| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| |
| /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */ |
| /* Copyright (c) 2008-2019, IBM Corporation */ |
| |
| #include <linux/errno.h> |
| #include <linux/types.h> |
| #include <linux/net.h> |
| #include <linux/scatterlist.h> |
| #include <linux/highmem.h> |
| #include <net/tcp.h> |
| |
| #include <rdma/iw_cm.h> |
| #include <rdma/ib_verbs.h> |
| #include <rdma/ib_user_verbs.h> |
| |
| #include "siw.h" |
| #include "siw_verbs.h" |
| #include "siw_mem.h" |
| |
| #define MAX_HDR_INLINE \ |
| (((uint32_t)(sizeof(struct siw_rreq_pkt) - \ |
| sizeof(struct iwarp_send))) & 0xF8) |
| |
| static struct page *siw_get_pblpage(struct siw_mem *mem, u64 addr, int *idx) |
| { |
| struct siw_pbl *pbl = mem->pbl; |
| u64 offset = addr - mem->va; |
| dma_addr_t paddr = siw_pbl_get_buffer(pbl, offset, NULL, idx); |
| |
| if (paddr) |
| return ib_virt_dma_to_page(paddr); |
| |
| return NULL; |
| } |
| |
| static struct page *siw_get_page(struct siw_mem *mem, struct siw_sge *sge, |
| unsigned long offset, int *pbl_idx) |
| { |
| if (!mem->is_pbl) |
| return siw_get_upage(mem->umem, sge->laddr + offset); |
| else |
| return siw_get_pblpage(mem, sge->laddr + offset, pbl_idx); |
| } |
| |
| /* |
| * Copy short payload at provided destination payload address |
| */ |
| static int siw_try_1seg(struct siw_iwarp_tx *c_tx, void *paddr) |
| { |
| struct siw_wqe *wqe = &c_tx->wqe_active; |
| struct siw_sge *sge = &wqe->sqe.sge[0]; |
| u32 bytes = sge->length; |
| |
| if (bytes > MAX_HDR_INLINE || wqe->sqe.num_sge != 1) |
| return MAX_HDR_INLINE + 1; |
| |
| if (!bytes) |
| return 0; |
| |
| if (tx_flags(wqe) & SIW_WQE_INLINE) { |
| memcpy(paddr, &wqe->sqe.sge[1], bytes); |
| } else { |
| struct siw_mem *mem = wqe->mem[0]; |
| |
| if (!mem->mem_obj) { |
| /* Kernel client using kva */ |
| memcpy(paddr, ib_virt_dma_to_ptr(sge->laddr), bytes); |
| } else if (c_tx->in_syscall) { |
| if (copy_from_user(paddr, u64_to_user_ptr(sge->laddr), |
| bytes)) |
| return -EFAULT; |
| } else { |
| unsigned int off = sge->laddr & ~PAGE_MASK; |
| struct page *p; |
| char *buffer; |
| int pbl_idx = 0; |
| |
| p = siw_get_page(mem, sge, 0, &pbl_idx); |
| if (unlikely(!p)) |
| return -EFAULT; |
| |
| buffer = kmap_local_page(p); |
| |
| if (likely(PAGE_SIZE - off >= bytes)) { |
| memcpy(paddr, buffer + off, bytes); |
| } else { |
| unsigned long part = bytes - (PAGE_SIZE - off); |
| |
| memcpy(paddr, buffer + off, part); |
| kunmap_local(buffer); |
| |
| p = siw_get_page(mem, sge, part, &pbl_idx); |
| if (unlikely(!p)) |
| return -EFAULT; |
| |
| buffer = kmap_local_page(p); |
| memcpy(paddr + part, buffer, bytes - part); |
| } |
| kunmap_local(buffer); |
| } |
| } |
| return (int)bytes; |
| } |
| |
| #define PKT_FRAGMENTED 1 |
| #define PKT_COMPLETE 0 |
| |
| /* |
| * siw_qp_prepare_tx() |
| * |
| * Prepare tx state for sending out one fpdu. Builds complete pkt |
| * if no user data or only immediate data are present. |
| * |
| * returns PKT_COMPLETE if complete pkt built, PKT_FRAGMENTED otherwise. |
| */ |
| static int siw_qp_prepare_tx(struct siw_iwarp_tx *c_tx) |
| { |
| struct siw_wqe *wqe = &c_tx->wqe_active; |
| char *crc = NULL; |
| int data = 0; |
| |
| switch (tx_type(wqe)) { |
| case SIW_OP_READ: |
| case SIW_OP_READ_LOCAL_INV: |
| memcpy(&c_tx->pkt.ctrl, |
| &iwarp_pktinfo[RDMAP_RDMA_READ_REQ].ctrl, |
| sizeof(struct iwarp_ctrl)); |
| |
| c_tx->pkt.rreq.rsvd = 0; |
| c_tx->pkt.rreq.ddp_qn = htonl(RDMAP_UNTAGGED_QN_RDMA_READ); |
| c_tx->pkt.rreq.ddp_msn = |
| htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_RDMA_READ]); |
| c_tx->pkt.rreq.ddp_mo = 0; |
| c_tx->pkt.rreq.sink_stag = htonl(wqe->sqe.sge[0].lkey); |
| c_tx->pkt.rreq.sink_to = |
| cpu_to_be64(wqe->sqe.sge[0].laddr); |
| c_tx->pkt.rreq.source_stag = htonl(wqe->sqe.rkey); |
| c_tx->pkt.rreq.source_to = cpu_to_be64(wqe->sqe.raddr); |
| c_tx->pkt.rreq.read_size = htonl(wqe->sqe.sge[0].length); |
| |
| c_tx->ctrl_len = sizeof(struct iwarp_rdma_rreq); |
| crc = (char *)&c_tx->pkt.rreq_pkt.crc; |
| break; |
| |
| case SIW_OP_SEND: |
| if (tx_flags(wqe) & SIW_WQE_SOLICITED) |
| memcpy(&c_tx->pkt.ctrl, |
| &iwarp_pktinfo[RDMAP_SEND_SE].ctrl, |
| sizeof(struct iwarp_ctrl)); |
| else |
| memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_SEND].ctrl, |
