blob: 05b577b1068ea33bfc78f629277e2327823f0fac [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
* All rights reserved.
*/
#include <linux/clk.h>
#include <linux/spi/spi.h>
#include <linux/crc7.h>
#include <linux/crc-itu-t.h>
#include <linux/gpio/consumer.h>
#include "netdev.h"
#include "cfg80211.h"
#define SPI_MODALIAS "wilc1000_spi"
static bool enable_crc7; /* protect SPI commands with CRC7 */
module_param(enable_crc7, bool, 0644);
MODULE_PARM_DESC(enable_crc7,
"Enable CRC7 checksum to protect command transfers\n"
"\t\t\tagainst corruption during the SPI transfer.\n"
"\t\t\tCommand transfers are short and the CPU-cycle cost\n"
"\t\t\tof enabling this is small.");
static bool enable_crc16; /* protect SPI data with CRC16 */
module_param(enable_crc16, bool, 0644);
MODULE_PARM_DESC(enable_crc16,
"Enable CRC16 checksum to protect data transfers\n"
"\t\t\tagainst corruption during the SPI transfer.\n"
"\t\t\tData transfers can be large and the CPU-cycle cost\n"
"\t\t\tof enabling this may be substantial.");
/*
* For CMD_SINGLE_READ and CMD_INTERNAL_READ, WILC may insert one or
* more zero bytes between the command response and the DATA Start tag
* (0xf3). This behavior appears to be undocumented in "ATWILC1000
* USER GUIDE" (https://tinyurl.com/4hhshdts) but we have observed 1-4
* zero bytes when the SPI bus operates at 48MHz and none when it
* operates at 1MHz.
*/
#define WILC_SPI_RSP_HDR_EXTRA_DATA 8
struct wilc_spi {
bool isinit; /* true if wilc_spi_init was successful */
bool probing_crc; /* true if we're probing chip's CRC config */
bool crc7_enabled; /* true if crc7 is currently enabled */
bool crc16_enabled; /* true if crc16 is currently enabled */
struct wilc_gpios {
struct gpio_desc *enable; /* ENABLE GPIO or NULL */
struct gpio_desc *reset; /* RESET GPIO or NULL */
} gpios;
};
static const struct wilc_hif_func wilc_hif_spi;
static int wilc_spi_reset(struct wilc *wilc);
static int wilc_spi_configure_bus_protocol(struct wilc *wilc);
static int wilc_validate_chipid(struct wilc *wilc);
/********************************************
*
* Spi protocol Function
*
********************************************/
#define CMD_DMA_WRITE 0xc1
#define CMD_DMA_READ 0xc2
#define CMD_INTERNAL_WRITE 0xc3
#define CMD_INTERNAL_READ 0xc4
#define CMD_TERMINATE 0xc5
#define CMD_REPEAT 0xc6
#define CMD_DMA_EXT_WRITE 0xc7
#define CMD_DMA_EXT_READ 0xc8
#define CMD_SINGLE_WRITE 0xc9
#define CMD_SINGLE_READ 0xca
#define CMD_RESET 0xcf
#define SPI_RETRY_MAX_LIMIT 10
#define SPI_ENABLE_VMM_RETRY_LIMIT 2
/* SPI response fields (section 11.1.2 in ATWILC1000 User Guide): */
#define RSP_START_FIELD GENMASK(7, 4)
#define RSP_TYPE_FIELD GENMASK(3, 0)
/* SPI response values for the response fields: */
#define RSP_START_TAG 0xc
#define RSP_TYPE_FIRST_PACKET 0x1
#define RSP_TYPE_INNER_PACKET 0x2
#define RSP_TYPE_LAST_PACKET 0x3
#define RSP_STATE_NO_ERROR 0x00
#define PROTOCOL_REG_PKT_SZ_MASK GENMASK(6, 4)
#define PROTOCOL_REG_CRC16_MASK GENMASK(3, 3)
#define PROTOCOL_REG_CRC7_MASK GENMASK(2, 2)
/*
* The SPI data packet size may be any integer power of two in the
* range from 256 to 8192 bytes.
*/
#define DATA_PKT_LOG_SZ_MIN 8 /* 256 B */
#define DATA_PKT_LOG_SZ_MAX 13 /* 8 KiB */
/*
* Select the data packet size (log2 of number of bytes): Use the
* maximum data packet size. We only retransmit complete packets, so
* there is no benefit from using smaller data packets.
