blob: 3a33e6b9b313d7a645739f41a5400492b3dc10c5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021, Intel Corporation. */
#include <linux/delay.h>
#include <linux/iopoll.h>
#include "ice_common.h"
#include "ice_ptp_hw.h"
#include "ice_ptp_consts.h"
#include "ice_cgu_regs.h"
static struct dpll_pin_frequency ice_cgu_pin_freq_common[] = {
DPLL_PIN_FREQUENCY_1PPS,
DPLL_PIN_FREQUENCY_10MHZ,
};
static struct dpll_pin_frequency ice_cgu_pin_freq_1_hz[] = {
DPLL_PIN_FREQUENCY_1PPS,
};
static struct dpll_pin_frequency ice_cgu_pin_freq_10_mhz[] = {
DPLL_PIN_FREQUENCY_10MHZ,
};
static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_inputs[] = {
{ "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0, },
{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0, },
{ "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0, },
};
static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_inputs[] = {
{ "CVL-SDP22", ZL_REF0P, DPLL_PIN_TYPE_INT_OSCILLATOR,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "CVL-SDP20", ZL_REF0N, DPLL_PIN_TYPE_INT_OSCILLATOR,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "C827_0-RCLKA", ZL_REF1P, DPLL_PIN_TYPE_MUX, },
{ "C827_0-RCLKB", ZL_REF1N, DPLL_PIN_TYPE_MUX, },
{ "C827_1-RCLKA", ZL_REF2P, DPLL_PIN_TYPE_MUX, },
{ "C827_1-RCLKB", ZL_REF2N, DPLL_PIN_TYPE_MUX, },
{ "SMA1", ZL_REF3P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "SMA2/U.FL2", ZL_REF3N, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "GNSS-1PPS", ZL_REF4P, DPLL_PIN_TYPE_GNSS,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, },
};
static const struct ice_cgu_pin_desc ice_e810t_sfp_cgu_outputs[] = {
{ "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
{ "MAC-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, },
{ "CVL-SDP21", ZL_OUT4, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "CVL-SDP23", ZL_OUT5, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
};
static const struct ice_cgu_pin_desc ice_e810t_qsfp_cgu_outputs[] = {
{ "REF-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "REF-SMA2/U.FL2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "PHY2-CLK", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "MAC-CLK", ZL_OUT4, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "CVL-SDP21", ZL_OUT5, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "CVL-SDP23", ZL_OUT6, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
};
static const struct ice_cgu_pin_desc ice_e823_si_cgu_inputs[] = {
{ "NONE", SI_REF0P, 0, 0 },
{ "NONE", SI_REF0N, 0, 0 },
{ "SYNCE0_DP", SI_REF1P, DPLL_PIN_TYPE_MUX, 0 },
{ "SYNCE0_DN", SI_REF1N, DPLL_PIN_TYPE_MUX, 0 },
{ "EXT_CLK_SYNC", SI_REF2P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "NONE", SI_REF2N, 0, 0 },
{ "EXT_PPS_OUT", SI_REF3, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "INT_PPS_OUT", SI_REF4, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
};
static const struct ice_cgu_pin_desc ice_e823_si_cgu_outputs[] = {
{ "1588-TIME_SYNC", SI_OUT0, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "PHY-CLK", SI_OUT1, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "10MHZ-SMA2", SI_OUT2, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
{ "PPS-SMA1", SI_OUT3, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
};
static const struct ice_cgu_pin_desc ice_e823_zl_cgu_inputs[] = {
{ "NONE", ZL_REF0P, 0, 0 },
{ "INT_PPS_OUT", ZL_REF0N, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "SYNCE0_DP", ZL_REF1P, DPLL_PIN_TYPE_MUX, 0 },
{ "SYNCE0_DN", ZL_REF1N, DPLL_PIN_TYPE_MUX, 0 },
{ "NONE", ZL_REF2P, 0, 0 },
{ "NONE", ZL_REF2N, 0, 0 },
{ "EXT_CLK_SYNC", ZL_REF3P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "NONE", ZL_REF3N, 0, 0 },
{ "EXT_PPS_OUT", ZL_REF4P, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "OCXO", ZL_REF4N, DPLL_PIN_TYPE_INT_OSCILLATOR, 0 },
};
static const struct ice_cgu_pin_desc ice_e823_zl_cgu_outputs[] = {
{ "PPS-SMA1", ZL_OUT0, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_1_hz), ice_cgu_pin_freq_1_hz },
{ "10MHZ-SMA2", ZL_OUT1, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_10_mhz), ice_cgu_pin_freq_10_mhz },
{ "PHY-CLK", ZL_OUT2, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "1588-TIME_REF", ZL_OUT3, DPLL_PIN_TYPE_SYNCE_ETH_PORT, 0 },
{ "CPK-TIME_SYNC", ZL_OUT4, DPLL_PIN_TYPE_EXT,
ARRAY_SIZE(ice_cgu_pin_freq_common), ice_cgu_pin_freq_common },
{ "NONE", ZL_OUT5, 0, 0 },
};
/* Low level functions for interacting with and managing the device clock used
* for the Precision Time Protocol.
*
* The ice hardware represents the current time using three registers:
*
* GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
* +---------------+ +---------------+ +---------------+
* | 32 bits | | 32 bits | | 32 bits |
* +---------------+ +---------------+ +---------------+
*
* The registers are incremented every clock tick using a 40bit increment
* value defined over two registers:
*
* GLTSYN_INCVAL_H GLTSYN_INCVAL_L
* +---------------+ +---------------+
* | 8 bit s | | 32 bits |
* +---------------+ +---------------+
*
* The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
* registers every clock source tick. Depending on the specific device
* configuration, the clock source frequency could be one of a number of
* values.
*
* For E810 devices, the increment frequency is 812.5 MHz
*
* For E822 devices the clock can be derived from different sources, and the
* increment has an effective frequency of one of the following:
* - 823.4375 MHz
* - 783.36 MHz
* - 796.875 MHz
* - 816 MHz
* - 830.078125 MHz
* - 783.36 MHz
*
* The hardware captures timestamps in the PHY for incoming packets, and for
* outgoing packets on request. To support this, the PHY maintains a timer
* that matches the lower 64 bits of the global source timer.
*
* In order to ensure that the PHY timers and the source timer are equivalent,
* shadow registers are used to prepare the desired initial values. A special
* sync command is issued to trigger copying from the shadow registers into
* the appropriate source and PHY registers simultaneously.
*
* The driver supports devices which have different PHYs with subtly different
* mechanisms to program and control the timers. We divide the devices into
* families named after the first major device, E810 and similar devices, and
* E822 and similar devices.
*
* - E822 based devices have additional support for fine grained Vernier
* calibration which requires significant setup
* - The layout of timestamp data in the PHY register blocks is different
* - The way timer synchronization commands are issued is different.
*
* To support this, very low level functions have an e810 or e822 suffix
* indicating what type of device they work on. Higher level abstractions for
* tasks that can be done on both devices do not have the suffix and will
* correctly look up the appropriate low level function when running.
*
* Functions which only make sense on a single device family may not have
* a suitable generic implementation
*/
/**
* ice_get_ptp_src_clock_index - determine source clock index
* @hw: pointer to HW struct
*
* Determine the source clock index currently in use, based on device
* capabilities reported during initialization.
*/
u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
{
return hw->func_caps.ts_func_info.tmr_index_assoc;
}
/**
* ice_ptp_read_src_incval - Read source timer increment value
* @hw: pointer to HW struct
*
* Read the increment value of the source timer and return it.
*/
static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
{
u32 lo, hi;
u8 tmr_idx;
tmr_idx = ice_get_ptp_src_clock_index(hw);
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
}
/**
* ice_read_cgu_reg_e82x - Read a CGU register
* @hw: pointer to the HW struct
* @addr: Register address to read
* @val: storage for register value read
*
* Read the contents of a register of the Clock Generation Unit. Only
* applicable to E822 devices.
*
* Return: 0 on success, other error codes when failed to read from CGU
*/
static int ice_read_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 *val)
{
struct ice_sbq_msg_input cgu_msg = {
.opcode = ice_sbq_msg_rd,
.dest_dev = cgu,
.msg_addr_low = addr
};
int err;
err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
addr, err);
return err;
}
*val = cgu_msg.data;
return 0;
}
/**
* ice_write_cgu_reg_e82x - Write a CGU register
* @hw: pointer to the HW struct
* @addr: Register address to write
* @val: value to write into the register
*
* Write the specified value to a register of the Clock Generation Unit. Only
* applicable to E822 devices.
*
* Return: 0 on success, other error codes when failed to write to CGU
*/
static int ice_write_cgu_reg_e82x(struct ice_hw *hw, u32 addr, u32 val)
{
struct ice_sbq_msg_input cgu_msg = {
.opcode = ice_sbq_msg_wr,
.dest_dev = cgu,
.msg_addr_low = addr,
.data = val
};
int err;
err = ice_sbq_rw_reg(hw, &cgu_msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
addr, err);
return err;
}
return err;
}
/**
* ice_clk_freq_str - Convert time_ref_freq to string
* @clk_freq: Clock frequency
*
* Return: specified TIME_REF clock frequency converted to a string
*/
static const char *ice_clk_freq_str(enum ice_time_ref_freq clk_freq)
{
switch (clk_freq) {
case ICE_TIME_REF_FREQ_25_000:
return "25 MHz";
case ICE_TIME_REF_FREQ_122_880:
return "122.88 MHz";
case ICE_TIME_REF_FREQ_125_000:
return "125 MHz";
case ICE_TIME_REF_FREQ_153_600:
return "153.6 MHz";
case ICE_TIME_REF_FREQ_156_250:
return "156.25 MHz";
case ICE_TIME_REF_FREQ_245_760:
return "245.76 MHz";
default:
return "Unknown";
}
}
/**
* ice_clk_src_str - Convert time_ref_src to string
* @clk_src: Clock source
*
* Return: specified clock source converted to its string name
*/
static const char *ice_clk_src_str(enum ice_clk_src clk_src)
{
switch (clk_src) {
case ICE_CLK_SRC_TCXO:
return "TCXO";
case ICE_CLK_SRC_TIME_REF:
return "TIME_REF";
default:
return "Unknown";
}
}
/**
* ice_cfg_cgu_pll_e82x - Configure the Clock Generation Unit
* @hw: pointer to the HW struct
* @clk_freq: Clock frequency to program
* @clk_src: Clock source to select (TIME_REF, or TCXO)
*
* Configure the Clock Generation Unit with the desired clock frequency and
* time reference, enabling the PLL which drives the PTP hardware clock.
*
* Return:
* * %0 - success
* * %-EINVAL - input parameters are incorrect
* * %-EBUSY - failed to lock TS PLL
* * %other - CGU read/write failure
*/
static int ice_cfg_cgu_pll_e82x(struct ice_hw *hw,
enum ice_time_ref_freq clk_freq,
enum ice_clk_src clk_src)
{
union tspll_ro_bwm_lf bwm_lf;
union nac_cgu_dword19 dw19;
union nac_cgu_dword22 dw22;
union nac_cgu_dword24 dw24;
union nac_cgu_dword9 dw9;
int err;
if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
clk_freq);
return -EINVAL;
}
if (clk_src >= NUM_ICE_CLK_SRC) {
dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
clk_src);
return -EINVAL;
}
if (clk_src == ICE_CLK_SRC_TCXO &&
clk_freq != ICE_TIME_REF_FREQ_25_000) {
dev_warn(ice_hw_to_dev(hw),
"TCXO only supports 25 MHz frequency\n");
return -EINVAL;
}
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
if (err)
return err;
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
dw24.ts_pll_enable ? "enabled" : "disabled",
ice_clk_src_str(dw24.time_ref_sel),
ice_clk_freq_str(dw9.time_ref_freq_sel),
bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
/* Disable the PLL before changing the clock source or frequency */
if (dw24.ts_pll_enable) {
dw24.ts_pll_enable = 0;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
}
/* Set the frequency */
dw9.time_ref_freq_sel = clk_freq;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
if (err)
return err;
/* Configure the TS PLL feedback divisor */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
if (err)
return err;
dw19.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
dw19.tspll_ndivratio = 1;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
if (err)
return err;
/* Configure the TS PLL post divisor */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
if (err)
return err;
dw22.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
dw22.time1588clk_sel_div2 = 0;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
if (err)
return err;
/* Configure the TS PLL pre divisor and clock source */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
dw24.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
dw24.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
dw24.time_ref_sel = clk_src;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Finally, enable the PLL */
dw24.ts_pll_enable = 1;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Wait to verify if the PLL locks */
usleep_range(1000, 5000);
err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
if (err)
return err;
if (!bwm_lf.plllock_true_lock_cri) {
dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
return -EBUSY;
}
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
dw24.ts_pll_enable ? "enabled" : "disabled",
ice_clk_src_str(dw24.time_ref_sel),
ice_clk_freq_str(dw9.time_ref_freq_sel),
bwm_lf.plllock_true_lock_cri ? "locked" : "unlocked");
return 0;
}
/**
* ice_cfg_cgu_pll_e825c - Configure the Clock Generation Unit for E825-C
* @hw: pointer to the HW struct
* @clk_freq: Clock frequency to program
* @clk_src: Clock source to select (TIME_REF, or TCXO)
*
* Configure the Clock Generation Unit with the desired clock frequency and
* time reference, enabling the PLL which drives the PTP hardware clock.
*
* Return:
* * %0 - success
* * %-EINVAL - input parameters are incorrect
* * %-EBUSY - failed to lock TS PLL
* * %other - CGU read/write failure
*/
static int ice_cfg_cgu_pll_e825c(struct ice_hw *hw,
enum ice_time_ref_freq clk_freq,
enum ice_clk_src clk_src)
{
union tspll_ro_lock_e825c ro_lock;
union nac_cgu_dword16_e825c dw16;
union nac_cgu_dword23_e825c dw23;
union nac_cgu_dword19 dw19;
union nac_cgu_dword22 dw22;
union nac_cgu_dword24 dw24;
union nac_cgu_dword9 dw9;
int err;
if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
clk_freq);
return -EINVAL;
}
if (clk_src >= NUM_ICE_CLK_SRC) {
dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
clk_src);
return -EINVAL;
}
if (clk_src == ICE_CLK_SRC_TCXO &&
clk_freq != ICE_TIME_REF_FREQ_156_250) {
dev_warn(ice_hw_to_dev(hw),
"TCXO only supports 156.25 MHz frequency\n");
return -EINVAL;
}
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD9, &dw9.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD24, &dw24.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, &dw16.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
if (err)
return err;
err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
if (err)
return err;
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
dw24.ts_pll_enable ? "enabled" : "disabled",
ice_clk_src_str(dw23.time_ref_sel),
ice_clk_freq_str(dw9.time_ref_freq_sel),
ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
/* Disable the PLL before changing the clock source or frequency */
if (dw23.ts_pll_enable) {
dw23.ts_pll_enable = 0;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C,
dw23.val);
if (err)
return err;
}
/* Set the frequency */
dw9.time_ref_freq_sel = clk_freq;
/* Enable the correct receiver */
if (clk_src == ICE_CLK_SRC_TCXO) {
dw9.time_ref_en = 0;
dw9.clk_eref0_en = 1;
} else {
dw9.time_ref_en = 1;
dw9.clk_eref0_en = 0;
}
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD9, dw9.val);
if (err)
return err;
/* Choose the referenced frequency */
dw16.tspll_ck_refclkfreq =
e825c_cgu_params[clk_freq].tspll_ck_refclkfreq;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD16_E825C, dw16.val);
if (err)
return err;
/* Configure the TS PLL feedback divisor */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD19, &dw19.val);
if (err)
return err;
dw19.tspll_fbdiv_intgr =
e825c_cgu_params[clk_freq].tspll_fbdiv_intgr;
dw19.tspll_ndivratio =
e825c_cgu_params[clk_freq].tspll_ndivratio;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD19, dw19.val);
if (err)
return err;
/* Configure the TS PLL post divisor */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD22, &dw22.val);
if (err)
return err;
/* These two are constant for E825C */
dw22.time1588clk_div = 5;
dw22.time1588clk_sel_div2 = 0;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD22, dw22.val);
if (err)
return err;
/* Configure the TS PLL pre divisor and clock source */
err = ice_read_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, &dw23.val);
if (err)
return err;
dw23.ref1588_ck_div =
e825c_cgu_params[clk_freq].ref1588_ck_div;
dw23.time_ref_sel = clk_src;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
if (err)
return err;
dw24.tspll_fbdiv_frac =
e825c_cgu_params[clk_freq].tspll_fbdiv_frac;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD24, dw24.val);
if (err)
return err;
/* Finally, enable the PLL */
dw23.ts_pll_enable = 1;
err = ice_write_cgu_reg_e82x(hw, NAC_CGU_DWORD23_E825C, dw23.val);
if (err)
return err;
/* Wait to verify if the PLL locks */
usleep_range(1000, 5000);
err = ice_read_cgu_reg_e82x(hw, TSPLL_RO_LOCK_E825C, &ro_lock.val);
if (err)
return err;
if (!ro_lock.plllock_true_lock_cri) {
dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
return -EBUSY;
}
/* Log the current clock configuration */
ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
dw24.ts_pll_enable ? "enabled" : "disabled",
ice_clk_src_str(dw23.time_ref_sel),
ice_clk_freq_str(dw9.time_ref_freq_sel),
ro_lock.plllock_true_lock_cri ? "locked" : "unlocked");
return 0;
}
/**
* ice_cfg_cgu_pll_dis_sticky_bits_e82x - disable TS PLL sticky bits
* @hw: pointer to the HW struct
*
* Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
* losing TS PLL lock, but always show current state.
*
* Return: 0 on success, other error codes when failed to read/write CGU
*/
static int ice_cfg_cgu_pll_dis_sticky_bits_e82x(struct ice_hw *hw)
{
union tspll_cntr_bist_settings cntr_bist;
int err;
err = ice_read_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
&cntr_bist.val);
if (err)
return err;
/* Disable sticky lock detection so lock err reported is accurate */
cntr_bist.i_plllock_sel_0 = 0;
cntr_bist.i_plllock_sel_1 = 0;
return ice_write_cgu_reg_e82x(hw, TSPLL_CNTR_BIST_SETTINGS,
cntr_bist.val);
}
/**
* ice_cfg_cgu_pll_dis_sticky_bits_e825c - disable TS PLL sticky bits for E825-C
* @hw: pointer to the HW struct
*
* Configure the Clock Generation Unit TS PLL sticky bits so they don't latch on
* losing TS PLL lock, but always show current state.