| sizeof(struct iwarp_ctrl)); |
| |
| c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND; |
| c_tx->pkt.send.ddp_msn = |
| htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]); |
| c_tx->pkt.send.ddp_mo = 0; |
| |
| c_tx->pkt.send_inv.inval_stag = 0; |
| |
| c_tx->ctrl_len = sizeof(struct iwarp_send); |
| |
| crc = (char *)&c_tx->pkt.send_pkt.crc; |
| data = siw_try_1seg(c_tx, crc); |
| break; |
| |
| case SIW_OP_SEND_REMOTE_INV: |
| if (tx_flags(wqe) & SIW_WQE_SOLICITED) |
| memcpy(&c_tx->pkt.ctrl, |
| &iwarp_pktinfo[RDMAP_SEND_SE_INVAL].ctrl, |
| sizeof(struct iwarp_ctrl)); |
| else |
| memcpy(&c_tx->pkt.ctrl, |
| &iwarp_pktinfo[RDMAP_SEND_INVAL].ctrl, |
| sizeof(struct iwarp_ctrl)); |
| |
| c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND; |
| c_tx->pkt.send.ddp_msn = |
| htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]); |
| c_tx->pkt.send.ddp_mo = 0; |
| |
| c_tx->pkt.send_inv.inval_stag = cpu_to_be32(wqe->sqe.rkey); |
| |
| c_tx->ctrl_len = sizeof(struct iwarp_send_inv); |
| |
| crc = (char *)&c_tx->pkt.send_pkt.crc; |
| data = siw_try_1seg(c_tx, crc); |
| break; |
| |
| case SIW_OP_WRITE: |
| memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_RDMA_WRITE].ctrl, |
| sizeof(struct iwarp_ctrl)); |
| |
| c_tx->pkt.rwrite.sink_stag = htonl(wqe->sqe.rkey); |
| c_tx->pkt.rwrite.sink_to = cpu_to_be64(wqe->sqe.raddr); |
| c_tx->ctrl_len = sizeof(struct iwarp_rdma_write); |
| |
| crc = (char *)&c_tx->pkt.write_pkt.crc; |
| data = siw_try_1seg(c_tx, crc); |
| break; |
| |
| case SIW_OP_READ_RESPONSE: |
| memcpy(&c_tx->pkt.ctrl, |
| &iwarp_pktinfo[RDMAP_RDMA_READ_RESP].ctrl, |
| sizeof(struct iwarp_ctrl)); |
| |
| /* NBO */ |
| c_tx->pkt.rresp.sink_stag = cpu_to_be32(wqe->sqe.rkey); |
| c_tx->pkt.rresp.sink_to = cpu_to_be64(wqe->sqe.raddr); |
| |
| c_tx->ctrl_len = sizeof(struct iwarp_rdma_rresp); |
| |
| crc = (char *)&c_tx->pkt.write_pkt.crc; |
| data = siw_try_1seg(c_tx, crc); |
| break; |
| |
| default: |
| siw_dbg_qp(tx_qp(c_tx), "stale wqe type %d\n", tx_type(wqe)); |
| return -EOPNOTSUPP; |
| } |
| if (unlikely(data < 0)) |
| return data; |
| |
| c_tx->ctrl_sent = 0; |
| |
| if (data <= MAX_HDR_INLINE) { |
| if (data) { |
| wqe->processed = data; |
| |
| c_tx->pkt.ctrl.mpa_len = |
| htons(c_tx->ctrl_len + data - MPA_HDR_SIZE); |
| |
| /* Add pad, if needed */ |
| data += -(int)data & 0x3; |
| /* advance CRC location after payload */ |
| crc += data; |
| c_tx->ctrl_len += data; |
| |
| if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED)) |
| c_tx->pkt.c_untagged.ddp_mo = 0; |
| else |
| c_tx->pkt.c_tagged.ddp_to = |
| cpu_to_be64(wqe->sqe.raddr); |
| } |
| |
| *(u32 *)crc = 0; |
| /* |
| * Do complete CRC if enabled and short packet |
| */ |
| if (c_tx->mpa_crc_hd && |
| crypto_shash_digest(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt, |
| c_tx->ctrl_len, (u8 *)crc) != 0) |
| return -EINVAL; |
| c_tx->ctrl_len += MPA_CRC_SIZE; |
| |
| return PKT_COMPLETE; |
| } |
| c_tx->ctrl_len += MPA_CRC_SIZE; |
| c_tx->sge_idx = 0; |
| c_tx->sge_off = 0; |
| c_tx->pbl_idx = 0; |
| |
| /* |
| * Allow direct sending out of user buffer if WR is non signalled |
| * and payload is over threshold. |
| * Per RDMA verbs, the application should not change the send buffer |
| * until the work completed. In iWarp, work completion is only |
| * local delivery to TCP. TCP may reuse the buffer for |
| * retransmission. Changing unsent data also breaks the CRC, |
| * if applied. |
| */ |
| if (c_tx->zcopy_tx && wqe->bytes >= SENDPAGE_THRESH && |
| !(tx_flags(wqe) & SIW_WQE_SIGNALLED)) |
| c_tx->use_sendpage = 1; |
| else |
| c_tx->use_sendpage = 0; |
| |
| return PKT_FRAGMENTED; |
| } |
| |
| /* |
| * Send out one complete control type FPDU, or header of FPDU carrying |
| * data. Used for fixed sized packets like Read.Requests or zero length |
| * SENDs, WRITEs, READ.Responses, or header only. |
| */ |
| static int siw_tx_ctrl(struct siw_iwarp_tx *c_tx, struct socket *s, |
| int flags) |
| { |
| struct msghdr msg = { .msg_flags = flags }; |
| struct kvec iov = { .iov_base = |
| (char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent, |
| .iov_len = c_tx->ctrl_len - c_tx->ctrl_sent }; |
| |
| int rv = kernel_sendmsg(s, &msg, &iov, 1, iov.iov_len); |
| |
| if (rv >= 0) { |
| c_tx->ctrl_sent += rv; |
| |
| if (c_tx->ctrl_sent == c_tx->ctrl_len) |
