| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2016-2017 Micron Technology, Inc. |
| * |
| * Authors: |
| * Peter Pan <peterpandong@micron.com> |
| * Boris Brezillon <boris.brezillon@bootlin.com> |
| */ |
| |
| #define pr_fmt(fmt) "spi-nand: " fmt |
| |
| #include <linux/device.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mtd/spinand.h> |
| #include <linux/of.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/spi-mem.h> |
| |
| static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) |
| { |
| struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, |
| spinand->scratchbuf); |
| int ret; |
| |
| ret = spi_mem_exec_op(spinand->spimem, &op); |
| if (ret) |
| return ret; |
| |
| *val = *spinand->scratchbuf; |
| return 0; |
| } |
| |
| int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) |
| { |
| struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, |
| spinand->scratchbuf); |
| |
| *spinand->scratchbuf = val; |
| return spi_mem_exec_op(spinand->spimem, &op); |
| } |
| |
| static int spinand_read_status(struct spinand_device *spinand, u8 *status) |
| { |
| return spinand_read_reg_op(spinand, REG_STATUS, status); |
| } |
| |
| static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| |
| if (WARN_ON(spinand->cur_target < 0 || |
| spinand->cur_target >= nand->memorg.ntargets)) |
| return -EINVAL; |
| |
| *cfg = spinand->cfg_cache[spinand->cur_target]; |
| return 0; |
| } |
| |
| static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| int ret; |
| |
| if (WARN_ON(spinand->cur_target < 0 || |
| spinand->cur_target >= nand->memorg.ntargets)) |
| return -EINVAL; |
| |
| if (spinand->cfg_cache[spinand->cur_target] == cfg) |
| return 0; |
| |
| ret = spinand_write_reg_op(spinand, REG_CFG, cfg); |
| if (ret) |
| return ret; |
| |
| spinand->cfg_cache[spinand->cur_target] = cfg; |
| return 0; |
| } |
| |
| /** |
| * spinand_upd_cfg() - Update the configuration register |
| * @spinand: the spinand device |
| * @mask: the mask encoding the bits to update in the config reg |
| * @val: the new value to apply |
| * |
| * Update the configuration register. |
| * |
| * Return: 0 on success, a negative error code otherwise. |
| */ |
| int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) |
| { |
| int ret; |
| u8 cfg; |
| |
| ret = spinand_get_cfg(spinand, &cfg); |
| if (ret) |
| return ret; |
| |
| cfg &= ~mask; |
| cfg |= val; |
| |
| return spinand_set_cfg(spinand, cfg); |
| } |
| |
| /** |
| * spinand_select_target() - Select a specific NAND target/die |
| * @spinand: the spinand device |
| * @target: the target/die to select |
| * |
| * Select a new target/die. If chip only has one die, this function is a NOOP. |
| * |
| * Return: 0 on success, a negative error code otherwise. |
| */ |
| int spinand_select_target(struct spinand_device *spinand, unsigned int target) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| int ret; |
| |
| if (WARN_ON(target >= nand->memorg.ntargets)) |
| return -EINVAL; |
| |
| if (spinand->cur_target == target) |
| return 0; |
| |
| if (nand->memorg.ntargets == 1) { |
| spinand->cur_target = target; |
| return 0; |
| } |
| |
| ret = spinand->select_target(spinand, target); |
| if (ret) |
| return ret; |
| |
| spinand->cur_target = target; |
| return 0; |
| } |
| |
| static int spinand_read_cfg(struct spinand_device *spinand) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| unsigned int target; |
| int ret; |
| |
| for (target = 0; target < nand->memorg.ntargets; target++) { |
| ret = spinand_select_target(spinand, target); |
| if (ret) |
| return ret; |
| |
| /* |
| * We use spinand_read_reg_op() instead of spinand_get_cfg() |
| * here to bypass the config cache. |
| */ |
| ret = spinand_read_reg_op(spinand, REG_CFG, |
| &spinand->cfg_cache[target]); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int spinand_init_cfg_cache(struct spinand_device *spinand) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| struct device *dev = &spinand->spimem->spi->dev; |
| |
| spinand->cfg_cache = devm_kcalloc(dev, |
| nand->memorg.ntargets, |
| sizeof(*spinand->cfg_cache), |
| GFP_KERNEL); |
| if (!spinand->cfg_cache) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int spinand_init_quad_enable(struct spinand_device *spinand) |
| { |
| bool enable = false; |
| |
| if (!(spinand->flags & SPINAND_HAS_QE_BIT)) |
| return 0; |
| |
| if (spinand->op_templates.read_cache->data.buswidth == 4 || |
| spinand->op_templates.write_cache->data.buswidth == 4 || |
| spinand->op_templates.update_cache->data.buswidth == 4) |
| enable = true; |
| |
| return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, |
| enable ? CFG_QUAD_ENABLE : 0); |
| } |
| |
| static int spinand_ecc_enable(struct spinand_device *spinand, |
| bool enable) |
| { |
| return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, |
| enable ? CFG_ECC_ENABLE : 0); |
| } |
| |
| static int spinand_cont_read_enable(struct spinand_device *spinand, |
| bool enable) |
| { |
| return spinand->set_cont_read(spinand, enable); |
| } |
| |
| static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| |
| if (spinand->eccinfo.get_status) |
| return spinand->eccinfo.get_status(spinand, status); |
| |
| switch (status & STATUS_ECC_MASK) { |
