| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> |
| * |
| * Uses a block device as cache for other block devices; optimized for SSDs. |
| * All allocation is done in buckets, which should match the erase block size |
| * of the device. |
| * |
| * Buckets containing cached data are kept on a heap sorted by priority; |
| * bucket priority is increased on cache hit, and periodically all the buckets |
| * on the heap have their priority scaled down. This currently is just used as |
| * an LRU but in the future should allow for more intelligent heuristics. |
| * |
| * Buckets have an 8 bit counter; freeing is accomplished by incrementing the |
| * counter. Garbage collection is used to remove stale pointers. |
| * |
| * Indexing is done via a btree; nodes are not necessarily fully sorted, rather |
| * as keys are inserted we only sort the pages that have not yet been written. |
| * When garbage collection is run, we resort the entire node. |
| * |
| * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| #include "debug.h" |
| #include "extents.h" |
| #include "writeback.h" |
| |
| static void sort_key_next(struct btree_iter *iter, |
| struct btree_iter_set *i) |
| { |
| i->k = bkey_next(i->k); |
| |
| if (i->k == i->end) |
| *i = iter->heap.data[--iter->heap.nr]; |
| } |
| |
| static bool new_bch_key_sort_cmp(const void *l, const void *r, void *args) |
| { |
| struct btree_iter_set *_l = (struct btree_iter_set *)l; |
| struct btree_iter_set *_r = (struct btree_iter_set *)r; |
| int64_t c = bkey_cmp(_l->k, _r->k); |
| |
| return !(c ? c > 0 : _l->k < _r->k); |
| } |
| |
| static bool __ptr_invalid(struct cache_set *c, const struct bkey *k) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < KEY_PTRS(k); i++) |
| if (ptr_available(c, k, i)) { |
| struct cache *ca = c->cache; |
| size_t bucket = PTR_BUCKET_NR(c, k, i); |
| size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); |
| |
| if (KEY_SIZE(k) + r > c->cache->sb.bucket_size || |
| bucket < ca->sb.first_bucket || |
| bucket >= ca->sb.nbuckets) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Common among btree and extent ptrs */ |
| |
| static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < KEY_PTRS(k); i++) |
| if (ptr_available(c, k, i)) { |
| struct cache *ca = c->cache; |
| size_t bucket = PTR_BUCKET_NR(c, k, i); |
| size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); |
| |
| if (KEY_SIZE(k) + r > c->cache->sb.bucket_size) |
| return "bad, length too big"; |
| if (bucket < ca->sb.first_bucket) |
| return "bad, short offset"; |
| if (bucket >= ca->sb.nbuckets) |
| return "bad, offset past end of device"; |
| if (ptr_stale(c, k, i)) |
| return "stale"; |
| } |
| |
| if (!bkey_cmp(k, &ZERO_KEY)) |
| return "bad, null key"; |
| if (!KEY_PTRS(k)) |
| return "bad, no pointers"; |
| if (!KEY_SIZE(k)) |
| return "zeroed key"; |
| return ""; |
| } |
| |
| void bch_extent_to_text(char *buf, size_t size, const struct bkey *k) |
| { |
| unsigned int i = 0; |
| char *out = buf, *end = buf + size; |
| |
| #define p(...) (out += scnprintf(out, end - out, __VA_ARGS__)) |
| |
| p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k)); |
| |
| for (i = 0; i < KEY_PTRS(k); i++) { |
| if (i) |
| p(", "); |
| |
| if (PTR_DEV(k, i) == PTR_CHECK_DEV) |
| p("check dev"); |
| else |
| p("%llu:%llu gen %llu", PTR_DEV(k, i), |
| PTR_OFFSET(k, i), PTR_GEN(k, i)); |
| } |
| |
