| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* |
| * Copyright (C) 2012-2014, 2018-2019, 2021-2024 Intel Corporation |
| * Copyright (C) 2013-2015 Intel Mobile Communications GmbH |
| * Copyright (C) 2016-2017 Intel Deutschland GmbH |
| */ |
| #include <linux/firmware.h> |
| #include <linux/rtnetlink.h> |
| #include "iwl-trans.h" |
| #include "iwl-csr.h" |
| #include "mvm.h" |
| #include "iwl-nvm-utils.h" |
| #include "iwl-nvm-parse.h" |
| #include "iwl-prph.h" |
| #include "fw/acpi.h" |
| |
| /* Default NVM size to read */ |
| #define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024) |
| |
| #define NVM_WRITE_OPCODE 1 |
| #define NVM_READ_OPCODE 0 |
| |
| /* load nvm chunk response */ |
| enum { |
| READ_NVM_CHUNK_SUCCEED = 0, |
| READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1 |
| }; |
| |
| /* |
| * prepare the NVM host command w/ the pointers to the nvm buffer |
| * and send it to fw |
| */ |
| static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section, |
| u16 offset, u16 length, const u8 *data) |
| { |
| struct iwl_nvm_access_cmd nvm_access_cmd = { |
| .offset = cpu_to_le16(offset), |
| .length = cpu_to_le16(length), |
| .type = cpu_to_le16(section), |
| .op_code = NVM_WRITE_OPCODE, |
| }; |
| struct iwl_host_cmd cmd = { |
| .id = NVM_ACCESS_CMD, |
| .len = { sizeof(struct iwl_nvm_access_cmd), length }, |
| .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, |
| .data = { &nvm_access_cmd, data }, |
| /* data may come from vmalloc, so use _DUP */ |
| .dataflags = { 0, IWL_HCMD_DFL_DUP }, |
| }; |
| struct iwl_rx_packet *pkt; |
| struct iwl_nvm_access_resp *nvm_resp; |
| int ret; |
| |
| ret = iwl_mvm_send_cmd(mvm, &cmd); |
| if (ret) |
| return ret; |
| |
| pkt = cmd.resp_pkt; |
| /* Extract & check NVM write response */ |
| nvm_resp = (void *)pkt->data; |
| if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) { |
| IWL_ERR(mvm, |
| "NVM access write command failed for section %u (status = 0x%x)\n", |
| section, le16_to_cpu(nvm_resp->status)); |
| ret = -EIO; |
| } |
| |
| iwl_free_resp(&cmd); |
| return ret; |
| } |
| |
| static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section, |
| u16 offset, u16 length, u8 *data) |
| { |
| struct iwl_nvm_access_cmd nvm_access_cmd = { |
| .offset = cpu_to_le16(offset), |
| .length = cpu_to_le16(length), |
| .type = cpu_to_le16(section), |
| .op_code = NVM_READ_OPCODE, |
| }; |
| struct iwl_nvm_access_resp *nvm_resp; |
| struct iwl_rx_packet *pkt; |
| struct iwl_host_cmd cmd = { |
| .id = NVM_ACCESS_CMD, |
| .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, |
| .data = { &nvm_access_cmd, }, |
| }; |
| int ret, bytes_read, offset_read; |
| u8 *resp_data; |
| |
| cmd.len[0] = sizeof(struct iwl_nvm_access_cmd); |
| |
| ret = iwl_mvm_send_cmd(mvm, &cmd); |
| if (ret) |
| return ret; |
| |
| pkt = cmd.resp_pkt; |
| |
| /* Extract NVM response */ |
| nvm_resp = (void *)pkt->data; |
| ret = le16_to_cpu(nvm_resp->status); |
| bytes_read = le16_to_cpu(nvm_resp->length); |
| offset_read = le16_to_cpu(nvm_resp->offset); |
| resp_data = nvm_resp->data; |
| if (ret) { |
| if ((offset != 0) && |
| (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) { |
| /* |
| * meaning of NOT_VALID_ADDRESS: |
| * driver try to read chunk from address that is |
| * multiple of 2K and got an error since addr is empty. |
| * meaning of (offset != 0): driver already |
| * read valid data from another chunk so this case |
| * is not an error. |
| */ |
| IWL_DEBUG_EEPROM(mvm->trans->dev, |
| "NVM access command failed on offset 0x%x since that section size is multiple 2K\n", |
| offset); |
| ret = 0; |
| } else { |
| IWL_DEBUG_EEPROM(mvm->trans->dev, |
| "NVM access command failed with status %d (device: %s)\n", |
| ret, mvm->trans->name); |
| ret = -ENODATA; |
| } |
| goto exit; |
| } |
| |
| if (offset_read != offset) { |
| IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n", |