| case STATUS_ECC_NO_BITFLIPS: |
| return 0; |
| |
| case STATUS_ECC_HAS_BITFLIPS: |
| /* |
| * We have no way to know exactly how many bitflips have been |
| * fixed, so let's return the maximum possible value so that |
| * wear-leveling layers move the data immediately. |
| */ |
| return nanddev_get_ecc_conf(nand)->strength; |
| |
| case STATUS_ECC_UNCOR_ERROR: |
| return -EBADMSG; |
| |
| default: |
| break; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *region) |
| { |
| return -ERANGE; |
| } |
| |
| static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *region) |
| { |
| if (section) |
| return -ERANGE; |
| |
| /* Reserve 2 bytes for the BBM. */ |
| region->offset = 2; |
| region->length = 62; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { |
| .ecc = spinand_noecc_ooblayout_ecc, |
| .free = spinand_noecc_ooblayout_free, |
| }; |
| |
| static int spinand_ondie_ecc_init_ctx(struct nand_device *nand) |
| { |
| struct spinand_device *spinand = nand_to_spinand(nand); |
| struct mtd_info *mtd = nanddev_to_mtd(nand); |
| struct spinand_ondie_ecc_conf *engine_conf; |
| |
| nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE; |
| nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size; |
| nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength; |
| |
| engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL); |
| if (!engine_conf) |
| return -ENOMEM; |
| |
| nand->ecc.ctx.priv = engine_conf; |
| |
| if (spinand->eccinfo.ooblayout) |
| mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); |
| else |
| mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); |
| |
| return 0; |
| } |
| |
| static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand) |
| { |
| kfree(nand->ecc.ctx.priv); |
| } |
| |
| static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand, |
| struct nand_page_io_req *req) |
| { |
| struct spinand_device *spinand = nand_to_spinand(nand); |
| bool enable = (req->mode != MTD_OPS_RAW); |
| |
| memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand)); |
| |
| /* Only enable or disable the engine */ |
| return spinand_ecc_enable(spinand, enable); |
| } |
| |
| static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand, |
| struct nand_page_io_req *req) |
| { |
| struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv; |
| struct spinand_device *spinand = nand_to_spinand(nand); |
| struct mtd_info *mtd = spinand_to_mtd(spinand); |
| int ret; |
| |
| if (req->mode == MTD_OPS_RAW) |
| return 0; |
| |
| /* Nothing to do when finishing a page write */ |
| if (req->type == NAND_PAGE_WRITE) |
| return 0; |
| |
| /* Finish a page read: check the status, report errors/bitflips */ |
| ret = spinand_check_ecc_status(spinand, engine_conf->status); |
| if (ret == -EBADMSG) { |
| mtd->ecc_stats.failed++; |
| } else if (ret > 0) { |
| unsigned int pages; |
| |
| /* |
| * Continuous reads don't allow us to get the detail, |
| * so we may exagerate the actual number of corrected bitflips. |
| */ |
| if (!req->continuous) |
| pages = 1; |
| else |
| pages = req->datalen / nanddev_page_size(nand); |
| |
| mtd->ecc_stats.corrected += ret * pages; |
| } |
| |
| return ret; |
| } |
| |
| static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = { |
| .init_ctx = spinand_ondie_ecc_init_ctx, |
| .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx, |
| .prepare_io_req = spinand_ondie_ecc_prepare_io_req, |
| .finish_io_req = spinand_ondie_ecc_finish_io_req, |
| }; |
| |
| static struct nand_ecc_engine spinand_ondie_ecc_engine = { |
| .ops = &spinand_ondie_ecc_engine_ops, |
| }; |
| |
| static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status) |
| { |
| struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv; |
| |
| if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE && |
| engine_conf) |
| engine_conf->status = status; |
| } |
| |
| static int spinand_write_enable_op(struct spinand_device *spinand) |
| { |
| struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); |
| |
| return spi_mem_exec_op(spinand->spimem, &op); |
| } |
| |
| static int spinand_load_page_op(struct spinand_device *spinand, |
| const struct nand_page_io_req *req) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| unsigned int row = nanddev_pos_to_row(nand, &req->pos); |
| struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); |
| |
| return spi_mem_exec_op(spinand->spimem, &op); |
| } |
| |
| static int spinand_read_from_cache_op(struct spinand_device *spinand, |
| const struct nand_page_io_req *req) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| struct mtd_info *mtd = spinand_to_mtd(spinand); |
| struct spi_mem_dirmap_desc *rdesc; |
| unsigned int nbytes = 0; |
| void *buf = NULL; |
| u16 column = 0; |
| ssize_t ret; |
| |
| if (req->datalen) { |
| buf = spinand->databuf; |
| if (!req->continuous) |
| nbytes = nanddev_page_size(nand); |
| else |
| nbytes = round_up(req->dataoffs + req->datalen, |
| nanddev_page_size(nand)); |
| column = 0; |
| } |
| |
| if (req->ooblen) { |
| nbytes += nanddev_per_page_oobsize(nand); |
| if (!buf) { |
| buf = spinand->oobbuf; |
| column = nanddev_page_size(nand); |
| } |
| } |
| |
| if (req->mode == MTD_OPS_RAW) |
| rdesc = spinand->dirmaps[req->pos.plane].rdesc; |