*
* Return: 0 on success, other error codes when failed to read/write CGU
*/
static int ice_cfg_cgu_pll_dis_sticky_bits_e825c(struct ice_hw *hw)
{
union tspll_bw_tdc_e825c bw_tdc;
int err;
err = ice_read_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, &bw_tdc.val);
if (err)
return err;
bw_tdc.i_plllock_sel_1_0 = 0;
return ice_write_cgu_reg_e82x(hw, TSPLL_BW_TDC_E825C, bw_tdc.val);
}
/**
* ice_init_cgu_e82x - Initialize CGU with settings from firmware
* @hw: pointer to the HW structure
*
* Initialize the Clock Generation Unit of the E822 device.
*
* Return: 0 on success, other error codes when failed to read/write/cfg CGU
*/
static int ice_init_cgu_e82x(struct ice_hw *hw)
{
struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
int err;
/* Disable sticky lock detection so lock err reported is accurate */
if (ice_is_e825c(hw))
err = ice_cfg_cgu_pll_dis_sticky_bits_e825c(hw);
else
err = ice_cfg_cgu_pll_dis_sticky_bits_e82x(hw);
if (err)
return err;
/* Configure the CGU PLL using the parameters from the function
* capabilities.
*/
if (ice_is_e825c(hw))
err = ice_cfg_cgu_pll_e825c(hw, ts_info->time_ref,
(enum ice_clk_src)ts_info->clk_src);
else
err = ice_cfg_cgu_pll_e82x(hw, ts_info->time_ref,
(enum ice_clk_src)ts_info->clk_src);
return err;
}
/**
* ice_ptp_tmr_cmd_to_src_reg - Convert to source timer command value
* @hw: pointer to HW struct
* @cmd: Timer command
*
* Return: the source timer command register value for the given PTP timer
* command.
*/
static u32 ice_ptp_tmr_cmd_to_src_reg(struct ice_hw *hw,
enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val, tmr_idx;
switch (cmd) {
case ICE_PTP_INIT_TIME:
cmd_val = GLTSYN_CMD_INIT_TIME;
break;
case ICE_PTP_INIT_INCVAL:
cmd_val = GLTSYN_CMD_INIT_INCVAL;
break;
case ICE_PTP_ADJ_TIME:
cmd_val = GLTSYN_CMD_ADJ_TIME;
break;
case ICE_PTP_ADJ_TIME_AT_TIME:
cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
break;
case ICE_PTP_NOP:
case ICE_PTP_READ_TIME:
cmd_val = GLTSYN_CMD_READ_TIME;
break;
default:
dev_warn(ice_hw_to_dev(hw),
"Ignoring unrecognized timer command %u\n", cmd);
cmd_val = 0;
}
tmr_idx = ice_get_ptp_src_clock_index(hw);
return tmr_idx << SEL_CPK_SRC | cmd_val;
}
/**
* ice_ptp_tmr_cmd_to_port_reg- Convert to port timer command value
* @hw: pointer to HW struct
* @cmd: Timer command
*
* Note that some hardware families use a different command register value for
* the PHY ports, while other hardware families use the same register values
* as the source timer.
*
* Return: the PHY port timer command register value for the given PTP timer
* command.
*/
static u32 ice_ptp_tmr_cmd_to_port_reg(struct ice_hw *hw,
enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val, tmr_idx;
/* Certain hardware families share the same register values for the
* port register and source timer register.
*/
switch (hw->ptp.phy_model) {
case ICE_PHY_E810:
return ice_ptp_tmr_cmd_to_src_reg(hw, cmd) & TS_CMD_MASK_E810;
default:
break;
}
switch (cmd) {
case ICE_PTP_INIT_TIME:
cmd_val = PHY_CMD_INIT_TIME;
break;
case ICE_PTP_INIT_INCVAL:
cmd_val = PHY_CMD_INIT_INCVAL;
break;
case ICE_PTP_ADJ_TIME:
cmd_val = PHY_CMD_ADJ_TIME;
break;
case ICE_PTP_ADJ_TIME_AT_TIME:
cmd_val = PHY_CMD_ADJ_TIME_AT_TIME;
break;
case ICE_PTP_READ_TIME:
cmd_val = PHY_CMD_READ_TIME;
break;
case ICE_PTP_NOP:
cmd_val = 0;
break;
default:
dev_warn(ice_hw_to_dev(hw),
"Ignoring unrecognized timer command %u\n", cmd);
cmd_val = 0;
}
tmr_idx = ice_get_ptp_src_clock_index(hw);
return tmr_idx << SEL_PHY_SRC | cmd_val;
}
/**
* ice_ptp_src_cmd - Prepare source timer for a timer command
* @hw: pointer to HW structure
* @cmd: Timer command
*
* Prepare the source timer for an upcoming timer sync command.
*/
void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 cmd_val = ice_ptp_tmr_cmd_to_src_reg(hw, cmd);
wr32(hw, GLTSYN_CMD, cmd_val);
}
/**
* ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
* @hw: pointer to HW struct
*
* Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
* write immediately. This triggers the hardware to begin executing all of the
* source and PHY timer commands synchronously.
*/
static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
{
struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
ice_flush(hw);
}
/* 56G PHY device functions
*
* The following functions operate on devices with the ETH 56G PHY.
*/
/**
* ice_write_phy_eth56g - Write a PHY port register
* @hw: pointer to the HW struct
* @phy_idx: PHY index
* @addr: PHY register address
* @val: Value to write
*
* Return: 0 on success, other error codes when failed to write to PHY
*/
static int ice_write_phy_eth56g(struct ice_hw *hw, u8 phy_idx, u32 addr,
u32 val)
{
struct ice_sbq_msg_input phy_msg;
int err;
phy_msg.opcode = ice_sbq_msg_wr;
phy_msg.msg_addr_low = lower_16_bits(addr);
phy_msg.msg_addr_high = upper_16_bits(addr);
phy_msg.data = val;
phy_msg.dest_dev = hw->ptp.phy.eth56g.phy_addr[phy_idx];
err = ice_sbq_rw_reg(hw, &phy_msg, ICE_AQ_FLAG_RD);
if (err)
ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
err);
return err;
}
/**
* ice_read_phy_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @phy_idx: PHY index
* @addr: PHY register address
* @val: Value to write
*
* Return: 0 on success, other error codes when failed to read from PHY
*/
static int ice_read_phy_eth56g(struct ice_hw *hw, u8 phy_idx, u32 addr,
u32 *val)
{
struct ice_sbq_msg_input phy_msg;
int err;
phy_msg.opcode = ice_sbq_msg_rd;
phy_msg.msg_addr_low = lower_16_bits(addr);
phy_msg.msg_addr_high = upper_16_bits(addr);
phy_msg.data = 0;
phy_msg.dest_dev = hw->ptp.phy.eth56g.phy_addr[phy_idx];
err = ice_sbq_rw_reg(hw, &phy_msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "PTP failed to send msg to phy %d\n",
err);
return err;
}
*val = phy_msg.data;
return 0;
}
/**
* ice_phy_res_address_eth56g - Calculate a PHY port register address
* @port: Port number to be written
* @res_type: resource type (register/memory)
* @offset: Offset from PHY port register base
* @addr: The result address
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
*/
static int ice_phy_res_address_eth56g(u8 port, enum eth56g_res_type res_type,
u32 offset, u32 *addr)
{
u8 lane = port % ICE_PORTS_PER_QUAD;
u8 phy = ICE_GET_QUAD_NUM(port);
if (res_type >= NUM_ETH56G_PHY_RES)
return -EINVAL;
*addr = eth56g_phy_res[res_type].base[phy] +
lane * eth56g_phy_res[res_type].step + offset;
return 0;
}
/**
* ice_write_port_eth56g - Write a PHY port register
* @hw: pointer to the HW struct
* @offset: PHY register offset
* @port: Port number
* @val: Value to write
* @res_type: resource type (register/memory)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
u32 val, enum eth56g_res_type res_type)
{
u8 phy_port = port % hw->ptp.ports_per_phy;
u8 phy_idx = port / hw->ptp.ports_per_phy;
u32 addr;
int err;
if (port >= hw->ptp.num_lports)
return -EINVAL;
err = ice_phy_res_address_eth56g(phy_port, res_type, offset, &addr);
if (err)
return err;
return ice_write_phy_eth56g(hw, phy_idx, addr, val);
}
/**
* ice_read_port_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @offset: PHY register offset
* @port: Port number
* @val: Value to write
* @res_type: resource type (register/memory)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_port_eth56g(struct ice_hw *hw, u8 port, u32 offset,
u32 *val, enum eth56g_res_type res_type)
{
u8 phy_port = port % hw->ptp.ports_per_phy;
u8 phy_idx = port / hw->ptp.ports_per_phy;
u32 addr;
int err;
if (port >= hw->ptp.num_lports)
return -EINVAL;
err = ice_phy_res_address_eth56g(phy_port, res_type, offset, &addr);
if (err)
return err;
return ice_read_phy_eth56g(hw, phy_idx, addr, val);
}
/**
* ice_write_ptp_reg_eth56g - Write a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be written
* @offset: Offset from PHY port register base
* @val: Value to write
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 val)
{
return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
}
/**
* ice_write_mac_reg_eth56g - Write a MAC PHY port register
* parameter
* @hw: pointer to the HW struct
* @port: Port number to be written
* @offset: Offset from PHY port register base
* @val: Value to write
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_mac_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
u32 val)
{
return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
}
/**
* ice_write_xpcs_reg_eth56g - Write a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be written
* @offset: Offset from PHY port register base
* @val: Value to write
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_xpcs_reg_eth56g(struct ice_hw *hw, u8 port, u32 offset,
u32 val)
{
return ice_write_port_eth56g(hw, port, offset, val,
ETH56G_PHY_REG_XPCS);
}
/**
* ice_read_ptp_reg_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 *val)
{
return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_PTP);
}
/**
* ice_read_mac_reg_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_mac_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 *val)
{
return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_MAC);
}
/**
* ice_read_gpcs_reg_eth56g - Read a PHY port register
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_gpcs_reg_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 *val)
{
return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_REG_GPCS);
}
/**
* ice_read_port_mem_eth56g - Read a PHY port memory location
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to read from PHY
*/
static int ice_read_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 *val)
{
return ice_read_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
}
/**
* ice_write_port_mem_eth56g - Write a PHY port memory location
* @hw: pointer to the HW struct
* @port: Port number to be read
* @offset: Offset from PHY port register base
* @val: Pointer to the value to read (out param)
*
* Return:
* * %0 - success
* * %EINVAL - invalid port number or resource type
* * %other - failed to write to PHY
*/
static int ice_write_port_mem_eth56g(struct ice_hw *hw, u8 port, u16 offset,
u32 val)
{
return ice_write_port_eth56g(hw, port, offset, val, ETH56G_PHY_MEM_PTP);
}
/**
* ice_is_64b_phy_reg_eth56g - Check if this is a 64bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 64bit register
*
* Write the appropriate high register offset to use.
*
* Return: true if the provided low address is one of the known 64bit PHY values
* represented as two 32bit registers, false otherwise.
*/
static bool ice_is_64b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case PHY_REG_TX_TIMER_INC_PRE_L:
*high_addr = PHY_REG_TX_TIMER_INC_PRE_U;
return true;
case PHY_REG_RX_TIMER_INC_PRE_L:
*high_addr = PHY_REG_RX_TIMER_INC_PRE_U;
return true;
case PHY_REG_TX_CAPTURE_L:
*high_addr = PHY_REG_TX_CAPTURE_U;
return true;
case PHY_REG_RX_CAPTURE_L:
*high_addr = PHY_REG_RX_CAPTURE_U;
return true;
case PHY_REG_TOTAL_TX_OFFSET_L:
*high_addr = PHY_REG_TOTAL_TX_OFFSET_U;
return true;
case PHY_REG_TOTAL_RX_OFFSET_L:
*high_addr = PHY_REG_TOTAL_RX_OFFSET_U;
return true;
case PHY_REG_TX_MEMORY_STATUS_L:
*high_addr = PHY_REG_TX_MEMORY_STATUS_U;
return true;
default:
return false;
}
}
/**
* ice_is_40b_phy_reg_eth56g - Check if this is a 40bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 40bit value
*
* Write the appropriate high register offset to use.
*
* Return: true if the provided low address is one of the known 40bit PHY
* values split into two registers with the lower 8 bits in the low register and
* the upper 32 bits in the high register, false otherwise.
*/
static bool ice_is_40b_phy_reg_eth56g(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case PHY_REG_TIMETUS_L:
*high_addr = PHY_REG_TIMETUS_U;
return true;
case PHY_PCS_REF_TUS_L:
*high_addr = PHY_PCS_REF_TUS_U;
return true;
case PHY_PCS_REF_INC_L:
*high_addr = PHY_PCS_REF_INC_U;
return true;
default:
return false;
}
}
/**
* ice_read_64b_phy_reg_eth56g - Read a 64bit value from PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: on return, the contents of the 64bit value from the PHY registers
* @res_type: resource type
*
* Check if the caller has specified a known 40 bit register offset and read
* the two registers associated with a 40bit value and return it in the val
* pointer.
*
* Return:
* * %0 - success
* * %EINVAL - not a 64 bit register
* * %other - failed to read from PHY
*/
static int ice_read_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
u64 *val, enum eth56g_res_type res_type)
{
u16 high_addr;
u32 lo, hi;
int err;
if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
return -EINVAL;
err = ice_read_port_eth56g(hw, port, low_addr, &lo, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register %#08x\n, err %d",
low_addr, err);
return err;
}
err = ice_read_port_eth56g(hw, port, high_addr, &hi, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register %#08x\n, err %d",
high_addr, err);
return err;
}
*val = ((u64)hi << 32) | lo;
return 0;
}
/**
* ice_read_64b_ptp_reg_eth56g - Read a 64bit value from PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: on return, the contents of the 64bit value from the PHY registers
*
* Check if the caller has specified a known 40 bit register offset and read
* the two registers associated with a 40bit value and return it in the val
* pointer.
*
* Return:
* * %0 - success
* * %EINVAL - not a 64 bit register
* * %other - failed to read from PHY
*/
static int ice_read_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port, u16 low_addr,
u64 *val)
{
return ice_read_64b_phy_reg_eth56g(hw, port, low_addr, val,
ETH56G_PHY_REG_PTP);
}
/**
* ice_write_40b_phy_reg_eth56g - Write a 40b value to the PHY
* @hw: pointer to the HW struct
* @port: port to write to
* @low_addr: offset of the low register
* @val: 40b value to write
* @res_type: resource type
*
* Check if the caller has specified a known 40 bit register offset and write
* provided 40b value to the two associated registers by splitting it up into
* two chunks, the lower 8 bits and the upper 32 bits.
*
* Return:
* * %0 - success
* * %EINVAL - not a 40 bit register
* * %other - failed to write to PHY
*/
static int ice_write_40b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
u16 low_addr, u64 val,
enum eth56g_res_type res_type)
{
u16 high_addr;
u32 lo, hi;
int err;
if (!ice_is_40b_phy_reg_eth56g(low_addr, &high_addr))
return -EINVAL;
lo = FIELD_GET(P_REG_40B_LOW_M, val);
hi = (u32)(val >> P_REG_40B_HIGH_S);
err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_write_40b_ptp_reg_eth56g - Write a 40b value to the PHY
* @hw: pointer to the HW struct
* @port: port to write to
* @low_addr: offset of the low register
* @val: 40b value to write
*
* Check if the caller has specified a known 40 bit register offset and write
* provided 40b value to the two associated registers by splitting it up into
* two chunks, the lower 8 bits and the upper 32 bits.
*
* Return:
* * %0 - success
* * %EINVAL - not a 40 bit register
* * %other - failed to write to PHY
*/
static int ice_write_40b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
u16 low_addr, u64 val)
{
return ice_write_40b_phy_reg_eth56g(hw, port, low_addr, val,
ETH56G_PHY_REG_PTP);
}
/**
* ice_write_64b_phy_reg_eth56g - Write a 64bit value to PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: the contents of the 64bit value to write to PHY
* @res_type: resource type
*
* Check if the caller has specified a known 64 bit register offset and write
* the 64bit value to the two associated 32bit PHY registers.
*
* Return:
* * %0 - success
* * %EINVAL - not a 64 bit register
* * %other - failed to write to PHY
*/
static int ice_write_64b_phy_reg_eth56g(struct ice_hw *hw, u8 port,
u16 low_addr, u64 val,
enum eth56g_res_type res_type)
{
u16 high_addr;
u32 lo, hi;
int err;
if (!ice_is_64b_phy_reg_eth56g(low_addr, &high_addr))
return -EINVAL;
lo = lower_32_bits(val);
hi = upper_32_bits(val);
err = ice_write_port_eth56g(hw, port, low_addr, lo, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_port_eth56g(hw, port, high_addr, hi, res_type);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_write_64b_ptp_reg_eth56g - Write a 64bit value to PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: the contents of the 64bit value to write to PHY
*
* Check if the caller has specified a known 64 bit register offset and write
* the 64bit value to the two associated 32bit PHY registers.
*
* Return:
* * %0 - success
* * %EINVAL - not a 64 bit register
* * %other - failed to write to PHY
*/
static int ice_write_64b_ptp_reg_eth56g(struct ice_hw *hw, u8 port,
u16 low_addr, u64 val)
{
return ice_write_64b_phy_reg_eth56g(hw, port, low_addr, val,
ETH56G_PHY_REG_PTP);
}
/**
* ice_read_ptp_tstamp_eth56g - Read a PHY timestamp out of the port memory
* @hw: pointer to the HW struct
* @port: the port to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the two associated entries in the
* port memory block of the internal PHYs of the 56G devices.
*
* Return:
* * %0 - success
* * %other - failed to read from PHY
*/
static int ice_read_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx,
u64 *tstamp)
{
u16 lo_addr, hi_addr;
u32 lo, hi;
int err;
lo_addr = (u16)PHY_TSTAMP_L(idx);
hi_addr = (u16)PHY_TSTAMP_U(idx);
err = ice_read_port_mem_eth56g(hw, port, lo_addr, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_port_mem_eth56g(hw, port, hi_addr, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
/* For 56G based internal PHYs, the timestamp is reported with the
* lower 8 bits in the low register, and the upper 32 bits in the high
* register.