| p("]"); |
| |
| if (KEY_DIRTY(k)) |
| p(" dirty"); |
| if (KEY_CSUM(k)) |
| p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]); |
| #undef p |
| } |
| |
| static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k) |
| { |
| struct btree *b = container_of(keys, struct btree, keys); |
| unsigned int j; |
| char buf[80]; |
| |
| bch_extent_to_text(buf, sizeof(buf), k); |
| pr_cont(" %s", buf); |
| |
| for (j = 0; j < KEY_PTRS(k); j++) { |
| size_t n = PTR_BUCKET_NR(b->c, k, j); |
| |
| pr_cont(" bucket %zu", n); |
| if (n >= b->c->cache->sb.first_bucket && n < b->c->cache->sb.nbuckets) |
| pr_cont(" prio %i", |
| PTR_BUCKET(b->c, k, j)->prio); |
| } |
| |
| pr_cont(" %s\n", bch_ptr_status(b->c, k)); |
| } |
| |
| /* Btree ptrs */ |
| |
| bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k) |
| { |
| char buf[80]; |
| |
| if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k)) |
| goto bad; |
| |
| if (__ptr_invalid(c, k)) |
| goto bad; |
| |
| return false; |
| bad: |
| bch_extent_to_text(buf, sizeof(buf), k); |
| cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k)); |
| return true; |
| } |
| |
| static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k) |
| { |
| struct btree *b = container_of(bk, struct btree, keys); |
| |
| return __bch_btree_ptr_invalid(b->c, k); |
| } |
| |
| static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k) |
| { |
| unsigned int i; |
| char buf[80]; |
| struct bucket *g; |
| |
| if (mutex_trylock(&b->c->bucket_lock)) { |
| for (i = 0; i < KEY_PTRS(k); i++) |
| if (ptr_available(b->c, k, i)) { |
| g = PTR_BUCKET(b->c, k, i); |
| |
| if (KEY_DIRTY(k) || |
| g->prio != BTREE_PRIO || |
| (b->c->gc_mark_valid && |
| GC_MARK(g) != GC_MARK_METADATA)) |
| goto err; |
| } |
| |
| mutex_unlock(&b->c->bucket_lock); |
| } |
| |
| return false; |
| err: |
| mutex_unlock(&b->c->bucket_lock); |
| bch_extent_to_text(buf, sizeof(buf), k); |
| btree_bug(b, |
| "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu", |
| buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin), |
| g->prio, g->gen, g->last_gc, GC_MARK(g)); |
| return true; |
| } |
| |
| static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k) |
| { |
| struct btree *b = container_of(bk, struct btree, keys); |
| unsigned int i; |
| |
| if (!bkey_cmp(k, &ZERO_KEY) || |
| !KEY_PTRS(k) || |
| bch_ptr_invalid(bk, k)) |
| return true; |
| |
| for (i = 0; i < KEY_PTRS(k); i++) |
| if (!ptr_available(b->c, k, i) || |
| ptr_stale(b->c, k, i)) |
| return true; |
| |
| if (expensive_debug_checks(b->c) && |
| btree_ptr_bad_expensive(b, k)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk, |
| struct bkey *insert, |
| struct btree_iter *iter, |
| struct bkey *replace_key) |
| { |
| struct btree *b = container_of(bk, struct btree, keys); |
| |
| if (!KEY_OFFSET(insert)) |
| btree_current_write(b)->prio_blocked++; |
| |
| return false; |
| } |
| |
| const struct btree_keys_ops bch_btree_keys_ops = { |
| .sort_cmp = new_bch_key_sort_cmp, |
| .insert_fixup = bch_btree_ptr_insert_fixup, |
| .key_invalid = bch_btree_ptr_invalid, |
| .key_bad = bch_btree_ptr_bad, |
| .key_to_text = bch_extent_to_text, |
| .key_dump = bch_bkey_dump, |
| }; |
| |
| /* Extents */ |
| |
| /* |
| * Returns true if l > r - unless l == r, in which case returns true if l is |
| * older than r. |
| * |
| * Necessary for btree_sort_fixup() - if there are multiple keys that compare |
