blob: 514df618548e28e624c71ba1fbb426d678789a49 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update.h"
#include "btree_iter.h"
#include "btree_journal_iter.h"
#include "btree_locking.h"
#include "buckets.h"
#include "debug.h"
#include "errcode.h"
#include "error.h"
#include "extents.h"
#include "keylist.h"
#include "snapshot.h"
#include "trace.h"
static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
const struct btree_insert_entry *r)
{
return cmp_int(l->btree_id, r->btree_id) ?:
cmp_int(l->cached, r->cached) ?:
-cmp_int(l->level, r->level) ?:
bpos_cmp(l->k->k.p, r->k->k.p);
}
static int __must_check
bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t,
struct bkey_i *, enum btree_iter_update_trigger_flags,
unsigned long ip);
static noinline int extent_front_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k,
struct bkey_i **insert,
enum btree_iter_update_trigger_flags flags)
{
struct bch_fs *c = trans->c;
struct bkey_i *update;
int ret;
if (unlikely(trans->journal_replay_not_finished))
return 0;
update = bch2_bkey_make_mut_noupdate(trans, k);
ret = PTR_ERR_OR_ZERO(update);
if (ret)
return ret;
if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
return 0;
ret = bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?:
bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p);
if (ret < 0)
return ret;
if (ret)
return 0;
ret = bch2_btree_delete_at(trans, iter, flags);
if (ret)
return ret;
*insert = update;
return 0;
}
static noinline int extent_back_merge(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *insert,
struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
int ret;
if (unlikely(trans->journal_replay_not_finished))
return 0;
ret = bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?:
bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p);
if (ret < 0)
return ret;
if (ret)
return 0;
bch2_bkey_merge(c, bkey_i_to_s(insert), k);
return 0;
}
/*
* When deleting, check if we need to emit a whiteout (because we're overwriting
* something in an ancestor snapshot)
*/
static int need_whiteout_for_snapshot(struct btree_trans *trans,
enum btree_id btree_id, struct bpos pos)
{
struct btree_iter iter;
struct bkey_s_c k;
u32 snapshot = pos.snapshot;
int ret;
if (!bch2_snapshot_parent(trans->c, pos.snapshot))
return 0;
pos.snapshot++;
for_each_btree_key_norestart(trans, iter, btree_id, pos,
BTREE_ITER_all_snapshots|
BTREE_ITER_nopreserve, k, ret) {
if (!bkey_eq(k.k->p, pos))
break;
if (bch2_snapshot_is_ancestor(trans->c, snapshot,
k.k->p.snapshot)) {
ret = !bkey_whiteout(k.k);
break;
}
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
enum btree_id id,
struct bpos old_pos,
struct bpos new_pos)
{
struct bch_fs *c = trans->c;
struct btree_iter old_iter, new_iter = { NULL };
struct bkey_s_c old_k, new_k;
snapshot_id_list s;
struct bkey_i *update;
int ret = 0;
if (!bch2_snapshot_has_children(c, old_pos.snapshot))
return 0;
darray_init(&s);
bch2_trans_iter_init(trans, &old_iter, id, old_pos,
BTREE_ITER_not_extents|
BTREE_ITER_all_snapshots);
while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
!(ret = bkey_err(old_k)) &&
bkey_eq(old_pos, old_k.k->p)) {
struct bpos whiteout_pos =
SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);;
if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
continue;
new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
BTREE_ITER_not_extents|
BTREE_ITER_intent);
ret = bkey_err(new_k);
if (ret)
break;
if (new_k.k->type == KEY_TYPE_deleted) {
update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
ret = PTR_ERR_OR_ZERO(update);
if (ret)
break;
bkey_init(&update->k);
update->k.p = whiteout_pos;
update->k.type = KEY_TYPE_whiteout;
ret = bch2_trans_update(trans, &new_iter, update,
BTREE_UPDATE_internal_snapshot_node);
}
bch2_trans_iter_exit(trans, &new_iter);
ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
if (ret)
break;
}
bch2_trans_iter_exit(trans, &new_iter);
bch2_trans_iter_exit(trans, &old_iter);
darray_exit(&s);
return ret;
}
int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
struct btree_iter *iter,
enum btree_iter_update_trigger_flags flags,
struct bkey_s_c old,
struct bkey_s_c new)
{
enum btree_id btree_id = iter->btree_id;