*/
#define DATA_PKT_LOG_SZ DATA_PKT_LOG_SZ_MAX
#define DATA_PKT_SZ (1 << DATA_PKT_LOG_SZ)
#define WILC_SPI_COMMAND_STAT_SUCCESS 0
#define WILC_GET_RESP_HDR_START(h) (((h) >> 4) & 0xf)
struct wilc_spi_cmd {
u8 cmd_type;
union {
struct {
u8 addr[3];
u8 crc[];
} __packed simple_cmd;
struct {
u8 addr[3];
u8 size[2];
u8 crc[];
} __packed dma_cmd;
struct {
u8 addr[3];
u8 size[3];
u8 crc[];
} __packed dma_cmd_ext;
struct {
u8 addr[2];
__be32 data;
u8 crc[];
} __packed internal_w_cmd;
struct {
u8 addr[3];
__be32 data;
u8 crc[];
} __packed w_cmd;
} u;
} __packed;
struct wilc_spi_read_rsp_data {
u8 header;
u8 data[4];
u8 crc[];
} __packed;
struct wilc_spi_rsp_data {
u8 rsp_cmd_type;
u8 status;
u8 data[];
} __packed;
struct wilc_spi_special_cmd_rsp {
u8 skip_byte;
u8 rsp_cmd_type;
u8 status;
} __packed;
static int wilc_parse_gpios(struct wilc *wilc)
{
struct spi_device *spi = to_spi_device(wilc->dev);
struct wilc_spi *spi_priv = wilc->bus_data;
struct wilc_gpios *gpios = &spi_priv->gpios;
/* get ENABLE pin and deassert it (if it is defined): */
gpios->enable = devm_gpiod_get_optional(&spi->dev,
"enable", GPIOD_OUT_LOW);
/* get RESET pin and assert it (if it is defined): */
if (gpios->enable) {
/* if enable pin exists, reset must exist as well */
gpios->reset = devm_gpiod_get(&spi->dev,
"reset", GPIOD_OUT_HIGH);
if (IS_ERR(gpios->reset)) {
dev_err(&spi->dev, "missing reset gpio.\n");
return PTR_ERR(gpios->reset);
}
} else {
gpios->reset = devm_gpiod_get_optional(&spi->dev,
"reset", GPIOD_OUT_HIGH);
}
return 0;
}
static void wilc_wlan_power(struct wilc *wilc, bool on)
{
struct wilc_spi *spi_priv = wilc->bus_data;
struct wilc_gpios *gpios = &spi_priv->gpios;
if (on) {
/* assert ENABLE: */
gpiod_set_value(gpios->enable, 1);
mdelay(5);
/* deassert RESET: */
gpiod_set_value(gpios->reset, 0);
} else {
/* assert RESET: */
gpiod_set_value(gpios->reset, 1);
/* deassert ENABLE: */
gpiod_set_value(gpios->enable, 0);
}
}
static int wilc_bus_probe(struct spi_device *spi)
{
struct wilc_spi *spi_priv;
struct wilc_vif *vif;
struct wilc *wilc;
int ret;
spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL);
if (!spi_priv)
return -ENOMEM;
ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi);
if (ret)
goto free;
spi_set_drvdata(spi, wilc);
wilc->dev = &spi->dev;
wilc->bus_data = spi_priv;
wilc->dev_irq_num = spi->irq;
ret = wilc_parse_gpios(wilc);
if (ret < 0)
goto netdev_cleanup;
wilc->rtc_clk = devm_clk_get_optional_enabled(&spi->dev, "rtc");
if (IS_ERR(wilc->rtc_clk)) {
ret = PTR_ERR(wilc->rtc_clk);
goto netdev_cleanup;
}
dev_info(&spi->dev, "Selected CRC config: crc7=%s, crc16=%s\n",
enable_crc7 ? "on" : "off", enable_crc16 ? "on" : "off");
/* we need power to configure the bus protocol and to read the chip id: */
wilc_wlan_power(wilc, true);
ret = wilc_spi_configure_bus_protocol(wilc);
if (ret)
goto power_down;
ret = wilc_validate_chipid(wilc);
if (ret)
goto power_down;
ret = wilc_load_mac_from_nv(wilc);
if (ret) {
pr_err("Can not retrieve MAC address from chip\n");
goto power_down;
}
wilc_wlan_power(wilc, false);
vif = wilc_netdev_ifc_init(wilc, "wlan%d", WILC_STATION_MODE,
NL80211_IFTYPE_STATION, false);
if (IS_ERR(vif)) {
ret = PTR_ERR(vif);
goto power_down;
}
return 0;
power_down:
wilc_wlan_power(wilc, false);
netdev_cleanup:
wilc_netdev_cleanup(wilc);
free:
kfree(spi_priv);
return ret;
}
static void wilc_bus_remove(struct spi_device *spi)
{
struct wilc *wilc = spi_get_drvdata(spi);
struct wilc_spi *spi_priv = wilc->bus_data;
wilc_netdev_cleanup(wilc);
kfree(spi_priv);
}
static const struct of_device_id wilc_of_match[] = {
{ .compatible = "microchip,wilc1000", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, wilc_of_match);
static const struct spi_device_id wilc_spi_id[] = {
{ "wilc1000", 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(spi, wilc_spi_id);