| * equal in different sets, we have to process them newest to oldest. |
| */ |
| |
| static bool new_bch_extent_sort_cmp(const void *l, const void *r, void __always_unused *args) |
| { |
| struct btree_iter_set *_l = (struct btree_iter_set *)l; |
| struct btree_iter_set *_r = (struct btree_iter_set *)r; |
| int64_t c = bkey_cmp(&START_KEY(_l->k), &START_KEY(_r->k)); |
| |
| return !(c ? c > 0 : _l->k < _r->k); |
| } |
| |
| static inline void new_btree_iter_swap(void *iter1, void *iter2, void __always_unused *args) |
| { |
| struct btree_iter_set *_iter1 = iter1; |
| struct btree_iter_set *_iter2 = iter2; |
| |
| swap(*_iter1, *_iter2); |
| } |
| |
| static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter, |
| struct bkey *tmp) |
| { |
| const struct min_heap_callbacks callbacks = { |
| .less = new_bch_extent_sort_cmp, |
| .swp = new_btree_iter_swap, |
| }; |
| while (iter->heap.nr > 1) { |
| struct btree_iter_set *top = iter->heap.data, *i = top + 1; |
| |
| if (iter->heap.nr > 2 && |
| !new_bch_extent_sort_cmp(&i[0], &i[1], NULL)) |
| i++; |
| |
| if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0) |
| break; |
| |
| if (!KEY_SIZE(i->k)) { |
| sort_key_next(iter, i); |
| min_heap_sift_down(&iter->heap, i - top, &callbacks, NULL); |
| continue; |
| } |
| |
| if (top->k > i->k) { |
| if (bkey_cmp(top->k, i->k) >= 0) |
| sort_key_next(iter, i); |
| else |
| bch_cut_front(top->k, i->k); |
| |
| min_heap_sift_down(&iter->heap, i - top, &callbacks, NULL); |
| } else { |
| /* can't happen because of comparison func */ |
| BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k))); |
| |
| if (bkey_cmp(i->k, top->k) < 0) { |
| bkey_copy(tmp, top->k); |
| |
| bch_cut_back(&START_KEY(i->k), tmp); |
| bch_cut_front(i->k, top->k); |
| min_heap_sift_down(&iter->heap, 0, &callbacks, NULL); |
| |
| return tmp; |
| } else { |
| bch_cut_back(&START_KEY(i->k), top->k); |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static void bch_subtract_dirty(struct bkey *k, |
| struct cache_set *c, |
| uint64_t offset, |
| int sectors) |
| { |
| if (KEY_DIRTY(k)) |
| bcache_dev_sectors_dirty_add(c, KEY_INODE(k), |
| offset, -sectors); |
| } |
| |
| static bool bch_extent_insert_fixup(struct btree_keys *b, |
| struct bkey *insert, |
| struct btree_iter *iter, |
| struct bkey *replace_key) |
| { |
| struct cache_set *c = container_of(b, struct btree, keys)->c; |
| |
| uint64_t old_offset; |
| unsigned int old_size, sectors_found = 0; |
| |
| BUG_ON(!KEY_OFFSET(insert)); |
| BUG_ON(!KEY_SIZE(insert)); |
| |
| while (1) { |
| struct bkey *k = bch_btree_iter_next(iter); |
| |
| if (!k) |
| break; |
| |
| if (bkey_cmp(&START_KEY(k), insert) >= 0) { |
| if (KEY_SIZE(k)) |
| break; |
| else |
| continue; |
| } |
| |
| if (bkey_cmp(k, &START_KEY(insert)) <= 0) |
| continue; |
| |
| old_offset = KEY_START(k); |
| old_size = KEY_SIZE(k); |
| |
| /* |
| * We might overlap with 0 size extents; we can't skip these |
| * because if they're in the set we're inserting to we have to |
| * adjust them so they don't overlap with the key we're |
| * inserting. But we don't want to check them for replace |
| * operations. |
| */ |
| |
| if (replace_key && KEY_SIZE(k)) { |
| /* |
| * k might have been split since we inserted/found the |
| * key we're replacing |
| */ |
| unsigned int i; |
| uint64_t offset = KEY_START(k) - |
| KEY_START(replace_key); |
| |