*/
*tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
return 0;
}
/**
* ice_clear_ptp_tstamp_eth56g - Clear a timestamp from the quad block
* @hw: pointer to the HW struct
* @port: the quad to read from
* @idx: the timestamp index to reset
*
* Read and then forcibly clear the timestamp index to ensure the valid bit is
* cleared and the timestamp status bit is reset in the PHY port memory of
* internal PHYs of the 56G devices.
*
* To directly clear the contents of the timestamp block entirely, discarding
* all timestamp data at once, software should instead use
* ice_ptp_reset_ts_memory_quad_eth56g().
*
* This function should only be called on an idx whose bit is set according to
* ice_get_phy_tx_tstamp_ready().
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_clear_ptp_tstamp_eth56g(struct ice_hw *hw, u8 port, u8 idx)
{
u64 unused_tstamp;
u16 lo_addr;
int err;
/* Read the timestamp register to ensure the timestamp status bit is
* cleared.
*/
err = ice_read_ptp_tstamp_eth56g(hw, port, idx, &unused_tstamp);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read the PHY timestamp register for port %u, idx %u, err %d\n",
port, idx, err);
}
lo_addr = (u16)PHY_TSTAMP_L(idx);
err = ice_write_port_mem_eth56g(hw, port, lo_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for port %u, idx %u, err %d\n",
port, idx, err);
return err;
}
return 0;
}
/**
* ice_ptp_reset_ts_memory_eth56g - Clear all timestamps from the port block
* @hw: pointer to the HW struct
*/
static void ice_ptp_reset_ts_memory_eth56g(struct ice_hw *hw)
{
unsigned int port;
for (port = 0; port < hw->ptp.num_lports; port++) {
ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
0);
ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_U,
0);
}
}
/**
* ice_ptp_prep_port_time_eth56g - Prepare one PHY port with initial time
* @hw: pointer to the HW struct
* @port: port number
* @time: time to initialize the PHY port clocks to
*
* Write a new initial time value into registers of a specific PHY port.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_port_time_eth56g(struct ice_hw *hw, u8 port,
u64 time)
{
int err;
/* Tx case */
err = ice_write_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
time);
if (err)
return err;
/* Rx case */
return ice_write_64b_ptp_reg_eth56g(hw, port,
PHY_REG_RX_TIMER_INC_PRE_L, time);
}
/**
* ice_ptp_prep_phy_time_eth56g - Prepare PHY port with initial time
* @hw: pointer to the HW struct
* @time: Time to initialize the PHY port clocks to
*
* Program the PHY port registers with a new initial time value. The port
* clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
* command. The time value is the upper 32 bits of the PHY timer, usually in
* units of nominal nanoseconds.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_phy_time_eth56g(struct ice_hw *hw, u32 time)
{
u64 phy_time;
u8 port;
/* The time represents the upper 32 bits of the PHY timer, so we need
* to shift to account for this when programming.
*/
phy_time = (u64)time << 32;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_ptp_prep_port_time_eth56g(hw, port, phy_time);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
port, err);
return err;
}
}
return 0;
}
/**
* ice_ptp_prep_port_adj_eth56g - Prepare a single port for time adjust
* @hw: pointer to HW struct
* @port: Port number to be programmed
* @time: time in cycles to adjust the port clocks
*
* Program the port for an atomic adjustment by writing the Tx and Rx timer
* registers. The atomic adjustment won't be completed until the driver issues
* an ICE_PTP_ADJ_TIME command.
*
* Note that time is not in units of nanoseconds. It is in clock time
* including the lower sub-nanosecond portion of the port timer.
*
* Negative adjustments are supported using 2s complement arithmetic.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_port_adj_eth56g(struct ice_hw *hw, u8 port, s64 time)
{
u32 l_time, u_time;
int err;
l_time = lower_32_bits(time);
u_time = upper_32_bits(time);
/* Tx case */
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_phy_adj_eth56g - Prep PHY ports for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment in nanoseconds
*
* Prepare the PHY ports for an atomic time adjustment by programming the PHY
* Tx and Rx port registers. The actual adjustment is completed by issuing an
* ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_phy_adj_eth56g(struct ice_hw *hw, s32 adj)
{
s64 cycles;
u8 port;
/* The port clock supports adjustment of the sub-nanosecond portion of
* the clock (lowest 32 bits). We shift the provided adjustment in
* nanoseconds by 32 to calculate the appropriate adjustment to program
* into the PHY ports.
*/
cycles = (s64)adj << 32;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_ptp_prep_port_adj_eth56g(hw, port, cycles);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_eth56g - Prepare PHY ports for time adjustment
* @hw: pointer to HW struct
* @incval: new increment value to prepare
*
* Prepare each of the PHY ports for a new increment value by programming the
* port's TIMETUS registers. The new increment value will be updated after
* issuing an ICE_PTP_INIT_INCVAL command.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_prep_phy_incval_eth56g(struct ice_hw *hw, u64 incval)
{
u8 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L,
incval);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
port, err);
return err;
}
}
return 0;
}
/**
* ice_ptp_read_port_capture_eth56g - Read a port's local time capture
* @hw: pointer to HW struct
* @port: Port number to read
* @tx_ts: on return, the Tx port time capture
* @rx_ts: on return, the Rx port time capture
*
* Read the port's Tx and Rx local time capture values.
*
* Return:
* * %0 - success
* * %other - failed to read from PHY
*/
static int ice_ptp_read_port_capture_eth56g(struct ice_hw *hw, u8 port,
u64 *tx_ts, u64 *rx_ts)
{
int err;
/* Tx case */
err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_CAPTURE_L,
tx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "tx_init = %#016llx\n", *tx_ts);
/* Rx case */
err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_RX_CAPTURE_L,
rx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "rx_init = %#016llx\n", *rx_ts);
return 0;
}
/**
* ice_ptp_write_port_cmd_eth56g - Prepare a single PHY port for a timer command
* @hw: pointer to HW struct
* @port: Port to which cmd has to be sent
* @cmd: Command to be sent to the port
*
* Prepare the requested port for an upcoming timer sync command.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_write_port_cmd_eth56g(struct ice_hw *hw, u8 port,
enum ice_ptp_tmr_cmd cmd)
{
u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
int err;
/* Tx case */
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
err);
return err;
}
/* Rx case */
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_phy_get_speed_eth56g - Get link speed based on PHY link type
* @li: pointer to link information struct
*
* Return: simplified ETH56G PHY speed
*/
static enum ice_eth56g_link_spd
ice_phy_get_speed_eth56g(struct ice_link_status *li)
{
u16 speed = ice_get_link_speed_based_on_phy_type(li->phy_type_low,
li->phy_type_high);
switch (speed) {
case ICE_AQ_LINK_SPEED_1000MB:
return ICE_ETH56G_LNK_SPD_1G;
case ICE_AQ_LINK_SPEED_2500MB:
return ICE_ETH56G_LNK_SPD_2_5G;
case ICE_AQ_LINK_SPEED_10GB:
return ICE_ETH56G_LNK_SPD_10G;
case ICE_AQ_LINK_SPEED_25GB:
return ICE_ETH56G_LNK_SPD_25G;
case ICE_AQ_LINK_SPEED_40GB:
return ICE_ETH56G_LNK_SPD_40G;
case ICE_AQ_LINK_SPEED_50GB:
switch (li->phy_type_low) {
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI1:
return ICE_ETH56G_LNK_SPD_50G;
default:
return ICE_ETH56G_LNK_SPD_50G2;
}
case ICE_AQ_LINK_SPEED_100GB:
if (li->phy_type_high ||
li->phy_type_low == ICE_PHY_TYPE_LOW_100GBASE_SR2)
return ICE_ETH56G_LNK_SPD_100G2;
else
return ICE_ETH56G_LNK_SPD_100G;
default:
return ICE_ETH56G_LNK_SPD_1G;
}
}
/**
* ice_phy_cfg_parpcs_eth56g - Configure TUs per PAR/PCS clock cycle
* @hw: pointer to the HW struct
* @port: port to configure
*
* Configure the number of TUs for the PAR and PCS clocks used as part of the
* timestamp calibration process.
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
static int ice_phy_cfg_parpcs_eth56g(struct ice_hw *hw, u8 port)
{
u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
u32 val;
int err;
err = ice_write_xpcs_reg_eth56g(hw, port, PHY_VENDOR_TXLANE_THRESH,
ICE_ETH56G_NOMINAL_THRESH4);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read VENDOR_TXLANE_THRESH, status: %d",
err);
return err;
}
switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
case ICE_ETH56G_LNK_SPD_1G:
case ICE_ETH56G_LNK_SPD_2_5G:
err = ice_read_ptp_reg_eth56g(hw, port_blk,
PHY_GPCS_CONFIG_REG0, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read PHY_GPCS_CONFIG_REG0, status: %d",
err);
return err;
}
val &= ~PHY_GPCS_CONFIG_REG0_TX_THR_M;
val |= FIELD_PREP(PHY_GPCS_CONFIG_REG0_TX_THR_M,
ICE_ETH56G_NOMINAL_TX_THRESH);
err = ice_write_ptp_reg_eth56g(hw, port_blk,
PHY_GPCS_CONFIG_REG0, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_GPCS_CONFIG_REG0, status: %d",
err);
return err;
}
break;
default:
break;
}
err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_TUS_L,
ICE_ETH56G_NOMINAL_PCS_REF_TUS);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_TUS, status: %d",
err);
return err;
}
err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_PCS_REF_INC_L,
ICE_ETH56G_NOMINAL_PCS_REF_INC);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write PHY_PCS_REF_INC, status: %d",
err);
return err;
}
return 0;
}
/**
* ice_phy_cfg_ptp_1step_eth56g - Configure 1-step PTP settings
* @hw: Pointer to the HW struct
* @port: Port to configure
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
int ice_phy_cfg_ptp_1step_eth56g(struct ice_hw *hw, u8 port)
{
u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
u8 blk_port = port & (ICE_PORTS_PER_QUAD - 1);
bool enable, sfd_ena;
u32 val, peer_delay;
int err;
enable = hw->ptp.phy.eth56g.onestep_ena;
peer_delay = hw->ptp.phy.eth56g.peer_delay;
sfd_ena = hw->ptp.phy.eth56g.sfd_ena;
/* PHY_PTP_1STEP_CONFIG */
err = ice_read_ptp_reg_eth56g(hw, port_blk, PHY_PTP_1STEP_CONFIG, &val);
if (err)
return err;
if (enable)
val |= blk_port;
else
val &= ~blk_port;
val &= ~(PHY_PTP_1STEP_T1S_UP64_M | PHY_PTP_1STEP_T1S_DELTA_M);
err = ice_write_ptp_reg_eth56g(hw, port_blk, PHY_PTP_1STEP_CONFIG, val);
if (err)
return err;
/* PHY_PTP_1STEP_PEER_DELAY */
val = FIELD_PREP(PHY_PTP_1STEP_PD_DELAY_M, peer_delay);
if (peer_delay)
val |= PHY_PTP_1STEP_PD_ADD_PD_M;
val |= PHY_PTP_1STEP_PD_DLY_V_M;
err = ice_write_ptp_reg_eth56g(hw, port_blk,
PHY_PTP_1STEP_PEER_DELAY(blk_port), val);
if (err)
return err;
val &= ~PHY_PTP_1STEP_PD_DLY_V_M;
err = ice_write_ptp_reg_eth56g(hw, port_blk,
PHY_PTP_1STEP_PEER_DELAY(blk_port), val);
if (err)
return err;
/* PHY_MAC_XIF_MODE */
err = ice_read_mac_reg_eth56g(hw, port, PHY_MAC_XIF_MODE, &val);
if (err)
return err;
val &= ~(PHY_MAC_XIF_1STEP_ENA_M | PHY_MAC_XIF_TS_BIN_MODE_M |
PHY_MAC_XIF_TS_SFD_ENA_M | PHY_MAC_XIF_GMII_TS_SEL_M);
switch (ice_phy_get_speed_eth56g(&hw->port_info->phy.link_info)) {
case ICE_ETH56G_LNK_SPD_1G:
case ICE_ETH56G_LNK_SPD_2_5G:
val |= PHY_MAC_XIF_GMII_TS_SEL_M;
break;
default:
break;
}
val |= FIELD_PREP(PHY_MAC_XIF_1STEP_ENA_M, enable) |
FIELD_PREP(PHY_MAC_XIF_TS_BIN_MODE_M, enable) |
FIELD_PREP(PHY_MAC_XIF_TS_SFD_ENA_M, sfd_ena);
return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_XIF_MODE, val);
}
/**
* mul_u32_u32_fx_q9 - Multiply two u32 fixed point Q9 values
* @a: multiplier value
* @b: multiplicand value
*
* Return: result of multiplication
*/
static u32 mul_u32_u32_fx_q9(u32 a, u32 b)
{
return (u32)(((u64)a * b) >> ICE_ETH56G_MAC_CFG_FRAC_W);
}
/**
* add_u32_u32_fx - Add two u32 fixed point values and discard overflow
* @a: first value
* @b: second value
*
* Return: result of addition
*/
static u32 add_u32_u32_fx(u32 a, u32 b)
{
return lower_32_bits(((u64)a + b));
}
/**
* ice_ptp_calc_bitslip_eth56g - Calculate bitslip value
* @hw: pointer to the HW struct
* @port: port to configure
* @bs: bitslip multiplier
* @fc: FC-FEC enabled
* @rs: RS-FEC enabled
* @spd: link speed
*
* Return: calculated bitslip value
*/
static u32 ice_ptp_calc_bitslip_eth56g(struct ice_hw *hw, u8 port, u32 bs,
bool fc, bool rs,
enum ice_eth56g_link_spd spd)
{
u8 port_offset = port & (ICE_PORTS_PER_QUAD - 1);
u8 port_blk = port & ~(ICE_PORTS_PER_QUAD - 1);
u32 bitslip;
int err;
if (!bs || rs)
return 0;
if (spd == ICE_ETH56G_LNK_SPD_1G || spd == ICE_ETH56G_LNK_SPD_2_5G)
err = ice_read_gpcs_reg_eth56g(hw, port, PHY_GPCS_BITSLIP,
&bitslip);
else
err = ice_read_ptp_reg_eth56g(hw, port_blk,
PHY_REG_SD_BIT_SLIP(port_offset),
&bitslip);
if (err)
return 0;
if (spd == ICE_ETH56G_LNK_SPD_1G && !bitslip) {
/* Bitslip register value of 0 corresponds to 10 so substitute
* it for calculations
*/
bitslip = 10;
} else if (spd == ICE_ETH56G_LNK_SPD_10G ||
spd == ICE_ETH56G_LNK_SPD_25G) {
if (fc)
bitslip = bitslip * 2 + 32;
else
bitslip = (u32)((s32)bitslip * -1 + 20);
}
bitslip <<= ICE_ETH56G_MAC_CFG_FRAC_W;
return mul_u32_u32_fx_q9(bitslip, bs);
}
/**
* ice_ptp_calc_deskew_eth56g - Calculate deskew value
* @hw: pointer to the HW struct
* @port: port to configure
* @ds: deskew multiplier
* @rs: RS-FEC enabled
* @spd: link speed
*
* Return: calculated deskew value
*/
static u32 ice_ptp_calc_deskew_eth56g(struct ice_hw *hw, u8 port, u32 ds,
bool rs, enum ice_eth56g_link_spd spd)
{
u32 deskew_i, deskew_f;
int err;
if (!ds)
return 0;
read_poll_timeout(ice_read_ptp_reg_eth56g, err,
FIELD_GET(PHY_REG_DESKEW_0_VALID, deskew_i), 500,
50 * USEC_PER_MSEC, false, hw, port, PHY_REG_DESKEW_0,
&deskew_i);
if (err)
return err;
deskew_f = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL_FRAC, deskew_i);
deskew_i = FIELD_GET(PHY_REG_DESKEW_0_RLEVEL, deskew_i);
if (rs && spd == ICE_ETH56G_LNK_SPD_50G2)
ds = 0x633; /* 3.1 */
else if (rs && spd == ICE_ETH56G_LNK_SPD_100G)
ds = 0x31b; /* 1.552 */
deskew_i = FIELD_PREP(ICE_ETH56G_MAC_CFG_RX_OFFSET_INT, deskew_i);
/* Shift 3 fractional bits to the end of the integer part */
deskew_f <<= ICE_ETH56G_MAC_CFG_FRAC_W - PHY_REG_DESKEW_0_RLEVEL_FRAC_W;
return mul_u32_u32_fx_q9(deskew_i | deskew_f, ds);
}
/**
* ice_phy_set_offsets_eth56g - Set Tx/Rx offset values
* @hw: pointer to the HW struct
* @port: port to configure
* @spd: link speed
* @cfg: structure to store output values
* @fc: FC-FEC enabled
* @rs: RS-FEC enabled
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_phy_set_offsets_eth56g(struct ice_hw *hw, u8 port,
enum ice_eth56g_link_spd spd,
const struct ice_eth56g_mac_reg_cfg *cfg,
bool fc, bool rs)
{
u32 rx_offset, tx_offset, bs_ds;
bool onestep, sfd;
onestep = hw->ptp.phy.eth56g.onestep_ena;
sfd = hw->ptp.phy.eth56g.sfd_ena;
bs_ds = cfg->rx_offset.bs_ds;
if (fc)
rx_offset = cfg->rx_offset.fc;
else if (rs)
rx_offset = cfg->rx_offset.rs;
else
rx_offset = cfg->rx_offset.no_fec;
rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.serdes);
if (sfd)
rx_offset = add_u32_u32_fx(rx_offset, cfg->rx_offset.sfd);
if (spd < ICE_ETH56G_LNK_SPD_40G)
bs_ds = ice_ptp_calc_bitslip_eth56g(hw, port, bs_ds, fc, rs,
spd);
else
bs_ds = ice_ptp_calc_deskew_eth56g(hw, port, bs_ds, rs, spd);
rx_offset = add_u32_u32_fx(rx_offset, bs_ds);
rx_offset &= ICE_ETH56G_MAC_CFG_RX_OFFSET_INT |
ICE_ETH56G_MAC_CFG_RX_OFFSET_FRAC;
if (fc)
tx_offset = cfg->tx_offset.fc;
else if (rs)
tx_offset = cfg->tx_offset.rs;
else
tx_offset = cfg->tx_offset.no_fec;
tx_offset += cfg->tx_offset.serdes + cfg->tx_offset.sfd * sfd +
cfg->tx_offset.onestep * onestep;
ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_OFFSET, rx_offset);
return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_OFFSET, tx_offset);
}
/**
* ice_phy_cfg_mac_eth56g - Configure MAC for PTP
* @hw: Pointer to the HW struct
* @port: Port to configure
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_phy_cfg_mac_eth56g(struct ice_hw *hw, u8 port)
{
const struct ice_eth56g_mac_reg_cfg *cfg;
enum ice_eth56g_link_spd spd;
struct ice_link_status *li;
bool fc = false;
bool rs = false;
bool onestep;
u32 val;
int err;
onestep = hw->ptp.phy.eth56g.onestep_ena;
li = &hw->port_info->phy.link_info;
spd = ice_phy_get_speed_eth56g(li);
if (!!(li->an_info & ICE_AQ_FEC_EN)) {
if (spd == ICE_ETH56G_LNK_SPD_10G) {
fc = true;
} else {
fc = !!(li->fec_info & ICE_AQ_LINK_25G_KR_FEC_EN);
rs = !!(li->fec_info & ~ICE_AQ_LINK_25G_KR_FEC_EN);
}
}
cfg = &eth56g_mac_cfg[spd];
err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_RX_MODULO, 0);
if (err)
return err;
err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TX_MODULO, 0);
if (err)
return err;
val = FIELD_PREP(PHY_MAC_TSU_CFG_TX_MODE_M,
cfg->tx_mode.def + rs * cfg->tx_mode.rs) |
FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_MK_DLY_M, cfg->tx_mk_dly) |
FIELD_PREP(PHY_MAC_TSU_CFG_TX_MII_CW_DLY_M,
cfg->tx_cw_dly.def +
onestep * cfg->tx_cw_dly.onestep) |
FIELD_PREP(PHY_MAC_TSU_CFG_RX_MODE_M,
cfg->rx_mode.def + rs * cfg->rx_mode.rs) |
FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_MK_DLY_M,
cfg->rx_mk_dly.def + rs * cfg->rx_mk_dly.rs) |
FIELD_PREP(PHY_MAC_TSU_CFG_RX_MII_CW_DLY_M,
cfg->rx_cw_dly.def + rs * cfg->rx_cw_dly.rs) |
FIELD_PREP(PHY_MAC_TSU_CFG_BLKS_PER_CLK_M, cfg->blks_per_clk);
err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_TSU_CONFIG, val);
if (err)
return err;
err = ice_write_mac_reg_eth56g(hw, port, PHY_MAC_BLOCKTIME,
cfg->blktime);
if (err)
return err;
err = ice_phy_set_offsets_eth56g(hw, port, spd, cfg, fc, rs);
if (err)
return err;
if (spd == ICE_ETH56G_LNK_SPD_25G && !rs)
val = 0;
else
val = cfg->mktime;
return ice_write_mac_reg_eth56g(hw, port, PHY_MAC_MARKERTIME, val);
}
/**
* ice_phy_cfg_intr_eth56g - Configure TX timestamp interrupt
* @hw: pointer to the HW struct
* @port: the timestamp port
* @ena: enable or disable interrupt
* @threshold: interrupt threshold
*
* Configure TX timestamp interrupt for the specified port
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
int ice_phy_cfg_intr_eth56g(struct ice_hw *hw, u8 port, bool ena, u8 threshold)
{
int err;
u32 val;
err = ice_read_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, &val);
if (err)
return err;
if (ena) {
val |= PHY_TS_INT_CONFIG_ENA_M;
val &= ~PHY_TS_INT_CONFIG_THRESHOLD_M;
val |= FIELD_PREP(PHY_TS_INT_CONFIG_THRESHOLD_M, threshold);
} else {
val &= ~PHY_TS_INT_CONFIG_ENA_M;
}
return ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TS_INT_CONFIG, val);
}
/**
* ice_read_phy_and_phc_time_eth56g - Simultaneously capture PHC and PHY time
* @hw: pointer to the HW struct
* @port: the PHY port to read
* @phy_time: on return, the 64bit PHY timer value
* @phc_time: on return, the lower 64bits of PHC time
*
* Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
* and PHC timer values.
