| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (c) International Business Machines Corp., 2006 |
| * Copyright (c) Nokia Corporation, 2006, 2007 |
| * |
| * Author: Artem Bityutskiy (Битюцкий Артём) |
| */ |
| |
| /* |
| * This file includes volume table manipulation code. The volume table is an |
| * on-flash table containing volume meta-data like name, number of reserved |
| * physical eraseblocks, type, etc. The volume table is stored in the so-called |
| * "layout volume". |
| * |
| * The layout volume is an internal volume which is organized as follows. It |
| * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical |
| * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each |
| * other. This redundancy guarantees robustness to unclean reboots. The volume |
| * table is basically an array of volume table records. Each record contains |
| * full information about the volume and protected by a CRC checksum. Note, |
| * nowadays we use the atomic LEB change operation when updating the volume |
| * table, so we do not really need 2 LEBs anymore, but we preserve the older |
| * design for the backward compatibility reasons. |
| * |
| * When the volume table is changed, it is first changed in RAM. Then LEB 0 is |
| * erased, and the updated volume table is written back to LEB 0. Then same for |
| * LEB 1. This scheme guarantees recoverability from unclean reboots. |
| * |
| * In this UBI implementation the on-flash volume table does not contain any |
| * information about how much data static volumes contain. |
| * |
| * But it would still be beneficial to store this information in the volume |
| * table. For example, suppose we have a static volume X, and all its physical |
| * eraseblocks became bad for some reasons. Suppose we are attaching the |
| * corresponding MTD device, for some reason we find no logical eraseblocks |
| * corresponding to the volume X. According to the volume table volume X does |
| * exist. So we don't know whether it is just empty or all its physical |
| * eraseblocks went bad. So we cannot alarm the user properly. |
| * |
| * The volume table also stores so-called "update marker", which is used for |
| * volume updates. Before updating the volume, the update marker is set, and |
| * after the update operation is finished, the update marker is cleared. So if |
| * the update operation was interrupted (e.g. by an unclean reboot) - the |
| * update marker is still there and we know that the volume's contents is |
| * damaged. |
| */ |
| |
| #include <linux/crc32.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <asm/div64.h> |
| #include "ubi.h" |
| |
| static void self_vtbl_check(const struct ubi_device *ubi); |
| |
| /* Empty volume table record */ |
| static struct ubi_vtbl_record empty_vtbl_record; |
| |
| /** |
| * ubi_update_layout_vol - helper for updatting layout volumes on flash |
| * @ubi: UBI device description object |
| */ |
| static int ubi_update_layout_vol(struct ubi_device *ubi) |
| { |
| struct ubi_volume *layout_vol; |
| int i, err; |
| |
| layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; |
| for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { |
| err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl, |
| ubi->vtbl_size); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ubi_change_vtbl_record - change volume table record. |
| * @ubi: UBI device description object |
| * @idx: table index to change |
| * @vtbl_rec: new volume table record |
| * |
| * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty |
| * volume table record is written. The caller does not have to calculate CRC of |
| * the record as it is done by this function. Returns zero in case of success |