struct bkey_i *update;
struct bpos new_start = bkey_start_pos(new.k);
unsigned front_split = bkey_lt(bkey_start_pos(old.k), new_start);
unsigned back_split = bkey_gt(old.k->p, new.k->p);
unsigned middle_split = (front_split || back_split) &&
old.k->p.snapshot != new.k->p.snapshot;
unsigned nr_splits = front_split + back_split + middle_split;
int ret = 0, compressed_sectors;
/*
* If we're going to be splitting a compressed extent, note it
* so that __bch2_trans_commit() can increase our disk
* reservation:
*/
if (nr_splits > 1 &&
(compressed_sectors = bch2_bkey_sectors_compressed(old)))
trans->extra_disk_res += compressed_sectors * (nr_splits - 1);
if (front_split) {
update = bch2_bkey_make_mut_noupdate(trans, old);
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bch2_cut_back(new_start, update);
ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
old.k->p, update->k.p) ?:
bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_internal_snapshot_node|flags);
if (ret)
return ret;
}
/* If we're overwriting in a different snapshot - middle split: */
if (middle_split) {
update = bch2_bkey_make_mut_noupdate(trans, old);
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bch2_cut_front(new_start, update);
bch2_cut_back(new.k->p, update);
ret = bch2_insert_snapshot_whiteouts(trans, btree_id,
old.k->p, update->k.p) ?:
bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_internal_snapshot_node|flags);
if (ret)
return ret;
}
if (bkey_le(old.k->p, new.k->p)) {
update = bch2_trans_kmalloc(trans, sizeof(*update));
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bkey_init(&update->k);
update->k.p = old.k->p;
update->k.p.snapshot = new.k->p.snapshot;
if (new.k->p.snapshot != old.k->p.snapshot) {
update->k.type = KEY_TYPE_whiteout;
} else if (btree_type_has_snapshots(btree_id)) {
ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
if (ret < 0)
return ret;
if (ret)
update->k.type = KEY_TYPE_whiteout;
}
ret = bch2_btree_insert_nonextent(trans, btree_id, update,
BTREE_UPDATE_internal_snapshot_node|flags);
if (ret)
return ret;
}
if (back_split) {
update = bch2_bkey_make_mut_noupdate(trans, old);
if ((ret = PTR_ERR_OR_ZERO(update)))
return ret;
bch2_cut_front(new.k->p, update);
ret = bch2_trans_update_by_path(trans, iter->path, update,
BTREE_UPDATE_internal_snapshot_node|
flags, _RET_IP_);
if (ret)
return ret;
}
return 0;
}
static int bch2_trans_update_extent(struct btree_trans *trans,
struct btree_iter *orig_iter,
struct bkey_i *insert,
enum btree_iter_update_trigger_flags flags)
{
struct btree_iter iter;
struct bkey_s_c k;
enum btree_id btree_id = orig_iter->btree_id;
int ret = 0;
bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
BTREE_ITER_intent|
BTREE_ITER_with_updates|
BTREE_ITER_not_extents);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
ret = extent_front_merge(trans, &iter, k, &insert, flags);
if (ret)
goto err;
}
goto next;
}
while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
bool done = bkey_lt(insert->k.p, k.k->p);
ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
if (ret)
goto err;
if (done)
goto out;
next:
bch2_btree_iter_advance(&iter);
k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
if ((ret = bkey_err(k)))
goto err;
if (!k.k)
goto out;
}
if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
ret = extent_back_merge(trans, &iter, insert, k);
if (ret)
goto err;
}
out:
if (!bkey_deleted(&insert->k))
ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
err:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static noinline int flush_new_cached_update(struct btree_trans *trans,
struct btree_insert_entry *i,
enum btree_iter_update_trigger_flags flags,
unsigned long ip)
{
struct bkey k;
int ret;
btree_path_idx_t path_idx =
bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0,
BTREE_ITER_intent, _THIS_IP_);
ret = bch2_btree_path_traverse(trans, path_idx, 0);
if (ret)
goto out;
struct btree_path *btree_path = trans->paths + path_idx;
/*
* The old key in the insert entry might actually refer to an existing
* key in the btree that has been deleted from cache and not yet
* flushed. Check for this and skip the flush so we don't run triggers
* against a stale key.