| rv = 0; |
| else |
| rv = -EAGAIN; |
| } |
| return rv; |
| } |
| |
| /* |
| * 0copy TCP transmit interface: Use MSG_SPLICE_PAGES. |
| * |
| * Using sendpage to push page by page appears to be less efficient |
| * than using sendmsg, even if data are copied. |
| * |
| * A general performance limitation might be the extra four bytes |
| * trailer checksum segment to be pushed after user data. |
| */ |
| static int siw_tcp_sendpages(struct socket *s, struct page **page, int offset, |
| size_t size) |
| { |
| struct bio_vec bvec; |
| struct msghdr msg = { |
| .msg_flags = (MSG_MORE | MSG_DONTWAIT | MSG_SPLICE_PAGES), |
| }; |
| struct sock *sk = s->sk; |
| int i = 0, rv = 0, sent = 0; |
| |
| while (size) { |
| size_t bytes = min_t(size_t, PAGE_SIZE - offset, size); |
| |
| if (size + offset <= PAGE_SIZE) |
| msg.msg_flags &= ~MSG_MORE; |
| |
| tcp_rate_check_app_limited(sk); |
| bvec_set_page(&bvec, page[i], bytes, offset); |
| iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); |
| |
| try_page_again: |
| lock_sock(sk); |
| rv = tcp_sendmsg_locked(sk, &msg, size); |
| release_sock(sk); |
| |
| if (rv > 0) { |
| size -= rv; |
| sent += rv; |
| if (rv != bytes) { |
| offset += rv; |
| bytes -= rv; |
| goto try_page_again; |
| } |
| offset = 0; |
| } else { |
| if (rv == -EAGAIN || rv == 0) |
| break; |
| return rv; |
| } |
| i++; |
| } |
| return sent; |
| } |
| |
| /* |
| * siw_0copy_tx() |
| * |
| * Pushes list of pages to TCP socket. If pages from multiple |
| * SGE's, all referenced pages of each SGE are pushed in one |
| * shot. |
| */ |
| static int siw_0copy_tx(struct socket *s, struct page **page, |
| struct siw_sge *sge, unsigned int offset, |
| unsigned int size) |
| { |
| int i = 0, sent = 0, rv; |
| int sge_bytes = min(sge->length - offset, size); |
| |
| offset = (sge->laddr + offset) & ~PAGE_MASK; |
| |
| while (sent != size) { |
| rv = siw_tcp_sendpages(s, &page[i], offset, sge_bytes); |
| if (rv >= 0) { |
| sent += rv; |
| if (size == sent || sge_bytes > rv) |
| break; |
| |
| i += PAGE_ALIGN(sge_bytes + offset) >> PAGE_SHIFT; |
| sge++; |
| sge_bytes = min(sge->length, size - sent); |
| offset = sge->laddr & ~PAGE_MASK; |
| } else { |
| sent = rv; |
| break; |
| } |
| } |
| return sent; |
| } |
| |
| #define MAX_TRAILER (MPA_CRC_SIZE + 4) |
| |
| static void siw_unmap_pages(struct kvec *iov, unsigned long kmap_mask, int len) |
| { |
| int i; |
| |
| /* |
| * Work backwards through the array to honor the kmap_local_page() |
| * ordering requirements. |
| */ |
| for (i = (len-1); i >= 0; i--) { |
| if (kmap_mask & BIT(i)) { |
| unsigned long addr = (unsigned long)iov[i].iov_base; |
| |
| kunmap_local((void *)(addr & PAGE_MASK)); |
| } |
| } |
| } |
| |
| /* |
| * siw_tx_hdt() tries to push a complete packet to TCP where all |
| * packet fragments are referenced by the elements of one iovec. |
| * For the data portion, each involved page must be referenced by |
| * one extra element. All sge's data can be non-aligned to page |
| * boundaries. Two more elements are referencing iWARP header |
| * and trailer: |
| * MAX_ARRAY = 64KB/PAGE_SIZE + 1 + (2 * (SIW_MAX_SGE - 1) + HDR + TRL |
| */ |
| #define MAX_ARRAY ((0xffff / PAGE_SIZE) + 1 + (2 * (SIW_MAX_SGE - 1) + 2)) |
| |
| /* |
| * Write out iov referencing hdr, data and trailer of current FPDU. |
| * Update transmit state dependent on write return status |
| */ |
| static int siw_tx_hdt(struct siw_iwarp_tx *c_tx, struct socket *s) |
| { |
| struct siw_wqe *wqe = &c_tx->wqe_active; |
| struct siw_sge *sge = &wqe->sqe.sge[c_tx->sge_idx]; |
| struct kvec iov[MAX_ARRAY]; |
| struct page *page_array[MAX_ARRAY]; |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; |
| |
| int seg = 0, do_crc = c_tx->do_crc, is_kva = 0, rv; |
| unsigned int data_len = c_tx->bytes_unsent, hdr_len = 0, trl_len = 0, |
| sge_off = c_tx->sge_off, sge_idx = c_tx->sge_idx, |
| pbl_idx = c_tx->pbl_idx; |
| unsigned long kmap_mask = 0L; |
| |
| if (c_tx->state == SIW_SEND_HDR) { |
| if (c_tx->use_sendpage) { |
| rv = siw_tx_ctrl(c_tx, s, MSG_DONTWAIT | MSG_MORE); |
| if (rv) |
| goto done; |
| |
| c_tx->state = SIW_SEND_DATA; |
| } else { |
| iov[0].iov_base = |
| (char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent; |
| iov[0].iov_len = hdr_len = |
| c_tx->ctrl_len - c_tx->ctrl_sent; |
| seg = 1; |
| } |