| * and a negative error code in case of failure. |
| */ |
| int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, |
| struct ubi_vtbl_record *vtbl_rec) |
| { |
| int err; |
| uint32_t crc; |
| |
| ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); |
| |
| if (!vtbl_rec) |
| vtbl_rec = &empty_vtbl_record; |
| else { |
| crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); |
| vtbl_rec->crc = cpu_to_be32(crc); |
| } |
| |
| memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); |
| err = ubi_update_layout_vol(ubi); |
| |
| self_vtbl_check(ubi); |
| return err ? err : 0; |
| } |
| |
| /** |
| * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table. |
| * @ubi: UBI device description object |
| * @rename_list: list of &struct ubi_rename_entry objects |
| * |
| * This function re-names multiple volumes specified in @req in the volume |
| * table. Returns zero in case of success and a negative error code in case of |
| * failure. |
| */ |
| int ubi_vtbl_rename_volumes(struct ubi_device *ubi, |
| struct list_head *rename_list) |
| { |
| struct ubi_rename_entry *re; |
| |
| list_for_each_entry(re, rename_list, list) { |
| uint32_t crc; |
| struct ubi_volume *vol = re->desc->vol; |
| struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id]; |
| |
| if (re->remove) { |
| memcpy(vtbl_rec, &empty_vtbl_record, |
| sizeof(struct ubi_vtbl_record)); |
| continue; |
| } |
| |
| vtbl_rec->name_len = cpu_to_be16(re->new_name_len); |
| memcpy(vtbl_rec->name, re->new_name, re->new_name_len); |
| memset(vtbl_rec->name + re->new_name_len, 0, |
| UBI_VOL_NAME_MAX + 1 - re->new_name_len); |
| crc = crc32(UBI_CRC32_INIT, vtbl_rec, |
| UBI_VTBL_RECORD_SIZE_CRC); |
| vtbl_rec->crc = cpu_to_be32(crc); |
| } |
| |
| return ubi_update_layout_vol(ubi); |
| } |
| |
| /** |
| * vtbl_check - check if volume table is not corrupted and sensible. |
| * @ubi: UBI device description object |
| * @vtbl: volume table |
| * |
| * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, |
| * and %-EINVAL if it contains inconsistent data. |
| */ |
| static int vtbl_check(const struct ubi_device *ubi, |
| const struct ubi_vtbl_record *vtbl) |
| { |
| int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; |
| int upd_marker, err; |
| uint32_t crc; |
| const char *name; |
| |
| for (i = 0; i < ubi->vtbl_slots; i++) { |
| cond_resched(); |
| |
| reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); |
| alignment = be32_to_cpu(vtbl[i].alignment); |
| data_pad = be32_to_cpu(vtbl[i].data_pad); |
| upd_marker = vtbl[i].upd_marker; |
| vol_type = vtbl[i].vol_type; |
| name_len = be16_to_cpu(vtbl[i].name_len); |
| name = &vtbl[i].name[0]; |
| |
| crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); |
| if (be32_to_cpu(vtbl[i].crc) != crc) { |
| ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x", |
| i, crc, be32_to_cpu(vtbl[i].crc)); |
| ubi_dump_vtbl_record(&vtbl[i], i); |
| return 1; |
| } |
| |
| if (reserved_pebs == 0) { |
| if (memcmp(&vtbl[i], &empty_vtbl_record, |
| UBI_VTBL_RECORD_SIZE)) { |
| err = 2; |
| goto bad; |
| } |
| continue; |
| } |
| |
| if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || |
| name_len < 0) { |
| err = 3; |
| goto bad; |
| } |
| |
| if (alignment > ubi->leb_size || alignment == 0) { |
| err = 4; |
| goto bad; |
| } |
| |
| n = alignment & (ubi->min_io_size - 1); |
| if (alignment != 1 && n) { |
| err = 5; |
| goto bad; |
| } |
| |
| n = ubi->leb_size % alignment; |
| if (data_pad != n) { |
| ubi_err(ubi, "bad data_pad, has to be %d", n); |
| err = 6; |
| goto bad; |
| } |
| |
| if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { |
| err = 7; |
| goto bad; |
| } |
| |
| if (upd_marker != 0 && upd_marker != 1) { |
