_HANDLED;
}
static int ads1015_buffer_preenable(struct iio_dev *indio_dev)
{
struct ads1015_data *data = iio_priv(indio_dev);
/* Prevent from enabling both buffer and event at a time */
if (ads1015_event_channel_enabled(data))
return -EBUSY;
return ads1015_set_power_state(iio_priv(indio_dev), true);
}
static int ads1015_buffer_postdisable(struct iio_dev *indio_dev)
{
return ads1015_set_power_state(iio_priv(indio_dev), false);
}
static const struct iio_buffer_setup_ops ads1015_buffer_setup_ops = {
.preenable = ads1015_buffer_preenable,
.postdisable = ads1015_buffer_postdisable,
.validate_scan_mask = &iio_validate_scan_mask_onehot,
};
static const struct iio_info ads1015_info = {
.read_avail = ads1015_read_avail,
.read_raw = ads1015_read_raw,
.write_raw = ads1015_write_raw,
.read_event_value = ads1015_read_event,
.write_event_value = ads1015_write_event,
.read_event_config = ads1015_read_event_config,
.write_event_config = ads1015_write_event_config,
};
static const struct iio_info tla2024_info = {
.read_avail = ads1015_read_avail,
.read_raw = ads1015_read_raw,
.write_raw = ads1015_write_raw,
};
static int ads1015_client_get_channels_config(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct ads1015_data *data = iio_priv(indio_dev);
struct device *dev = &client->dev;
int i = -1;
device_for_each_child_node_scoped(dev, node) {
u32 pval;
unsigned int channel;
unsigned int pga = ADS1015_DEFAULT_PGA;
unsigned int data_rate = ADS1015_DEFAULT_DATA_RATE;
if (fwnode_property_read_u32(node, "reg", &pval)) {
dev_err(dev, "invalid reg on %pfw\n", node);
continue;
}
channel = pval;
if (channel >= ADS1015_CHANNELS) {
dev_err(dev, "invalid channel index %d on %pfw\n",
channel, node);
continue;
}
if (!fwnode_property_read_u32(node, "ti,gain", &pval)) {
pga = pval;
if (pga > 5) {
dev_err(dev, "invalid gain on %pfw\n", node);
return -EINVAL;
}
}
if (!fwnode_property_read_u32(node, "ti,datarate", &pval)) {
data_rate = pval;
if (data_rate > 7) {
dev_err(dev, "invalid data_rate on %pfw\n", node);
return -EINVAL;
}
}
data->channel_data[channel].pga = pga;
data->channel_data[channel].data_rate = data_rate;
i++;
}
return i < 0 ? -EINVAL : 0;
}
static void ads1015_get_channels_config(struct i2c_client *client)
{
unsigned int k;
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct ads1015_data *data = iio_priv(indio_dev);
if (!ads1015_client_get_channels_config(client))
return;
/* fallback on default configuration */
for (k = 0; k < ADS1015_CHANNELS; ++k) {
data->channel_data[k].pga = ADS1015_DEFAULT_PGA;
data->channel_data[k].data_rate = ADS1015_DEFAULT_DATA_RATE;
}
}
static int ads1015_set_conv_mode(struct ads1015_data *data, int mode)
{
return regmap_update_bits(data->regmap, ADS1015_CFG_REG,
ADS1015_CFG_MOD_MASK,
mode << ADS1015_CFG_MOD_SHIFT);
}
static int ads1015_probe(struct i2c_client *client)
{
const struct ads1015_chip_data *chip;
struct iio_dev *indio_dev;
struct ads1015_data *data;
int ret;
int i;
chip = i2c_get_match_data(client);
if (!chip)
return dev_err_probe(&client->dev, -EINVAL, "Unknown chip\n");
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
mutex_init(&data->lock);
indio_dev->name = ADS1015_DRV_NAME;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = chip->channels;
indio_dev->num_channels = chip->num_channels;
indio_dev->info = chip->info;
data->chip = chip;
data->event_channel = ADS1015_CHANNELS;
/*
* Set default lower and upper threshold to min and max value
* respectively.
*/
for (i = 0; i < ADS1015_CHANNELS; i++) {
int realbits = indio_dev->channels[i].scan_type.realbits;
data->thresh_data[i].low_thresh = -1 << (realbits - 1);
data->thresh_data[i].high_thresh = (1 << (realbits - 1)) - 1;
}
/* we need to keep this ABI the same as used by hwmon ADS1015 driver */
ads1015_get_channels_config(client);
data->regmap = devm_regmap_init_i2c(client, chip->has_comparator ?