static struct spi_driver wilc_spi_driver = {
.driver = {
.name = SPI_MODALIAS,
.of_match_table = wilc_of_match,
},
.id_table = wilc_spi_id,
.probe = wilc_bus_probe,
.remove = wilc_bus_remove,
};
module_spi_driver(wilc_spi_driver);
MODULE_DESCRIPTION("Atmel WILC1000 SPI wireless driver");
MODULE_LICENSE("GPL");
static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
{
struct spi_device *spi = to_spi_device(wilc->dev);
int ret;
struct spi_message msg;
if (len > 0 && b) {
struct spi_transfer tr = {
.tx_buf = b,
.len = len,
.delay = {
.value = 0,
.unit = SPI_DELAY_UNIT_USECS
},
};
char *r_buffer = kzalloc(len, GFP_KERNEL);
if (!r_buffer)
return -ENOMEM;
tr.rx_buf = r_buffer;
dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
memset(&msg, 0, sizeof(msg));
spi_message_init(&msg);
spi_message_add_tail(&tr, &msg);
ret = spi_sync(spi, &msg);
if (ret < 0)
dev_err(&spi->dev, "SPI transaction failed\n");
kfree(r_buffer);
} else {
dev_err(&spi->dev,
"can't write data with the following length: %d\n",
len);
ret = -EINVAL;
}
return ret;
}
static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
{
struct spi_device *spi = to_spi_device(wilc->dev);
int ret;
if (rlen > 0) {
struct spi_message msg;
struct spi_transfer tr = {
.rx_buf = rb,
.len = rlen,
.delay = {
.value = 0,
.unit = SPI_DELAY_UNIT_USECS
},
};
char *t_buffer = kzalloc(rlen, GFP_KERNEL);
if (!t_buffer)
return -ENOMEM;
tr.tx_buf = t_buffer;
memset(&msg, 0, sizeof(msg));
spi_message_init(&msg);
spi_message_add_tail(&tr, &msg);
ret = spi_sync(spi, &msg);
if (ret < 0)
dev_err(&spi->dev, "SPI transaction failed\n");
kfree(t_buffer);
} else {
dev_err(&spi->dev,
"can't read data with the following length: %u\n",
rlen);
ret = -EINVAL;
}
return ret;
}
static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
{
struct spi_device *spi = to_spi_device(wilc->dev);
int ret;
if (rlen > 0) {
struct spi_message msg;
struct spi_transfer tr = {
.rx_buf = rb,
.tx_buf = wb,
.len = rlen,
.bits_per_word = 8,
.delay = {
.value = 0,
.unit = SPI_DELAY_UNIT_USECS
},
};
memset(&msg, 0, sizeof(msg));
spi_message_init(&msg);
spi_message_add_tail(&tr, &msg);
ret = spi_sync(spi, &msg);
if (ret < 0)
dev_err(&spi->dev, "SPI transaction failed\n");
} else {
dev_err(&spi->dev,
"can't read data with the following length: %u\n",
rlen);
ret = -EINVAL;
}
return ret;
}
static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
{
struct spi_device *spi = to_spi_device(wilc->dev);
struct wilc_spi *spi_priv = wilc->bus_data;
int ix, nbytes;
int result = 0;
u8 cmd, order, crc[2];
u16 crc_calc;
/*
* Data
*/
ix = 0;
do {
if (sz <= DATA_PKT_SZ) {
nbytes = sz;
order = 0x3;
} else {
nbytes = DATA_PKT_SZ;
if (ix == 0)
order = 0x1;
else
order = 0x02;
}
/*
* Write command
*/
cmd = 0xf0;
cmd |= order;
if (wilc_spi_tx(wilc, &cmd, 1)) {
dev_err(&spi->dev,
"Failed data block cmd write, bus error...\n");
result = -EINVAL;
break;
}
/*
* Write data
*/
if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
dev_err(&spi->dev,
"Failed data block write, bus error...\n");
result = -EINVAL;
break;
}
/*
* Write CRC
*/
if (spi_priv->crc16_enabled) {
crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
crc[0] = crc_calc >> 8;
crc[1] = crc_calc;
if (wilc_spi_tx(wilc, crc, 2)) {
dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
result = -EINVAL;
break;
}
}
/*
* No need to wait for response
*/
ix += nbytes;
sz -= nbytes;
} while (sz);
return result;
}
/********************************************
*
* Spi Internal Read/Write Function
*
********************************************/
static u8 wilc_get_crc7(u8 *buffer, u32 len)
{
return crc7_be(0xfe, buffer, len) | 0x01;
}
static int wilc_spi_single_read(struct wilc *wilc, u8 cmd, u32 adr, void *b,
u8 clockless)
{
struct spi_device *spi = to_spi_device(wilc->dev);
struct wilc_spi *spi_priv = wilc->bus_data;