| err = 8; |
| goto bad; |
| } |
| |
| if (reserved_pebs > ubi->good_peb_count) { |
| ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d", |
| reserved_pebs, ubi->good_peb_count); |
| err = 9; |
| goto bad; |
| } |
| |
| if (name_len > UBI_VOL_NAME_MAX) { |
| err = 10; |
| goto bad; |
| } |
| |
| if (name[0] == '\0') { |
| err = 11; |
| goto bad; |
| } |
| |
| if (name_len != strnlen(name, name_len + 1)) { |
| err = 12; |
| goto bad; |
| } |
| } |
| |
| /* Checks that all names are unique */ |
| for (i = 0; i < ubi->vtbl_slots - 1; i++) { |
| for (n = i + 1; n < ubi->vtbl_slots; n++) { |
| int len1 = be16_to_cpu(vtbl[i].name_len); |
| int len2 = be16_to_cpu(vtbl[n].name_len); |
| |
| if (len1 > 0 && len1 == len2 && |
| !strncmp(vtbl[i].name, vtbl[n].name, len1)) { |
| ubi_err(ubi, "volumes %d and %d have the same name \"%s\"", |
| i, n, vtbl[i].name); |
| ubi_dump_vtbl_record(&vtbl[i], i); |
| ubi_dump_vtbl_record(&vtbl[n], n); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| return 0; |
| |
| bad: |
| ubi_err(ubi, "volume table check failed: record %d, error %d", i, err); |
| ubi_dump_vtbl_record(&vtbl[i], i); |
| return -EINVAL; |
| } |
| |
| /** |
| * create_vtbl - create a copy of volume table. |
| * @ubi: UBI device description object |
| * @ai: attaching information |
| * @copy: number of the volume table copy |
| * @vtbl: contents of the volume table |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| int copy, void *vtbl) |
| { |
| int err, tries = 0; |
| struct ubi_vid_io_buf *vidb; |
| struct ubi_vid_hdr *vid_hdr; |
| struct ubi_ainf_peb *new_aeb; |
| |
| dbg_gen("create volume table (copy #%d)", copy + 1); |
| |
| vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); |
| if (!vidb) |
| return -ENOMEM; |
| |
| vid_hdr = ubi_get_vid_hdr(vidb); |
| |
| retry: |
| new_aeb = ubi_early_get_peb(ubi, ai); |
| if (IS_ERR(new_aeb)) { |
| err = PTR_ERR(new_aeb); |
| goto out_free; |
| } |
| |
| vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE; |
| vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); |
| vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; |
| vid_hdr->data_size = vid_hdr->used_ebs = |
| vid_hdr->data_pad = cpu_to_be32(0); |
| vid_hdr->lnum = cpu_to_be32(copy); |
| vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum); |
| |
| /* The EC header is already there, write the VID header */ |
| err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb); |
| if (err) |
| goto write_error; |
| |
| /* Write the layout volume contents */ |
| err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size); |
| if (err) |
| goto write_error; |
| |
| /* |
| * And add it to the attaching information. Don't delete the old version |
| * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. |
| */ |
| err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); |
| ubi_free_aeb(ai, new_aeb); |
| ubi_free_vid_buf(vidb); |
| return err; |
| |
| write_error: |
| if (err == -EIO && ++tries <= 5) { |
| /* |
| * Probably this physical eraseblock went bad, try to pick |
| * another one. |
| */ |
| list_add(&new_aeb->u.list, &ai->erase); |
| goto retry; |
| } |
| ubi_free_aeb(ai, new_aeb); |
| out_free: |
| ubi_free_vid_buf(vidb); |
| return err; |
| |
| } |
| |
| /** |
| * process_lvol - process the layout volume. |
| * @ubi: UBI device description object |
| * @ai: attaching information |
| * @av: layout volume attaching information |
| * |
| * This function is responsible for reading the layout volume, ensuring it is |
| * not corrupted, and recovering from corruptions if needed. Returns volume |
| * table in case of success and a negative error code in case of failure. |
| */ |
| static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, |