*/
bch2_btree_path_peek_slot_exact(btree_path, &k);
if (!bkey_deleted(&k))
goto out;
i->key_cache_already_flushed = true;
i->flags |= BTREE_TRIGGER_norun;
btree_path_set_should_be_locked(trans, btree_path);
ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip);
out:
bch2_path_put(trans, path_idx, true);
return ret;
}
static int __must_check
bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx,
struct bkey_i *k, enum btree_iter_update_trigger_flags flags,
unsigned long ip)
{
struct bch_fs *c = trans->c;
struct btree_insert_entry *i, n;
int cmp;
struct btree_path *path = trans->paths + path_idx;
EBUG_ON(!path->should_be_locked);
EBUG_ON(trans->nr_updates >= trans->nr_paths);
EBUG_ON(!bpos_eq(k->k.p, path->pos));
n = (struct btree_insert_entry) {
.flags = flags,
.bkey_type = __btree_node_type(path->level, path->btree_id),
.btree_id = path->btree_id,
.level = path->level,
.cached = path->cached,
.path = path_idx,
.k = k,
.ip_allocated = ip,
};
#ifdef CONFIG_BCACHEFS_DEBUG
trans_for_each_update(trans, i)
BUG_ON(i != trans->updates &&
btree_insert_entry_cmp(i - 1, i) >= 0);
#endif
/*
* Pending updates are kept sorted: first, find position of new update,
* then delete/trim any updates the new update overwrites:
*/
for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) {
cmp = btree_insert_entry_cmp(&n, i);
if (cmp <= 0)
break;
}
bool overwrite = !cmp && i < trans->updates + trans->nr_updates;
if (overwrite) {
EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
bch2_path_put(trans, i->path, true);
i->flags = n.flags;
i->cached = n.cached;
i->k = n.k;
i->path = n.path;
i->ip_allocated = n.ip_allocated;
} else {
array_insert_item(trans->updates, trans->nr_updates,
i - trans->updates, n);
i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
if (unlikely(trans->journal_replay_not_finished)) {
struct bkey_i *j_k =
bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
if (j_k) {
i->old_k = j_k->k;
i->old_v = &j_k->v;
}
}
}
__btree_path_get(trans, trans->paths + i->path, true);
trace_update_by_path(trans, path, i, overwrite);
/*
* If a key is present in the key cache, it must also exist in the
* btree - this is necessary for cache coherency. When iterating over
* a btree that's cached in the key cache, the btree iter code checks
* the key cache - but the key has to exist in the btree for that to
* work:
*/
if (path->cached && !i->old_btree_u64s)
return flush_new_cached_update(trans, i, flags, ip);
return 0;
}
static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans,
struct btree_iter *iter,
struct btree_path *path)
{
struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter);
if (!key_cache_path ||
!key_cache_path->should_be_locked ||
!bpos_eq(key_cache_path->pos, iter->pos)) {
struct bkey_cached *ck;
int ret;
if (!iter->key_cache_path)
iter->key_cache_path =
bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
BTREE_ITER_intent|
BTREE_ITER_cached, _THIS_IP_);
iter->key_cache_path =
bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
iter->flags & BTREE_ITER_intent,
_THIS_IP_);
ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_cached);
if (unlikely(ret))
return ret;
ck = (void *) trans->paths[iter->key_cache_path].l[0].b;
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
}
btree_path_set_should_be_locked(trans, trans->paths + iter->key_cache_path);
}
return 0;
}
int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
struct bkey_i *k, enum btree_iter_update_trigger_flags flags)
{
btree_path_idx_t path_idx = iter->update_path ?: iter->path;
int ret;
if (iter->flags & BTREE_ITER_is_extents)
return bch2_trans_update_extent(trans, iter, k, flags);
if (bkey_deleted(&k->k) &&
!(flags & BTREE_UPDATE_key_cache_reclaim) &&
(iter->flags & BTREE_ITER_filter_snapshots)) {
ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
if (unlikely(ret < 0))
return ret;
if (ret)