u8 wb[32], rb[32];
int cmd_len, resp_len, i;
u16 crc_calc, crc_recv;
struct wilc_spi_cmd *c;
struct wilc_spi_rsp_data *r;
struct wilc_spi_read_rsp_data *r_data;
memset(wb, 0x0, sizeof(wb));
memset(rb, 0x0, sizeof(rb));
c = (struct wilc_spi_cmd *)wb;
c->cmd_type = cmd;
if (cmd == CMD_SINGLE_READ) {
c->u.simple_cmd.addr[0] = adr >> 16;
c->u.simple_cmd.addr[1] = adr >> 8;
c->u.simple_cmd.addr[2] = adr;
} else if (cmd == CMD_INTERNAL_READ) {
c->u.simple_cmd.addr[0] = adr >> 8;
if (clockless == 1)
c->u.simple_cmd.addr[0] |= BIT(7);
c->u.simple_cmd.addr[1] = adr;
c->u.simple_cmd.addr[2] = 0x0;
} else {
dev_err(&spi->dev, "cmd [%x] not supported\n", cmd);
return -EINVAL;
}
cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
resp_len = sizeof(*r) + sizeof(*r_data) + WILC_SPI_RSP_HDR_EXTRA_DATA;
if (spi_priv->crc7_enabled) {
c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
cmd_len += 1;
resp_len += 2;
}
if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
dev_err(&spi->dev,
"spi buffer size too small (%d) (%d) (%zu)\n",
cmd_len, resp_len, ARRAY_SIZE(wb));
return -EINVAL;
}
if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
dev_err(&spi->dev, "Failed cmd write, bus error...\n");
return -EINVAL;
}
r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
if (r->rsp_cmd_type != cmd && !clockless) {
if (!spi_priv->probing_crc)
dev_err(&spi->dev,
"Failed cmd, cmd (%02x), resp (%02x)\n",
cmd, r->rsp_cmd_type);
return -EINVAL;
}
if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
r->status);
return -EINVAL;
}
for (i = 0; i < WILC_SPI_RSP_HDR_EXTRA_DATA; ++i)
if (WILC_GET_RESP_HDR_START(r->data[i]) == 0xf)
break;
if (i >= WILC_SPI_RSP_HDR_EXTRA_DATA) {
dev_err(&spi->dev, "Error, data start missing\n");
return -EINVAL;
}
r_data = (struct wilc_spi_read_rsp_data *)&r->data[i];
if (b)
memcpy(b, r_data->data, 4);
if (!clockless && spi_priv->crc16_enabled) {
crc_recv = (r_data->crc[0] << 8) | r_data->crc[1];
crc_calc = crc_itu_t(0xffff, r_data->data, 4);
if (crc_recv != crc_calc) {
dev_err(&spi->dev, "%s: bad CRC 0x%04x "
"(calculated 0x%04x)\n", __func__,
crc_recv, crc_calc);
return -EINVAL;
}
}
return 0;
}
static int wilc_spi_write_cmd(struct wilc *wilc, u8 cmd, u32 adr, u32 data,
u8 clockless)
{
struct spi_device *spi = to_spi_device(wilc->dev);
struct wilc_spi *spi_priv = wilc->bus_data;
u8 wb[32], rb[32];
int cmd_len, resp_len;
struct wilc_spi_cmd *c;
struct wilc_spi_rsp_data *r;
memset(wb, 0x0, sizeof(wb));
memset(rb, 0x0, sizeof(rb));
c = (struct wilc_spi_cmd *)wb;
c->cmd_type = cmd;
if (cmd == CMD_INTERNAL_WRITE) {
c->u.internal_w_cmd.addr[0] = adr >> 8;
if (clockless == 1)
c->u.internal_w_cmd.addr[0] |= BIT(7);
c->u.internal_w_cmd.addr[1] = adr;
c->u.internal_w_cmd.data = cpu_to_be32(data);
cmd_len = offsetof(struct wilc_spi_cmd, u.internal_w_cmd.crc);
if (spi_priv->crc7_enabled)
c->u.internal_w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
} else if (cmd == CMD_SINGLE_WRITE) {
c->u.w_cmd.addr[0] = adr >> 16;
c->u.w_cmd.addr[1] = adr >> 8;
c->u.w_cmd.addr[2] = adr;
c->u.w_cmd.data = cpu_to_be32(data);
cmd_len = offsetof(struct wilc_spi_cmd, u.w_cmd.crc);
if (spi_priv->crc7_enabled)
c->u.w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
} else {
dev_err(&spi->dev, "write cmd [%x] not supported\n", cmd);
return -EINVAL;
}
if (spi_priv->crc7_enabled)
cmd_len += 1;
resp_len = sizeof(*r);
if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
dev_err(&spi->dev,
"spi buffer size too small (%d) (%d) (%zu)\n",
cmd_len, resp_len, ARRAY_SIZE(wb));
return -EINVAL;
}
if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
dev_err(&spi->dev, "Failed cmd write, bus error...\n");
return -EINVAL;
}
r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
/*
* Clockless registers operations might return unexptected responses,
* even if successful.