| struct ubi_attach_info *ai, |
| struct ubi_ainf_volume *av) |
| { |
| int err; |
| struct rb_node *rb; |
| struct ubi_ainf_peb *aeb; |
| struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; |
| int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; |
| |
| /* |
| * UBI goes through the following steps when it changes the layout |
| * volume: |
| * a. erase LEB 0; |
| * b. write new data to LEB 0; |
| * c. erase LEB 1; |
| * d. write new data to LEB 1. |
| * |
| * Before the change, both LEBs contain the same data. |
| * |
| * Due to unclean reboots, the contents of LEB 0 may be lost, but there |
| * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. |
| * Similarly, LEB 1 may be lost, but there should be LEB 0. And |
| * finally, unclean reboots may result in a situation when neither LEB |
| * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB |
| * 0 contains more recent information. |
| * |
| * So the plan is to first check LEB 0. Then |
| * a. if LEB 0 is OK, it must be containing the most recent data; then |
| * we compare it with LEB 1, and if they are different, we copy LEB |
| * 0 to LEB 1; |
| * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 |
| * to LEB 0. |
| */ |
| |
| dbg_gen("check layout volume"); |
| |
| /* Read both LEB 0 and LEB 1 into memory */ |
| ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { |
| leb[aeb->lnum] = vzalloc(ubi->vtbl_size); |
| if (!leb[aeb->lnum]) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0, |
| ubi->vtbl_size); |
| if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) |
| /* |
| * Scrub the PEB later. Note, -EBADMSG indicates an |
| * uncorrectable ECC error, but we have our own CRC and |
| * the data will be checked later. If the data is OK, |
| * the PEB will be scrubbed (because we set |
| * aeb->scrub). If the data is not OK, the contents of |
| * the PEB will be recovered from the second copy, and |
| * aeb->scrub will be cleared in |
| * 'ubi_add_to_av()'. |
| */ |
| aeb->scrub = 1; |
| else if (err) |
| goto out_free; |
| } |
| |
| err = -EINVAL; |
| if (leb[0]) { |
| leb_corrupted[0] = vtbl_check(ubi, leb[0]); |
| if (leb_corrupted[0] < 0) |
| goto out_free; |
| } |
| |
| if (!leb_corrupted[0]) { |
| /* LEB 0 is OK */ |
| if (leb[1]) |
| leb_corrupted[1] = memcmp(leb[0], leb[1], |
| ubi->vtbl_size); |
| if (leb_corrupted[1]) { |
| ubi_warn(ubi, "volume table copy #2 is corrupted"); |
| err = create_vtbl(ubi, ai, 1, leb[0]); |
| if (err) |
| goto out_free; |
| ubi_msg(ubi, "volume table was restored"); |
| } |
| |
| /* Both LEB 1 and LEB 2 are OK and consistent */ |
| vfree(leb[1]); |
| return leb[0]; |
| } else { |
| /* LEB 0 is corrupted or does not exist */ |
| if (leb[1]) { |
| leb_corrupted[1] = vtbl_check(ubi, leb[1]); |
| if (leb_corrupted[1] < 0) |
| goto out_free; |
| } |
| if (leb_corrupted[1]) { |
| /* Both LEB 0 and LEB 1 are corrupted */ |
| ubi_err(ubi, "both volume tables are corrupted"); |
| goto out_free; |
| } |
| |
| ubi_warn(ubi, "volume table copy #1 is corrupted"); |
| err = create_vtbl(ubi, ai, 0, leb[1]); |
| if (err) |
| goto out_free; |
| ubi_msg(ubi, "volume table was restored"); |
| |
| vfree(leb[0]); |
| return leb[1]; |
| } |
| |
| out_free: |
| vfree(leb[0]); |
| vfree(leb[1]); |
| return ERR_PTR(err); |
| } |
| |
| /** |
| * create_empty_lvol - create empty layout volume. |
| * @ubi: UBI device description object |
| * @ai: attaching information |
| * |
| * This function returns volume table contents in case of success and a |
| * negative error code in case of failure. |
| */ |
| static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, |
| struct ubi_attach_info *ai) |
| { |
| int i; |
| struct ubi_vtbl_record *vtbl; |