| offset_read); |
| ret = -EINVAL; |
| goto exit; |
| } |
| |
| /* Write data to NVM */ |
| memcpy(data + offset, resp_data, bytes_read); |
| ret = bytes_read; |
| |
| exit: |
| iwl_free_resp(&cmd); |
| return ret; |
| } |
| |
| static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section, |
| const u8 *data, u16 length) |
| { |
| int offset = 0; |
| |
| /* copy data in chunks of 2k (and remainder if any) */ |
| |
| while (offset < length) { |
| int chunk_size, ret; |
| |
| chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE, |
| length - offset); |
| |
| ret = iwl_nvm_write_chunk(mvm, section, offset, |
| chunk_size, data + offset); |
| if (ret < 0) |
| return ret; |
| |
| offset += chunk_size; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Reads an NVM section completely. |
| * NICs prior to 7000 family doesn't have a real NVM, but just read |
| * section 0 which is the EEPROM. Because the EEPROM reading is unlimited |
| * by uCode, we need to manually check in this case that we don't |
| * overflow and try to read more than the EEPROM size. |
| * For 7000 family NICs, we supply the maximal size we can read, and |
| * the uCode fills the response with as much data as we can, |
| * without overflowing, so no check is needed. |
| */ |
| static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section, |
| u8 *data, u32 size_read) |
| { |
| u16 length, offset = 0; |
| int ret; |
| |
| /* Set nvm section read length */ |
| length = IWL_NVM_DEFAULT_CHUNK_SIZE; |
| |
| ret = length; |
| |
| /* Read the NVM until exhausted (reading less than requested) */ |
| while (ret == length) { |
| /* Check no memory assumptions fail and cause an overflow */ |
| if ((size_read + offset + length) > |
| mvm->trans->trans_cfg->base_params->eeprom_size) { |
| IWL_ERR(mvm, "EEPROM size is too small for NVM\n"); |
| return -ENOBUFS; |
| } |
| |
| ret = iwl_nvm_read_chunk(mvm, section, offset, length, data); |
| if (ret < 0) { |
| IWL_DEBUG_EEPROM(mvm->trans->dev, |
| "Cannot read NVM from section %d offset %d, length %d\n", |
| section, offset, length); |
| return ret; |
| } |
| offset += ret; |
| } |
| |
| iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset); |
| |
| IWL_DEBUG_EEPROM(mvm->trans->dev, |
| "NVM section %d read completed\n", section); |
| return offset; |
| } |
| |
| static struct iwl_nvm_data * |
| iwl_parse_nvm_sections(struct iwl_mvm *mvm) |
| { |
| struct iwl_nvm_section *sections = mvm->nvm_sections; |
| const __be16 *hw; |
| const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku; |
| u8 tx_ant = mvm->fw->valid_tx_ant; |
| u8 rx_ant = mvm->fw->valid_rx_ant; |
| int regulatory_type; |
| |
| /* Checking for required sections */ |
| if (mvm->trans->cfg->nvm_type == IWL_NVM) { |
| if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || |
| !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) { |
| IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n"); |
| return NULL; |
| } |
| } else { |
| if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP) |
| regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP; |
| else |
| regulatory_type = NVM_SECTION_TYPE_REGULATORY; |
| |
| /* SW and REGULATORY sections are mandatory */ |
| if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || |
| !mvm->nvm_sections[regulatory_type].data) { |
| IWL_ERR(mvm, |
| "Can't parse empty family 8000 OTP/NVM sections\n"); |
| return NULL; |
| } |
| /* MAC_OVERRIDE or at least HW section must exist */ |
| if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data && |
| !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) { |
| IWL_ERR(mvm, |
| "Can't parse mac_address, empty sections\n"); |
| return NULL; |
| } |
| |
| /* PHY_SKU section is mandatory in B0 */ |
| if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT && |
| !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) { |
| IWL_ERR(mvm, |
