| // SPDX-License-Identifier: GPL-2.0-only |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/list.h> |
| #include <linux/random.h> |
| #include <linux/string.h> |
| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/nand-ecc-sw-hamming.h> |
| |
| #include "mtd_test.h" |
| |
| /* |
| * Test the implementation for software ECC |
| * |
| * No actual MTD device is needed, So we don't need to warry about losing |
| * important data by human error. |
| * |
| * This covers possible patterns of corruption which can be reliably corrected |
| * or detected. |
| */ |
| |
| #if IS_ENABLED(CONFIG_MTD_RAW_NAND) |
| |
| struct nand_ecc_test { |
| const char *name; |
| void (*prepare)(void *, void *, void *, void *, const size_t); |
| int (*verify)(void *, void *, void *, const size_t); |
| }; |
| |
| /* |
| * The reason for this __change_bit_le() instead of __change_bit() is to inject |
| * bit error properly within the region which is not a multiple of |
| * sizeof(unsigned long) on big-endian systems |
| */ |
| #ifdef __LITTLE_ENDIAN |
| #define __change_bit_le(nr, addr) __change_bit(nr, addr) |
| #elif defined(__BIG_ENDIAN) |
| #define __change_bit_le(nr, addr) \ |
| __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr) |
| #else |
| #error "Unknown byte order" |
| #endif |
| |
| static void single_bit_error_data(void *error_data, void *correct_data, |
| size_t size) |
| { |
| unsigned int offset = get_random_u32_below(size * BITS_PER_BYTE); |
| |
| memcpy(error_data, correct_data, size); |
| __change_bit_le(offset, error_data); |
| } |
| |
| static void double_bit_error_data(void *error_data, void *correct_data, |
| size_t size) |
| { |
| unsigned int offset[2]; |
| |
| offset[0] = get_random_u32_below(size * BITS_PER_BYTE); |
| do { |
| offset[1] = get_random_u32_below(size * BITS_PER_BYTE); |
| } while (offset[0] == offset[1]); |
| |
| memcpy(error_data, correct_data, size); |
| |
| __change_bit_le(offset[0], error_data); |
| __change_bit_le(offset[1], error_data); |
| } |
| |
| static unsigned int random_ecc_bit(size_t size) |
| { |
| unsigned int offset = get_random_u32_below(3 * BITS_PER_BYTE); |
| |
| if (size == 256) { |
| /* |
| * Don't inject a bit error into the insignificant bits (16th |
| * and 17th bit) in ECC code for 256 byte data block |
| */ |
| while (offset == 16 || offset == 17) |
| offset = get_random_u32_below(3 * BITS_PER_BYTE); |
| } |
| |
| return offset; |
| } |
| |
| static void single_bit_error_ecc(void *error_ecc, void *correct_ecc, |
| size_t size) |
| { |
| unsigned int offset = random_ecc_bit(size); |
| |
| memcpy(error_ecc, correct_ecc, 3); |
| __change_bit_le(offset, error_ecc); |
| } |
| |
| static void double_bit_error_ecc(void *error_ecc, void *correct_ecc, |
| size_t size) |
| { |
| unsigned int offset[2]; |
| |
| offset[0] = random_ecc_bit(size); |
| do { |
| offset[1] = random_ecc_bit(size); |
| } while (offset[0] == offset[1]); |
| |
| memcpy(error_ecc, correct_ecc, 3); |
| __change_bit_le(offset[0], error_ecc); |
| __change_bit_le(offset[1], error_ecc); |
| } |
| |
| static void no_bit_error(void *error_data, void *error_ecc, |
| void *correct_data, void *correct_ecc, const size_t size) |
| { |
| memcpy(error_data, correct_data, size); |
| memcpy(error_ecc, correct_ecc, 3); |
| } |
| |
| static int no_bit_error_verify(void *error_data, void *error_ecc, |
| void *correct_data, const size_t size) |
| { |
| bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); |
| unsigned char calc_ecc[3]; |
| int ret; |
| |
| ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order); |
| ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size, |
| sm_order); |
| if (ret == 0 && !memcmp(correct_data, error_data, size)) |
| return 0; |
| |
| return -EINVAL; |
| } |
| |
| static void single_bit_error_in_data(void *error_data, void *error_ecc, |
| void *correct_data, void *correct_ecc, const size_t size) |
| { |
| single_bit_error_data(error_data, correct_data, size); |
| memcpy(error_ecc, correct_ecc, 3); |
| } |
| |
| static void single_bit_error_in_ecc(void *error_data, void *error_ecc, |
| void *correct_data, void *correct_ecc, const size_t size) |
| { |
| memcpy(error_data, correct_data, size); |
| single_bit_error_ecc(error_ecc, correct_ecc, size); |
| } |
| |
| static int single_bit_error_correct(void *error_data, void *error_ecc, |
| void *correct_data, const size_t size) |
| { |
| bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); |
| unsigned char calc_ecc[3]; |
| int ret; |
| |
| ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order); |
| ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size, |
| sm_order); |