| |
| vtbl = vzalloc(ubi->vtbl_size); |
| if (!vtbl) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = 0; i < ubi->vtbl_slots; i++) |
| memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); |
| |
| for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { |
| int err; |
| |
| err = create_vtbl(ubi, ai, i, vtbl); |
| if (err) { |
| vfree(vtbl); |
| return ERR_PTR(err); |
| } |
| } |
| |
| return vtbl; |
| } |
| |
| /** |
| * init_volumes - initialize volume information for existing volumes. |
| * @ubi: UBI device description object |
| * @ai: scanning information |
| * @vtbl: volume table |
| * |
| * This function allocates volume description objects for existing volumes. |
| * Returns zero in case of success and a negative error code in case of |
| * failure. |
| */ |
| static int init_volumes(struct ubi_device *ubi, |
| const struct ubi_attach_info *ai, |
| const struct ubi_vtbl_record *vtbl) |
| { |
| int i, err, reserved_pebs = 0; |
| struct ubi_ainf_volume *av; |
| struct ubi_volume *vol; |
| |
| for (i = 0; i < ubi->vtbl_slots; i++) { |
| cond_resched(); |
| |
| if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) |
| continue; /* Empty record */ |
| |
| vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); |
| if (!vol) |
| return -ENOMEM; |
| |
| vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); |
| vol->alignment = be32_to_cpu(vtbl[i].alignment); |
| vol->data_pad = be32_to_cpu(vtbl[i].data_pad); |
| vol->upd_marker = vtbl[i].upd_marker; |
| vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? |
| UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; |
| vol->name_len = be16_to_cpu(vtbl[i].name_len); |
| vol->usable_leb_size = ubi->leb_size - vol->data_pad; |
| memcpy(vol->name, vtbl[i].name, vol->name_len); |
| vol->name[vol->name_len] = '\0'; |
| vol->vol_id = i; |
| |
| if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG) |
| vol->skip_check = 1; |
| |
| if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { |
| /* Auto re-size flag may be set only for one volume */ |
| if (ubi->autoresize_vol_id != -1) { |
| ubi_err(ubi, "more than one auto-resize volume (%d and %d)", |
| ubi->autoresize_vol_id, i); |
| kfree(vol); |
| return -EINVAL; |
| } |
| |
| ubi->autoresize_vol_id = i; |
| } |
| |
| ubi_assert(!ubi->volumes[i]); |
| ubi->volumes[i] = vol; |
| ubi->vol_count += 1; |
| vol->ubi = ubi; |
| reserved_pebs += vol->reserved_pebs; |
| |
| /* |
| * We use ubi->peb_count and not vol->reserved_pebs because |
| * we want to keep the code simple. Otherwise we'd have to |
| * resize/check the bitmap upon volume resize too. |
| * Allocating a few bytes more does not hurt. |
| */ |
| err = ubi_fastmap_init_checkmap(vol, ubi->peb_count); |
| if (err) |
| return err; |
| |
| /* |
| * In case of dynamic volume UBI knows nothing about how many |
| * data is stored there. So assume the whole volume is used. |
| */ |
| if (vol->vol_type == UBI_DYNAMIC_VOLUME) { |
| vol->used_ebs = vol->reserved_pebs; |
| vol->last_eb_bytes = vol->usable_leb_size; |
| vol->used_bytes = |
| (long long)vol->used_ebs * vol->usable_leb_size; |
| continue; |
| } |
| |
| /* Static volumes only */ |
| av = ubi_find_av(ai, i); |
| if (!av || !av->leb_count) { |
| /* |
| * No eraseblocks belonging to this volume found. We |
| * don't actually know whether this static volume is |
| * completely corrupted or just contains no data. And |
| * we cannot know this as long as data size is not |
| * stored on flash. So we just assume the volume is |
| * empty. FIXME: this should be handled. |
| */ |
| continue; |
| } |
| |
| if (av->leb_count != av->used_ebs) { |
| /* |
| * We found a static volume which misses several |