*/
if (r->rsp_cmd_type != cmd && !clockless) {
dev_err(&spi->dev,
"Failed cmd response, cmd (%02x), resp (%02x)\n",
cmd, r->rsp_cmd_type);
return -EINVAL;
}
if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) {
dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
r->status);
return -EINVAL;
}
return 0;
}
static int wilc_spi_dma_rw(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz)
{
struct spi_device *spi = to_spi_device(wilc->dev);
struct wilc_spi *spi_priv = wilc->bus_data;
u16 crc_recv, crc_calc;
u8 wb[32], rb[32];
int cmd_len, resp_len;
int retry, ix = 0;
u8 crc[2];
struct wilc_spi_cmd *c;
struct wilc_spi_rsp_data *r;
memset(wb, 0x0, sizeof(wb));
memset(rb, 0x0, sizeof(rb));
c = (struct wilc_spi_cmd *)wb;
c->cmd_type = cmd;
if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_READ) {
c->u.dma_cmd.addr[0] = adr >> 16;
c->u.dma_cmd.addr[1] = adr >> 8;
c->u.dma_cmd.addr[2] = adr;
c->u.dma_cmd.size[0] = sz >> 8;
c->u.dma_cmd.size[1] = sz;
cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd.crc);
if (spi_priv->crc7_enabled)
c->u.dma_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
} else if (cmd == CMD_DMA_EXT_WRITE || cmd == CMD_DMA_EXT_READ) {
c->u.dma_cmd_ext.addr[0] = adr >> 16;
c->u.dma_cmd_ext.addr[1] = adr >> 8;
c->u.dma_cmd_ext.addr[2] = adr;
c->u.dma_cmd_ext.size[0] = sz >> 16;
c->u.dma_cmd_ext.size[1] = sz >> 8;
c->u.dma_cmd_ext.size[2] = sz;
cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd_ext.crc);
if (spi_priv->crc7_enabled)
c->u.dma_cmd_ext.crc[0] = wilc_get_crc7(wb, cmd_len);
} else {
dev_err(&spi->dev, "dma read write cmd [%x] not supported\n",
cmd);
return -EINVAL;
}
if (spi_priv->crc7_enabled)
cmd_len += 1;
resp_len = sizeof(*r);
if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
dev_err(&spi->dev, "spi buffer size too small (%d)(%d) (%zu)\n",
cmd_len, resp_len, ARRAY_SIZE(wb));
return -EINVAL;
}
if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
dev_err(&spi->dev, "Failed cmd write, bus error...\n");
return -EINVAL;
}
r = (struct wilc_spi_rsp_data *)&rb[cmd_len];
if (r->rsp_cmd_type != cmd) {
dev_err(&spi->dev,
"Failed cmd response, cmd (%02x), resp (%02x)\n",
cmd, r->rsp_cmd_type);
return -EINVAL;
}
if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
r->status);
return -EINVAL;
}
if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_EXT_WRITE)
return 0;
while (sz > 0) {
int nbytes;
u8 rsp;
nbytes = min_t(u32, sz, DATA_PKT_SZ);
/*
* Data Response header
*/
retry = 100;
do {
if (wilc_spi_rx(wilc, &rsp, 1)) {
dev_err(&spi->dev,
"Failed resp read, bus err\n");
return -EINVAL;
}
if (WILC_GET_RESP_HDR_START(rsp) == 0xf)
break;
} while (retry--);
/*
* Read bytes
*/
if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
dev_err(&spi->dev,
"Failed block read, bus err\n");
return -EINVAL;
}
/*
* Read CRC
*/
if (spi_priv->crc16_enabled) {
if (wilc_spi_rx(wilc, crc, 2)) {
dev_err(&spi->dev,
"Failed block CRC read, bus err\n");
return -EINVAL;
}
crc_recv = (crc[0] << 8) | crc[1];
crc_calc = crc_itu_t(0xffff, &b[ix], nbytes);
if (crc_recv != crc_calc) {
dev_err(&spi->dev, "%s: bad CRC 0x%04x "
"(calculated 0x%04x)\n", __func__,
crc_recv, crc_calc);
return -EINVAL;
}
}
ix += nbytes;
sz -= nbytes;
}
return 0;
}
static int wilc_spi_special_cmd(struct wilc *wilc, u8 cmd)
{
struct spi_device *spi = to_spi_device(wilc->dev);
struct wilc_spi *spi_priv = wilc->bus_data;
u8 wb[32], rb[32];
int cmd_len, resp_len = 0;
struct wilc_spi_cmd *c;
struct wilc_spi_special_cmd_rsp *r;
if (cmd != CMD_TERMINATE && cmd != CMD_REPEAT && cmd != CMD_RESET)
return -EINVAL;
memset(wb, 0x0, sizeof(wb));
memset(rb, 0x0, sizeof(rb));
c = (struct wilc_spi_cmd *)wb;
c->cmd_type = cmd;
if (cmd == CMD_RESET)
memset(c->u.simple_cmd.addr, 0xFF, 3);
cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc);
resp_len = sizeof(*r);
if (spi_priv->crc7_enabled) {
c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len);
cmd_len += 1;
}
if (cmd_len + resp_len > ARRAY_SIZE(wb)) {
dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n",