| "Can't parse phy_sku in B0, empty sections\n"); |
| return NULL; |
| } |
| } |
| |
| hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data; |
| sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data; |
| calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data; |
| mac_override = |
| (const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data; |
| phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data; |
| |
| regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ? |
| (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data : |
| (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data; |
| |
| if (mvm->set_tx_ant) |
| tx_ant &= mvm->set_tx_ant; |
| |
| if (mvm->set_rx_ant) |
| rx_ant &= mvm->set_rx_ant; |
| |
| return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib, |
| regulatory, mac_override, phy_sku, |
| tx_ant, rx_ant); |
| } |
| |
| /* Loads the NVM data stored in mvm->nvm_sections into the NIC */ |
| int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm) |
| { |
| int i, ret = 0; |
| struct iwl_nvm_section *sections = mvm->nvm_sections; |
| |
| IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n"); |
| |
| for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) { |
| if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length) |
| continue; |
| ret = iwl_nvm_write_section(mvm, i, sections[i].data, |
| sections[i].length); |
| if (ret < 0) { |
| IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret); |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| int iwl_nvm_init(struct iwl_mvm *mvm) |
| { |
| int ret, section; |
| u32 size_read = 0; |
| u8 *nvm_buffer, *temp; |
| const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step; |
| |
| if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS)) |
| return -EINVAL; |
| |
| /* load NVM values from nic */ |
| /* Read From FW NVM */ |
| IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n"); |
| |
| nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size, |
| GFP_KERNEL); |
| if (!nvm_buffer) |
| return -ENOMEM; |
| for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) { |
| /* we override the constness for initial read */ |
| ret = iwl_nvm_read_section(mvm, section, nvm_buffer, |
| size_read); |
| if (ret == -ENODATA) { |
| ret = 0; |
| continue; |
| } |
| if (ret < 0) |
| break; |
| size_read += ret; |
| temp = kmemdup(nvm_buffer, ret, GFP_KERNEL); |
| if (!temp) { |
| ret = -ENOMEM; |
| break; |
| } |
| |
| iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret); |
| |
| mvm->nvm_sections[section].data = temp; |
| mvm->nvm_sections[section].length = ret; |
| |
| #ifdef CONFIG_IWLWIFI_DEBUGFS |
| switch (section) { |
| case NVM_SECTION_TYPE_SW: |
| mvm->nvm_sw_blob.data = temp; |
| mvm->nvm_sw_blob.size = ret; |
| break; |
| case NVM_SECTION_TYPE_CALIBRATION: |
| mvm->nvm_calib_blob.data = temp; |
| mvm->nvm_calib_blob.size = ret; |
| break; |
| case NVM_SECTION_TYPE_PRODUCTION: |
| mvm->nvm_prod_blob.data = temp; |
| mvm->nvm_prod_blob.size = ret; |
| break; |
| case NVM_SECTION_TYPE_PHY_SKU: |
| mvm->nvm_phy_sku_blob.data = temp; |
| mvm->nvm_phy_sku_blob.size = ret; |
| break; |
| case NVM_SECTION_TYPE_REGULATORY_SDP: |
| case NVM_SECTION_TYPE_REGULATORY: |
| mvm->nvm_reg_blob.data = temp; |
| mvm->nvm_reg_blob.size = ret; |
| break; |
| default: |
| if (section == mvm->cfg->nvm_hw_section_num) { |
| mvm->nvm_hw_blob.data = temp; |
| mvm->nvm_hw_blob.size = ret; |
| break; |
| } |
| } |
| #endif |
| } |
| if (!size_read) |
| IWL_ERR(mvm, "OTP is blank\n"); |
| kfree(nvm_buffer); |
| |
| /* Only if PNVM selected in the mod param - load external NVM */ |
| if (mvm->nvm_file_name) { |
| /* read External NVM file from the mod param */ |
| ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name, |
| mvm->nvm_sections); |
| if (ret) { |
| mvm->nvm_file_name = nvm_file_C; |
| |
| if ((ret == -EFAULT || ret == -ENOENT) && |
| mvm->nvm_file_name) { |