| * eraseblocks. Treat it as corrupted. |
| */ |
| ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted", |
| av->vol_id, av->used_ebs - av->leb_count); |
| vol->corrupted = 1; |
| continue; |
| } |
| |
| vol->used_ebs = av->used_ebs; |
| vol->used_bytes = |
| (long long)(vol->used_ebs - 1) * vol->usable_leb_size; |
| vol->used_bytes += av->last_data_size; |
| vol->last_eb_bytes = av->last_data_size; |
| } |
| |
| /* And add the layout volume */ |
| vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); |
| if (!vol) |
| return -ENOMEM; |
| |
| vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; |
| vol->alignment = UBI_LAYOUT_VOLUME_ALIGN; |
| vol->vol_type = UBI_DYNAMIC_VOLUME; |
| vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; |
| memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); |
| vol->usable_leb_size = ubi->leb_size; |
| vol->used_ebs = vol->reserved_pebs; |
| vol->last_eb_bytes = vol->reserved_pebs; |
| vol->used_bytes = |
| (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); |
| vol->vol_id = UBI_LAYOUT_VOLUME_ID; |
| vol->ref_count = 1; |
| |
| ubi_assert(!ubi->volumes[i]); |
| ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; |
| reserved_pebs += vol->reserved_pebs; |
| ubi->vol_count += 1; |
| vol->ubi = ubi; |
| err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS); |
| if (err) |
| return err; |
| |
| if (reserved_pebs > ubi->avail_pebs) { |
| ubi_err(ubi, "not enough PEBs, required %d, available %d", |
| reserved_pebs, ubi->avail_pebs); |
| if (ubi->corr_peb_count) |
| ubi_err(ubi, "%d PEBs are corrupted and not used", |
| ubi->corr_peb_count); |
| return -ENOSPC; |
| } |
| ubi->rsvd_pebs += reserved_pebs; |
| ubi->avail_pebs -= reserved_pebs; |
| |
| return 0; |
| } |
| |
| /** |
| * check_av - check volume attaching information. |
| * @vol: UBI volume description object |
| * @av: volume attaching information |
| * |
| * This function returns zero if the volume attaching information is consistent |
| * to the data read from the volume tabla, and %-EINVAL if not. |
| */ |
| static int check_av(const struct ubi_volume *vol, |
| const struct ubi_ainf_volume *av) |
| { |
| int err; |
| |
| if (av->highest_lnum >= vol->reserved_pebs) { |
| err = 1; |
| goto bad; |
| } |
| if (av->leb_count > vol->reserved_pebs) { |
| err = 2; |
| goto bad; |
| } |
| if (av->vol_type != vol->vol_type) { |
| err = 3; |
| goto bad; |
| } |
| if (av->used_ebs > vol->reserved_pebs) { |
| err = 4; |
| goto bad; |
| } |
| if (av->data_pad != vol->data_pad) { |
| err = 5; |
| goto bad; |
| } |
| return 0; |
| |
| bad: |
| ubi_err(vol->ubi, "bad attaching information, error %d", err); |
| ubi_dump_av(av); |
| ubi_dump_vol_info(vol); |
| return -EINVAL; |
| } |
| |
| /** |
| * check_attaching_info - check that attaching information. |
| * @ubi: UBI device description object |
| * @ai: attaching information |
| * |
| * Even though we protect on-flash data by CRC checksums, we still don't trust |
| * the media. This function ensures that attaching information is consistent to |
| * the information read from the volume table. Returns zero if the attaching |
| * information is OK and %-EINVAL if it is not. |
| */ |
| static int check_attaching_info(const struct ubi_device *ubi, |
| struct ubi_attach_info *ai) |
| { |
| int err, i; |
| struct ubi_ainf_volume *av; |
| struct ubi_volume *vol; |
| |
| if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { |
| ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d", |
| ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); |
| return -EINVAL; |
| } |
| |
| if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && |
| ai->highest_vol_id < UBI_INTERNAL_VOL_START) { |
| ubi_err(ubi, "too large volume ID %d found", |