cmd_len, resp_len, ARRAY_SIZE(wb));
return -EINVAL;
}
if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) {
dev_err(&spi->dev, "Failed cmd write, bus error...\n");
return -EINVAL;
}
r = (struct wilc_spi_special_cmd_rsp *)&rb[cmd_len];
if (r->rsp_cmd_type != cmd) {
if (!spi_priv->probing_crc)
dev_err(&spi->dev,
"Failed cmd response, cmd (%02x), resp (%02x)\n",
cmd, r->rsp_cmd_type);
return -EINVAL;
}
if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) {
dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
r->status);
return -EINVAL;
}
return 0;
}
static void wilc_spi_reset_cmd_sequence(struct wilc *wl, u8 attempt, u32 addr)
{
struct spi_device *spi = to_spi_device(wl->dev);
struct wilc_spi *spi_priv = wl->bus_data;
if (!spi_priv->probing_crc)
dev_err(&spi->dev, "Reset and retry %d %x\n", attempt, addr);
usleep_range(1000, 1100);
wilc_spi_reset(wl);
usleep_range(1000, 1100);
}
static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
{
struct spi_device *spi = to_spi_device(wilc->dev);
int result;
u8 cmd = CMD_SINGLE_READ;
u8 clockless = 0;
u8 i;
if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
/* Clockless register */
cmd = CMD_INTERNAL_READ;
clockless = 1;
}
for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
result = wilc_spi_single_read(wilc, cmd, addr, data, clockless);
if (!result) {
le32_to_cpus(data);
return 0;
}
/* retry is not applicable for clockless registers */
if (clockless)
break;
dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
wilc_spi_reset_cmd_sequence(wilc, i, addr);
}
return result;
}
static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
{
struct spi_device *spi = to_spi_device(wilc->dev);
int result;
u8 i;
if (size <= 4)
return -EINVAL;
for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_READ, addr,
buf, size);
if (!result)
return 0;
dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
wilc_spi_reset_cmd_sequence(wilc, i, addr);
}
return result;
}
static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
{
struct spi_device *spi = to_spi_device(wilc->dev);
int result;
u8 i;
for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
result = wilc_spi_write_cmd(wilc, CMD_INTERNAL_WRITE, adr,
dat, 0);
if (!result)
return 0;
dev_err(&spi->dev, "Failed internal write cmd...\n");
wilc_spi_reset_cmd_sequence(wilc, i, adr);
}
return result;
}
static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
{
struct spi_device *spi = to_spi_device(wilc->dev);
struct wilc_spi *spi_priv = wilc->bus_data;
int result;
u8 i;
for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
result = wilc_spi_single_read(wilc, CMD_INTERNAL_READ, adr,
data, 0);
if (!result) {
le32_to_cpus(data);
return 0;
}
if (!spi_priv->probing_crc)
dev_err(&spi->dev, "Failed internal read cmd...\n");
wilc_spi_reset_cmd_sequence(wilc, i, adr);
}
return result;
}
/********************************************
*
* Spi interfaces
*
********************************************/
static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
{
struct spi_device *spi = to_spi_device(wilc->dev);
int result;
u8 cmd = CMD_SINGLE_WRITE;
u8 clockless = 0;
u8 i;
if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) {
/* Clockless register */
cmd = CMD_INTERNAL_WRITE;
clockless = 1;
}
for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
result = wilc_spi_write_cmd(wilc, cmd, addr, data, clockless);
if (!result)
return 0;
dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
if (clockless)
break;
wilc_spi_reset_cmd_sequence(wilc, i, addr);
}
return result;
}
static int spi_data_rsp(struct wilc *wilc, u8 cmd)
{
struct spi_device *spi = to_spi_device(wilc->dev);
int result, i;
u8 rsp[4];
/*
* The response to data packets is two bytes long. For
* efficiency's sake, wilc_spi_write() wisely ignores the
* responses for all packets but the final one. The downside
* of that optimization is that when the final data packet is
* short, we may receive (part of) the response to the
* second-to-last packet before the one for the final packet.