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
static int ice_read_phy_and_phc_time_eth56g(struct ice_hw *hw, u8 port,
u64 *phy_time, u64 *phc_time)
{
u64 tx_time, rx_time;
u32 zo, lo;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
if (err)
return err;
/* Issue the sync to start the ICE_PTP_READ_TIME capture */
ice_ptp_exec_tmr_cmd(hw);
/* Read the captured PHC time from the shadow time registers */
zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
*phc_time = (u64)lo << 32 | zo;
/* Read the captured PHY time from the PHY shadow registers */
err = ice_ptp_read_port_capture_eth56g(hw, port, &tx_time, &rx_time);
if (err)
return err;
/* If the PHY Tx and Rx timers don't match, log a warning message.
* Note that this should not happen in normal circumstances since the
* driver always programs them together.
*/
if (tx_time != rx_time)
dev_warn(ice_hw_to_dev(hw), "PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
port, tx_time, rx_time);
*phy_time = tx_time;
return 0;
}
/**
* ice_sync_phy_timer_eth56g - Synchronize the PHY timer with PHC timer
* @hw: pointer to the HW struct
* @port: the PHY port to synchronize
*
* Perform an adjustment to ensure that the PHY and PHC timers are in sync.
* This is done by issuing a ICE_PTP_READ_TIME command which triggers a
* simultaneous read of the PHY timer and PHC timer. Then we use the
* difference to calculate an appropriate 2s complement addition to add
* to the PHY timer in order to ensure it reads the same value as the
* primary PHC timer.
*
* Return:
* * %0 - success
* * %-EBUSY- failed to acquire PTP semaphore
* * %other - PHY read/write failed
*/
static int ice_sync_phy_timer_eth56g(struct ice_hw *hw, u8 port)
{
u64 phc_time, phy_time, difference;
int err;
if (!ice_ptp_lock(hw)) {
ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
return -EBUSY;
}
err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
/* Calculate the amount required to add to the port time in order for
* it to match the PHC time.
*
* Note that the port adjustment is done using 2s complement
* arithmetic. This is convenient since it means that we can simply
* calculate the difference between the PHC time and the port time,
* and it will be interpreted correctly.
*/
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
difference = phc_time - phy_time;
err = ice_ptp_prep_port_adj_eth56g(hw, port, (s64)difference);
if (err)
goto err_unlock;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
if (err)
goto err_unlock;
/* Issue the sync to activate the time adjustment */
ice_ptp_exec_tmr_cmd(hw);
/* Re-capture the timer values to flush the command registers and
* verify that the time was properly adjusted.
*/
err = ice_read_phy_and_phc_time_eth56g(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
dev_info(ice_hw_to_dev(hw),
"Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
port, phy_time, phc_time);
err_unlock:
ice_ptp_unlock(hw);
return err;
}
/**
* ice_stop_phy_timer_eth56g - Stop the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to stop
* @soft_reset: if true, hold the SOFT_RESET bit of PHY_REG_PS
*
* Stop the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
int ice_stop_phy_timer_eth56g(struct ice_hw *hw, u8 port, bool soft_reset)
{
int err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 0);
if (err)
return err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 0);
if (err)
return err;
ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_start_phy_timer_eth56g - Start the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to start
*
* Start the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*
* Return:
* * %0 - success
* * %other - PHY read/write failed
*/
int ice_start_phy_timer_eth56g(struct ice_hw *hw, u8 port)
{
u32 lo, hi;
u64 incval;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
err = ice_stop_phy_timer_eth56g(hw, port, false);
if (err)
return err;
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
err = ice_phy_cfg_parpcs_eth56g(hw, port);
if (err)
return err;
err = ice_phy_cfg_ptp_1step_eth56g(hw, port);
if (err)
return err;
err = ice_phy_cfg_mac_eth56g(hw, port);
if (err)
return err;
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
incval = (u64)hi << 32 | lo;
err = ice_write_40b_ptp_reg_eth56g(hw, port, PHY_REG_TIMETUS_L, incval);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
err = ice_sync_phy_timer_eth56g(hw, port);
if (err)
return err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_TX_OFFSET_READY, 1);
if (err)
return err;
err = ice_write_ptp_reg_eth56g(hw, port, PHY_REG_RX_OFFSET_READY, 1);
if (err)
return err;
ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_sb_access_ena_eth56g - Enable SB devices (PHY and others) access
* @hw: pointer to HW struct
* @enable: Enable or disable access
*
* Enable sideband devices (PHY and others) access.
*/
static void ice_sb_access_ena_eth56g(struct ice_hw *hw, bool enable)
{
u32 val = rd32(hw, PF_SB_REM_DEV_CTL);
if (enable)
val |= BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1);
else
val &= ~(BIT(eth56g_phy_0) | BIT(cgu) | BIT(eth56g_phy_1));
wr32(hw, PF_SB_REM_DEV_CTL, val);
}
/**
* ice_ptp_init_phc_eth56g - Perform E82X specific PHC initialization
* @hw: pointer to HW struct
*
* Perform PHC initialization steps specific to E82X devices.
*
* Return:
* * %0 - success
* * %other - failed to initialize CGU
*/
static int ice_ptp_init_phc_eth56g(struct ice_hw *hw)
{
ice_sb_access_ena_eth56g(hw, true);
/* Initialize the Clock Generation Unit */
return ice_init_cgu_e82x(hw);
}
/**
* ice_ptp_read_tx_hwtstamp_status_eth56g - Get TX timestamp status
* @hw: pointer to the HW struct
* @ts_status: the timestamp mask pointer
*
* Read the PHY Tx timestamp status mask indicating which ports have Tx
* timestamps available.
*
* Return:
* * %0 - success
* * %other - failed to read from PHY
*/
int ice_ptp_read_tx_hwtstamp_status_eth56g(struct ice_hw *hw, u32 *ts_status)
{
const struct ice_eth56g_params *params = &hw->ptp.phy.eth56g;
u8 phy, mask;
u32 status;
mask = (1 << hw->ptp.ports_per_phy) - 1;
*ts_status = 0;
for (phy = 0; phy < params->num_phys; phy++) {
int err;
err = ice_read_phy_eth56g(hw, phy, PHY_PTP_INT_STATUS, &status);
if (err)
return err;
*ts_status |= (status & mask) << (phy * hw->ptp.ports_per_phy);
}
ice_debug(hw, ICE_DBG_PTP, "PHY interrupt err: %x\n", *ts_status);
return 0;
}
/**
* ice_get_phy_tx_tstamp_ready_eth56g - Read the Tx memory status register
* @hw: pointer to the HW struct
* @port: the PHY port to read from
* @tstamp_ready: contents of the Tx memory status register
*
* Read the PHY_REG_TX_MEMORY_STATUS register indicating which timestamps in
* the PHY are ready. A set bit means the corresponding timestamp is valid and
* ready to be captured from the PHY timestamp block.
*
* Return:
* * %0 - success
* * %other - failed to read from PHY
*/
static int ice_get_phy_tx_tstamp_ready_eth56g(struct ice_hw *hw, u8 port,
u64 *tstamp_ready)
{
int err;
err = ice_read_64b_ptp_reg_eth56g(hw, port, PHY_REG_TX_MEMORY_STATUS_L,
tstamp_ready);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS for port %u, err %d\n",
port, err);
return err;
}
return 0;
}
/**
* ice_is_muxed_topo - detect breakout 2x50G topology for E825C
* @hw: pointer to the HW struct
*
* Return: true if it's 2x50 breakout topology, false otherwise
*/
static bool ice_is_muxed_topo(struct ice_hw *hw)
{
u8 link_topo;
bool mux;
u32 val;
val = rd32(hw, GLGEN_SWITCH_MODE_CONFIG);
mux = FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, val);
val = rd32(hw, GLGEN_MAC_LINK_TOPO);
link_topo = FIELD_GET(GLGEN_MAC_LINK_TOPO_LINK_TOPO_M, val);
return (mux && link_topo == ICE_LINK_TOPO_UP_TO_2_LINKS);
}
/**
* ice_ptp_init_phy_e825c - initialize PHY parameters
* @hw: pointer to the HW struct
*/
static void ice_ptp_init_phy_e825c(struct ice_hw *hw)
{
struct ice_ptp_hw *ptp = &hw->ptp;
struct ice_eth56g_params *params;
u8 phy;
ptp->phy_model = ICE_PHY_ETH56G;
params = &ptp->phy.eth56g;
params->onestep_ena = false;
params->peer_delay = 0;
params->sfd_ena = false;
params->phy_addr[0] = eth56g_phy_0;
params->phy_addr[1] = eth56g_phy_1;
params->num_phys = 2;
ptp->ports_per_phy = 4;
ptp->num_lports = params->num_phys * ptp->ports_per_phy;
ice_sb_access_ena_eth56g(hw, true);
for (phy = 0; phy < params->num_phys; phy++) {
u32 phy_rev;
int err;
err = ice_read_phy_eth56g(hw, phy, PHY_REG_REVISION, &phy_rev);
if (err || phy_rev != PHY_REVISION_ETH56G) {
ptp->phy_model = ICE_PHY_UNSUP;
return;
}
}
ptp->is_2x50g_muxed_topo = ice_is_muxed_topo(hw);
}
/* E822 family functions
*
* The following functions operate on the E822 family of devices.
*/
/**
* ice_fill_phy_msg_e82x - Fill message data for a PHY register access
* @hw: pointer to the HW struct
* @msg: the PHY message buffer to fill in
* @port: the port to access
* @offset: the register offset
*/
static void ice_fill_phy_msg_e82x(struct ice_hw *hw,
struct ice_sbq_msg_input *msg, u8 port,
u16 offset)
{
int phy_port, phy, quadtype;
phy_port = port % hw->ptp.ports_per_phy;
phy = port / hw->ptp.ports_per_phy;
quadtype = ICE_GET_QUAD_NUM(port) %
ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy);
if (quadtype == 0) {
msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
} else {
msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
}
if (phy == 0)
msg->dest_dev = rmn_0;
else if (phy == 1)
msg->dest_dev = rmn_1;
else
msg->dest_dev = rmn_2;
}
/**
* ice_is_64b_phy_reg_e82x - Check if this is a 64bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 64bit register
*
* Checks if the provided low address is one of the known 64bit PHY values
* represented as two 32bit registers. If it is, return the appropriate high
* register offset to use.
*/
static bool ice_is_64b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case P_REG_PAR_PCS_TX_OFFSET_L:
*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
return true;
case P_REG_PAR_PCS_RX_OFFSET_L:
*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
return true;
case P_REG_PAR_TX_TIME_L:
*high_addr = P_REG_PAR_TX_TIME_U;
return true;
case P_REG_PAR_RX_TIME_L:
*high_addr = P_REG_PAR_RX_TIME_U;
return true;
case P_REG_TOTAL_TX_OFFSET_L:
*high_addr = P_REG_TOTAL_TX_OFFSET_U;
return true;
case P_REG_TOTAL_RX_OFFSET_L:
*high_addr = P_REG_TOTAL_RX_OFFSET_U;
return true;
case P_REG_UIX66_10G_40G_L:
*high_addr = P_REG_UIX66_10G_40G_U;
return true;
case P_REG_UIX66_25G_100G_L:
*high_addr = P_REG_UIX66_25G_100G_U;
return true;
case P_REG_TX_CAPTURE_L:
*high_addr = P_REG_TX_CAPTURE_U;
return true;
case P_REG_RX_CAPTURE_L:
*high_addr = P_REG_RX_CAPTURE_U;
return true;
case P_REG_TX_TIMER_INC_PRE_L:
*high_addr = P_REG_TX_TIMER_INC_PRE_U;
return true;
case P_REG_RX_TIMER_INC_PRE_L:
*high_addr = P_REG_RX_TIMER_INC_PRE_U;
return true;
default:
return false;
}
}
/**
* ice_is_40b_phy_reg_e82x - Check if this is a 40bit PHY register
* @low_addr: the low address to check
* @high_addr: on return, contains the high address of the 40bit value
*
* Checks if the provided low address is one of the known 40bit PHY values
* split into two registers with the lower 8 bits in the low register and the
* upper 32 bits in the high register. If it is, return the appropriate high
* register offset to use.
*/
static bool ice_is_40b_phy_reg_e82x(u16 low_addr, u16 *high_addr)
{
switch (low_addr) {
case P_REG_TIMETUS_L:
*high_addr = P_REG_TIMETUS_U;
return true;
case P_REG_PAR_RX_TUS_L:
*high_addr = P_REG_PAR_RX_TUS_U;
return true;
case P_REG_PAR_TX_TUS_L:
*high_addr = P_REG_PAR_TX_TUS_U;
return true;
case P_REG_PCS_RX_TUS_L:
*high_addr = P_REG_PCS_RX_TUS_U;
return true;
case P_REG_PCS_TX_TUS_L:
*high_addr = P_REG_PCS_TX_TUS_U;
return true;
case P_REG_DESK_PAR_RX_TUS_L:
*high_addr = P_REG_DESK_PAR_RX_TUS_U;
return true;
case P_REG_DESK_PAR_TX_TUS_L:
*high_addr = P_REG_DESK_PAR_TX_TUS_U;
return true;
case P_REG_DESK_PCS_RX_TUS_L:
*high_addr = P_REG_DESK_PCS_RX_TUS_U;
return true;
case P_REG_DESK_PCS_TX_TUS_L:
*high_addr = P_REG_DESK_PCS_TX_TUS_U;
return true;
default:
return false;
}
}
/**
* ice_read_phy_reg_e82x - Read a PHY register
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @offset: PHY register offset to read
* @val: on return, the contents read from the PHY
*
* Read a PHY register for the given port over the device sideband queue.
*/
static int
ice_read_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
ice_fill_phy_msg_e82x(hw, &msg, port, offset);
msg.opcode = ice_sbq_msg_rd;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_read_64b_phy_reg_e82x - Read a 64bit value from PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: on return, the contents of the 64bit value from the PHY registers
*
* Reads the two registers associated with a 64bit value and returns it in the
* val pointer. The offset always specifies the lower register offset to use.
* The high offset is looked up. This function only operates on registers
* known to be two parts of a 64bit value.
*/
static int
ice_read_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into two 32bit
* registers.
*/
if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
err = ice_read_phy_reg_e82x(hw, port, low_addr, &low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_read_phy_reg_e82x(hw, port, high_addr, &high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
*val = (u64)high << 32 | low;
return 0;
}
/**
* ice_write_phy_reg_e82x - Write a PHY register
* @hw: pointer to the HW struct
* @port: PHY port to write to
* @offset: PHY register offset to write
* @val: The value to write to the register
*
* Write a PHY register for the given port over the device sideband queue.