| else |
| rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc; |
| |
| if (spinand->flags & SPINAND_HAS_READ_PLANE_SELECT_BIT) |
| column |= req->pos.plane << fls(nanddev_page_size(nand)); |
| |
| while (nbytes) { |
| ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf); |
| if (ret < 0) |
| return ret; |
| |
| if (!ret || ret > nbytes) |
| return -EIO; |
| |
| nbytes -= ret; |
| column += ret; |
| buf += ret; |
| |
| /* |
| * Dirmap accesses are allowed to toggle the CS. |
| * Toggling the CS during a continuous read is forbidden. |
| */ |
| if (nbytes && req->continuous) |
| return -EIO; |
| } |
| |
| if (req->datalen) |
| memcpy(req->databuf.in, spinand->databuf + req->dataoffs, |
| req->datalen); |
| |
| if (req->ooblen) { |
| if (req->mode == MTD_OPS_AUTO_OOB) |
| mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, |
| spinand->oobbuf, |
| req->ooboffs, |
| req->ooblen); |
| else |
| memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, |
| req->ooblen); |
| } |
| |
| return 0; |
| } |
| |
| static int spinand_write_to_cache_op(struct spinand_device *spinand, |
| const struct nand_page_io_req *req) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| struct mtd_info *mtd = spinand_to_mtd(spinand); |
| struct spi_mem_dirmap_desc *wdesc; |
| unsigned int nbytes, column = 0; |
| void *buf = spinand->databuf; |
| ssize_t ret; |
| |
| /* |
| * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset |
| * the cache content to 0xFF (depends on vendor implementation), so we |
| * must fill the page cache entirely even if we only want to program |
| * the data portion of the page, otherwise we might corrupt the BBM or |
| * user data previously programmed in OOB area. |
| * |
| * Only reset the data buffer manually, the OOB buffer is prepared by |
| * ECC engines ->prepare_io_req() callback. |
| */ |
| nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand); |
| memset(spinand->databuf, 0xff, nanddev_page_size(nand)); |
| |
| if (req->datalen) |
| memcpy(spinand->databuf + req->dataoffs, req->databuf.out, |
| req->datalen); |
| |
| if (req->ooblen) { |
| if (req->mode == MTD_OPS_AUTO_OOB) |
| mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, |
| spinand->oobbuf, |
| req->ooboffs, |
| req->ooblen); |
| else |
| memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, |
| req->ooblen); |
| } |
| |
| if (req->mode == MTD_OPS_RAW) |
| wdesc = spinand->dirmaps[req->pos.plane].wdesc; |
| else |
| wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc; |
| |
| if (spinand->flags & SPINAND_HAS_PROG_PLANE_SELECT_BIT) |
| column |= req->pos.plane << fls(nanddev_page_size(nand)); |
| |
| while (nbytes) { |
| ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf); |
| if (ret < 0) |
| return ret; |
| |
| if (!ret || ret > nbytes) |
| return -EIO; |
| |
| nbytes -= ret; |
| column += ret; |
| buf += ret; |
| } |
| |
| return 0; |
| } |
| |
| static int spinand_program_op(struct spinand_device *spinand, |
| const struct nand_page_io_req *req) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| unsigned int row = nanddev_pos_to_row(nand, &req->pos); |
| struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); |
| |
| return spi_mem_exec_op(spinand->spimem, &op); |
| } |
| |
| static int spinand_erase_op(struct spinand_device *spinand, |
| const struct nand_pos *pos) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| unsigned int row = nanddev_pos_to_row(nand, pos); |
| struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); |
| |
| return spi_mem_exec_op(spinand->spimem, &op); |
| } |
| |
| static int spinand_wait(struct spinand_device *spinand, |
| unsigned long initial_delay_us, |
| unsigned long poll_delay_us, |
| u8 *s) |
| { |
| struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS, |
| spinand->scratchbuf); |
| u8 status; |
| int ret; |
| |
| ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0, |
| initial_delay_us, |
| poll_delay_us, |
| SPINAND_WAITRDY_TIMEOUT_MS); |
| if (ret) |
| return ret; |
| |
| status = *spinand->scratchbuf; |
| if (!(status & STATUS_BUSY)) |
| goto out; |
| |
| /* |
| * Extra read, just in case the STATUS_READY bit has changed |
| * since our last check |
| */ |
| ret = spinand_read_status(spinand, &status); |
| if (ret) |
| return ret; |
| |
| out: |
| if (s) |
| *s = status; |
| |
| return status & STATUS_BUSY ? -ETIMEDOUT : 0; |
| } |
| |
| static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr, |
| u8 ndummy, u8 *buf) |
| { |
| struct spi_mem_op op = SPINAND_READID_OP( |
| naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN); |
| int ret; |
| |
| ret = spi_mem_exec_op(spinand->spimem, &op); |
| if (!ret) |
| memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); |
| |
| return ret; |
| } |
| |
| static int spinand_reset_op(struct spinand_device *spinand) |
| { |
| struct spi_mem_op op = SPINAND_RESET_OP; |
| int ret; |
| |
| ret = spi_mem_exec_op(spinand->spimem, &op); |
| if (ret) |
| return ret; |
| |
| return spinand_wait(spinand, |
| SPINAND_RESET_INITIAL_DELAY_US, |
| SPINAND_RESET_POLL_DELAY_US, |
| NULL); |
| } |
| |
| static int spinand_lock_block(struct spinand_device *spinand, u8 lock) |
| { |
| return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); |