| if (ret == 1 && !memcmp(correct_data, error_data, size)) |
| return 0; |
| |
| return -EINVAL; |
| } |
| |
| static void double_bit_error_in_data(void *error_data, void *error_ecc, |
| void *correct_data, void *correct_ecc, const size_t size) |
| { |
| double_bit_error_data(error_data, correct_data, size); |
| memcpy(error_ecc, correct_ecc, 3); |
| } |
| |
| static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc, |
| void *correct_data, void *correct_ecc, const size_t size) |
| { |
| single_bit_error_data(error_data, correct_data, size); |
| single_bit_error_ecc(error_ecc, correct_ecc, size); |
| } |
| |
| static void double_bit_error_in_ecc(void *error_data, void *error_ecc, |
| void *correct_data, void *correct_ecc, const size_t size) |
| { |
| memcpy(error_data, correct_data, size); |
| double_bit_error_ecc(error_ecc, correct_ecc, size); |
| } |
| |
| static int double_bit_error_detect(void *error_data, void *error_ecc, |
| void *correct_data, const size_t size) |
| { |
| bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); |
| unsigned char calc_ecc[3]; |
| int ret; |
| |
| ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order); |
| ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size, |
| sm_order); |
| |
| return (ret == -EBADMSG) ? 0 : -EINVAL; |
| } |
| |
| static const struct nand_ecc_test nand_ecc_test[] = { |
| { |
| .name = "no-bit-error", |
| .prepare = no_bit_error, |
| .verify = no_bit_error_verify, |
| }, |
| { |
| .name = "single-bit-error-in-data-correct", |
| .prepare = single_bit_error_in_data, |
| .verify = single_bit_error_correct, |
| }, |
| { |
| .name = "single-bit-error-in-ecc-correct", |
| .prepare = single_bit_error_in_ecc, |
| .verify = single_bit_error_correct, |
| }, |
| { |
| .name = "double-bit-error-in-data-detect", |
| .prepare = double_bit_error_in_data, |
| .verify = double_bit_error_detect, |
| }, |
| { |
| .name = "single-bit-error-in-data-and-ecc-detect", |
| .prepare = single_bit_error_in_data_and_ecc, |
| .verify = double_bit_error_detect, |
| }, |
| { |
| .name = "double-bit-error-in-ecc-detect", |
| .prepare = double_bit_error_in_ecc, |
| .verify = double_bit_error_detect, |
| }, |
| }; |
| |
| static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data, |
| void *correct_ecc, const size_t size) |
| { |
| pr_info("hexdump of error data:\n"); |
| print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, |
| error_data, size, false); |
| print_hex_dump(KERN_INFO, "hexdump of error ecc: ", |
| DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false); |
| |
| pr_info("hexdump of correct data:\n"); |
| print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, |
| correct_data, size, false); |
| print_hex_dump(KERN_INFO, "hexdump of correct ecc: ", |
| DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false); |
| } |
| |
| static int nand_ecc_test_run(const size_t size) |
| { |
| bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC); |
| int i; |
| int err = 0; |
| void *error_data; |
| void *error_ecc; |
| void *correct_data; |
| void *correct_ecc; |
| |
| error_data = kmalloc(size, GFP_KERNEL); |
| error_ecc = kmalloc(3, GFP_KERNEL); |
| correct_data = kmalloc(size, GFP_KERNEL); |
| correct_ecc = kmalloc(3, GFP_KERNEL); |
| |
| if (!error_data || !error_ecc || !correct_data || !correct_ecc) { |
| err = -ENOMEM; |
| goto error; |
| } |
| |
| get_random_bytes(correct_data, size); |
| ecc_sw_hamming_calculate(correct_data, size, correct_ecc, sm_order); |
| for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) { |
| nand_ecc_test[i].prepare(error_data, error_ecc, |
| correct_data, correct_ecc, size); |
| err = nand_ecc_test[i].verify(error_data, error_ecc, |
| correct_data, size); |
| |
| if (err) { |
| pr_err("not ok - %s-%zd\n", |
| nand_ecc_test[i].name, size); |
| dump_data_ecc(error_data, error_ecc, |
| correct_data, correct_ecc, size); |
| break; |
| } |
| pr_info("ok - %s-%zd\n", |
| nand_ecc_test[i].name, size); |
| |
| err = mtdtest_relax(); |
| if (err) |
| break; |
| } |
| error: |
| kfree(error_data); |
| kfree(error_ecc); |
| kfree(correct_data); |
| kfree(correct_ecc); |
| |
| return err; |
| } |
| |
| #else |
| |
| static int nand_ecc_test_run(const size_t size) |
| { |
| return 0; |
| } |
| |
| #endif |
| |
| static int __init ecc_test_init(void) |
| { |
| int err; |
| |
| err = nand_ecc_test_run(256); |
| if (err) |
| return err; |
| |
| return nand_ecc_test_run(512); |
| } |
| |
| static void __exit ecc_test_exit(void) |
| { |
| } |
| |
| module_init(ecc_test_init); |
| module_exit(ecc_test_exit); |
| |
| MODULE_DESCRIPTION("NAND ECC function test module"); |
| MODULE_AUTHOR("Akinobu Mita"); |
| MODULE_LICENSE("GPL"); |