| /* in case nvm file was failed try again */ |
| ret = iwl_read_external_nvm(mvm->trans, |
| mvm->nvm_file_name, |
| mvm->nvm_sections); |
| if (ret) |
| return ret; |
| } else { |
| return ret; |
| } |
| } |
| } |
| |
| /* parse the relevant nvm sections */ |
| mvm->nvm_data = iwl_parse_nvm_sections(mvm); |
| if (!mvm->nvm_data) |
| return -ENODATA; |
| IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n", |
| mvm->nvm_data->nvm_version); |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| struct iwl_mcc_update_resp_v8 * |
| iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2, |
| enum iwl_mcc_source src_id) |
| { |
| struct iwl_mcc_update_cmd mcc_update_cmd = { |
| .mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]), |
| .source_id = (u8)src_id, |
| }; |
| struct iwl_mcc_update_resp_v8 *resp_cp; |
| struct iwl_rx_packet *pkt; |
| struct iwl_host_cmd cmd = { |
| .id = MCC_UPDATE_CMD, |
| .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, |
| .data = { &mcc_update_cmd }, |
| }; |
| |
| int ret, resp_ver; |
| u32 status; |
| int resp_len, n_channels; |
| u16 mcc; |
| |
| if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm))) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| cmd.len[0] = sizeof(struct iwl_mcc_update_cmd); |
| |
| IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n", |
| alpha2[0], alpha2[1], src_id); |
| |
| ret = iwl_mvm_send_cmd(mvm, &cmd); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| pkt = cmd.resp_pkt; |
| |
| resp_ver = iwl_fw_lookup_notif_ver(mvm->fw, IWL_ALWAYS_LONG_GROUP, |
| MCC_UPDATE_CMD, 0); |
| |
| /* Extract MCC response */ |
| if (resp_ver >= 8) { |
| struct iwl_mcc_update_resp_v8 *mcc_resp_v8 = (void *)pkt->data; |
| |
| n_channels = __le32_to_cpu(mcc_resp_v8->n_channels); |
| if (iwl_rx_packet_payload_len(pkt) != |
| struct_size(mcc_resp_v8, channels, n_channels)) { |
| resp_cp = ERR_PTR(-EINVAL); |
| goto exit; |
| } |
| resp_len = struct_size(resp_cp, channels, n_channels); |
| resp_cp = kzalloc(resp_len, GFP_KERNEL); |
| if (!resp_cp) { |
| resp_cp = ERR_PTR(-ENOMEM); |
| goto exit; |
| } |
| resp_cp->status = mcc_resp_v8->status; |
| resp_cp->mcc = mcc_resp_v8->mcc; |
| resp_cp->cap = mcc_resp_v8->cap; |
| resp_cp->source_id = mcc_resp_v8->source_id; |
| resp_cp->time = mcc_resp_v8->time; |
| resp_cp->geo_info = mcc_resp_v8->geo_info; |
| resp_cp->n_channels = mcc_resp_v8->n_channels; |
| memcpy(resp_cp->channels, mcc_resp_v8->channels, |
| n_channels * sizeof(__le32)); |
| } else if (fw_has_capa(&mvm->fw->ucode_capa, |
| IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) { |
| struct iwl_mcc_update_resp_v4 *mcc_resp_v4 = (void *)pkt->data; |
| |
| n_channels = __le32_to_cpu(mcc_resp_v4->n_channels); |
| if (iwl_rx_packet_payload_len(pkt) != |
| struct_size(mcc_resp_v4, channels, n_channels)) { |
| resp_cp = ERR_PTR(-EINVAL); |
| goto exit; |
| } |
| resp_len = struct_size(resp_cp, channels, n_channels); |
| resp_cp = kzalloc(resp_len, GFP_KERNEL); |
| if (!resp_cp) { |
| resp_cp = ERR_PTR(-ENOMEM); |
| goto exit; |
| } |
| |
| resp_cp->status = mcc_resp_v4->status; |
| resp_cp->mcc = mcc_resp_v4->mcc; |
| resp_cp->cap = cpu_to_le32(le16_to_cpu(mcc_resp_v4->cap)); |
| resp_cp->source_id = mcc_resp_v4->source_id; |
| resp_cp->time = mcc_resp_v4->time; |
| resp_cp->geo_info = mcc_resp_v4->geo_info; |
| resp_cp->n_channels = mcc_resp_v4->n_channels; |
| memcpy(resp_cp->channels, mcc_resp_v4->channels, |
| n_channels * sizeof(__le32)); |
| } else { |
| struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data; |
| |
| n_channels = __le32_to_cpu(mcc_resp_v3->n_channels); |
| if (iwl_rx_packet_payload_len(pkt) != |
| struct_size(mcc_resp_v3, channels, n_channels)) { |
| resp_cp = ERR_PTR(-EINVAL); |
| goto exit; |
| } |
| resp_len = struct_size(resp_cp, channels, n_channels); |
| resp_cp = kzalloc(resp_len, GFP_KERNEL); |
| if (!resp_cp) { |