*/
static int
ice_write_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 offset, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
ice_fill_phy_msg_e82x(hw, &msg, port, offset);
msg.opcode = ice_sbq_msg_wr;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_write_40b_phy_reg_e82x - Write a 40b value to the PHY
* @hw: pointer to the HW struct
* @port: port to write to
* @low_addr: offset of the low register
* @val: 40b value to write
*
* Write the provided 40b value to the two associated registers by splitting
* it up into two chunks, the lower 8 bits and the upper 32 bits.
*/
static int
ice_write_40b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into a lower 8 bit
* register and an upper 32 bit register.
*/
if (!ice_is_40b_phy_reg_e82x(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
low = FIELD_GET(P_REG_40B_LOW_M, val);
high = (u32)(val >> P_REG_40B_HIGH_S);
err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_write_64b_phy_reg_e82x - Write a 64bit value to PHY registers
* @hw: pointer to the HW struct
* @port: PHY port to read from
* @low_addr: offset of the lower register to read from
* @val: the contents of the 64bit value to write to PHY
*
* Write the 64bit value to the two associated 32bit PHY registers. The offset
* is always specified as the lower register, and the high address is looked
* up. This function only operates on registers known to be two parts of
* a 64bit value.
*/
static int
ice_write_64b_phy_reg_e82x(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
{
u32 low, high;
u16 high_addr;
int err;
/* Only operate on registers known to be split into two 32bit
* registers.
*/
if (!ice_is_64b_phy_reg_e82x(low_addr, &high_addr)) {
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
low_addr);
return -EINVAL;
}
low = lower_32_bits(val);
high = upper_32_bits(val);
err = ice_write_phy_reg_e82x(hw, port, low_addr, low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
low_addr, err);
return err;
}
err = ice_write_phy_reg_e82x(hw, port, high_addr, high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
high_addr, err);
return err;
}
return 0;
}
/**
* ice_fill_quad_msg_e82x - Fill message data for quad register access
* @hw: pointer to the HW struct
* @msg: the PHY message buffer to fill in
* @quad: the quad to access
* @offset: the register offset
*
* Fill a message buffer for accessing a register in a quad shared between
* multiple PHYs.
*
* Return:
* * %0 - OK
* * %-EINVAL - invalid quad number
*/
static int ice_fill_quad_msg_e82x(struct ice_hw *hw,
struct ice_sbq_msg_input *msg, u8 quad,
u16 offset)
{
u32 addr;
if (quad >= ICE_GET_QUAD_NUM(hw->ptp.num_lports))
return -EINVAL;
msg->dest_dev = rmn_0;
if (!(quad % ICE_GET_QUAD_NUM(hw->ptp.ports_per_phy)))
addr = Q_0_BASE + offset;
else
addr = Q_1_BASE + offset;
msg->msg_addr_low = lower_16_bits(addr);
msg->msg_addr_high = upper_16_bits(addr);
return 0;
}
/**
* ice_read_quad_reg_e82x - Read a PHY quad register
* @hw: pointer to the HW struct
* @quad: quad to read from
* @offset: quad register offset to read
* @val: on return, the contents read from the quad
*
* Read a quad register over the device sideband queue. Quad registers are
* shared between multiple PHYs.
*/
int
ice_read_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
if (err)
return err;
msg.opcode = ice_sbq_msg_rd;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_write_quad_reg_e82x - Write a PHY quad register
* @hw: pointer to the HW struct
* @quad: quad to write to
* @offset: quad register offset to write
* @val: The value to write to the register
*
* Write a quad register over the device sideband queue. Quad registers are
* shared between multiple PHYs.
*/
int
ice_write_quad_reg_e82x(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
err = ice_fill_quad_msg_e82x(hw, &msg, quad, offset);
if (err)
return err;
msg.opcode = ice_sbq_msg_wr;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_phy_tstamp_e82x - Read a PHY timestamp out of the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the two associated registers in the
* quad memory block that is shared between the internal PHYs of the E822
* family of devices.
*/
static int
ice_read_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
{
u16 lo_addr, hi_addr;
u32 lo, hi;
int err;
lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
err = ice_read_quad_reg_e82x(hw, quad, lo_addr, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_quad_reg_e82x(hw, quad, hi_addr, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
/* For E822 based internal PHYs, the timestamp is reported with the
* lower 8 bits in the low register, and the upper 32 bits in the high
* register.
*/
*tstamp = FIELD_PREP(TS_PHY_HIGH_M, hi) | FIELD_PREP(TS_PHY_LOW_M, lo);
return 0;
}
/**
* ice_clear_phy_tstamp_e82x - Clear a timestamp from the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
* @idx: the timestamp index to reset
*
* Read the timestamp out of the quad to clear its timestamp status bit from
* the PHY quad block that is shared between the internal PHYs of the E822
* devices.
*
* Note that unlike E810, software cannot directly write to the quad memory
* bank registers. E822 relies on the ice_get_phy_tx_tstamp_ready() function
* to determine which timestamps are valid. Reading a timestamp auto-clears
* the valid bit.
*
* To directly clear the contents of the timestamp block entirely, discarding
* all timestamp data at once, software should instead use
* ice_ptp_reset_ts_memory_quad_e82x().
*
* This function should only be called on an idx whose bit is set according to
* ice_get_phy_tx_tstamp_ready().
*/
static int
ice_clear_phy_tstamp_e82x(struct ice_hw *hw, u8 quad, u8 idx)
{
u64 unused_tstamp;
int err;
err = ice_read_phy_tstamp_e82x(hw, quad, idx, &unused_tstamp);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for quad %u, idx %u, err %d\n",
quad, idx, err);
return err;
}
return 0;
}
/**
* ice_ptp_reset_ts_memory_quad_e82x - Clear all timestamps from the quad block
* @hw: pointer to the HW struct
* @quad: the quad to read from
*
* Clear all timestamps from the PHY quad block that is shared between the
* internal PHYs on the E822 devices.
*/
void ice_ptp_reset_ts_memory_quad_e82x(struct ice_hw *hw, u8 quad)
{
ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
ice_write_quad_reg_e82x(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
}
/**
* ice_ptp_reset_ts_memory_e82x - Clear all timestamps from all quad blocks
* @hw: pointer to the HW struct
*/
static void ice_ptp_reset_ts_memory_e82x(struct ice_hw *hw)
{
unsigned int quad;
for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports); quad++)
ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
}
/**
* ice_ptp_set_vernier_wl - Set the window length for vernier calibration
* @hw: pointer to the HW struct
*
* Set the window length used for the vernier port calibration process.
*/
static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
{
u8 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_WL,
PTP_VERNIER_WL);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
port, err);
return err;
}
}
return 0;
}
/**
* ice_ptp_init_phc_e82x - Perform E822 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform PHC initialization steps specific to E822 devices.
*/
static int ice_ptp_init_phc_e82x(struct ice_hw *hw)
{
int err;
u32 val;
/* Enable reading switch and PHY registers over the sideband queue */
#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
val = rd32(hw, PF_SB_REM_DEV_CTL);
val |= (PF_SB_REM_DEV_CTL_SWITCH_READ | PF_SB_REM_DEV_CTL_PHY0);
wr32(hw, PF_SB_REM_DEV_CTL, val);
/* Initialize the Clock Generation Unit */
err = ice_init_cgu_e82x(hw);
if (err)
return err;
/* Set window length for all the ports */
return ice_ptp_set_vernier_wl(hw);
}
/**
* ice_ptp_prep_phy_time_e82x - Prepare PHY port with initial time
* @hw: pointer to the HW struct
* @time: Time to initialize the PHY port clocks to
*
* Program the PHY port registers with a new initial time value. The port
* clock will be initialized once the driver issues an ICE_PTP_INIT_TIME sync
* command. The time value is the upper 32 bits of the PHY timer, usually in
* units of nominal nanoseconds.
*/
static int
ice_ptp_prep_phy_time_e82x(struct ice_hw *hw, u32 time)
{
u64 phy_time;
u8 port;
int err;
/* The time represents the upper 32 bits of the PHY timer, so we need
* to shift to account for this when programming.
*/
phy_time = (u64)time << 32;
for (port = 0; port < hw->ptp.num_lports; port++) {
/* Tx case */
err = ice_write_64b_phy_reg_e82x(hw, port,
P_REG_TX_TIMER_INC_PRE_L,
phy_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_64b_phy_reg_e82x(hw, port,
P_REG_RX_TIMER_INC_PRE_L,
phy_time);
if (err)
goto exit_err;
}
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_port_adj_e82x - Prepare a single port for time adjust
* @hw: pointer to HW struct
* @port: Port number to be programmed
* @time: time in cycles to adjust the port Tx and Rx clocks
*
* Program the port for an atomic adjustment by writing the Tx and Rx timer
* registers. The atomic adjustment won't be completed until the driver issues
* an ICE_PTP_ADJ_TIME command.
*
* Note that time is not in units of nanoseconds. It is in clock time
* including the lower sub-nanosecond portion of the port timer.
*
* Negative adjustments are supported using 2s complement arithmetic.
*/
static int
ice_ptp_prep_port_adj_e82x(struct ice_hw *hw, u8 port, s64 time)
{
u32 l_time, u_time;
int err;
l_time = lower_32_bits(time);
u_time = upper_32_bits(time);
/* Tx case */
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
/* Rx case */
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_L,
l_time);
if (err)
goto exit_err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TIMER_INC_PRE_U,
u_time);
if (err)
goto exit_err;
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_prep_phy_adj_e82x - Prep PHY ports for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment in nanoseconds
*
* Prepare the PHY ports for an atomic time adjustment by programming the PHY
* Tx and Rx port registers. The actual adjustment is completed by issuing an
* ICE_PTP_ADJ_TIME or ICE_PTP_ADJ_TIME_AT_TIME sync command.
*/
static int
ice_ptp_prep_phy_adj_e82x(struct ice_hw *hw, s32 adj)
{
s64 cycles;
u8 port;
/* The port clock supports adjustment of the sub-nanosecond portion of
* the clock. We shift the provided adjustment in nanoseconds to
* calculate the appropriate adjustment to program into the PHY ports.
*/
if (adj > 0)
cycles = (s64)adj << 32;
else
cycles = -(((s64)-adj) << 32);
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_ptp_prep_port_adj_e82x(hw, port, cycles);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_e82x - Prepare PHY ports for time adjustment
* @hw: pointer to HW struct
* @incval: new increment value to prepare
*
* Prepare each of the PHY ports for a new increment value by programming the
* port's TIMETUS registers. The new increment value will be updated after
* issuing an ICE_PTP_INIT_INCVAL command.
*/
static int
ice_ptp_prep_phy_incval_e82x(struct ice_hw *hw, u64 incval)
{
int err;
u8 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L,
incval);
if (err)
goto exit_err;
}
return 0;
exit_err:
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
port, err);
return err;
}
/**
* ice_ptp_read_port_capture - Read a port's local time capture
* @hw: pointer to HW struct
* @port: Port number to read
* @tx_ts: on return, the Tx port time capture
* @rx_ts: on return, the Rx port time capture
*
* Read the port's Tx and Rx local time capture values.
*
* Note this has no equivalent for the E810 devices.
*/
static int
ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
{
int err;
/* Tx case */
err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
(unsigned long long)*tx_ts);
/* Rx case */
err = ice_read_64b_phy_reg_e82x(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
err);
return err;
}
ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
(unsigned long long)*rx_ts);
return 0;
}
/**
* ice_ptp_write_port_cmd_e82x - Prepare a single PHY port for a timer command
* @hw: pointer to HW struct
* @port: Port to which cmd has to be sent
* @cmd: Command to be sent to the port
*
* Prepare the requested port for an upcoming timer sync command.
*
* Note there is no equivalent of this operation on E810, as that device
* always handles all external PHYs internally.
*
* Return:
* * %0 - success
* * %other - failed to write to PHY
*/
static int ice_ptp_write_port_cmd_e82x(struct ice_hw *hw, u8 port,
enum ice_ptp_tmr_cmd cmd)
{
u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
int err;
/* Tx case */
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_TMR_CMD, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
err);
return err;
}
/* Rx case */
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_TMR_CMD,
val | TS_CMD_RX_TYPE);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
err);
return err;
}
return 0;
}
/* E822 Vernier calibration functions
*
* The following functions are used as part of the vernier calibration of
* a port. This calibration increases the precision of the timestamps on the
* port.
*/
/**
* ice_phy_get_speed_and_fec_e82x - Get link speed and FEC based on serdes mode
* @hw: pointer to HW struct
* @port: the port to read from
* @link_out: if non-NULL, holds link speed on success
* @fec_out: if non-NULL, holds FEC algorithm on success
*
* Read the serdes data for the PHY port and extract the link speed and FEC
* algorithm.
*/
static int
ice_phy_get_speed_and_fec_e82x(struct ice_hw *hw, u8 port,
enum ice_ptp_link_spd *link_out,
enum ice_ptp_fec_mode *fec_out)
{
enum ice_ptp_link_spd link;
enum ice_ptp_fec_mode fec;
u32 serdes;
int err;
err = ice_read_phy_reg_e82x(hw, port, P_REG_LINK_SPEED, &serdes);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
return err;
}
/* Determine the FEC algorithm */
fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
serdes &= P_REG_LINK_SPEED_SERDES_M;
/* Determine the link speed */
if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
switch (serdes) {
case ICE_PTP_SERDES_25G:
link = ICE_PTP_LNK_SPD_25G_RS;
break;
case ICE_PTP_SERDES_50G:
link = ICE_PTP_LNK_SPD_50G_RS;
break;
case ICE_PTP_SERDES_100G:
link = ICE_PTP_LNK_SPD_100G_RS;
break;
default:
return -EIO;
}
} else {
switch (serdes) {
case ICE_PTP_SERDES_1G:
link = ICE_PTP_LNK_SPD_1G;
break;
case ICE_PTP_SERDES_10G:
link = ICE_PTP_LNK_SPD_10G;
break;
case ICE_PTP_SERDES_25G:
link = ICE_PTP_LNK_SPD_25G;
break;
case ICE_PTP_SERDES_40G:
link = ICE_PTP_LNK_SPD_40G;
break;
case ICE_PTP_SERDES_50G:
link = ICE_PTP_LNK_SPD_50G;
break;
default:
return -EIO;
}
}
if (link_out)
*link_out = link;
if (fec_out)
*fec_out = fec;
return 0;
}
/**
* ice_phy_cfg_lane_e82x - Configure PHY quad for single/multi-lane timestamp
* @hw: pointer to HW struct
* @port: to configure the quad for
*/
static void ice_phy_cfg_lane_e82x(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
int err;
u32 val;
u8 quad;
err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, NULL);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
err);
return;
}
quad = ICE_GET_QUAD_NUM(port);
err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
err);
return;
}
if (link_spd >= ICE_PTP_LNK_SPD_40G)
val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
else
val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
err);
return;
}
}
/**
* ice_phy_cfg_uix_e82x - Configure Serdes UI to TU conversion for E822
* @hw: pointer to the HW structure
* @port: the port to configure
*
* Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
* hardware clock time units (TUs). That is, determine the number of TUs per
* serdes unit interval, and program the UIX registers with this conversion.
*
* This conversion is used as part of the calibration process when determining
* the additional error of a timestamp vs the real time of transmission or
* receipt of the packet.
*
* Hardware uses the number of TUs per 66 UIs, written to the UIX registers
* for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
*
* To calculate the conversion ratio, we use the following facts:
*
* a) the clock frequency in Hz (cycles per second)
* b) the number of TUs per cycle (the increment value of the clock)
* c) 1 second per 1 billion nanoseconds
* d) the duration of 66 UIs in nanoseconds
*
* Given these facts, we can use the following table to work out what ratios
* to multiply in order to get the number of TUs per 66 UIs:
*
* cycles | 1 second | incval (TUs) | nanoseconds
* -------+--------------+--------------+-------------
* second | 1 billion ns | cycle | 66 UIs
*
* To perform the multiplication using integers without too much loss of
* precision, we can take use the following equation:
*
* (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
*
* We scale up to using 6600 UI instead of 66 in order to avoid fractional
* nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
*
* The increment value has a maximum expected range of about 34 bits, while
* the frequency value is about 29 bits. Multiplying these values shouldn't
* overflow the 64 bits. However, we must then further multiply them again by
* the Serdes unit interval duration. To avoid overflow here, we split the
* overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
* a divide by 390,625,000. This does lose some precision, but avoids
* miscalculation due to arithmetic overflow.
*/
static int ice_phy_cfg_uix_e82x(struct ice_hw *hw, u8 port)
{
u64 cur_freq, clk_incval, tu_per_sec, uix;
int err;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second divided by 256 */
tu_per_sec = (cur_freq * clk_incval) >> 8;
#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
/* Program the 10Gb/40Gb conversion ratio */
uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_10G_40G_L,
uix);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
err);
return err;
}
/* Program the 25Gb/100Gb conversion ratio */
uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_UIX66_25G_100G_L,
uix);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_phy_cfg_parpcs_e82x - Configure TUs per PAR/PCS clock cycle
* @hw: pointer to the HW struct
* @port: port to configure
*
* Configure the number of TUs for the PAR and PCS clocks used as part of the
* timestamp calibration process. This depends on the link speed, as the PHY
* uses different markers depending on the speed.
*
* 1Gb/10Gb/25Gb:
* - Tx/Rx PAR/PCS markers
*
* 25Gb RS:
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
*
* 40Gb/50Gb:
* - Tx/Rx PAR/PCS markers
* - Rx Deskew PAR/PCS markers
*
* 50G RS and 100GB RS:
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
* - Rx Deskew PAR/PCS markers
* - Tx PAR/PCS markers
*
* To calculate the conversion, we use the PHC clock frequency (cycles per
* second), the increment value (TUs per cycle), and the related PHY clock
* frequency to calculate the TUs per unit of the PHY link clock. The
* following table shows how the units convert:
*
* cycles | TUs | second
* -------+-------+--------
* second | cycle | cycles
*
* For each conversion register, look up the appropriate frequency from the
* e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
* this to the appropriate register, preparing hardware to perform timestamp
* calibration to calculate the total Tx or Rx offset to adjust the timestamp
* in order to calibrate for the internal PHY delays.
*
* Note that the increment value ranges up to ~34 bits, and the clock
* frequency is ~29 bits, so multiplying them together should fit within the
* 64 bit arithmetic.
*/
static int ice_phy_cfg_parpcs_e82x(struct ice_hw *hw, u8 port)
{
u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
int err;
err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
if (err)
return err;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per cycle of the PHC clock */
tu_per_sec = cur_freq * clk_incval;
/* For each PHY conversion register, look up the appropriate link
* speed frequency and determine the TUs per that clock's cycle time.