| } |
| |
| wqe->processed += data_len; |
| |
| while (data_len) { /* walk the list of SGE's */ |
| unsigned int sge_len = min(sge->length - sge_off, data_len); |
| unsigned int fp_off = (sge->laddr + sge_off) & ~PAGE_MASK; |
| struct siw_mem *mem; |
| |
| if (!(tx_flags(wqe) & SIW_WQE_INLINE)) { |
| mem = wqe->mem[sge_idx]; |
| is_kva = mem->mem_obj == NULL ? 1 : 0; |
| } else { |
| is_kva = 1; |
| } |
| if (is_kva && !c_tx->use_sendpage) { |
| /* |
| * tx from kernel virtual address: either inline data |
| * or memory region with assigned kernel buffer |
| */ |
| iov[seg].iov_base = |
| ib_virt_dma_to_ptr(sge->laddr + sge_off); |
| iov[seg].iov_len = sge_len; |
| |
| if (do_crc) |
| crypto_shash_update(c_tx->mpa_crc_hd, |
| iov[seg].iov_base, |
| sge_len); |
| sge_off += sge_len; |
| data_len -= sge_len; |
| seg++; |
| goto sge_done; |
| } |
| |
| while (sge_len) { |
| size_t plen = min((int)PAGE_SIZE - fp_off, sge_len); |
| void *kaddr; |
| |
| if (!is_kva) { |
| struct page *p; |
| |
| p = siw_get_page(mem, sge, sge_off, &pbl_idx); |
| if (unlikely(!p)) { |
| siw_unmap_pages(iov, kmap_mask, seg); |
| wqe->processed -= c_tx->bytes_unsent; |
| rv = -EFAULT; |
| goto done_crc; |
| } |
| page_array[seg] = p; |
| |
| if (!c_tx->use_sendpage) { |
| void *kaddr = kmap_local_page(p); |
| |
| /* Remember for later kunmap() */ |
| kmap_mask |= BIT(seg); |
| iov[seg].iov_base = kaddr + fp_off; |
| iov[seg].iov_len = plen; |
| |
| if (do_crc) |
| crypto_shash_update( |
| c_tx->mpa_crc_hd, |
| iov[seg].iov_base, |
| plen); |
| } else if (do_crc) { |
| kaddr = kmap_local_page(p); |
| crypto_shash_update(c_tx->mpa_crc_hd, |
| kaddr + fp_off, |
| plen); |
| kunmap_local(kaddr); |
| } |
| } else { |
| /* |
| * Cast to an uintptr_t to preserve all 64 bits |
| * in sge->laddr. |
| */ |
| u64 va = sge->laddr + sge_off; |
| |
| page_array[seg] = ib_virt_dma_to_page(va); |
| if (do_crc) |
| crypto_shash_update( |
| c_tx->mpa_crc_hd, |
| ib_virt_dma_to_ptr(va), |
| plen); |
| } |
| |
| sge_len -= plen; |
| sge_off += plen; |
| data_len -= plen; |
| fp_off = 0; |
| |
| if (++seg >= (int)MAX_ARRAY) { |
| siw_dbg_qp(tx_qp(c_tx), "to many fragments\n"); |
| siw_unmap_pages(iov, kmap_mask, seg-1); |
| wqe->processed -= c_tx->bytes_unsent; |
| rv = -EMSGSIZE; |
| goto done_crc; |
| } |
| } |
| sge_done: |
| /* Update SGE variables at end of SGE */ |
| if (sge_off == sge->length && |
| (data_len != 0 || wqe->processed < wqe->bytes)) { |
| sge_idx++; |
| sge++; |
| sge_off = 0; |
| } |
| } |
| /* trailer */ |
| if (likely(c_tx->state != SIW_SEND_TRAILER)) { |
| iov[seg].iov_base = &c_tx->trailer.pad[4 - c_tx->pad]; |
| iov[seg].iov_len = trl_len = MAX_TRAILER - (4 - c_tx->pad); |
| } else { |
| iov[seg].iov_base = &c_tx->trailer.pad[c_tx->ctrl_sent]; |
| iov[seg].iov_len = trl_len = MAX_TRAILER - c_tx->ctrl_sent; |
| } |
| |
| if (c_tx->pad) { |
| *(u32 *)c_tx->trailer.pad = 0; |
| if (do_crc) |
| crypto_shash_update(c_tx->mpa_crc_hd, |
| (u8 *)&c_tx->trailer.crc - c_tx->pad, |
| c_tx->pad); |
| } |
| if (!c_tx->mpa_crc_hd) |
| c_tx->trailer.crc = 0; |
| else if (do_crc) |
| crypto_shash_final(c_tx->mpa_crc_hd, (u8 *)&c_tx->trailer.crc); |
| |
| data_len = c_tx->bytes_unsent; |
| |
| if (c_tx->use_sendpage) { |
| rv = siw_0copy_tx(s, page_array, &wqe->sqe.sge[c_tx->sge_idx], |
| c_tx->sge_off, data_len); |
| if (rv == data_len) { |
| rv = kernel_sendmsg(s, &msg, &iov[seg], 1, trl_len); |
| if (rv > 0) |
| rv += data_len; |
| else |
| rv = data_len; |
| } |
| } else { |
| rv = kernel_sendmsg(s, &msg, iov, seg + 1, |
| hdr_len + data_len + trl_len); |
| siw_unmap_pages(iov, kmap_mask, seg); |
| } |
| if (rv < (int)hdr_len) { |
| /* Not even complete hdr pushed or negative rv */ |
| wqe->processed -= data_len; |
| if (rv >= 0) { |
| c_tx->ctrl_sent += rv; |
| rv = -EAGAIN; |
| } |
| goto done_crc; |
| } |
| rv -= hdr_len; |
| |
| if (rv >= (int)data_len) { |
| /* all user data pushed to TCP or no data to push */ |
| if (data_len > 0 && wqe->processed < wqe->bytes) { |
| /* Save the current state for next tx */ |
| c_tx->sge_idx = sge_idx; |
| c_tx->sge_off = sge_off; |
| c_tx->pbl_idx = pbl_idx; |
| } |
| rv -= data_len; |
| |
| if (rv == trl_len) /* all pushed */ |
| rv = 0; |
| else { |
| c_tx->state = SIW_SEND_TRAILER; |
| c_tx->ctrl_len = MAX_TRAILER; |
| c_tx->ctrl_sent = rv + 4 - c_tx->pad; |