k->k.type = KEY_TYPE_whiteout;
}
/*
* Ensure that updates to cached btrees go to the key cache:
*/
struct btree_path *path = trans->paths + path_idx;
if (!(flags & BTREE_UPDATE_key_cache_reclaim) &&
!path->cached &&
!path->level &&
btree_id_cached(trans->c, path->btree_id)) {
ret = bch2_trans_update_get_key_cache(trans, iter, path);
if (ret)
return ret;
path_idx = iter->key_cache_path;
}
return bch2_trans_update_by_path(trans, path_idx, k, flags, _RET_IP_);
}
int bch2_btree_insert_clone_trans(struct btree_trans *trans,
enum btree_id btree,
struct bkey_i *k)
{
struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k));
int ret = PTR_ERR_OR_ZERO(n);
if (ret)
return ret;
bkey_copy(n, k);
return bch2_btree_insert_trans(trans, btree, n, 0);
}
struct jset_entry *__bch2_trans_jset_entry_alloc(struct btree_trans *trans, unsigned u64s)
{
unsigned new_top = trans->journal_entries_u64s + u64s;
unsigned old_size = trans->journal_entries_size;
if (new_top > trans->journal_entries_size) {
trans->journal_entries_size = roundup_pow_of_two(new_top);
btree_trans_stats(trans)->journal_entries_size = trans->journal_entries_size;
}
struct jset_entry *n =
bch2_trans_kmalloc_nomemzero(trans,
trans->journal_entries_size * sizeof(u64));
if (IS_ERR(n))
return ERR_CAST(n);
if (trans->journal_entries)
memcpy(n, trans->journal_entries, old_size * sizeof(u64));
trans->journal_entries = n;
struct jset_entry *e = btree_trans_journal_entries_top(trans);
trans->journal_entries_u64s = new_top;
return e;
}
int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
enum btree_id btree, struct bpos end)
{
struct bkey_s_c k;
int ret = 0;
bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_intent);
k = bch2_btree_iter_prev(iter);
ret = bkey_err(k);
if (ret)
goto err;
bch2_btree_iter_advance(iter);
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret)
goto err;
BUG_ON(k.k->type != KEY_TYPE_deleted);
if (bkey_gt(k.k->p, end)) {
ret = -BCH_ERR_ENOSPC_btree_slot;
goto err;
}
return 0;
err:
bch2_trans_iter_exit(trans, iter);
return ret;
}
void bch2_trans_commit_hook(struct btree_trans *trans,
struct btree_trans_commit_hook *h)
{
h->next = trans->hooks;
trans->hooks = h;
}
int bch2_btree_insert_nonextent(struct btree_trans *trans,
enum btree_id btree, struct bkey_i *k,
enum btree_iter_update_trigger_flags flags)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, btree, k->k.p,
BTREE_ITER_cached|
BTREE_ITER_not_extents|
BTREE_ITER_intent);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, flags);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id,
struct bkey_i *k, enum btree_iter_update_trigger_flags flags)
{
struct btree_iter iter;
bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
BTREE_ITER_intent|flags);
int ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, flags);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/**
* bch2_btree_insert - insert keys into the extent btree
* @c: pointer to struct bch_fs
* @id: btree to insert into
* @k: key to insert
* @disk_res: must be non-NULL whenever inserting or potentially
* splitting data extents
* @flags: transaction commit flags
* @iter_flags: btree iter update trigger flags
*
* Returns: 0 on success, error code on failure
*/
int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k,
struct disk_reservation *disk_res, int flags,
enum btree_iter_update_trigger_flags iter_flags)
{
return bch2_trans_do(c, disk_res, NULL, flags,
bch2_btree_insert_trans(trans, id, k, iter_flags));
}
int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
unsigned len, unsigned update_flags)
{
struct bkey_i *k;
k = bch2_trans_kmalloc(trans, sizeof(*k));
if (IS_ERR(k))
return PTR_ERR(k);
bkey_init(&k->k);
k->k.p = iter->pos;
bch2_key_resize(&k->k, len);
return bch2_trans_update(trans, iter, k, update_flags);
}
int bch2_btree_delete_at(struct btree_trans *trans,