* To handle this, we always read 4 bytes and then search for
* the last byte that contains the "Response Start" code (0xc
* in the top 4 bits). We then know that this byte is the
* first response byte of the final data packet.
*/
result = wilc_spi_rx(wilc, rsp, sizeof(rsp));
if (result) {
dev_err(&spi->dev, "Failed bus error...\n");
return result;
}
for (i = sizeof(rsp) - 2; i >= 0; --i)
if (FIELD_GET(RSP_START_FIELD, rsp[i]) == RSP_START_TAG)
break;
if (i < 0) {
dev_err(&spi->dev,
"Data packet response missing (%02x %02x %02x %02x)\n",
rsp[0], rsp[1], rsp[2], rsp[3]);
return -1;
}
/* rsp[i] is the last response start byte */
if (FIELD_GET(RSP_TYPE_FIELD, rsp[i]) != RSP_TYPE_LAST_PACKET
|| rsp[i + 1] != RSP_STATE_NO_ERROR) {
dev_err(&spi->dev, "Data response error (%02x %02x)\n",
rsp[i], rsp[i + 1]);
return -1;
}
return 0;
}
static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
{
struct spi_device *spi = to_spi_device(wilc->dev);
int result;
u8 i;
/*
* has to be greated than 4
*/
if (size <= 4)
return -EINVAL;
for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) {
result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_WRITE, addr,
NULL, size);
if (result) {
dev_err(&spi->dev,
"Failed cmd, write block (%08x)...\n", addr);
wilc_spi_reset_cmd_sequence(wilc, i, addr);
continue;
}
/*
* Data
*/
result = spi_data_write(wilc, buf, size);
if (result) {
dev_err(&spi->dev, "Failed block data write...\n");
wilc_spi_reset_cmd_sequence(wilc, i, addr);
continue;
}
/*
* Data response
*/
result = spi_data_rsp(wilc, CMD_DMA_EXT_WRITE);
if (result) {
dev_err(&spi->dev, "Failed block data rsp...\n");
wilc_spi_reset_cmd_sequence(wilc, i, addr);
continue;
}
break;
}
return result;
}
/********************************************
*
* Bus interfaces
*
********************************************/
static int wilc_spi_reset(struct wilc *wilc)
{
struct spi_device *spi = to_spi_device(wilc->dev);
struct wilc_spi *spi_priv = wilc->bus_data;
int result;
result = wilc_spi_special_cmd(wilc, CMD_RESET);
if (result && !spi_priv->probing_crc)
dev_err(&spi->dev, "Failed cmd reset\n");
return result;
}
static bool wilc_spi_is_init(struct wilc *wilc)
{
struct wilc_spi *spi_priv = wilc->bus_data;
return spi_priv->isinit;
}
static int wilc_spi_deinit(struct wilc *wilc)
{
struct wilc_spi *spi_priv = wilc->bus_data;
spi_priv->isinit = false;
wilc_wlan_power(wilc, false);
return 0;
}
static int wilc_spi_init(struct wilc *wilc, bool resume)
{
struct wilc_spi *spi_priv = wilc->bus_data;
int ret;
if (spi_priv->isinit) {
/* Confirm we can read chipid register without error: */
if (wilc_validate_chipid(wilc) == 0)
return 0;
}
wilc_wlan_power(wilc, true);
ret = wilc_spi_configure_bus_protocol(wilc);
if (ret) {
wilc_wlan_power(wilc, false);
return ret;
}
spi_priv->isinit = true;
return 0;
}
static int wilc_spi_configure_bus_protocol(struct wilc *wilc)
{
struct spi_device *spi = to_spi_device(wilc->dev);
struct wilc_spi *spi_priv = wilc->bus_data;
u32 reg;
int ret, i;
/*
* Infer the CRC settings that are currently in effect. This
* is necessary because we can't be sure that the chip has
* been RESET (e.g, after module unload and reload).