| } |
| |
| static int spinand_read_page(struct spinand_device *spinand, |
| const struct nand_page_io_req *req) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| u8 status; |
| int ret; |
| |
| ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req); |
| if (ret) |
| return ret; |
| |
| ret = spinand_load_page_op(spinand, req); |
| if (ret) |
| return ret; |
| |
| ret = spinand_wait(spinand, |
| SPINAND_READ_INITIAL_DELAY_US, |
| SPINAND_READ_POLL_DELAY_US, |
| &status); |
| if (ret < 0) |
| return ret; |
| |
| spinand_ondie_ecc_save_status(nand, status); |
| |
| ret = spinand_read_from_cache_op(spinand, req); |
| if (ret) |
| return ret; |
| |
| return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req); |
| } |
| |
| static int spinand_write_page(struct spinand_device *spinand, |
| const struct nand_page_io_req *req) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| u8 status; |
| int ret; |
| |
| ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req); |
| if (ret) |
| return ret; |
| |
| ret = spinand_write_enable_op(spinand); |
| if (ret) |
| return ret; |
| |
| ret = spinand_write_to_cache_op(spinand, req); |
| if (ret) |
| return ret; |
| |
| ret = spinand_program_op(spinand, req); |
| if (ret) |
| return ret; |
| |
| ret = spinand_wait(spinand, |
| SPINAND_WRITE_INITIAL_DELAY_US, |
| SPINAND_WRITE_POLL_DELAY_US, |
| &status); |
| if (!ret && (status & STATUS_PROG_FAILED)) |
| return -EIO; |
| |
| return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req); |
| } |
| |
| static int spinand_mtd_regular_page_read(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops, |
| unsigned int *max_bitflips) |
| { |
| struct spinand_device *spinand = mtd_to_spinand(mtd); |
| struct nand_device *nand = mtd_to_nanddev(mtd); |
| struct nand_io_iter iter; |
| bool disable_ecc = false; |
| bool ecc_failed = false; |
| int ret; |
| |
| if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout) |
| disable_ecc = true; |
| |
| nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) { |
| if (disable_ecc) |
| iter.req.mode = MTD_OPS_RAW; |
| |
| ret = spinand_select_target(spinand, iter.req.pos.target); |
| if (ret) |
| break; |
| |
| ret = spinand_read_page(spinand, &iter.req); |
| if (ret < 0 && ret != -EBADMSG) |
| break; |
| |
| if (ret == -EBADMSG) |
| ecc_failed = true; |
| else |
| *max_bitflips = max_t(unsigned int, *max_bitflips, ret); |
| |
| ret = 0; |
| ops->retlen += iter.req.datalen; |
| ops->oobretlen += iter.req.ooblen; |
| } |
| |
| if (ecc_failed && !ret) |
| ret = -EBADMSG; |
| |
| return ret; |
| } |
| |
| static int spinand_mtd_continuous_page_read(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops, |
| unsigned int *max_bitflips) |
| { |
| struct spinand_device *spinand = mtd_to_spinand(mtd); |
| struct nand_device *nand = mtd_to_nanddev(mtd); |
| struct nand_io_iter iter; |
| u8 status; |
| int ret; |
| |
| ret = spinand_cont_read_enable(spinand, true); |
| if (ret) |
| return ret; |
| |
| /* |
| * The cache is divided into two halves. While one half of the cache has |
| * the requested data, the other half is loaded with the next chunk of data. |
| * Therefore, the host can read out the data continuously from page to page. |
| * Each data read must be a multiple of 4-bytes and full pages should be read; |
| * otherwise, the data output might get out of sequence from one read command |
| * to another. |
| */ |
| nanddev_io_for_each_block(nand, NAND_PAGE_READ, from, ops, &iter) { |
| ret = spinand_select_target(spinand, iter.req.pos.target); |
| if (ret) |
| goto end_cont_read; |
| |
| ret = nand_ecc_prepare_io_req(nand, &iter.req); |
| if (ret) |
| goto end_cont_read; |
| |
| ret = spinand_load_page_op(spinand, &iter.req); |
| if (ret) |
| goto end_cont_read; |
| |
| ret = spinand_wait(spinand, SPINAND_READ_INITIAL_DELAY_US, |
| SPINAND_READ_POLL_DELAY_US, NULL); |
| if (ret < 0) |
| goto end_cont_read; |
| |
| ret = spinand_read_from_cache_op(spinand, &iter.req); |
| if (ret) |
| goto end_cont_read; |
| |
| ops->retlen += iter.req.datalen; |
| |
| ret = spinand_read_status(spinand, &status); |
| if (ret) |
| goto end_cont_read; |
| |
| spinand_ondie_ecc_save_status(nand, status); |
| |
| ret = nand_ecc_finish_io_req(nand, &iter.req); |
| if (ret < 0) |
| goto end_cont_read; |
| |
| *max_bitflips = max_t(unsigned int, *max_bitflips, ret); |
| ret = 0; |
| } |
| |
| end_cont_read: |
| /* |
| * Once all the data has been read out, the host can either pull CS# |
| * high and wait for tRST or manually clear the bit in the configuration |
| * register to terminate the continuous read operation. We have no |
| * guarantee the SPI controller drivers will effectively deassert the CS |
| * when we expect them to, so take the register based approach. |
| */ |
| spinand_cont_read_enable(spinand, false); |
| |
| return ret; |
| } |
| |
| static void spinand_cont_read_init(struct spinand_device *spinand) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| enum nand_ecc_engine_type engine_type = nand->ecc.ctx.conf.engine_type; |
| |
| /* OOBs cannot be retrieved so external/on-host ECC engine won't work */ |
| if (spinand->set_cont_read && |
| (engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE || |
| engine_type == NAND_ECC_ENGINE_TYPE_NONE)) { |
| spinand->cont_read_possible = true; |
| } |
| } |
| |
| static bool spinand_use_cont_read(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct nand_device *nand = mtd_to_nanddev(mtd); |
| struct spinand_device *spinand = nand_to_spinand(nand); |
| struct nand_pos start_pos, end_pos; |
| |
| if (!spinand->cont_read_possible) |
| return false; |
| |
| /* OOBs won't be retrieved */ |
| if (ops->ooblen || ops->oobbuf) |
| return false; |
| |
| nanddev_offs_to_pos(nand, from, &start_pos); |
| nanddev_offs_to_pos(nand, from + ops->len - 1, &end_pos); |
| |
| /* |
| * Continuous reads never cross LUN boundaries. Some devices don't |
| * support crossing planes boundaries. Some devices don't even support |
| * crossing blocks boundaries. The common case being to read through UBI, |
| * we will very rarely read two consequent blocks or more, so it is safer |
| * and easier (can be improved) to only enable continuous reads when |
| * reading within the same erase block. |
| */ |
| if (start_pos.target != end_pos.target || |
| start_pos.plane != end_pos.plane || |
| start_pos.eraseblock != end_pos.eraseblock) |
| return false; |
| |
| return start_pos.page < end_pos.page; |
| } |
| |
| static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct spinand_device *spinand = mtd_to_spinand(mtd); |
| struct mtd_ecc_stats old_stats; |
| unsigned int max_bitflips = 0; |
| int ret; |
| |
| mutex_lock(&spinand->lock); |
| |
| old_stats = mtd->ecc_stats; |
| |
| if (spinand_use_cont_read(mtd, from, ops)) |
| ret = spinand_mtd_continuous_page_read(mtd, from, ops, &max_bitflips); |
| else |
| ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips); |
| |
| if (ops->stats) { |
| ops->stats->uncorrectable_errors += |
| mtd->ecc_stats.failed - old_stats.failed; |
| ops->stats->corrected_bitflips += |
| mtd->ecc_stats.corrected - old_stats.corrected; |
| } |
| |
| mutex_unlock(&spinand->lock); |
| |
| return ret ? ret : max_bitflips; |
| } |
| |
| static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct spinand_device *spinand = mtd_to_spinand(mtd); |
| struct nand_device *nand = mtd_to_nanddev(mtd); |
| struct nand_io_iter iter; |
| bool disable_ecc = false; |
| int ret = 0; |
| |
| if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout) |
| disable_ecc = true; |
| |
| mutex_lock(&spinand->lock); |
| |
| nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) { |
| if (disable_ecc) |
| iter.req.mode = MTD_OPS_RAW; |
| |
| ret = spinand_select_target(spinand, iter.req.pos.target); |
| if (ret) |
| break; |
| |
| ret = spinand_write_page(spinand, &iter.req); |
| if (ret) |
| break; |
| |
| ops->retlen += iter.req.datalen; |
| ops->oobretlen += iter.req.ooblen; |
| } |
| |
| mutex_unlock(&spinand->lock); |
| |
| return ret; |
| } |
| |
| static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) |
| { |
| struct spinand_device *spinand = nand_to_spinand(nand); |
| u8 marker[2] = { }; |
| struct nand_page_io_req req = { |
| .pos = *pos, |
| .ooblen = sizeof(marker), |
| .ooboffs = 0, |
| .oobbuf.in = marker, |
| .mode = MTD_OPS_RAW, |
| }; |
| |
| spinand_select_target(spinand, pos->target); |
| spinand_read_page(spinand, &req); |
| if (marker[0] != 0xff || marker[1] != 0xff) |
| return true; |
| |
| return false; |
| } |
| |
| static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) |
| { |
| struct nand_device *nand = mtd_to_nanddev(mtd); |
| struct spinand_device *spinand = nand_to_spinand(nand); |
| struct nand_pos pos; |
| int ret; |
| |
| nanddev_offs_to_pos(nand, offs, &pos); |
| mutex_lock(&spinand->lock); |
| ret = nanddev_isbad(nand, &pos); |
| mutex_unlock(&spinand->lock); |
| |
| return ret; |
| } |
| |
| static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) |
| { |
| struct spinand_device *spinand = nand_to_spinand(nand); |
| u8 marker[2] = { }; |
| struct nand_page_io_req req = { |
| .pos = *pos, |
| .ooboffs = 0, |
| .ooblen = sizeof(marker), |
| .oobbuf.out = marker, |
| .mode = MTD_OPS_RAW, |
| }; |
| int ret; |
| |
| ret = spinand_select_target(spinand, pos->target); |
| if (ret) |
| return ret; |
| |
| ret = spinand_write_enable_op(spinand); |
| if (ret) |
| return ret; |
| |
| return spinand_write_page(spinand, &req); |
| } |
| |
| static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) |
| { |
| struct nand_device *nand = mtd_to_nanddev(mtd); |
| struct spinand_device *spinand = nand_to_spinand(nand); |
| struct nand_pos pos; |
| int ret; |
| |
| nanddev_offs_to_pos(nand, offs, &pos); |
| mutex_lock(&spinand->lock); |
| ret = nanddev_markbad(nand, &pos); |
| mutex_unlock(&spinand->lock); |
| |
| return ret; |
| } |
| |
| static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) |
| { |
| struct spinand_device *spinand = nand_to_spinand(nand); |
| u8 status; |
| int ret; |
| |
| ret = spinand_select_target(spinand, pos->target); |
| if (ret) |
| return ret; |
| |
| ret = spinand_write_enable_op(spinand); |
| if (ret) |
| return ret; |
| |
| ret = spinand_erase_op(spinand, pos); |
| if (ret) |
| return ret; |
| |
| ret = spinand_wait(spinand, |
| SPINAND_ERASE_INITIAL_DELAY_US, |
| SPINAND_ERASE_POLL_DELAY_US, |
| &status); |
| |
| if (!ret && (status & STATUS_ERASE_FAILED)) |