| /* But it must be a subset of the replace key */ |
| if (KEY_START(k) < KEY_START(replace_key) || |
| KEY_OFFSET(k) > KEY_OFFSET(replace_key)) |
| goto check_failed; |
| |
| /* We didn't find a key that we were supposed to */ |
| if (KEY_START(k) > KEY_START(insert) + sectors_found) |
| goto check_failed; |
| |
| if (!bch_bkey_equal_header(k, replace_key)) |
| goto check_failed; |
| |
| /* skip past gen */ |
| offset <<= 8; |
| |
| BUG_ON(!KEY_PTRS(replace_key)); |
| |
| for (i = 0; i < KEY_PTRS(replace_key); i++) |
| if (k->ptr[i] != replace_key->ptr[i] + offset) |
| goto check_failed; |
| |
| sectors_found = KEY_OFFSET(k) - KEY_START(insert); |
| } |
| |
| if (bkey_cmp(insert, k) < 0 && |
| bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) { |
| /* |
| * We overlapped in the middle of an existing key: that |
| * means we have to split the old key. But we have to do |
| * slightly different things depending on whether the |
| * old key has been written out yet. |
| */ |
| |
| struct bkey *top; |
| |
| bch_subtract_dirty(k, c, KEY_START(insert), |
| KEY_SIZE(insert)); |
| |
| if (bkey_written(b, k)) { |
| /* |
| * We insert a new key to cover the top of the |
| * old key, and the old key is modified in place |
| * to represent the bottom split. |
| * |
| * It's completely arbitrary whether the new key |
| * is the top or the bottom, but it has to match |
| * up with what btree_sort_fixup() does - it |
| * doesn't check for this kind of overlap, it |
| * depends on us inserting a new key for the top |
| * here. |
| */ |
| top = bch_bset_search(b, bset_tree_last(b), |
| insert); |
| bch_bset_insert(b, top, k); |
| } else { |
| BKEY_PADDED(key) temp; |
| bkey_copy(&temp.key, k); |
| bch_bset_insert(b, k, &temp.key); |
| top = bkey_next(k); |
| } |
| |
| bch_cut_front(insert, top); |
| bch_cut_back(&START_KEY(insert), k); |
| bch_bset_fix_invalidated_key(b, k); |
| goto out; |
| } |
| |
| if (bkey_cmp(insert, k) < 0) { |
| bch_cut_front(insert, k); |
| } else { |
| if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) |
| old_offset = KEY_START(insert); |
| |
| if (bkey_written(b, k) && |
| bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) { |
| /* |
| * Completely overwrote, so we don't have to |
| * invalidate the binary search tree |
| */ |
| bch_cut_front(k, k); |
| } else { |
| __bch_cut_back(&START_KEY(insert), k); |
| bch_bset_fix_invalidated_key(b, k); |
| } |
| } |
| |
| bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k)); |
| } |
| |
| check_failed: |
| if (replace_key) { |
| if (!sectors_found) { |
| return true; |
| } else if (sectors_found < KEY_SIZE(insert)) { |
| SET_KEY_OFFSET(insert, KEY_OFFSET(insert) - |
| (KEY_SIZE(insert) - sectors_found)); |
| SET_KEY_SIZE(insert, sectors_found); |
| } |
| } |
| out: |
| if (KEY_DIRTY(insert)) |
| bcache_dev_sectors_dirty_add(c, KEY_INODE(insert), |
| KEY_START(insert), |
| KEY_SIZE(insert)); |
| |
| return false; |
| } |
| |
| bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k) |
| { |
| char buf[80]; |
| |
| if (!KEY_SIZE(k)) |
| return true; |
| |
| if (KEY_SIZE(k) > KEY_OFFSET(k)) |
| goto bad; |
| |
| if (__ptr_invalid(c, k)) |
| goto bad; |
| |
| return false; |
| bad: |
| bch_extent_to_text(buf, sizeof(buf), k); |
| cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k)); |
| return true; |
| } |
| |
| static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k) |