* Split this into a high and low value and then program the
* appropriate register. If that link speed does not use the
* associated register, write zeros to clear it instead.
*/
/* P_REG_PAR_TX_TUS */
if (e822_vernier[link_spd].tx_par_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_par_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PAR_RX_TUS */
if (e822_vernier[link_spd].rx_par_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_par_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PAR_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PCS_TX_TUS */
if (e822_vernier[link_spd].tx_pcs_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_pcs_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_PCS_RX_TUS */
if (e822_vernier[link_spd].rx_pcs_clk)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_pcs_clk);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_PCS_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PAR_TX_TUS */
if (e822_vernier[link_spd].tx_desk_rsgb_par)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_desk_rsgb_par);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PAR_RX_TUS */
if (e822_vernier[link_spd].rx_desk_rsgb_par)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_desk_rsgb_par);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PAR_RX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PCS_TX_TUS */
if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].tx_desk_rsgb_pcs);
else
phy_tus = 0;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_TX_TUS_L,
phy_tus);
if (err)
return err;
/* P_REG_DESK_PCS_RX_TUS */
if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
phy_tus = div_u64(tu_per_sec,
e822_vernier[link_spd].rx_desk_rsgb_pcs);
else
phy_tus = 0;
return ice_write_40b_phy_reg_e82x(hw, port, P_REG_DESK_PCS_RX_TUS_L,
phy_tus);
}
/**
* ice_calc_fixed_tx_offset_e82x - Calculated Fixed Tx offset for a port
* @hw: pointer to the HW struct
* @link_spd: the Link speed to calculate for
*
* Calculate the fixed offset due to known static latency data.
*/
static u64
ice_calc_fixed_tx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
{
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* Calculate number of TUs to add for the fixed Tx latency. Since the
* latency measurement is in 1/100th of a nanosecond, we need to
* multiply by tu_per_sec and then divide by 1e11. This calculation
* overflows 64 bit integer arithmetic, so break it up into two
* divisions by 1e4 first then by 1e7.
*/
fixed_offset = div_u64(tu_per_sec, 10000);
fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
fixed_offset = div_u64(fixed_offset, 10000000);
return fixed_offset;
}
/**
* ice_phy_cfg_tx_offset_e82x - Configure total Tx timestamp offset
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
* adjust Tx timestamps by. This is calculated by combining some known static
* latency along with the Vernier offset computations done by hardware.
*
* This function will not return successfully until the Tx offset calculations
* have been completed, which requires waiting until at least one packet has
* been transmitted by the device. It is safe to call this function
* periodically until calibration succeeds, as it will only program the offset
* once.
*
* To avoid overflow, when calculating the offset based on the known static
* latency values, we use measurements in 1/100th of a nanosecond, and divide
* the TUs per second up front. This avoids overflow while allowing
* calculation of the adjustment using integer arithmetic.
*
* Returns zero on success, -EBUSY if the hardware vernier offset
* calibration has not completed, or another error code on failure.
*/
int ice_phy_cfg_tx_offset_e82x(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset, val;
int err;
u32 reg;
/* Nothing to do if we've already programmed the offset */
err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OR, &reg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OR for port %u, err %d\n",
port, err);
return err;
}
if (reg)
return 0;
err = ice_read_phy_reg_e82x(hw, port, P_REG_TX_OV_STATUS, &reg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
port, err);
return err;
}
if (!(reg & P_REG_TX_OV_STATUS_OV_M))
return -EBUSY;
err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_tx_offset_e82x(hw, link_spd);
/* Read the first Vernier offset from the PHY register and add it to
* the total offset.
*/
if (link_spd == ICE_PTP_LNK_SPD_1G ||
link_spd == ICE_PTP_LNK_SPD_10G ||
link_spd == ICE_PTP_LNK_SPD_25G ||
link_spd == ICE_PTP_LNK_SPD_25G_RS ||
link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G) {
err = ice_read_64b_phy_reg_e82x(hw, port,
P_REG_PAR_PCS_TX_OFFSET_L,
&val);
if (err)
return err;
total_offset += val;
}
/* For Tx, we only need to use the second Vernier offset for
* multi-lane link speeds with RS-FEC. The lanes will always be
* aligned.
*/
if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
err = ice_read_64b_phy_reg_e82x(hw, port,
P_REG_PAR_TX_TIME_L,
&val);
if (err)
return err;
total_offset += val;
}
/* Now that the total offset has been calculated, program it to the
* PHY and indicate that the Tx offset is ready. After this,
* timestamps will be enabled.
*/
err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_TX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 1);
if (err)
return err;
dev_info(ice_hw_to_dev(hw), "Port=%d Tx vernier offset calibration complete\n",
port);
return 0;
}
/**
* ice_phy_calc_pmd_adj_e82x - Calculate PMD adjustment for Rx
* @hw: pointer to the HW struct
* @port: the PHY port to adjust for
* @link_spd: the current link speed of the PHY
* @fec_mode: the current FEC mode of the PHY
* @pmd_adj: on return, the amount to adjust the Rx total offset by
*
* Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
* This varies by link speed and FEC mode. The value calculated accounts for
* various delays caused when receiving a packet.
*/
static int
ice_phy_calc_pmd_adj_e82x(struct ice_hw *hw, u8 port,
enum ice_ptp_link_spd link_spd,
enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
{
u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
u8 pmd_align;
u32 val;
int err;
err = ice_read_phy_reg_e82x(hw, port, P_REG_PMD_ALIGNMENT, &val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
err);
return err;
}
pmd_align = (u8)val;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* The PMD alignment adjustment measurement depends on the link speed,
* and whether FEC is enabled. For each link speed, the alignment
* adjustment is calculated by dividing a value by the length of
* a Time Unit in nanoseconds.
*
* 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
* 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
* 10G w/FEC: align * 0.1 * 32/33
* 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
* 25G w/FEC: align * 0.4 * 32/33
* 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
* 40G w/FEC: align * 0.1 * 32/33
* 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
* 50G w/FEC: align * 0.8 * 32/33
*
* For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
*
* To allow for calculating this value using integer arithmetic, we
* instead start with the number of TUs per second, (inverse of the
* length of a Time Unit in nanoseconds), multiply by a value based
* on the PMD alignment register, and then divide by the right value
* calculated based on the table above. To avoid integer overflow this
* division is broken up into a step of dividing by 125 first.
*/
if (link_spd == ICE_PTP_LNK_SPD_1G) {
if (pmd_align == 4)
mult = 10;
else
mult = (pmd_align + 6) % 10;
} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
link_spd == ICE_PTP_LNK_SPD_25G ||
link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G) {
/* If Clause 74 FEC, always calculate PMD adjust */
if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
mult = pmd_align;
else
mult = 0;
} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
if (pmd_align < 17)
mult = pmd_align + 40;
else
mult = pmd_align;
} else {
ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
link_spd);
mult = 0;
}
/* In some cases, there's no need to adjust for the PMD alignment */
if (!mult) {
*pmd_adj = 0;
return 0;
}
/* Calculate the adjustment by multiplying TUs per second by the
* appropriate multiplier and divisor. To avoid overflow, we first
* divide by 125, and then handle remaining divisor based on the link
* speed pmd_adj_divisor value.
*/
adj = div_u64(tu_per_sec, 125);
adj *= mult;
adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
* cycle count is necessary.
*/
if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
u64 cycle_adj;
u8 rx_cycle;
err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_40_TO_160_CNT,
&val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
err);
return err;
}
rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
if (rx_cycle) {
mult = (4 - rx_cycle) * 40;
cycle_adj = div_u64(tu_per_sec, 125);
cycle_adj *= mult;
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
adj += cycle_adj;
}
} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
u64 cycle_adj;
u8 rx_cycle;
err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_80_TO_160_CNT,
&val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
err);
return err;
}
rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
if (rx_cycle) {
mult = rx_cycle * 40;
cycle_adj = div_u64(tu_per_sec, 125);
cycle_adj *= mult;
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
adj += cycle_adj;
}
}
/* Return the calculated adjustment */
*pmd_adj = adj;
return 0;
}
/**
* ice_calc_fixed_rx_offset_e82x - Calculated the fixed Rx offset for a port
* @hw: pointer to HW struct
* @link_spd: The Link speed to calculate for
*
* Determine the fixed Rx latency for a given link speed.
*/
static u64
ice_calc_fixed_rx_offset_e82x(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
{
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
cur_freq = ice_e82x_pll_freq(ice_e82x_time_ref(hw));
clk_incval = ice_ptp_read_src_incval(hw);
/* Calculate TUs per second */
tu_per_sec = cur_freq * clk_incval;
/* Calculate number of TUs to add for the fixed Rx latency. Since the
* latency measurement is in 1/100th of a nanosecond, we need to
* multiply by tu_per_sec and then divide by 1e11. This calculation
* overflows 64 bit integer arithmetic, so break it up into two
* divisions by 1e4 first then by 1e7.
*/
fixed_offset = div_u64(tu_per_sec, 10000);
fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
fixed_offset = div_u64(fixed_offset, 10000000);
return fixed_offset;
}
/**
* ice_phy_cfg_rx_offset_e82x - Configure total Rx timestamp offset
* @hw: pointer to the HW struct
* @port: the PHY port to configure
*
* Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
* adjust Rx timestamps by. This combines calculations from the Vernier offset
* measurements taken in hardware with some data about known fixed delay as
* well as adjusting for multi-lane alignment delay.
*
* This function will not return successfully until the Rx offset calculations
* have been completed, which requires waiting until at least one packet has
* been received by the device. It is safe to call this function periodically
* until calibration succeeds, as it will only program the offset once.
*
* This function must be called only after the offset registers are valid,
* i.e. after the Vernier calibration wait has passed, to ensure that the PHY
* has measured the offset.
*
* To avoid overflow, when calculating the offset based on the known static
* latency values, we use measurements in 1/100th of a nanosecond, and divide
* the TUs per second up front. This avoids overflow while allowing
* calculation of the adjustment using integer arithmetic.
*
* Returns zero on success, -EBUSY if the hardware vernier offset
* calibration has not completed, or another error code on failure.
*/
int ice_phy_cfg_rx_offset_e82x(struct ice_hw *hw, u8 port)
{
enum ice_ptp_link_spd link_spd;
enum ice_ptp_fec_mode fec_mode;
u64 total_offset, pmd, val;
int err;
u32 reg;
/* Nothing to do if we've already programmed the offset */
err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OR, &reg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OR for port %u, err %d\n",
port, err);
return err;
}
if (reg)
return 0;
err = ice_read_phy_reg_e82x(hw, port, P_REG_RX_OV_STATUS, &reg);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
port, err);
return err;
}
if (!(reg & P_REG_RX_OV_STATUS_OV_M))
return -EBUSY;
err = ice_phy_get_speed_and_fec_e82x(hw, port, &link_spd, &fec_mode);
if (err)
return err;
total_offset = ice_calc_fixed_rx_offset_e82x(hw, link_spd);
/* Read the first Vernier offset from the PHY register and add it to
* the total offset.
*/
err = ice_read_64b_phy_reg_e82x(hw, port,
P_REG_PAR_PCS_RX_OFFSET_L,
&val);
if (err)
return err;
total_offset += val;
/* For Rx, all multi-lane link speeds include a second Vernier
* calibration, because the lanes might not be aligned.
*/
if (link_spd == ICE_PTP_LNK_SPD_40G ||
link_spd == ICE_PTP_LNK_SPD_50G ||
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
err = ice_read_64b_phy_reg_e82x(hw, port,
P_REG_PAR_RX_TIME_L,
&val);
if (err)
return err;
total_offset += val;
}
/* In addition, Rx must account for the PMD alignment */
err = ice_phy_calc_pmd_adj_e82x(hw, port, link_spd, fec_mode, &pmd);
if (err)
return err;
/* For RS-FEC, this adjustment adds delay, but for other modes, it
* subtracts delay.
*/
if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
total_offset += pmd;
else
total_offset -= pmd;
/* Now that the total offset has been calculated, program it to the
* PHY and indicate that the Rx offset is ready. After this,
* timestamps will be enabled.
*/
err = ice_write_64b_phy_reg_e82x(hw, port, P_REG_TOTAL_RX_OFFSET_L,
total_offset);
if (err)
return err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 1);
if (err)
return err;
dev_info(ice_hw_to_dev(hw), "Port=%d Rx vernier offset calibration complete\n",
port);
return 0;
}
/**
* ice_ptp_clear_phy_offset_ready_e82x - Clear PHY TX_/RX_OFFSET_READY registers
* @hw: pointer to the HW struct
*
* Clear PHY TX_/RX_OFFSET_READY registers, effectively marking all transmitted
* and received timestamps as invalid.
*
* Return: 0 on success, other error codes when failed to write to PHY
*/
int ice_ptp_clear_phy_offset_ready_e82x(struct ice_hw *hw)
{
u8 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
if (err) {
dev_warn(ice_hw_to_dev(hw),
"Failed to clear PHY TX_OFFSET_READY register\n");
return err;
}
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
if (err) {
dev_warn(ice_hw_to_dev(hw),
"Failed to clear PHY RX_OFFSET_READY register\n");
return err;
}
}
return 0;
}
/**
* ice_read_phy_and_phc_time_e82x - Simultaneously capture PHC and PHY time
* @hw: pointer to the HW struct
* @port: the PHY port to read
* @phy_time: on return, the 64bit PHY timer value
* @phc_time: on return, the lower 64bits of PHC time
*
* Issue a ICE_PTP_READ_TIME timer command to simultaneously capture the PHY
* and PHC timer values.
*/
static int
ice_read_phy_and_phc_time_e82x(struct ice_hw *hw, u8 port, u64 *phy_time,
u64 *phc_time)
{
u64 tx_time, rx_time;
u32 zo, lo;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
/* Prepare the PHC timer for a ICE_PTP_READ_TIME capture command */
ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
/* Prepare the PHY timer for a ICE_PTP_READ_TIME capture command */
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_READ_TIME);
if (err)
return err;
/* Issue the sync to start the ICE_PTP_READ_TIME capture */
ice_ptp_exec_tmr_cmd(hw);
/* Read the captured PHC time from the shadow time registers */
zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
*phc_time = (u64)lo << 32 | zo;
/* Read the captured PHY time from the PHY shadow registers */
err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
if (err)
return err;
/* If the PHY Tx and Rx timers don't match, log a warning message.
* Note that this should not happen in normal circumstances since the
* driver always programs them together.
*/
if (tx_time != rx_time)
dev_warn(ice_hw_to_dev(hw),
"PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
port, (unsigned long long)tx_time,
(unsigned long long)rx_time);
*phy_time = tx_time;
return 0;
}
/**
* ice_sync_phy_timer_e82x - Synchronize the PHY timer with PHC timer
* @hw: pointer to the HW struct
* @port: the PHY port to synchronize
*
* Perform an adjustment to ensure that the PHY and PHC timers are in sync.
* This is done by issuing a ICE_PTP_READ_TIME command which triggers a
* simultaneous read of the PHY timer and PHC timer. Then we use the
* difference to calculate an appropriate 2s complement addition to add
* to the PHY timer in order to ensure it reads the same value as the
* primary PHC timer.
*/
static int ice_sync_phy_timer_e82x(struct ice_hw *hw, u8 port)
{
u64 phc_time, phy_time, difference;
int err;
if (!ice_ptp_lock(hw)) {
ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
return -EBUSY;
}
err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
/* Calculate the amount required to add to the port time in order for
* it to match the PHC time.
*
* Note that the port adjustment is done using 2s complement
* arithmetic. This is convenient since it means that we can simply
* calculate the difference between the PHC time and the port time,
* and it will be interpreted correctly.
*/
difference = phc_time - phy_time;
err = ice_ptp_prep_port_adj_e82x(hw, port, (s64)difference);
if (err)
goto err_unlock;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_ADJ_TIME);
if (err)
goto err_unlock;
/* Do not perform any action on the main timer */
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
/* Issue the sync to activate the time adjustment */
ice_ptp_exec_tmr_cmd(hw);
/* Re-capture the timer values to flush the command registers and
* verify that the time was properly adjusted.
*/
err = ice_read_phy_and_phc_time_e82x(hw, port, &phy_time, &phc_time);
if (err)
goto err_unlock;
dev_info(ice_hw_to_dev(hw),
"Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
port, (unsigned long long)phy_time,
(unsigned long long)phc_time);
ice_ptp_unlock(hw);
return 0;
err_unlock:
ice_ptp_unlock(hw);
return err;
}
/**
* ice_stop_phy_timer_e82x - Stop the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to stop
* @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
*
* Stop the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*/
int
ice_stop_phy_timer_e82x(struct ice_hw *hw, u8 port, bool soft_reset)
{
int err;
u32 val;
err = ice_write_phy_reg_e82x(hw, port, P_REG_TX_OR, 0);
if (err)
return err;
err = ice_write_phy_reg_e82x(hw, port, P_REG_RX_OR, 0);
if (err)
return err;
err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
if (err)
return err;
val &= ~P_REG_PS_START_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
val &= ~P_REG_PS_ENA_CLK_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
if (soft_reset) {
val |= P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
}
ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_start_phy_timer_e82x - Start the PHY clock timer
* @hw: pointer to the HW struct
* @port: the PHY port to start
*
* Start the clock of a PHY port. This must be done as part of the flow to
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
* initialized or when link speed changes.
*
* Hardware will take Vernier measurements on Tx or Rx of packets.
*/
int ice_start_phy_timer_e82x(struct ice_hw *hw, u8 port)
{
u32 lo, hi, val;
u64 incval;
u8 tmr_idx;
int err;
tmr_idx = ice_get_ptp_src_clock_index(hw);
err = ice_stop_phy_timer_e82x(hw, port, false);
if (err)
return err;
ice_phy_cfg_lane_e82x(hw, port);
err = ice_phy_cfg_uix_e82x(hw, port);
if (err)
return err;
err = ice_phy_cfg_parpcs_e82x(hw, port);
if (err)
return err;
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
incval = (u64)hi << 32 | lo;
err = ice_write_40b_phy_reg_e82x(hw, port, P_REG_TIMETUS_L, incval);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
if (err)
return err;
/* Do not perform any action on the main timer */
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
ice_ptp_exec_tmr_cmd(hw);
err = ice_read_phy_reg_e82x(hw, port, P_REG_PS, &val);
if (err)
return err;
val |= P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
val |= P_REG_PS_START_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
val &= ~P_REG_PS_SFT_RESET_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
err = ice_ptp_one_port_cmd(hw, port, ICE_PTP_INIT_INCVAL);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
val |= P_REG_PS_ENA_CLK_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
val |= P_REG_PS_LOAD_OFFSET_M;
err = ice_write_phy_reg_e82x(hw, port, P_REG_PS, val);
if (err)
return err;
ice_ptp_exec_tmr_cmd(hw);
err = ice_sync_phy_timer_e82x(hw, port);
if (err)
return err;
ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
return 0;
}
/**
* ice_get_phy_tx_tstamp_ready_e82x - Read Tx memory status register
* @hw: pointer to the HW struct
* @quad: the timestamp quad to read from
* @tstamp_ready: contents of the Tx memory status register
*
* Read the Q_REG_TX_MEMORY_STATUS register indicating which timestamps in
* the PHY are ready. A set bit means the corresponding timestamp is valid and
* ready to be captured from the PHY timestamp block.