| ret = -EIO; |
| |
| return ret; |
| } |
| |
| static int spinand_mtd_erase(struct mtd_info *mtd, |
| struct erase_info *einfo) |
| { |
| struct spinand_device *spinand = mtd_to_spinand(mtd); |
| int ret; |
| |
| mutex_lock(&spinand->lock); |
| ret = nanddev_mtd_erase(mtd, einfo); |
| mutex_unlock(&spinand->lock); |
| |
| return ret; |
| } |
| |
| static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) |
| { |
| struct spinand_device *spinand = mtd_to_spinand(mtd); |
| struct nand_device *nand = mtd_to_nanddev(mtd); |
| struct nand_pos pos; |
| int ret; |
| |
| nanddev_offs_to_pos(nand, offs, &pos); |
| mutex_lock(&spinand->lock); |
| ret = nanddev_isreserved(nand, &pos); |
| mutex_unlock(&spinand->lock); |
| |
| return ret; |
| } |
| |
| static int spinand_create_dirmap(struct spinand_device *spinand, |
| unsigned int plane) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| struct spi_mem_dirmap_info info = { |
| .length = nanddev_page_size(nand) + |
| nanddev_per_page_oobsize(nand), |
| }; |
| struct spi_mem_dirmap_desc *desc; |
| |
| if (spinand->cont_read_possible) |
| info.length = nanddev_eraseblock_size(nand); |
| |
| /* The plane number is passed in MSB just above the column address */ |
| info.offset = plane << fls(nand->memorg.pagesize); |
| |
| info.op_tmpl = *spinand->op_templates.update_cache; |
| desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, |
| spinand->spimem, &info); |
| if (IS_ERR(desc)) |
| return PTR_ERR(desc); |
| |
| spinand->dirmaps[plane].wdesc = desc; |
| |
| info.op_tmpl = *spinand->op_templates.read_cache; |
| desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, |
| spinand->spimem, &info); |
| if (IS_ERR(desc)) |
| return PTR_ERR(desc); |
| |
| spinand->dirmaps[plane].rdesc = desc; |
| |
| if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) { |
| spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc; |
| spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc; |
| |
| return 0; |
| } |
| |
| info.op_tmpl = *spinand->op_templates.update_cache; |
| info.op_tmpl.data.ecc = true; |
| desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, |
| spinand->spimem, &info); |
| if (IS_ERR(desc)) |
| return PTR_ERR(desc); |
| |
| spinand->dirmaps[plane].wdesc_ecc = desc; |
| |
| info.op_tmpl = *spinand->op_templates.read_cache; |
| info.op_tmpl.data.ecc = true; |
| desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, |
| spinand->spimem, &info); |
| if (IS_ERR(desc)) |
| return PTR_ERR(desc); |
| |
| spinand->dirmaps[plane].rdesc_ecc = desc; |
| |
| return 0; |
| } |
| |
| static int spinand_create_dirmaps(struct spinand_device *spinand) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| int i, ret; |
| |
| spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev, |
| sizeof(*spinand->dirmaps) * |
| nand->memorg.planes_per_lun, |
| GFP_KERNEL); |
| if (!spinand->dirmaps) |
| return -ENOMEM; |
| |
| for (i = 0; i < nand->memorg.planes_per_lun; i++) { |
| ret = spinand_create_dirmap(spinand, i); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct nand_ops spinand_ops = { |
| .erase = spinand_erase, |
| .markbad = spinand_markbad, |
| .isbad = spinand_isbad, |
| }; |
| |
| static const struct spinand_manufacturer *spinand_manufacturers[] = { |
| &alliancememory_spinand_manufacturer, |
| &ato_spinand_manufacturer, |
| &esmt_c8_spinand_manufacturer, |
| &foresee_spinand_manufacturer, |
| &gigadevice_spinand_manufacturer, |
| ¯onix_spinand_manufacturer, |
| µn_spinand_manufacturer, |
| ¶gon_spinand_manufacturer, |
| &toshiba_spinand_manufacturer, |
| &winbond_spinand_manufacturer, |
| &xtx_spinand_manufacturer, |
| }; |
| |
| static int spinand_manufacturer_match(struct spinand_device *spinand, |
| enum spinand_readid_method rdid_method) |
| { |
| u8 *id = spinand->id.data; |
| unsigned int i; |
| int ret; |
| |
| for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { |
| const struct spinand_manufacturer *manufacturer = |
| spinand_manufacturers[i]; |
| |
| if (id[0] != manufacturer->id) |
| continue; |
| |
| ret = spinand_match_and_init(spinand, |
| manufacturer->chips, |
| manufacturer->nchips, |
| rdid_method); |
| if (ret < 0) |
| continue; |
| |
| spinand->manufacturer = manufacturer; |
| return 0; |
| } |
| return -EOPNOTSUPP; |
| } |
| |
| static int spinand_id_detect(struct spinand_device *spinand) |
| { |
| u8 *id = spinand->id.data; |
| int ret; |
| |
| ret = spinand_read_id_op(spinand, 0, 0, id); |
| if (ret) |
| return ret; |
| ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE); |
| if (!ret) |
| return 0; |
| |
| ret = spinand_read_id_op(spinand, 1, 0, id); |
| if (ret) |
| return ret; |
| ret = spinand_manufacturer_match(spinand, |
| SPINAND_READID_METHOD_OPCODE_ADDR); |
| if (!ret) |
| return 0; |
| |
| ret = spinand_read_id_op(spinand, 0, 1, id); |
| if (ret) |
| return ret; |
| ret = spinand_manufacturer_match(spinand, |
| SPINAND_READID_METHOD_OPCODE_DUMMY); |
| |
| return ret; |
| } |
| |
| static int spinand_manufacturer_init(struct spinand_device *spinand) |
| { |
| if (spinand->manufacturer->ops->init) |
| return spinand->manufacturer->ops->init(spinand); |
| |
| return 0; |
| } |
| |
| static void spinand_manufacturer_cleanup(struct spinand_device *spinand) |