| resp_cp = ERR_PTR(-ENOMEM); |
| goto exit; |
| } |
| |
| resp_cp->status = mcc_resp_v3->status; |
| resp_cp->mcc = mcc_resp_v3->mcc; |
| resp_cp->cap = cpu_to_le32(mcc_resp_v3->cap); |
| resp_cp->source_id = mcc_resp_v3->source_id; |
| resp_cp->time = mcc_resp_v3->time; |
| resp_cp->geo_info = mcc_resp_v3->geo_info; |
| resp_cp->n_channels = mcc_resp_v3->n_channels; |
| memcpy(resp_cp->channels, mcc_resp_v3->channels, |
| n_channels * sizeof(__le32)); |
| } |
| |
| status = le32_to_cpu(resp_cp->status); |
| |
| mcc = le16_to_cpu(resp_cp->mcc); |
| |
| /* W/A for a FW/NVM issue - returns 0x00 for the world domain */ |
| if (mcc == 0) { |
| mcc = 0x3030; /* "00" - world */ |
| resp_cp->mcc = cpu_to_le16(mcc); |
| } |
| |
| IWL_DEBUG_LAR(mvm, |
| "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n", |
| status, mcc, mcc >> 8, mcc & 0xff, n_channels); |
| |
| exit: |
| iwl_free_resp(&cmd); |
| return resp_cp; |
| } |
| |
| int iwl_mvm_init_mcc(struct iwl_mvm *mvm) |
| { |
| bool tlv_lar; |
| bool nvm_lar; |
| int retval; |
| struct ieee80211_regdomain *regd; |
| char mcc[3]; |
| |
| if (mvm->cfg->nvm_type == IWL_NVM_EXT) { |
| tlv_lar = fw_has_capa(&mvm->fw->ucode_capa, |
| IWL_UCODE_TLV_CAPA_LAR_SUPPORT); |
| nvm_lar = mvm->nvm_data->lar_enabled; |
| if (tlv_lar != nvm_lar) |
| IWL_INFO(mvm, |
| "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n", |
| tlv_lar ? "enabled" : "disabled", |
| nvm_lar ? "enabled" : "disabled"); |
| } |
| |
| if (!iwl_mvm_is_lar_supported(mvm)) |
| return 0; |
| |
| /* |
| * try to replay the last set MCC to FW. If it doesn't exist, |
| * queue an update to cfg80211 to retrieve the default alpha2 from FW. |
| */ |
| retval = iwl_mvm_init_fw_regd(mvm, true); |
| if (retval != -ENOENT) |
| return retval; |
| |
| /* |
| * Driver regulatory hint for initial update, this also informs the |
| * firmware we support wifi location updates. |
| * Disallow scans that might crash the FW while the LAR regdomain |
| * is not set. |
| */ |
| mvm->lar_regdom_set = false; |
| |
| regd = iwl_mvm_get_current_regdomain(mvm, NULL); |
| if (IS_ERR_OR_NULL(regd)) |
| return -EIO; |
| |
| if (iwl_mvm_is_wifi_mcc_supported(mvm) && |
| !iwl_bios_get_mcc(&mvm->fwrt, mcc)) { |
| kfree(regd); |
| regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, |
| MCC_SOURCE_BIOS, NULL); |
| if (IS_ERR_OR_NULL(regd)) |
| return -EIO; |
| } |
| |
| retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd); |
| kfree(regd); |
| return retval; |
| } |
| |
| void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm, |
| struct iwl_rx_cmd_buffer *rxb) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_mcc_chub_notif *notif = (void *)pkt->data; |
| enum iwl_mcc_source src; |
| char mcc[3]; |
| struct ieee80211_regdomain *regd; |
| int wgds_tbl_idx; |
| bool changed = false; |
| |
| lockdep_assert_held(&mvm->mutex); |
| |
| if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) { |
| IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n"); |
| return; |
| } |
| |
| if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm))) |
| return; |
| |
| mcc[0] = le16_to_cpu(notif->mcc) >> 8; |
| mcc[1] = le16_to_cpu(notif->mcc) & 0xff; |
| mcc[2] = '\0'; |
| src = notif->source_id; |
| |
| IWL_DEBUG_LAR(mvm, |
| "RX: received chub update mcc cmd (mcc '%s' src %d)\n", |
| mcc, src); |
| regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, &changed); |
| if (IS_ERR_OR_NULL(regd)) |
| return; |
| |
| if (!changed) { |
| IWL_DEBUG_LAR(mvm, "RX: No change in the regulatory data\n"); |
| goto out; |
| } |
| |
| wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm); |
| if (wgds_tbl_idx < 1) |
| IWL_DEBUG_INFO(mvm, |
| "SAR WGDS is disabled or error received (%d)\n", |
| wgds_tbl_idx); |
| else |
| IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n", |
| wgds_tbl_idx); |
| |
| regulatory_set_wiphy_regd(mvm->hw->wiphy, regd); |
| |
| out: |
| kfree(regd); |
| } |