*/
static int
ice_get_phy_tx_tstamp_ready_e82x(struct ice_hw *hw, u8 quad, u64 *tstamp_ready)
{
u32 hi, lo;
int err;
err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_U, &hi);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_U for quad %u, err %d\n",
quad, err);
return err;
}
err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEMORY_STATUS_L, &lo);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEMORY_STATUS_L for quad %u, err %d\n",
quad, err);
return err;
}
*tstamp_ready = (u64)hi << 32 | (u64)lo;
return 0;
}
/**
* ice_phy_cfg_intr_e82x - Configure TX timestamp interrupt
* @hw: pointer to the HW struct
* @quad: the timestamp quad
* @ena: enable or disable interrupt
* @threshold: interrupt threshold
*
* Configure TX timestamp interrupt for the specified quad
*
* Return: 0 on success, other error codes when failed to read/write quad
*/
int ice_phy_cfg_intr_e82x(struct ice_hw *hw, u8 quad, bool ena, u8 threshold)
{
int err;
u32 val;
err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
if (err)
return err;
val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
if (ena) {
val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold);
}
return ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
}
/**
* ice_ptp_init_phy_e82x - initialize PHY parameters
* @ptp: pointer to the PTP HW struct
*/
static void ice_ptp_init_phy_e82x(struct ice_ptp_hw *ptp)
{
ptp->phy_model = ICE_PHY_E82X;
ptp->num_lports = 8;
ptp->ports_per_phy = 8;
}
/* E810 functions
*
* The following functions operate on the E810 series devices which use
* a separate external PHY.
*/
/**
* ice_read_phy_reg_e810 - Read register from external PHY on E810
* @hw: pointer to the HW struct
* @addr: the address to read from
* @val: On return, the value read from the PHY
*
* Read a register from the external PHY on the E810 device.
*/
static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
{
struct ice_sbq_msg_input msg = {0};
int err;
msg.msg_addr_low = lower_16_bits(addr);
msg.msg_addr_high = upper_16_bits(addr);
msg.opcode = ice_sbq_msg_rd;
msg.dest_dev = rmn_0;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
*val = msg.data;
return 0;
}
/**
* ice_write_phy_reg_e810 - Write register on external PHY on E810
* @hw: pointer to the HW struct
* @addr: the address to writem to
* @val: the value to write to the PHY
*
* Write a value to a register of the external PHY on the E810 device.
*/
static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
{
struct ice_sbq_msg_input msg = {0};
int err;
msg.msg_addr_low = lower_16_bits(addr);
msg.msg_addr_high = upper_16_bits(addr);
msg.opcode = ice_sbq_msg_wr;
msg.dest_dev = rmn_0;
msg.data = val;
err = ice_sbq_rw_reg(hw, &msg, ICE_AQ_FLAG_RD);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
* @hw: pointer to the HW struct
* @idx: the timestamp index to read
* @hi: 8 bit timestamp high value
* @lo: 32 bit timestamp low value
*
* Read a 8bit timestamp high value and 32 bit timestamp low value out of the
* timestamp block of the external PHY on the E810 device using the low latency
* timestamp read.
*/
static int
ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
{
u32 val;
u8 i;
/* Write TS index to read to the PF register so the FW can read it */
val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
wr32(hw, PF_SB_ATQBAL, val);
/* Read the register repeatedly until the FW provides us the TS */
for (i = TS_LL_READ_RETRIES; i > 0; i--) {
val = rd32(hw, PF_SB_ATQBAL);
/* When the bit is cleared, the TS is ready in the register */
if (!(FIELD_GET(TS_LL_READ_TS, val))) {
/* High 8 bit value of the TS is on the bits 16:23 */
*hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
/* Read the low 32 bit value and set the TS valid bit */
*lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
return 0;
}
udelay(10);
}
/* FW failed to provide the TS in time */
ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
return -EINVAL;
}
/**
* ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to read
* @hi: 8 bit timestamp high value
* @lo: 32 bit timestamp low value
*
* Read a 8bit timestamp high value and 32 bit timestamp low value out of the
* timestamp block of the external PHY on the E810 device using sideband queue.
*/
static int
ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
u32 *lo)
{
u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
u32 lo_val, hi_val;
int err;
err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
err);
return err;
}
err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
err);
return err;
}
*lo = lo_val;
*hi = (u8)hi_val;
return 0;
}
/**
* ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the timestamp block of the external PHY
* on the E810 device.
*/
static int
ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
{
u32 lo = 0;
u8 hi = 0;
int err;
if (hw->dev_caps.ts_dev_info.ts_ll_read)
err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
else
err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
if (err)
return err;
/* For E810 devices, the timestamp is reported with the lower 32 bits
* in the low register, and the upper 8 bits in the high register.
*/
*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
return 0;
}
/**
* ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
* @hw: pointer to the HW struct
* @lport: the lport to read from
* @idx: the timestamp index to reset
*
* Read the timestamp and then forcibly overwrite its value to clear the valid
* bit from the timestamp block of the external PHY on the E810 device.
*
* This function should only be called on an idx whose bit is set according to
* ice_get_phy_tx_tstamp_ready().
*/
static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
{
u32 lo_addr, hi_addr;
u64 unused_tstamp;
int err;
err = ice_read_phy_tstamp_e810(hw, lport, idx, &unused_tstamp);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to read the timestamp register for lport %u, idx %u, err %d\n",
lport, idx, err);
return err;
}
lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
err = ice_write_phy_reg_e810(hw, lo_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register for lport %u, idx %u, err %d\n",
lport, idx, err);
return err;
}
err = ice_write_phy_reg_e810(hw, hi_addr, 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register for lport %u, idx %u, err %d\n",
lport, idx, err);
return err;
}
return 0;
}
/**
* ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
* @hw: pointer to HW struct
*
* Perform E810-specific PTP hardware clock initialization steps.
*
* Return: 0 on success, other error codes when failed to initialize TimeSync
*/
static int ice_ptp_init_phc_e810(struct ice_hw *hw)
{
u8 tmr_idx;
int err;
/* Ensure synchronization delay is zero */
wr32(hw, GLTSYN_SYNC_DLAY, 0);
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
GLTSYN_ENA_TSYN_ENA_M);
if (err)
ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
err);
return err;
}
/**
* ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
* @hw: Board private structure
* @time: Time to initialize the PHY port clock to
*
* Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
* initial clock time. The time will not actually be programmed until the
* driver issues an ICE_PTP_INIT_TIME command.
*
* The time value is the upper 32 bits of the PHY timer, usually in units of
* nominal nanoseconds.
*/
static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
* @hw: pointer to HW struct
* @adj: adjustment value to program
*
* Prepare the PHY port for an atomic adjustment by programming the PHY
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
* is completed by issuing an ICE_PTP_ADJ_TIME sync command.
*
* The adjustment value only contains the portion used for the upper 32bits of
* the PHY timer, usually in units of nominal nanoseconds. Negative
* adjustments are supported using 2s complement arithmetic.
*/
static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Adjustments are represented as signed 2's complement values in
* nanoseconds. Sub-nanosecond adjustment is not supported.
*/
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
* @hw: pointer to HW struct
* @incval: The new 40bit increment value to prepare
*
* Prepare the PHY port for a new increment value by programming the PHY
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
* completed by issuing an ICE_PTP_INIT_INCVAL command.
*/
static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
{
u32 high, low;
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
low = lower_32_bits(incval);
high = upper_32_bits(incval);
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
err);
return err;
}
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
err);
return err;
}
return 0;
}
/**
* ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
* @hw: pointer to HW struct
* @cmd: Command to be sent to the port
*
* Prepare the external PHYs connected to this device for a timer sync
* command.
*/
static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 val = ice_ptp_tmr_cmd_to_port_reg(hw, cmd);
return ice_write_phy_reg_e810(hw, E810_ETH_GLTSYN_CMD, val);
}
/**
* ice_get_phy_tx_tstamp_ready_e810 - Read Tx memory status register
* @hw: pointer to the HW struct
* @port: the PHY port to read
* @tstamp_ready: contents of the Tx memory status register
*
* E810 devices do not use a Tx memory status register. Instead simply
* indicate that all timestamps are currently ready.
*/
static int
ice_get_phy_tx_tstamp_ready_e810(struct ice_hw *hw, u8 port, u64 *tstamp_ready)
{
*tstamp_ready = 0xFFFFFFFFFFFFFFFF;
return 0;
}
/* E810T SMA functions
*
* The following functions operate specifically on E810T hardware and are used
* to access the extended GPIOs available.
*/
/**
* ice_get_pca9575_handle
* @hw: pointer to the hw struct
* @pca9575_handle: GPIO controller's handle
*
* Find and return the GPIO controller's handle in the netlist.
* When found - the value will be cached in the hw structure and following calls
* will return cached value
*/
static int
ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
{
struct ice_aqc_get_link_topo *cmd;
struct ice_aq_desc desc;
int status;
u8 idx;
/* If handle was read previously return cached value */
if (hw->io_expander_handle) {
*pca9575_handle = hw->io_expander_handle;
return 0;
}
/* If handle was not detected read it from the netlist */
cmd = &desc.params.get_link_topo;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
/* Set node type to GPIO controller */
cmd->addr.topo_params.node_type_ctx =
(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
#define SW_PCA9575_SFP_TOPO_IDX 2
#define SW_PCA9575_QSFP_TOPO_IDX 1
/* Check if the SW IO expander controlling SMA exists in the netlist. */
if (hw->device_id == ICE_DEV_ID_E810C_SFP)
idx = SW_PCA9575_SFP_TOPO_IDX;
else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
idx = SW_PCA9575_QSFP_TOPO_IDX;
else
return -EOPNOTSUPP;
cmd->addr.topo_params.index = idx;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (status)
return -EOPNOTSUPP;
/* Verify if we found the right IO expander type */
if (desc.params.get_link_topo.node_part_num !=
ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
return -EOPNOTSUPP;
/* If present save the handle and return it */
hw->io_expander_handle =
le16_to_cpu(desc.params.get_link_topo.addr.handle);
*pca9575_handle = hw->io_expander_handle;
return 0;
}
/**
* ice_read_sma_ctrl_e810t
* @hw: pointer to the hw struct
* @data: pointer to data to be read from the GPIO controller
*
* Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
* PCA9575 expander, so only bits 3-7 in data are valid.
*/
int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
{
int status;
u16 handle;
u8 i;
status = ice_get_pca9575_handle(hw, &handle);
if (status)
return status;
*data = 0;
for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
bool pin;
status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
&pin, NULL);
if (status)
break;
*data |= (u8)(!pin) << i;
}
return status;
}
/**
* ice_write_sma_ctrl_e810t
* @hw: pointer to the hw struct
* @data: data to be written to the GPIO controller
*
* Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
* of the PCA9575 expander, so only bits 3-7 in data are valid.
*/
int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
{
int status;
u16 handle;
u8 i;
status = ice_get_pca9575_handle(hw, &handle);
if (status)
return status;
for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
bool pin;
pin = !(data & (1 << i));
status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
pin, NULL);
if (status)
break;
}
return status;
}
/**
* ice_read_pca9575_reg_e810t
* @hw: pointer to the hw struct
* @offset: GPIO controller register offset
* @data: pointer to data to be read from the GPIO controller
*
* Read the register from the GPIO controller
*/
int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
{
struct ice_aqc_link_topo_addr link_topo;
__le16 addr;
u16 handle;
int err;
memset(&link_topo, 0, sizeof(link_topo));
err = ice_get_pca9575_handle(hw, &handle);
if (err)
return err;
link_topo.handle = cpu_to_le16(handle);
link_topo.topo_params.node_type_ctx =
FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
addr = cpu_to_le16((u16)offset);
return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
}
/**
* ice_ptp_init_phy_e810 - initialize PHY parameters
* @ptp: pointer to the PTP HW struct
*/
static void ice_ptp_init_phy_e810(struct ice_ptp_hw *ptp)
{
ptp->phy_model = ICE_PHY_E810;
ptp->num_lports = 8;
ptp->ports_per_phy = 4;
}
/* Device agnostic functions
*
* The following functions implement shared behavior common to both E822 and
* E810 devices, possibly calling a device specific implementation where
* necessary.
*/
/**
* ice_ptp_lock - Acquire PTP global semaphore register lock
* @hw: pointer to the HW struct
*
* Acquire the global PTP hardware semaphore lock. Returns true if the lock
* was acquired, false otherwise.
*
* The PFTSYN_SEM register sets the busy bit on read, returning the previous
* value. If software sees the busy bit cleared, this means that this function
* acquired the lock (and the busy bit is now set). If software sees the busy
* bit set, it means that another function acquired the lock.
*
* Software must clear the busy bit with a write to release the lock for other
* functions when done.
*/
bool ice_ptp_lock(struct ice_hw *hw)
{
u32 hw_lock;
int i;
#define MAX_TRIES 15
for (i = 0; i < MAX_TRIES; i++) {
hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
if (hw_lock) {
/* Somebody is holding the lock */
usleep_range(5000, 6000);
continue;
}
break;
}
return !hw_lock;
}
/**
* ice_ptp_unlock - Release PTP global semaphore register lock
* @hw: pointer to the HW struct
*
* Release the global PTP hardware semaphore lock. This is done by writing to
* the PFTSYN_SEM register.
*/
void ice_ptp_unlock(struct ice_hw *hw)
{
wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
}
/**
* ice_ptp_init_hw - Initialize hw based on device type
* @hw: pointer to the HW structure
*
* Determine the PHY model for the device, and initialize hw
* for use by other functions.
*/
void ice_ptp_init_hw(struct ice_hw *hw)
{
struct ice_ptp_hw *ptp = &hw->ptp;
if (ice_is_e822(hw) || ice_is_e823(hw))
ice_ptp_init_phy_e82x(ptp);
else if (ice_is_e810(hw))
ice_ptp_init_phy_e810(ptp);
else if (ice_is_e825c(hw))
ice_ptp_init_phy_e825c(hw);
else
ptp->phy_model = ICE_PHY_UNSUP;
}
/**
* ice_ptp_write_port_cmd - Prepare a single PHY port for a timer command
* @hw: pointer to HW struct
* @port: Port to which cmd has to be sent
* @cmd: Command to be sent to the port
*
* Prepare one port for the upcoming timer sync command. Do not use this for
* programming only a single port, instead use ice_ptp_one_port_cmd() to
* ensure non-modified ports get properly initialized to ICE_PTP_NOP.
*
* Return:
* * %0 - success
* %-EBUSY - PHY type not supported
* * %other - failed to write port command
*/
static int ice_ptp_write_port_cmd(struct ice_hw *hw, u8 port,
enum ice_ptp_tmr_cmd cmd)
{
switch (hw->ptp.phy_model) {
case ICE_PHY_ETH56G:
return ice_ptp_write_port_cmd_eth56g(hw, port, cmd);
case ICE_PHY_E82X:
return ice_ptp_write_port_cmd_e82x(hw, port, cmd);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_ptp_one_port_cmd - Program one PHY port for a timer command
* @hw: pointer to HW struct
* @configured_port: the port that should execute the command
* @configured_cmd: the command to be executed on the configured port
*
* Prepare one port for executing a timer command, while preparing all other
* ports to ICE_PTP_NOP. This allows executing a command on a single port
* while ensuring all other ports do not execute stale commands.
*
* Return:
* * %0 - success
* * %other - failed to write port command
*/
int ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
enum ice_ptp_tmr_cmd configured_cmd)
{
u32 port;
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
/* Program the configured port with the configured command,
* program all other ports with ICE_PTP_NOP.
*/
if (port == configured_port)
err = ice_ptp_write_port_cmd(hw, port, configured_cmd);
else
err = ice_ptp_write_port_cmd(hw, port, ICE_PTP_NOP);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_port_cmd - Prepare PHY ports for a timer sync command
* @hw: pointer to HW struct
* @cmd: the timer command to setup
*
* Prepare all PHY ports on this device for the requested timer command. For
* some families this can be done in one shot, but for other families each
* port must be configured individually.
*
* Return:
* * %0 - success
* * %other - failed to write port command
*/
static int ice_ptp_port_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
u32 port;
/* PHY models which can program all ports simultaneously */
switch (hw->ptp.phy_model) {
case ICE_PHY_E810:
return ice_ptp_port_cmd_e810(hw, cmd);
default:
break;
}
/* PHY models which require programming each port separately */
for (port = 0; port < hw->ptp.num_lports; port++) {
int err;
err = ice_ptp_write_port_cmd(hw, port, cmd);
if (err)
return err;
}
return 0;
}
/**
* ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
* @hw: pointer to HW struct
* @cmd: the command to issue
*
* Prepare the source timer and PHY timers and then trigger the requested
* command. This causes the shadow registers previously written in preparation
* for the command to be synchronously applied to both the source and PHY
* timers.
*/
static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
{
int err;
/* First, prepare the source timer */
ice_ptp_src_cmd(hw, cmd);
/* Next, prepare the ports */
err = ice_ptp_port_cmd(hw, cmd);
if (err) {
ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
cmd, err);
return err;
}
/* Write the sync command register to drive both source and PHY timer
* commands synchronously
*/
ice_ptp_exec_tmr_cmd(hw);
return 0;
}
/**
* ice_ptp_init_time - Initialize device time to provided value
* @hw: pointer to HW struct
* @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
*
* Initialize the device to the specified time provided. This requires a three
* step process:
*
* 1) write the new init time to the source timer shadow registers
* 2) write the new init time to the PHY timer shadow registers
* 3) issue an init_time timer command to synchronously switch both the source
* and port timers to the new init time value at the next clock cycle.