| { |
| /* Release manufacturer private data */ |
| if (spinand->manufacturer->ops->cleanup) |
| return spinand->manufacturer->ops->cleanup(spinand); |
| } |
| |
| static const struct spi_mem_op * |
| spinand_select_op_variant(struct spinand_device *spinand, |
| const struct spinand_op_variants *variants) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| unsigned int i; |
| |
| for (i = 0; i < variants->nops; i++) { |
| struct spi_mem_op op = variants->ops[i]; |
| unsigned int nbytes; |
| int ret; |
| |
| nbytes = nanddev_per_page_oobsize(nand) + |
| nanddev_page_size(nand); |
| |
| while (nbytes) { |
| op.data.nbytes = nbytes; |
| ret = spi_mem_adjust_op_size(spinand->spimem, &op); |
| if (ret) |
| break; |
| |
| if (!spi_mem_supports_op(spinand->spimem, &op)) |
| break; |
| |
| nbytes -= op.data.nbytes; |
| } |
| |
| if (!nbytes) |
| return &variants->ops[i]; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * spinand_match_and_init() - Try to find a match between a device ID and an |
| * entry in a spinand_info table |
| * @spinand: SPI NAND object |
| * @table: SPI NAND device description table |
| * @table_size: size of the device description table |
| * @rdid_method: read id method to match |
| * |
| * Match between a device ID retrieved through the READ_ID command and an |
| * entry in the SPI NAND description table. If a match is found, the spinand |
| * object will be initialized with information provided by the matching |
| * spinand_info entry. |
| * |
| * Return: 0 on success, a negative error code otherwise. |
| */ |
| int spinand_match_and_init(struct spinand_device *spinand, |
| const struct spinand_info *table, |
| unsigned int table_size, |
| enum spinand_readid_method rdid_method) |
| { |
| u8 *id = spinand->id.data; |
| struct nand_device *nand = spinand_to_nand(spinand); |
| unsigned int i; |
| |
| for (i = 0; i < table_size; i++) { |
| const struct spinand_info *info = &table[i]; |
| const struct spi_mem_op *op; |
| |
| if (rdid_method != info->devid.method) |
| continue; |
| |
| if (memcmp(id + 1, info->devid.id, info->devid.len)) |
| continue; |
| |
| nand->memorg = table[i].memorg; |
| nanddev_set_ecc_requirements(nand, &table[i].eccreq); |
| spinand->eccinfo = table[i].eccinfo; |
| spinand->flags = table[i].flags; |
| spinand->id.len = 1 + table[i].devid.len; |
| spinand->select_target = table[i].select_target; |
| spinand->set_cont_read = table[i].set_cont_read; |
| |
| op = spinand_select_op_variant(spinand, |
| info->op_variants.read_cache); |
| if (!op) |
| return -ENOTSUPP; |
| |
| spinand->op_templates.read_cache = op; |
| |
| op = spinand_select_op_variant(spinand, |
| info->op_variants.write_cache); |
| if (!op) |
| return -ENOTSUPP; |
| |
| spinand->op_templates.write_cache = op; |
| |
| op = spinand_select_op_variant(spinand, |
| info->op_variants.update_cache); |
| spinand->op_templates.update_cache = op; |
| |
| return 0; |
| } |
| |
| return -ENOTSUPP; |
| } |
| |
| static int spinand_detect(struct spinand_device *spinand) |
| { |
| struct device *dev = &spinand->spimem->spi->dev; |
| struct nand_device *nand = spinand_to_nand(spinand); |
| int ret; |
| |
| ret = spinand_reset_op(spinand); |
| if (ret) |
| return ret; |
| |
| ret = spinand_id_detect(spinand); |
| if (ret) { |
| dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, |
| spinand->id.data); |
| return ret; |
| } |
| |
| if (nand->memorg.ntargets > 1 && !spinand->select_target) { |
| dev_err(dev, |
| "SPI NANDs with more than one die must implement ->select_target()\n"); |
| return -EINVAL; |
| } |
| |
| dev_info(&spinand->spimem->spi->dev, |
| "%s SPI NAND was found.\n", spinand->manufacturer->name); |
| dev_info(&spinand->spimem->spi->dev, |
| "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", |
| nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, |
| nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); |
| |
| return 0; |
| } |
| |
| static int spinand_init_flash(struct spinand_device *spinand) |
| { |
| struct device *dev = &spinand->spimem->spi->dev; |
| struct nand_device *nand = spinand_to_nand(spinand); |
| int ret, i; |
| |
| ret = spinand_read_cfg(spinand); |
| if (ret) |
| return ret; |
| |
| ret = spinand_init_quad_enable(spinand); |
| if (ret) |
| return ret; |
| |
| ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); |
| if (ret) |
| return ret; |
| |
| ret = spinand_manufacturer_init(spinand); |
| if (ret) { |
| dev_err(dev, |
| "Failed to initialize the SPI NAND chip (err = %d)\n", |
| ret); |
| return ret; |
| } |
| |
| /* After power up, all blocks are locked, so unlock them here. */ |
| for (i = 0; i < nand->memorg.ntargets; i++) { |
| ret = spinand_select_target(spinand, i); |
| if (ret) |
| break; |
| |
| ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); |
| if (ret) |
| break; |
| } |
| |
| if (ret) |
| spinand_manufacturer_cleanup(spinand); |
| |
| return ret; |
| } |
| |
| static void spinand_mtd_resume(struct mtd_info *mtd) |
| { |
| struct spinand_device *spinand = mtd_to_spinand(mtd); |
| int ret; |
| |
| ret = spinand_reset_op(spinand); |
| if (ret) |
| return; |
| |
| ret = spinand_init_flash(spinand); |
| if (ret) |
| return; |
| |
| spinand_ecc_enable(spinand, false); |