| c_tx->bytes_unsent = 0; |
| rv = -EAGAIN; |
| } |
| |
| } else if (data_len > 0) { |
| /* Maybe some user data pushed to TCP */ |
| c_tx->state = SIW_SEND_DATA; |
| wqe->processed -= data_len - rv; |
| |
| if (rv) { |
| /* |
| * Some bytes out. Recompute tx state based |
| * on old state and bytes pushed |
| */ |
| unsigned int sge_unsent; |
| |
| c_tx->bytes_unsent -= rv; |
| sge = &wqe->sqe.sge[c_tx->sge_idx]; |
| sge_unsent = sge->length - c_tx->sge_off; |
| |
| while (sge_unsent <= rv) { |
| rv -= sge_unsent; |
| c_tx->sge_idx++; |
| c_tx->sge_off = 0; |
| sge++; |
| sge_unsent = sge->length; |
| } |
| c_tx->sge_off += rv; |
| } |
| rv = -EAGAIN; |
| } |
| done_crc: |
| c_tx->do_crc = 0; |
| done: |
| return rv; |
| } |
| |
| static void siw_update_tcpseg(struct siw_iwarp_tx *c_tx, |
| struct socket *s) |
| { |
| struct tcp_sock *tp = tcp_sk(s->sk); |
| |
| if (tp->gso_segs) { |
| if (c_tx->gso_seg_limit == 0) |
| c_tx->tcp_seglen = tp->mss_cache * tp->gso_segs; |
| else |
| c_tx->tcp_seglen = |
| tp->mss_cache * |
| min_t(u16, c_tx->gso_seg_limit, tp->gso_segs); |
| } else { |
| c_tx->tcp_seglen = tp->mss_cache; |
| } |
| /* Loopback may give odd numbers */ |
| c_tx->tcp_seglen &= 0xfffffff8; |
| } |
| |
| /* |
| * siw_prepare_fpdu() |
| * |
| * Prepares transmit context to send out one FPDU if FPDU will contain |
| * user data and user data are not immediate data. |
| * Computes maximum FPDU length to fill up TCP MSS if possible. |
| * |
| * @qp: QP from which to transmit |
| * @wqe: Current WQE causing transmission |
| * |
| * TODO: Take into account real available sendspace on socket |
| * to avoid header misalignment due to send pausing within |
| * fpdu transmission |
| */ |
| static void siw_prepare_fpdu(struct siw_qp *qp, struct siw_wqe *wqe) |
| { |
| struct siw_iwarp_tx *c_tx = &qp->tx_ctx; |
| int data_len; |
| |
| c_tx->ctrl_len = |
| iwarp_pktinfo[__rdmap_get_opcode(&c_tx->pkt.ctrl)].hdr_len; |
| c_tx->ctrl_sent = 0; |
| |
| /* |
| * Update target buffer offset if any |
| */ |
| if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED)) |
| /* Untagged message */ |
| c_tx->pkt.c_untagged.ddp_mo = cpu_to_be32(wqe->processed); |
| else /* Tagged message */ |
| c_tx->pkt.c_tagged.ddp_to = |
| cpu_to_be64(wqe->sqe.raddr + wqe->processed); |
| |
| data_len = wqe->bytes - wqe->processed; |
| if (data_len + c_tx->ctrl_len + MPA_CRC_SIZE > c_tx->tcp_seglen) { |
| /* Trim DDP payload to fit into current TCP segment */ |
| data_len = c_tx->tcp_seglen - (c_tx->ctrl_len + MPA_CRC_SIZE); |
| c_tx->pkt.ctrl.ddp_rdmap_ctrl &= ~DDP_FLAG_LAST; |
| c_tx->pad = 0; |
| } else { |
| c_tx->pkt.ctrl.ddp_rdmap_ctrl |= DDP_FLAG_LAST; |
| c_tx->pad = -data_len & 0x3; |
| } |
| c_tx->bytes_unsent = data_len; |
| |
| c_tx->pkt.ctrl.mpa_len = |
| htons(c_tx->ctrl_len + data_len - MPA_HDR_SIZE); |
| |
| /* |
| * Init MPA CRC computation |
| */ |
| if (c_tx->mpa_crc_hd) { |
| crypto_shash_init(c_tx->mpa_crc_hd); |
| crypto_shash_update(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt, |
| c_tx->ctrl_len); |
| c_tx->do_crc = 1; |
| } |
| } |
| |
| /* |
| * siw_check_sgl_tx() |
| * |
| * Check permissions for a list of SGE's (SGL). |
| * A successful check will have all memory referenced |
| * for transmission resolved and assigned to the WQE. |
| * |
| * @pd: Protection Domain SGL should belong to |
| * @wqe: WQE to be checked |
| * @perms: requested access permissions |
| * |
| */ |
| |
| static int siw_check_sgl_tx(struct ib_pd *pd, struct siw_wqe *wqe, |
| enum ib_access_flags perms) |
| { |
| struct siw_sge *sge = &wqe->sqe.sge[0]; |
| int i, len, num_sge = wqe->sqe.num_sge; |
| |
| if (unlikely(num_sge > SIW_MAX_SGE)) |
| return -EINVAL; |
| |
| for (i = 0, len = 0; num_sge; num_sge--, i++, sge++) { |
| /* |
| * rdma verbs: do not check stag for a zero length sge |
| */ |
| if (sge->length) { |
| int rv = siw_check_sge(pd, sge, &wqe->mem[i], perms, 0, |
| sge->length); |
| |
| if (unlikely(rv != E_ACCESS_OK)) |
| return rv; |
| } |
| len += sge->length; |
| } |
| return len; |
| } |
| |
| /* |
| * siw_qp_sq_proc_tx() |
| * |
| * Process one WQE which needs transmission on the wire. |
| */ |
| static int siw_qp_sq_proc_tx(struct siw_qp *qp, struct siw_wqe *wqe) |
| { |
| struct siw_iwarp_tx *c_tx = &qp->tx_ctx; |
| struct socket *s = qp->attrs.sk; |