&ads1015_regmap_config :
&tla2024_regmap_config);
if (IS_ERR(data->regmap)) {
dev_err(&client->dev, "Failed to allocate register map\n");
return PTR_ERR(data->regmap);
}
ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL,
ads1015_trigger_handler,
&ads1015_buffer_setup_ops);
if (ret < 0) {
dev_err(&client->dev, "iio triggered buffer setup failed\n");
return ret;
}
if (client->irq && chip->has_comparator) {
unsigned long irq_trig =
irqd_get_trigger_type(irq_get_irq_data(client->irq));
unsigned int cfg_comp_mask = ADS1015_CFG_COMP_QUE_MASK |
ADS1015_CFG_COMP_LAT_MASK | ADS1015_CFG_COMP_POL_MASK;
unsigned int cfg_comp =
ADS1015_CFG_COMP_DISABLE << ADS1015_CFG_COMP_QUE_SHIFT |
1 << ADS1015_CFG_COMP_LAT_SHIFT;
switch (irq_trig) {
case IRQF_TRIGGER_FALLING:
case IRQF_TRIGGER_LOW:
cfg_comp |= ADS1015_CFG_COMP_POL_LOW <<
ADS1015_CFG_COMP_POL_SHIFT;
break;
case IRQF_TRIGGER_HIGH:
case IRQF_TRIGGER_RISING:
cfg_comp |= ADS1015_CFG_COMP_POL_HIGH <<
ADS1015_CFG_COMP_POL_SHIFT;
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(data->regmap, ADS1015_CFG_REG,
cfg_comp_mask, cfg_comp);
if (ret)
return ret;
ret = devm_request_threaded_irq(&client->dev, client->irq,
NULL, ads1015_event_handler,
irq_trig | IRQF_ONESHOT,
client->name, indio_dev);
if (ret)
return ret;
}
ret = ads1015_set_conv_mode(data, ADS1015_CONTINUOUS);
if (ret)
return ret;
data->conv_invalid = true;
ret = pm_runtime_set_active(&client->dev);
if (ret)
return ret;
pm_runtime_set_autosuspend_delay(&client->dev, ADS1015_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
pm_runtime_enable(&client->dev);
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(&client->dev, "Failed to register IIO device\n");
return ret;
}
return 0;
}
static void ads1015_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct ads1015_data *data = iio_priv(indio_dev);
int ret;
iio_device_unregister(indio_dev);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
/* power down single shot mode */
ret = ads1015_set_conv_mode(data, ADS1015_SINGLESHOT);
if (ret)
dev_warn(&client->dev, "Failed to power down (%pe)\n",
ERR_PTR(ret));
}
#ifdef CONFIG_PM
static int ads1015_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct ads1015_data *data = iio_priv(indio_dev);
return ads1015_set_conv_mode(data, ADS1015_SINGLESHOT);
}
static int ads1015_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct ads1015_data *data = iio_priv(indio_dev);
int ret;
ret = ads1015_set_conv_mode(data, ADS1015_CONTINUOUS);
if (!ret)
data->conv_invalid = true;
return ret;
}
#endif
static const struct dev_pm_ops ads1015_pm_ops = {
SET_RUNTIME_PM_OPS(ads1015_runtime_suspend,
ads1015_runtime_resume, NULL)
};
static const struct ads1015_chip_data ads1015_data = {
.channels = ads1015_channels,
.num_channels = ARRAY_SIZE(ads1015_channels),
.info = &ads1015_info,
.data_rate = ads1015_data_rate,
.data_rate_len = ARRAY_SIZE(ads1015_data_rate),
.scale = ads1015_scale,
.scale_len = ARRAY_SIZE(ads1015_scale),
.has_comparator = true,
};
static const struct ads1015_chip_data ads1115_data = {
.channels = ads1115_channels,
.num_channels = ARRAY_SIZE(ads1115_channels),
.info = &ads1015_info,
.data_rate = ads1115_data_rate,
.data_rate_len = ARRAY_SIZE(ads1115_data_rate),
.scale = ads1115_scale,
.scale_len = ARRAY_SIZE(ads1115_scale),
.has_comparator = true,
};
static const struct ads1015_chip_data tla2024_data = {
.channels = tla2024_channels,
.num_channels = ARRAY_SIZE(tla2024_channels),
.info = &tla2024_info,
.data_rate = ads1015_data_rate,
.data_rate_len = ARRAY_SIZE(ads1015_data_rate),
.scale = ads1015_scale,
.scale_len = ARRAY_SIZE(ads1015_scale),
.has_comparator = false,
};
static const struct i2c_device_id ads1015_id[] = {
{ "ads1015", (kernel_ulong_t)&ads1015_data },
{ "ads1115", (kernel_ulong_t)&ads1115_data },
{ "tla2024", (kernel_ulong_t)&tla2024_data },
{ }
};
MODULE_DEVICE_TABLE(i2c, ads1015_id);
static const struct of_device_id ads1015_of_match[] = {
{ .compatible = "ti,ads1015", .data = &ads1015_data },
{ .compatible = "ti,ads1115", .data = &ads1115_data },
{ .compatible = "ti,tla2024", .data = &tla2024_data },
{ }
};
MODULE_DEVICE_TABLE(of, ads1015_of_match);
static struct i2c_driver ads1015_driver = {
.driver = {
.name = ADS1015_DRV_NAME,
.of_match_table = ads1015_of_match,
.pm = &ads1015_pm_ops,
},
.probe = ads1015_probe,
.remove = ads1015_remove,
.id_table = ads1015_id,
};
module_i2c_driver(ads1015_driver);
MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
MODULE_DESCRIPTION("Texas Instruments ADS1015 ADC driver");
MODULE_LICENSE("GPL v2");