| ai->highest_vol_id); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { |
| cond_resched(); |
| |
| av = ubi_find_av(ai, i); |
| vol = ubi->volumes[i]; |
| if (!vol) { |
| if (av) |
| ubi_remove_av(ai, av); |
| continue; |
| } |
| |
| if (vol->reserved_pebs == 0) { |
| ubi_assert(i < ubi->vtbl_slots); |
| |
| if (!av) |
| continue; |
| |
| /* |
| * During attaching we found a volume which does not |
| * exist according to the information in the volume |
| * table. This must have happened due to an unclean |
| * reboot while the volume was being removed. Discard |
| * these eraseblocks. |
| */ |
| ubi_msg(ubi, "finish volume %d removal", av->vol_id); |
| ubi_remove_av(ai, av); |
| } else if (av) { |
| err = check_av(vol, av); |
| if (err) |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ubi_read_volume_table - read the volume table. |
| * @ubi: UBI device description object |
| * @ai: attaching information |
| * |
| * This function reads volume table, checks it, recover from errors if needed, |
| * or creates it if needed. Returns zero in case of success and a negative |
| * error code in case of failure. |
| */ |
| int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai) |
| { |
| int err; |
| struct ubi_ainf_volume *av; |
| |
| empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); |
| |
| /* |
| * The number of supported volumes is limited by the eraseblock size |
| * and by the UBI_MAX_VOLUMES constant. |
| */ |
| |
| if (ubi->leb_size < UBI_VTBL_RECORD_SIZE) { |
| ubi_err(ubi, "LEB size too small for a volume record"); |
| return -EINVAL; |
| } |
| |
| ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; |
| if (ubi->vtbl_slots > UBI_MAX_VOLUMES) |
| ubi->vtbl_slots = UBI_MAX_VOLUMES; |
| |
| ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; |
| ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); |
| |
| av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID); |
| if (!av) { |
| /* |
| * No logical eraseblocks belonging to the layout volume were |
| * found. This could mean that the flash is just empty. In |
| * this case we create empty layout volume. |
| * |
| * But if flash is not empty this must be a corruption or the |
| * MTD device just contains garbage. |
| */ |
| if (ai->is_empty) { |
| ubi->vtbl = create_empty_lvol(ubi, ai); |
| if (IS_ERR(ubi->vtbl)) |
| return PTR_ERR(ubi->vtbl); |
| } else { |
| ubi_err(ubi, "the layout volume was not found"); |
| return -EINVAL; |
| } |
| } else { |
| if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) { |
| /* This must not happen with proper UBI images */ |
| ubi_err(ubi, "too many LEBs (%d) in layout volume", |
| av->leb_count); |
| return -EINVAL; |
| } |
| |
| ubi->vtbl = process_lvol(ubi, ai, av); |
| if (IS_ERR(ubi->vtbl)) |
| return PTR_ERR(ubi->vtbl); |
| } |
| |
| ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count; |
| |
| /* |
| * The layout volume is OK, initialize the corresponding in-RAM data |
| * structures. |
| */ |
| err = init_volumes(ubi, ai, ubi->vtbl); |
| if (err) |
| goto out_free; |
| |
| /* |
| * Make sure that the attaching information is consistent to the |
| * information stored in the volume table. |
| */ |
| err = check_attaching_info(ubi, ai); |
| if (err) |
| goto out_free; |
| |
| return 0; |
| |
| out_free: |
| vfree(ubi->vtbl); |
| ubi_free_all_volumes(ubi); |
| return err; |
| } |
| |
| /** |
| * self_vtbl_check - check volume table. |
| * @ubi: UBI device description object |
| */ |
| static void self_vtbl_check(const struct ubi_device *ubi) |
| { |
| if (!ubi_dbg_chk_gen(ubi)) |
| return; |
| |
| if (vtbl_check(ubi, ubi->vtbl)) { |
| ubi_err(ubi, "self-check failed"); |
| BUG(); |
| } |
| } |