| int rv = 0, burst_len = qp->tx_ctx.burst; |
| enum rdmap_ecode ecode = RDMAP_ECODE_CATASTROPHIC_STREAM; |
| |
| if (unlikely(wqe->wr_status == SIW_WR_IDLE)) |
| return 0; |
| |
| if (!burst_len) |
| burst_len = SQ_USER_MAXBURST; |
| |
| if (wqe->wr_status == SIW_WR_QUEUED) { |
| if (!(wqe->sqe.flags & SIW_WQE_INLINE)) { |
| if (tx_type(wqe) == SIW_OP_READ_RESPONSE) |
| wqe->sqe.num_sge = 1; |
| |
| if (tx_type(wqe) != SIW_OP_READ && |
| tx_type(wqe) != SIW_OP_READ_LOCAL_INV) { |
| /* |
| * Reference memory to be tx'd w/o checking |
| * access for LOCAL_READ permission, since |
| * not defined in RDMA core. |
| */ |
| rv = siw_check_sgl_tx(qp->pd, wqe, 0); |
| if (rv < 0) { |
| if (tx_type(wqe) == |
| SIW_OP_READ_RESPONSE) |
| ecode = siw_rdmap_error(-rv); |
| rv = -EINVAL; |
| goto tx_error; |
| } |
| wqe->bytes = rv; |
| } else { |
| wqe->bytes = 0; |
| } |
| } else { |
| wqe->bytes = wqe->sqe.sge[0].length; |
| if (!rdma_is_kernel_res(&qp->base_qp.res)) { |
| if (wqe->bytes > SIW_MAX_INLINE) { |
| rv = -EINVAL; |
| goto tx_error; |
| } |
| wqe->sqe.sge[0].laddr = |
| (u64)(uintptr_t)&wqe->sqe.sge[1]; |
| } |
| } |
| wqe->wr_status = SIW_WR_INPROGRESS; |
| wqe->processed = 0; |
| |
| siw_update_tcpseg(c_tx, s); |
| |
| rv = siw_qp_prepare_tx(c_tx); |
| if (rv == PKT_FRAGMENTED) { |
| c_tx->state = SIW_SEND_HDR; |
| siw_prepare_fpdu(qp, wqe); |
| } else if (rv == PKT_COMPLETE) { |
| c_tx->state = SIW_SEND_SHORT_FPDU; |
| } else { |
| goto tx_error; |
| } |
| } |
| |
| next_segment: |
| siw_dbg_qp(qp, "wr type %d, state %d, data %u, sent %u, id %llx\n", |
| tx_type(wqe), wqe->wr_status, wqe->bytes, wqe->processed, |
| wqe->sqe.id); |
| |
| if (--burst_len == 0) { |
| rv = -EINPROGRESS; |
| goto tx_done; |
| } |
| if (c_tx->state == SIW_SEND_SHORT_FPDU) { |
| enum siw_opcode tx_type = tx_type(wqe); |
| unsigned int msg_flags; |
| |
| if (siw_sq_empty(qp) || !siw_tcp_nagle || burst_len == 1) |
| /* |
| * End current TCP segment, if SQ runs empty, |
| * or siw_tcp_nagle is not set, or we bail out |
| * soon due to no burst credit left. |
| */ |
| msg_flags = MSG_DONTWAIT; |
| else |
| msg_flags = MSG_DONTWAIT | MSG_MORE; |
| |
| rv = siw_tx_ctrl(c_tx, s, msg_flags); |
| |
| if (!rv && tx_type != SIW_OP_READ && |
| tx_type != SIW_OP_READ_LOCAL_INV) |
| wqe->processed = wqe->bytes; |
| |
| goto tx_done; |
| |
| } else { |
| rv = siw_tx_hdt(c_tx, s); |
| } |
| if (!rv) { |
| /* |
| * One segment sent. Processing completed if last |
| * segment, Do next segment otherwise. |
| */ |
| if (unlikely(c_tx->tx_suspend)) { |
| /* |
| * Verbs, 6.4.: Try stopping sending after a full |
| * DDP segment if the connection goes down |
| * (== peer halfclose) |
| */ |
| rv = -ECONNABORTED; |
| goto tx_done; |
| } |
| if (c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_LAST) { |
| siw_dbg_qp(qp, "WQE completed\n"); |
| goto tx_done; |
| } |
| c_tx->state = SIW_SEND_HDR; |
| |
| siw_update_tcpseg(c_tx, s); |
| |
| siw_prepare_fpdu(qp, wqe); |
| goto next_segment; |
| } |
| tx_done: |
| qp->tx_ctx.burst = burst_len; |
| return rv; |
| |
| tx_error: |
| if (ecode != RDMAP_ECODE_CATASTROPHIC_STREAM) |
| siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP, |
| RDMAP_ETYPE_REMOTE_PROTECTION, ecode, 1); |
| else |
| siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP, |
| RDMAP_ETYPE_CATASTROPHIC, |
| RDMAP_ECODE_UNSPECIFIED, 1); |
| return rv; |
| } |
| |
| static int siw_fastreg_mr(struct ib_pd *pd, struct siw_sqe *sqe) |
| { |
| struct ib_mr *base_mr = (struct ib_mr *)(uintptr_t)sqe->base_mr; |
| struct siw_device *sdev = to_siw_dev(pd->device); |
| struct siw_mem *mem; |
| int rv = 0; |
| |
| siw_dbg_pd(pd, "STag 0x%08x\n", sqe->rkey); |
| |
| if (unlikely(!base_mr)) { |
| pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey); |
| return -EINVAL; |
| } |
| |
| if (unlikely(base_mr->rkey >> 8 != sqe->rkey >> 8)) { |
| pr_warn("siw: fastreg: STag 0x%08x: bad MR\n", sqe->rkey); |
| return -EINVAL; |
| } |
| |
| mem = siw_mem_id2obj(sdev, sqe->rkey >> 8); |
| if (unlikely(!mem)) { |
| pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey); |
| return -EINVAL; |
| } |
| |
| if (unlikely(mem->pd != pd)) { |
| pr_warn("siw: fastreg: PD mismatch\n"); |
| rv = -EINVAL; |
| goto out; |
| } |
| if (unlikely(mem->stag_valid)) { |