| { |
| struct btree *b = container_of(bk, struct btree, keys); |
| |
| return __bch_extent_invalid(b->c, k); |
| } |
| |
| static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k, |
| unsigned int ptr) |
| { |
| struct bucket *g = PTR_BUCKET(b->c, k, ptr); |
| char buf[80]; |
| |
| if (mutex_trylock(&b->c->bucket_lock)) { |
| if (b->c->gc_mark_valid && |
| (!GC_MARK(g) || |
| GC_MARK(g) == GC_MARK_METADATA || |
| (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k)))) |
| goto err; |
| |
| if (g->prio == BTREE_PRIO) |
| goto err; |
| |
| mutex_unlock(&b->c->bucket_lock); |
| } |
| |
| return false; |
| err: |
| mutex_unlock(&b->c->bucket_lock); |
| bch_extent_to_text(buf, sizeof(buf), k); |
| btree_bug(b, |
| "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu", |
| buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin), |
| g->prio, g->gen, g->last_gc, GC_MARK(g)); |
| return true; |
| } |
| |
| static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k) |
| { |
| struct btree *b = container_of(bk, struct btree, keys); |
| unsigned int i, stale; |
| char buf[80]; |
| |
| if (!KEY_PTRS(k) || |
| bch_extent_invalid(bk, k)) |
| return true; |
| |
| for (i = 0; i < KEY_PTRS(k); i++) |
| if (!ptr_available(b->c, k, i)) |
| return true; |
| |
| for (i = 0; i < KEY_PTRS(k); i++) { |
| stale = ptr_stale(b->c, k, i); |
| |
| if (stale && KEY_DIRTY(k)) { |
| bch_extent_to_text(buf, sizeof(buf), k); |
| pr_info("stale dirty pointer, stale %u, key: %s\n", |
| stale, buf); |
| } |
| |
| btree_bug_on(stale > BUCKET_GC_GEN_MAX, b, |
| "key too stale: %i, need_gc %u", |
| stale, b->c->need_gc); |
| |
| if (stale) |
| return true; |
| |
| if (expensive_debug_checks(b->c) && |
| bch_extent_bad_expensive(b, k, i)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static uint64_t merge_chksums(struct bkey *l, struct bkey *r) |
| { |
| return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) & |
| ~((uint64_t)1 << 63); |
| } |
| |
| static bool bch_extent_merge(struct btree_keys *bk, |
| struct bkey *l, |
| struct bkey *r) |
| { |
| struct btree *b = container_of(bk, struct btree, keys); |
| unsigned int i; |
| |
| if (key_merging_disabled(b->c)) |
| return false; |
| |
| for (i = 0; i < KEY_PTRS(l); i++) |
| if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || |
| PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) |
| return false; |
| |
| /* Keys with no pointers aren't restricted to one bucket and could |
| * overflow KEY_SIZE |
| */ |
| if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) { |
| SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l)); |
| SET_KEY_SIZE(l, USHRT_MAX); |
| |
| bch_cut_front(l, r); |
| return false; |
| } |
| |
| if (KEY_CSUM(l)) { |
| if (KEY_CSUM(r)) |
| l->ptr[KEY_PTRS(l)] = merge_chksums(l, r); |
| else |
| SET_KEY_CSUM(l, 0); |
| } |
| |
| SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r)); |
| SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r)); |
| |
| return true; |
| } |
| |
| const struct btree_keys_ops bch_extent_keys_ops = { |
| .sort_cmp = new_bch_extent_sort_cmp, |
| .sort_fixup = bch_extent_sort_fixup, |
| .insert_fixup = bch_extent_insert_fixup, |
| .key_invalid = bch_extent_invalid, |
| .key_bad = bch_extent_bad, |
| .key_merge = bch_extent_merge, |
| .key_to_text = bch_extent_to_text, |
| .key_dump = bch_bkey_dump, |
| .is_extents = true, |
| }; |