*/
spi_priv->probing_crc = true;
spi_priv->crc7_enabled = enable_crc7;
spi_priv->crc16_enabled = false; /* don't check CRC16 during probing */
for (i = 0; i < 2; ++i) {
ret = spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg);
if (ret == 0)
break;
spi_priv->crc7_enabled = !enable_crc7;
}
if (ret) {
dev_err(&spi->dev, "Failed with CRC7 on and off.\n");
return ret;
}
/* set up the desired CRC configuration: */
reg &= ~(PROTOCOL_REG_CRC7_MASK | PROTOCOL_REG_CRC16_MASK);
if (enable_crc7)
reg |= PROTOCOL_REG_CRC7_MASK;
if (enable_crc16)
reg |= PROTOCOL_REG_CRC16_MASK;
/* set up the data packet size: */
BUILD_BUG_ON(DATA_PKT_LOG_SZ < DATA_PKT_LOG_SZ_MIN
|| DATA_PKT_LOG_SZ > DATA_PKT_LOG_SZ_MAX);
reg &= ~PROTOCOL_REG_PKT_SZ_MASK;
reg |= FIELD_PREP(PROTOCOL_REG_PKT_SZ_MASK,
DATA_PKT_LOG_SZ - DATA_PKT_LOG_SZ_MIN);
/* establish the new setup: */
ret = spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg);
if (ret) {
dev_err(&spi->dev,
"[wilc spi %d]: Failed internal write reg\n",
__LINE__);
return ret;
}
/* update our state to match new protocol settings: */
spi_priv->crc7_enabled = enable_crc7;
spi_priv->crc16_enabled = enable_crc16;
/* re-read to make sure new settings are in effect: */
spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg);
spi_priv->probing_crc = false;
return 0;
}
static int wilc_validate_chipid(struct wilc *wilc)
{
struct spi_device *spi = to_spi_device(wilc->dev);
u32 chipid;
int ret;
/*
* make sure can read chip id without protocol error
*/
ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid);
if (ret) {
dev_err(&spi->dev, "Fail cmd read chip id...\n");
return ret;
}
if (!is_wilc1000(chipid)) {
dev_err(&spi->dev, "Unknown chip id 0x%x\n", chipid);
return -ENODEV;
}
return 0;
}
static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
{
int ret;
ret = spi_internal_read(wilc,
WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, size);
*size = FIELD_GET(IRQ_DMA_WD_CNT_MASK, *size);
return ret;
}
static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
{
return spi_internal_read(wilc, WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE,
int_status);
}
static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
{
int ret;
int retry = SPI_ENABLE_VMM_RETRY_LIMIT;
u32 check;
while (retry) {
ret = spi_internal_write(wilc,
WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
val);
if (ret)
break;
ret = spi_internal_read(wilc,
WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE,
&check);
if (ret || ((check & EN_VMM) == (val & EN_VMM)))
break;
retry--;
}
return ret;
}
static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
{
struct spi_device *spi = to_spi_device(wilc->dev);
u32 reg;
int ret, i;
if (nint > MAX_NUM_INT) {
dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
return -EINVAL;
}
/*
* interrupt pin mux select
*/
ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, &reg);
if (ret) {
dev_err(&spi->dev, "Failed read reg (%08x)...\n",
WILC_PIN_MUX_0);
return ret;
}
reg |= BIT(8);
ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
if (ret) {
dev_err(&spi->dev, "Failed write reg (%08x)...\n",
WILC_PIN_MUX_0);
return ret;
}
/*
* interrupt enable
*/
ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, &reg);
if (ret) {
dev_err(&spi->dev, "Failed read reg (%08x)...\n",
WILC_INTR_ENABLE);
return ret;
}
for (i = 0; (i < 5) && (nint > 0); i++, nint--)
reg |= (BIT((27 + i)));
ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
if (ret) {
dev_err(&spi->dev, "Failed write reg (%08x)...\n",
WILC_INTR_ENABLE);
return ret;
}
if (nint) {
ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
if (ret) {
dev_err(&spi->dev, "Failed read reg (%08x)...\n",
WILC_INTR2_ENABLE);
return ret;
}
for (i = 0; (i < 3) && (nint > 0); i++, nint--)
reg |= BIT(i);
ret = wilc_spi_write_reg(wilc, WILC_INTR2_ENABLE, reg);
if (ret) {
dev_err(&spi->dev, "Failed write reg (%08x)...\n",
WILC_INTR2_ENABLE);
return ret;
}
}
return 0;
}
/* Global spi HIF function table */
static const struct wilc_hif_func wilc_hif_spi = {
.hif_init = wilc_spi_init,
.hif_deinit = wilc_spi_deinit,
.hif_read_reg = wilc_spi_read_reg,
.hif_write_reg = wilc_spi_write_reg,
.hif_block_rx = wilc_spi_read,
.hif_block_tx = wilc_spi_write,
.hif_read_int = wilc_spi_read_int,
.hif_clear_int_ext = wilc_spi_clear_int_ext,
.hif_read_size = wilc_spi_read_size,
.hif_block_tx_ext = wilc_spi_write,
.hif_block_rx_ext = wilc_spi_read,
.hif_sync_ext = wilc_spi_sync_ext,
.hif_reset = wilc_spi_reset,
.hif_is_init = wilc_spi_is_init,
};