| pr_warn("siw: fastreg: STag 0x%08x already valid\n", sqe->rkey); |
| rv = -EINVAL; |
| goto out; |
| } |
| /* Refresh STag since user may have changed key part */ |
| mem->stag = sqe->rkey; |
| mem->perms = sqe->access; |
| |
| siw_dbg_mem(mem, "STag 0x%08x now valid\n", sqe->rkey); |
| mem->va = base_mr->iova; |
| mem->stag_valid = 1; |
| out: |
| siw_mem_put(mem); |
| return rv; |
| } |
| |
| static int siw_qp_sq_proc_local(struct siw_qp *qp, struct siw_wqe *wqe) |
| { |
| int rv; |
| |
| switch (tx_type(wqe)) { |
| case SIW_OP_REG_MR: |
| rv = siw_fastreg_mr(qp->pd, &wqe->sqe); |
| break; |
| |
| case SIW_OP_INVAL_STAG: |
| rv = siw_invalidate_stag(qp->pd, wqe->sqe.rkey); |
| break; |
| |
| default: |
| rv = -EINVAL; |
| } |
| return rv; |
| } |
| |
| /* |
| * siw_qp_sq_process() |
| * |
| * Core TX path routine for RDMAP/DDP/MPA using a TCP kernel socket. |
| * Sends RDMAP payload for the current SQ WR @wqe of @qp in one or more |
| * MPA FPDUs, each containing a DDP segment. |
| * |
| * SQ processing may occur in user context as a result of posting |
| * new WQE's or from siw_tx_thread context. Processing in |
| * user context is limited to non-kernel verbs users. |
| * |
| * SQ processing may get paused anytime, possibly in the middle of a WR |
| * or FPDU, if insufficient send space is available. SQ processing |
| * gets resumed from siw_tx_thread, if send space becomes available again. |
| * |
| * Must be called with the QP state read-locked. |
| * |
| * Note: |
| * An outbound RREQ can be satisfied by the corresponding RRESP |
| * _before_ it gets assigned to the ORQ. This happens regularly |
| * in RDMA READ via loopback case. Since both outbound RREQ and |
| * inbound RRESP can be handled by the same CPU, locking the ORQ |
| * is dead-lock prone and thus not an option. With that, the |
| * RREQ gets assigned to the ORQ _before_ being sent - see |
| * siw_activate_tx() - and pulled back in case of send failure. |
| */ |
| int siw_qp_sq_process(struct siw_qp *qp) |
| { |
| struct siw_wqe *wqe = tx_wqe(qp); |
| enum siw_opcode tx_type; |
| unsigned long flags; |
| int rv = 0; |
| |
| siw_dbg_qp(qp, "enter for type %d\n", tx_type(wqe)); |
| |
| next_wqe: |
| /* |
| * Stop QP processing if SQ state changed |
| */ |
| if (unlikely(qp->tx_ctx.tx_suspend)) { |
| siw_dbg_qp(qp, "tx suspended\n"); |
| goto done; |
| } |
| tx_type = tx_type(wqe); |
| |
| if (tx_type <= SIW_OP_READ_RESPONSE) |
| rv = siw_qp_sq_proc_tx(qp, wqe); |
| else |
| rv = siw_qp_sq_proc_local(qp, wqe); |
| |
| if (!rv) { |
| /* |
| * WQE processing done |
| */ |
| switch (tx_type) { |
| case SIW_OP_SEND: |
| case SIW_OP_SEND_REMOTE_INV: |
| case SIW_OP_WRITE: |
| siw_wqe_put_mem(wqe, tx_type); |
| fallthrough; |
| |
| case SIW_OP_INVAL_STAG: |
| case SIW_OP_REG_MR: |
| if (tx_flags(wqe) & SIW_WQE_SIGNALLED) |
| siw_sqe_complete(qp, &wqe->sqe, wqe->bytes, |
| SIW_WC_SUCCESS); |
| break; |
| |
| case SIW_OP_READ: |
| case SIW_OP_READ_LOCAL_INV: |
| /* |
| * already enqueued to ORQ queue |
| */ |
| break; |
| |
| case SIW_OP_READ_RESPONSE: |
| siw_wqe_put_mem(wqe, tx_type); |
| break; |
| |
| default: |
| WARN(1, "undefined WQE type %d\n", tx_type); |
| rv = -EINVAL; |
| goto done; |
| } |
| |
| spin_lock_irqsave(&qp->sq_lock, flags); |
| wqe->wr_status = SIW_WR_IDLE; |
| rv = siw_activate_tx(qp); |
| spin_unlock_irqrestore(&qp->sq_lock, flags); |
| |
| if (rv <= 0) |
| goto done; |
| |
| goto next_wqe; |
| |
| } else if (rv == -EAGAIN) { |
| siw_dbg_qp(qp, "sq paused: hd/tr %d of %d, data %d\n", |
| qp->tx_ctx.ctrl_sent, qp->tx_ctx.ctrl_len, |
| qp->tx_ctx.bytes_unsent); |
| rv = 0; |
| goto done; |
| } else if (rv == -EINPROGRESS) { |
| rv = siw_sq_start(qp); |
| goto done; |
| } else { |
| /* |
| * WQE processing failed. |
| * Verbs 8.3.2: |
| * o It turns any WQE into a signalled WQE. |
| * o Local catastrophic error must be surfaced |
| * o QP must be moved into Terminate state: done by code |
| * doing socket state change processing |
| * |
| * o TODO: Termination message must be sent. |
| * o TODO: Implement more precise work completion errors, |
| * see enum ib_wc_status in ib_verbs.h |
| */ |
| siw_dbg_qp(qp, "wqe type %d processing failed: %d\n", |
| tx_type(wqe), rv); |
| |
| spin_lock_irqsave(&qp->sq_lock, flags); |
| /* |
| * RREQ may have already been completed by inbound RRESP! |
| */ |