*/
int ice_ptp_init_time(struct ice_hw *hw, u64 time)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Source timers */
wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
/* PHY timers */
/* Fill Rx and Tx ports and send msg to PHY */
switch (hw->ptp.phy_model) {
case ICE_PHY_ETH56G:
err = ice_ptp_prep_phy_time_eth56g(hw,
(u32)(time & 0xFFFFFFFF));
break;
case ICE_PHY_E810:
err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
break;
case ICE_PHY_E82X:
err = ice_ptp_prep_phy_time_e82x(hw, time & 0xFFFFFFFF);
break;
default:
err = -EOPNOTSUPP;
}
if (err)
return err;
return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_TIME);
}
/**
* ice_ptp_write_incval - Program PHC with new increment value
* @hw: pointer to HW struct
* @incval: Source timer increment value per clock cycle
*
* Program the PHC with a new increment value. This requires a three-step
* process:
*
* 1) Write the increment value to the source timer shadow registers
* 2) Write the increment value to the PHY timer shadow registers
* 3) Issue an ICE_PTP_INIT_INCVAL timer command to synchronously switch both
* the source and port timers to the new increment value at the next clock
* cycle.
*/
int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Shadow Adjust */
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
switch (hw->ptp.phy_model) {
case ICE_PHY_ETH56G:
err = ice_ptp_prep_phy_incval_eth56g(hw, incval);
break;
case ICE_PHY_E810:
err = ice_ptp_prep_phy_incval_e810(hw, incval);
break;
case ICE_PHY_E82X:
err = ice_ptp_prep_phy_incval_e82x(hw, incval);
break;
default:
err = -EOPNOTSUPP;
}
if (err)
return err;
return ice_ptp_tmr_cmd(hw, ICE_PTP_INIT_INCVAL);
}
/**
* ice_ptp_write_incval_locked - Program new incval while holding semaphore
* @hw: pointer to HW struct
* @incval: Source timer increment value per clock cycle
*
* Program a new PHC incval while holding the PTP semaphore.
*/
int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
{
int err;
if (!ice_ptp_lock(hw))
return -EBUSY;
err = ice_ptp_write_incval(hw, incval);
ice_ptp_unlock(hw);
return err;
}
/**
* ice_ptp_adj_clock - Adjust PHC clock time atomically
* @hw: pointer to HW struct
* @adj: Adjustment in nanoseconds
*
* Perform an atomic adjustment of the PHC time by the specified number of
* nanoseconds. This requires a three-step process:
*
* 1) Write the adjustment to the source timer shadow registers
* 2) Write the adjustment to the PHY timer shadow registers
* 3) Issue an ICE_PTP_ADJ_TIME timer command to synchronously apply the
* adjustment to both the source and port timers at the next clock cycle.
*/
int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
{
u8 tmr_idx;
int err;
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
* For an ICE_PTP_ADJ_TIME command, this set of registers represents
* the value to add to the clock time. It supports subtraction by
* interpreting the value as a 2's complement integer.
*/
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
switch (hw->ptp.phy_model) {
case ICE_PHY_ETH56G:
err = ice_ptp_prep_phy_adj_eth56g(hw, adj);
break;
case ICE_PHY_E810:
err = ice_ptp_prep_phy_adj_e810(hw, adj);
break;
case ICE_PHY_E82X:
err = ice_ptp_prep_phy_adj_e82x(hw, adj);
break;
default:
err = -EOPNOTSUPP;
}
if (err)
return err;
return ice_ptp_tmr_cmd(hw, ICE_PTP_ADJ_TIME);
}
/**
* ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
* @hw: pointer to the HW struct
* @block: the block to read from
* @idx: the timestamp index to read
* @tstamp: on return, the 40bit timestamp value
*
* Read a 40bit timestamp value out of the timestamp block. For E822 devices,
* the block is the quad to read from. For E810 devices, the block is the
* logical port to read from.
*/
int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
{
switch (hw->ptp.phy_model) {
case ICE_PHY_ETH56G:
return ice_read_ptp_tstamp_eth56g(hw, block, idx, tstamp);
case ICE_PHY_E810:
return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
case ICE_PHY_E82X:
return ice_read_phy_tstamp_e82x(hw, block, idx, tstamp);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
* @hw: pointer to the HW struct
* @block: the block to read from
* @idx: the timestamp index to reset
*
* Clear a timestamp from the timestamp block, discarding its value without
* returning it. This resets the memory status bit for the timestamp index
* allowing it to be reused for another timestamp in the future.
*
* For E822 devices, the block number is the PHY quad to clear from. For E810
* devices, the block number is the logical port to clear from.
*
* This function must only be called on a timestamp index whose valid bit is
* set according to ice_get_phy_tx_tstamp_ready().
*/
int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
{
switch (hw->ptp.phy_model) {
case ICE_PHY_ETH56G:
return ice_clear_ptp_tstamp_eth56g(hw, block, idx);
case ICE_PHY_E810:
return ice_clear_phy_tstamp_e810(hw, block, idx);
case ICE_PHY_E82X:
return ice_clear_phy_tstamp_e82x(hw, block, idx);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_get_pf_c827_idx - find and return the C827 index for the current pf
* @hw: pointer to the hw struct
* @idx: index of the found C827 PHY
* Return:
* * 0 - success
* * negative - failure
*/
static int ice_get_pf_c827_idx(struct ice_hw *hw, u8 *idx)
{
struct ice_aqc_get_link_topo cmd;
u8 node_part_number;
u16 node_handle;
int status;
u8 ctx;
if (hw->mac_type != ICE_MAC_E810)
return -ENODEV;
if (hw->device_id != ICE_DEV_ID_E810C_QSFP) {
*idx = C827_0;
return 0;
}
memset(&cmd, 0, sizeof(cmd));
ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_PHY << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
cmd.addr.topo_params.node_type_ctx = ctx;
status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
&node_handle);
if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
return -ENOENT;
if (node_handle == E810C_QSFP_C827_0_HANDLE)
*idx = C827_0;
else if (node_handle == E810C_QSFP_C827_1_HANDLE)
*idx = C827_1;
else
return -EIO;
return 0;
}
/**
* ice_ptp_reset_ts_memory - Reset timestamp memory for all blocks
* @hw: pointer to the HW struct
*/
void ice_ptp_reset_ts_memory(struct ice_hw *hw)
{
switch (hw->ptp.phy_model) {
case ICE_PHY_ETH56G:
ice_ptp_reset_ts_memory_eth56g(hw);
break;
case ICE_PHY_E82X:
ice_ptp_reset_ts_memory_e82x(hw);
break;
case ICE_PHY_E810:
default:
return;
}
}
/**
* ice_ptp_init_phc - Initialize PTP hardware clock
* @hw: pointer to the HW struct
*
* Perform the steps required to initialize the PTP hardware clock.
*/
int ice_ptp_init_phc(struct ice_hw *hw)
{
u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
/* Enable source clocks */
wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
/* Clear event err indications for auxiliary pins */
(void)rd32(hw, GLTSYN_STAT(src_idx));
switch (hw->ptp.phy_model) {
case ICE_PHY_ETH56G:
return ice_ptp_init_phc_eth56g(hw);
case ICE_PHY_E810:
return ice_ptp_init_phc_e810(hw);
case ICE_PHY_E82X:
return ice_ptp_init_phc_e82x(hw);
default:
return -EOPNOTSUPP;
}
}
/**
* ice_get_phy_tx_tstamp_ready - Read PHY Tx memory status indication
* @hw: pointer to the HW struct
* @block: the timestamp block to check
* @tstamp_ready: storage for the PHY Tx memory status information
*
* Check the PHY for Tx timestamp memory status. This reports a 64 bit value
* which indicates which timestamps in the block may be captured. A set bit
* means the timestamp can be read. An unset bit means the timestamp is not
* ready and software should avoid reading the register.
*/
int ice_get_phy_tx_tstamp_ready(struct ice_hw *hw, u8 block, u64 *tstamp_ready)
{
switch (hw->ptp.phy_model) {
case ICE_PHY_ETH56G:
return ice_get_phy_tx_tstamp_ready_eth56g(hw, block,
tstamp_ready);
case ICE_PHY_E810:
return ice_get_phy_tx_tstamp_ready_e810(hw, block,
tstamp_ready);
case ICE_PHY_E82X:
return ice_get_phy_tx_tstamp_ready_e82x(hw, block,
tstamp_ready);
break;
default:
return -EOPNOTSUPP;
}
}
/**
* ice_cgu_get_pin_desc_e823 - get pin description array
* @hw: pointer to the hw struct
* @input: if request is done against input or output pin
* @size: number of inputs/outputs
*
* Return: pointer to pin description array associated to given hw.
*/
static const struct ice_cgu_pin_desc *
ice_cgu_get_pin_desc_e823(struct ice_hw *hw, bool input, int *size)
{
static const struct ice_cgu_pin_desc *t;
if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032) {
if (input) {
t = ice_e823_zl_cgu_inputs;
*size = ARRAY_SIZE(ice_e823_zl_cgu_inputs);
} else {
t = ice_e823_zl_cgu_outputs;
*size = ARRAY_SIZE(ice_e823_zl_cgu_outputs);
}
} else if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384) {
if (input) {
t = ice_e823_si_cgu_inputs;
*size = ARRAY_SIZE(ice_e823_si_cgu_inputs);
} else {
t = ice_e823_si_cgu_outputs;
*size = ARRAY_SIZE(ice_e823_si_cgu_outputs);
}
} else {
t = NULL;
*size = 0;
}
return t;
}
/**
* ice_cgu_get_pin_desc - get pin description array
* @hw: pointer to the hw struct
* @input: if request is done against input or output pins
* @size: size of array returned by function
*
* Return: pointer to pin description array associated to given hw.
*/
static const struct ice_cgu_pin_desc *
ice_cgu_get_pin_desc(struct ice_hw *hw, bool input, int *size)
{
const struct ice_cgu_pin_desc *t = NULL;
switch (hw->device_id) {
case ICE_DEV_ID_E810C_SFP:
if (input) {
t = ice_e810t_sfp_cgu_inputs;
*size = ARRAY_SIZE(ice_e810t_sfp_cgu_inputs);
} else {
t = ice_e810t_sfp_cgu_outputs;
*size = ARRAY_SIZE(ice_e810t_sfp_cgu_outputs);
}
break;
case ICE_DEV_ID_E810C_QSFP:
if (input) {
t = ice_e810t_qsfp_cgu_inputs;
*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_inputs);
} else {
t = ice_e810t_qsfp_cgu_outputs;
*size = ARRAY_SIZE(ice_e810t_qsfp_cgu_outputs);
}
break;
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
case ICE_DEV_ID_E823C_10G_BASE_T:
case ICE_DEV_ID_E823C_BACKPLANE:
case ICE_DEV_ID_E823C_QSFP:
case ICE_DEV_ID_E823C_SFP:
case ICE_DEV_ID_E823C_SGMII:
t = ice_cgu_get_pin_desc_e823(hw, input, size);
break;
default:
break;
}
return t;
}
/**
* ice_cgu_get_pin_type - get pin's type
* @hw: pointer to the hw struct
* @pin: pin index
* @input: if request is done against input or output pin
*
* Return: type of a pin.
*/
enum dpll_pin_type ice_cgu_get_pin_type(struct ice_hw *hw, u8 pin, bool input)
{
const struct ice_cgu_pin_desc *t;
int t_size;
t = ice_cgu_get_pin_desc(hw, input, &t_size);
if (!t)
return 0;
if (pin >= t_size)
return 0;
return t[pin].type;
}
/**
* ice_cgu_get_pin_freq_supp - get pin's supported frequency
* @hw: pointer to the hw struct
* @pin: pin index
* @input: if request is done against input or output pin
* @num: output number of supported frequencies
*
* Get frequency supported number and array of supported frequencies.
*
* Return: array of supported frequencies for given pin.
*/
struct dpll_pin_frequency *
ice_cgu_get_pin_freq_supp(struct ice_hw *hw, u8 pin, bool input, u8 *num)
{
const struct ice_cgu_pin_desc *t;
int t_size;
*num = 0;
t = ice_cgu_get_pin_desc(hw, input, &t_size);
if (!t)
return NULL;
if (pin >= t_size)
return NULL;
*num = t[pin].freq_supp_num;
return t[pin].freq_supp;
}
/**
* ice_cgu_get_pin_name - get pin's name
* @hw: pointer to the hw struct
* @pin: pin index
* @input: if request is done against input or output pin
*
* Return:
* * null terminated char array with name
* * NULL in case of failure
*/
const char *ice_cgu_get_pin_name(struct ice_hw *hw, u8 pin, bool input)
{
const struct ice_cgu_pin_desc *t;
int t_size;
t = ice_cgu_get_pin_desc(hw, input, &t_size);
if (!t)
return NULL;
if (pin >= t_size)
return NULL;
return t[pin].name;
}
/**
* ice_get_cgu_state - get the state of the DPLL
* @hw: pointer to the hw struct
* @dpll_idx: Index of internal DPLL unit
* @last_dpll_state: last known state of DPLL
* @pin: pointer to a buffer for returning currently active pin
* @ref_state: reference clock state
* @eec_mode: eec mode of the DPLL
* @phase_offset: pointer to a buffer for returning phase offset
* @dpll_state: state of the DPLL (output)
*
* This function will read the state of the DPLL(dpll_idx). Non-null
* 'pin', 'ref_state', 'eec_mode' and 'phase_offset' parameters are used to
* retrieve currently active pin, state, mode and phase_offset respectively.
*
* Return: state of the DPLL
*/
int ice_get_cgu_state(struct ice_hw *hw, u8 dpll_idx,
enum dpll_lock_status last_dpll_state, u8 *pin,
u8 *ref_state, u8 *eec_mode, s64 *phase_offset,
enum dpll_lock_status *dpll_state)
{
u8 hw_ref_state, hw_dpll_state, hw_eec_mode, hw_config;
s64 hw_phase_offset;
int status;
status = ice_aq_get_cgu_dpll_status(hw, dpll_idx, &hw_ref_state,
&hw_dpll_state, &hw_config,
&hw_phase_offset, &hw_eec_mode);
if (status)
return status;
if (pin)
/* current ref pin in dpll_state_refsel_status_X register */
*pin = hw_config & ICE_AQC_GET_CGU_DPLL_CONFIG_CLK_REF_SEL;
if (phase_offset)
*phase_offset = hw_phase_offset;
if (ref_state)
*ref_state = hw_ref_state;
if (eec_mode)
*eec_mode = hw_eec_mode;
if (!dpll_state)
return 0;
/* According to ZL DPLL documentation, once state reach LOCKED_HO_ACQ
* it would never return to FREERUN. This aligns to ITU-T G.781
* Recommendation. We cannot report HOLDOVER as HO memory is cleared
* while switching to another reference.
* Only for situations where previous state was either: "LOCKED without
* HO_ACQ" or "HOLDOVER" we actually back to FREERUN.
*/
if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_LOCK) {
if (hw_dpll_state & ICE_AQC_GET_CGU_DPLL_STATUS_STATE_HO_READY)
*dpll_state = DPLL_LOCK_STATUS_LOCKED_HO_ACQ;
else
*dpll_state = DPLL_LOCK_STATUS_LOCKED;
} else if (last_dpll_state == DPLL_LOCK_STATUS_LOCKED_HO_ACQ ||
last_dpll_state == DPLL_LOCK_STATUS_HOLDOVER) {
*dpll_state = DPLL_LOCK_STATUS_HOLDOVER;
} else {
*dpll_state = DPLL_LOCK_STATUS_UNLOCKED;
}
return 0;
}
/**
* ice_get_cgu_rclk_pin_info - get info on available recovered clock pins
* @hw: pointer to the hw struct
* @base_idx: returns index of first recovered clock pin on device
* @pin_num: returns number of recovered clock pins available on device
*
* Based on hw provide caller info about recovery clock pins available on the
* board.
*
* Return:
* * 0 - success, information is valid
* * negative - failure, information is not valid
*/
int ice_get_cgu_rclk_pin_info(struct ice_hw *hw, u8 *base_idx, u8 *pin_num)
{
u8 phy_idx;
int ret;
switch (hw->device_id) {
case ICE_DEV_ID_E810C_SFP:
case ICE_DEV_ID_E810C_QSFP:
ret = ice_get_pf_c827_idx(hw, &phy_idx);
if (ret)
return ret;
*base_idx = E810T_CGU_INPUT_C827(phy_idx, ICE_RCLKA_PIN);
*pin_num = ICE_E810_RCLK_PINS_NUM;
ret = 0;
break;
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
case ICE_DEV_ID_E823C_10G_BASE_T:
case ICE_DEV_ID_E823C_BACKPLANE:
case ICE_DEV_ID_E823C_QSFP:
case ICE_DEV_ID_E823C_SFP:
case ICE_DEV_ID_E823C_SGMII:
*pin_num = ICE_E82X_RCLK_PINS_NUM;
ret = 0;
if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032)
*base_idx = ZL_REF1P;
else if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384)
*base_idx = SI_REF1P;
else
ret = -ENODEV;
break;
default:
ret = -ENODEV;
break;
}
return ret;
}
/**
* ice_cgu_get_output_pin_state_caps - get output pin state capabilities
* @hw: pointer to the hw struct
* @pin_id: id of a pin
* @caps: capabilities to modify
*
* Return:
* * 0 - success, state capabilities were modified
* * negative - failure, capabilities were not modified
*/
int ice_cgu_get_output_pin_state_caps(struct ice_hw *hw, u8 pin_id,
unsigned long *caps)
{
bool can_change = true;
switch (hw->device_id) {
case ICE_DEV_ID_E810C_SFP:
if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3)
can_change = false;
break;
case ICE_DEV_ID_E810C_QSFP:
if (pin_id == ZL_OUT2 || pin_id == ZL_OUT3 || pin_id == ZL_OUT4)
can_change = false;
break;
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
case ICE_DEV_ID_E823C_10G_BASE_T:
case ICE_DEV_ID_E823C_BACKPLANE:
case ICE_DEV_ID_E823C_QSFP:
case ICE_DEV_ID_E823C_SFP:
case ICE_DEV_ID_E823C_SGMII:
if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032 &&
pin_id == ZL_OUT2)
can_change = false;
else if (hw->cgu_part_number ==
ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384 &&
pin_id == SI_OUT1)
can_change = false;
break;
default:
return -EINVAL;
}
if (can_change)
*caps |= DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
else
*caps &= ~DPLL_PIN_CAPABILITIES_STATE_CAN_CHANGE;
return 0;
}