| } |
| |
| static int spinand_init(struct spinand_device *spinand) |
| { |
| struct device *dev = &spinand->spimem->spi->dev; |
| struct mtd_info *mtd = spinand_to_mtd(spinand); |
| struct nand_device *nand = mtd_to_nanddev(mtd); |
| int ret; |
| |
| /* |
| * We need a scratch buffer because the spi_mem interface requires that |
| * buf passed in spi_mem_op->data.buf be DMA-able. |
| */ |
| spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); |
| if (!spinand->scratchbuf) |
| return -ENOMEM; |
| |
| ret = spinand_detect(spinand); |
| if (ret) |
| goto err_free_bufs; |
| |
| /* |
| * Use kzalloc() instead of devm_kzalloc() here, because some drivers |
| * may use this buffer for DMA access. |
| * Memory allocated by devm_ does not guarantee DMA-safe alignment. |
| */ |
| spinand->databuf = kzalloc(nanddev_eraseblock_size(nand), |
| GFP_KERNEL); |
| if (!spinand->databuf) { |
| ret = -ENOMEM; |
| goto err_free_bufs; |
| } |
| |
| spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); |
| |
| ret = spinand_init_cfg_cache(spinand); |
| if (ret) |
| goto err_free_bufs; |
| |
| ret = spinand_init_flash(spinand); |
| if (ret) |
| goto err_free_bufs; |
| |
| ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); |
| if (ret) |
| goto err_manuf_cleanup; |
| |
| /* SPI-NAND default ECC engine is on-die */ |
| nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE; |
| nand->ecc.ondie_engine = &spinand_ondie_ecc_engine; |
| |
| spinand_ecc_enable(spinand, false); |
| ret = nanddev_ecc_engine_init(nand); |
| if (ret) |
| goto err_cleanup_nanddev; |
| |
| /* |
| * Continuous read can only be enabled with an on-die ECC engine, so the |
| * ECC initialization must have happened previously. |
| */ |
| spinand_cont_read_init(spinand); |
| |
| mtd->_read_oob = spinand_mtd_read; |
| mtd->_write_oob = spinand_mtd_write; |
| mtd->_block_isbad = spinand_mtd_block_isbad; |
| mtd->_block_markbad = spinand_mtd_block_markbad; |
| mtd->_block_isreserved = spinand_mtd_block_isreserved; |
| mtd->_erase = spinand_mtd_erase; |
| mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; |
| mtd->_resume = spinand_mtd_resume; |
| |
| if (nand->ecc.engine) { |
| ret = mtd_ooblayout_count_freebytes(mtd); |
| if (ret < 0) |
| goto err_cleanup_ecc_engine; |
| } |
| |
| mtd->oobavail = ret; |
| |
| /* Propagate ECC information to mtd_info */ |
| mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength; |
| mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size; |
| mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); |
| |
| ret = spinand_create_dirmaps(spinand); |
| if (ret) { |
| dev_err(dev, |
| "Failed to create direct mappings for read/write operations (err = %d)\n", |
| ret); |
| goto err_cleanup_ecc_engine; |
| } |
| |
| return 0; |
| |
| err_cleanup_ecc_engine: |
| nanddev_ecc_engine_cleanup(nand); |
| |
| err_cleanup_nanddev: |
| nanddev_cleanup(nand); |
| |
| err_manuf_cleanup: |
| spinand_manufacturer_cleanup(spinand); |
| |
| err_free_bufs: |
| kfree(spinand->databuf); |
| kfree(spinand->scratchbuf); |
| return ret; |
| } |
| |
| static void spinand_cleanup(struct spinand_device *spinand) |
| { |
| struct nand_device *nand = spinand_to_nand(spinand); |
| |
| nanddev_cleanup(nand); |
| spinand_manufacturer_cleanup(spinand); |
| kfree(spinand->databuf); |
| kfree(spinand->scratchbuf); |
| } |
| |
| static int spinand_probe(struct spi_mem *mem) |
| { |
| struct spinand_device *spinand; |
| struct mtd_info *mtd; |
| int ret; |
| |
| spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), |
| GFP_KERNEL); |
| if (!spinand) |
| return -ENOMEM; |
| |
| spinand->spimem = mem; |
| spi_mem_set_drvdata(mem, spinand); |
| spinand_set_of_node(spinand, mem->spi->dev.of_node); |
| mutex_init(&spinand->lock); |
| mtd = spinand_to_mtd(spinand); |
| mtd->dev.parent = &mem->spi->dev; |
| |
| ret = spinand_init(spinand); |
| if (ret) |
| return ret; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) |
| goto err_spinand_cleanup; |
| |
| return 0; |
| |
| err_spinand_cleanup: |
| spinand_cleanup(spinand); |
| |
| return ret; |
| } |
| |
| static int spinand_remove(struct spi_mem *mem) |
| { |
| struct spinand_device *spinand; |
| struct mtd_info *mtd; |
| int ret; |
| |
| spinand = spi_mem_get_drvdata(mem); |
| mtd = spinand_to_mtd(spinand); |
| |
| ret = mtd_device_unregister(mtd); |
| if (ret) |
| return ret; |
| |
| spinand_cleanup(spinand); |
| |
| return 0; |
| } |
| |
| static const struct spi_device_id spinand_ids[] = { |
| { .name = "spi-nand" }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(spi, spinand_ids); |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id spinand_of_ids[] = { |
| { .compatible = "spi-nand" }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, spinand_of_ids); |
| #endif |
| |
| static struct spi_mem_driver spinand_drv = { |
| .spidrv = { |
| .id_table = spinand_ids, |
| .driver = { |
| .name = "spi-nand", |
| .of_match_table = of_match_ptr(spinand_of_ids), |
| }, |
| }, |
| .probe = spinand_probe, |
| .remove = spinand_remove, |
| }; |
| module_spi_mem_driver(spinand_drv); |
| |
| MODULE_DESCRIPTION("SPI NAND framework"); |
| MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); |
| MODULE_LICENSE("GPL v2"); |