| if ((tx_type == SIW_OP_READ || |
| tx_type == SIW_OP_READ_LOCAL_INV) && qp->attrs.orq_size) { |
| /* Cleanup pending entry in ORQ */ |
| qp->orq_put--; |
| qp->orq[qp->orq_put % qp->attrs.orq_size].flags = 0; |
| } |
| spin_unlock_irqrestore(&qp->sq_lock, flags); |
| /* |
| * immediately suspends further TX processing |
| */ |
| if (!qp->tx_ctx.tx_suspend) |
| siw_qp_cm_drop(qp, 0); |
| |
| switch (tx_type) { |
| case SIW_OP_SEND: |
| case SIW_OP_SEND_REMOTE_INV: |
| case SIW_OP_SEND_WITH_IMM: |
| case SIW_OP_WRITE: |
| case SIW_OP_READ: |
| case SIW_OP_READ_LOCAL_INV: |
| siw_wqe_put_mem(wqe, tx_type); |
| fallthrough; |
| |
| case SIW_OP_INVAL_STAG: |
| case SIW_OP_REG_MR: |
| siw_sqe_complete(qp, &wqe->sqe, wqe->bytes, |
| SIW_WC_LOC_QP_OP_ERR); |
| |
| siw_qp_event(qp, IB_EVENT_QP_FATAL); |
| |
| break; |
| |
| case SIW_OP_READ_RESPONSE: |
| siw_dbg_qp(qp, "proc. read.response failed: %d\n", rv); |
| |
| siw_qp_event(qp, IB_EVENT_QP_REQ_ERR); |
| |
| siw_wqe_put_mem(wqe, SIW_OP_READ_RESPONSE); |
| |
| break; |
| |
| default: |
| WARN(1, "undefined WQE type %d\n", tx_type); |
| rv = -EINVAL; |
| } |
| wqe->wr_status = SIW_WR_IDLE; |
| } |
| done: |
| return rv; |
| } |
| |
| static void siw_sq_resume(struct siw_qp *qp) |
| { |
| if (down_read_trylock(&qp->state_lock)) { |
| if (likely(qp->attrs.state == SIW_QP_STATE_RTS && |
| !qp->tx_ctx.tx_suspend)) { |
| int rv = siw_qp_sq_process(qp); |
| |
| up_read(&qp->state_lock); |
| |
| if (unlikely(rv < 0)) { |
| siw_dbg_qp(qp, "SQ task failed: err %d\n", rv); |
| |
| if (!qp->tx_ctx.tx_suspend) |
| siw_qp_cm_drop(qp, 0); |
| } |
| } else { |
| up_read(&qp->state_lock); |
| } |
| } else { |
| siw_dbg_qp(qp, "Resume SQ while QP locked\n"); |
| } |
| siw_qp_put(qp); |
| } |
| |
| struct tx_task_t { |
| struct llist_head active; |
| wait_queue_head_t waiting; |
| }; |
| |
| static DEFINE_PER_CPU(struct tx_task_t, siw_tx_task_g); |
| |
| int siw_create_tx_threads(void) |
| { |
| int cpu, assigned = 0; |
| |
| for_each_online_cpu(cpu) { |
| struct tx_task_t *tx_task; |
| |
| /* Skip HT cores */ |
| if (cpu % cpumask_weight(topology_sibling_cpumask(cpu))) |
| continue; |
| |
| tx_task = &per_cpu(siw_tx_task_g, cpu); |
| init_llist_head(&tx_task->active); |
| init_waitqueue_head(&tx_task->waiting); |
| |
| siw_tx_thread[cpu] = |
| kthread_run_on_cpu(siw_run_sq, |
| (unsigned long *)(long)cpu, |
| cpu, "siw_tx/%u"); |
| if (IS_ERR(siw_tx_thread[cpu])) { |
| siw_tx_thread[cpu] = NULL; |
| continue; |
| } |
| assigned++; |
| } |
| return assigned; |
| } |
| |
| void siw_stop_tx_threads(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| if (siw_tx_thread[cpu]) { |
| kthread_stop(siw_tx_thread[cpu]); |
| wake_up(&per_cpu(siw_tx_task_g, cpu).waiting); |
| siw_tx_thread[cpu] = NULL; |
| } |
| } |
| } |
| |
| int siw_run_sq(void *data) |
| { |
| const int nr_cpu = (unsigned int)(long)data; |
| struct llist_node *active; |
| struct siw_qp *qp; |
| struct tx_task_t *tx_task = &per_cpu(siw_tx_task_g, nr_cpu); |
| |
| while (1) { |
| struct llist_node *fifo_list = NULL; |
| |
| wait_event_interruptible(tx_task->waiting, |
| !llist_empty(&tx_task->active) || |
| kthread_should_stop()); |
| |
| if (kthread_should_stop()) |
| break; |
| |
| active = llist_del_all(&tx_task->active); |
| /* |
| * llist_del_all returns a list with newest entry first. |
| * Re-order list for fairness among QP's. |
| */ |
| fifo_list = llist_reverse_order(active); |
| while (fifo_list) { |
| qp = container_of(fifo_list, struct siw_qp, tx_list); |
| fifo_list = llist_next(fifo_list); |
| qp->tx_list.next = NULL; |
| |
| siw_sq_resume(qp); |
| } |
| } |
| active = llist_del_all(&tx_task->active); |
| if (active) { |
| llist_for_each_entry(qp, active, tx_list) { |
| qp->tx_list.next = NULL; |
| siw_sq_resume(qp); |
| } |
| } |
| return 0; |
| } |
| |
| int siw_sq_start(struct siw_qp *qp) |
| { |
| if (tx_wqe(qp)->wr_status == SIW_WR_IDLE) |
| return 0; |
| |
| if (unlikely(!cpu_online(qp->tx_cpu))) { |
| siw_put_tx_cpu(qp->tx_cpu); |
| qp->tx_cpu = siw_get_tx_cpu(qp->sdev); |
| if (qp->tx_cpu < 0) { |
| pr_warn("siw: no tx cpu available\n"); |
| |
| return -EIO; |
| } |
| } |
| siw_qp_get(qp); |
| |
| llist_add(&qp->tx_list, &per_cpu(siw_tx_task_g, qp->tx_cpu).active); |
| |
| wake_up(&per_cpu(siw_tx_task_g, qp->tx_cpu).waiting); |
| |
| return 0; |
| } |