struct btree_iter *iter, unsigned update_flags)
{
return bch2_btree_delete_extent_at(trans, iter, 0, update_flags);
}
int bch2_btree_delete(struct btree_trans *trans,
enum btree_id btree, struct bpos pos,
unsigned update_flags)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, btree, pos,
BTREE_ITER_cached|
BTREE_ITER_intent);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_btree_delete_at(trans, &iter, update_flags);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
u32 restart_count = trans->restart_count;
struct btree_iter iter;
struct bkey_s_c k;
int ret = 0;
bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_intent);
while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) {
struct disk_reservation disk_res =
bch2_disk_reservation_init(trans->c, 0);
struct bkey_i delete;
ret = bkey_err(k);
if (ret)
goto err;
bkey_init(&delete.k);
/*
* This could probably be more efficient for extents:
*/
/*
* For extents, iter.pos won't necessarily be the same as
* bkey_start_pos(k.k) (for non extents they always will be the
* same). It's important that we delete starting from iter.pos
* because the range we want to delete could start in the middle
* of k.
*
* (bch2_btree_iter_peek() does guarantee that iter.pos >=
* bkey_start_pos(k.k)).
*/
delete.k.p = iter.pos;
if (iter.flags & BTREE_ITER_is_extents)
bch2_key_resize(&delete.k,
bpos_min(end, k.k->p).offset -
iter.pos.offset);
ret = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
bch2_trans_commit(trans, &disk_res, journal_seq,
BCH_TRANS_COMMIT_no_enospc);
bch2_disk_reservation_put(trans->c, &disk_res);
err:
/*
* the bch2_trans_begin() call is in a weird place because we
* need to call it after every transaction commit, to avoid path
* overflow, but don't want to call it if the delete operation
* is a no-op and we have no work to do:
*/
bch2_trans_begin(trans);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
ret = 0;
if (ret)
break;
}
bch2_trans_iter_exit(trans, &iter);
return ret ?: trans_was_restarted(trans, restart_count);
}
/*
* bch_btree_delete_range - delete everything within a given range
*
* Range is a half open interval - [start, end)
*/
int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
struct bpos start, struct bpos end,
unsigned update_flags,
u64 *journal_seq)
{
int ret = bch2_trans_run(c,
bch2_btree_delete_range_trans(trans, id, start, end,
update_flags, journal_seq));
if (ret == -BCH_ERR_transaction_restart_nested)
ret = 0;
return ret;
}
int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
struct bpos pos, bool set)
{
struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
int ret = PTR_ERR_OR_ZERO(k);
if (ret)
return ret;
bkey_init(&k->k);
k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
k->k.p = pos;
struct btree_iter iter;
bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_intent);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update(trans, &iter, k, 0);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree,
struct bpos pos, bool set)
{
struct bkey_i k;
bkey_init(&k.k);
k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
k.k.p = pos;
return bch2_trans_update_buffered(trans, btree, &k);
}
static int __bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf, unsigned u64s)
{
struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(u64s));
int ret = PTR_ERR_OR_ZERO(e);
if (ret)
return ret;
struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry);
journal_entry_init(e, BCH_JSET_ENTRY_log, 0, 1, u64s);
memcpy(l->d, buf->buf, buf->pos);
return 0;
}
__printf(3, 0)
static int
__bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
va_list args)
{
struct printbuf buf = PRINTBUF;
prt_vprintf(&buf, fmt, args);
unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
prt_chars(&buf, '\0', u64s * sizeof(u64) - buf.pos);
int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
if (ret)
goto err;
if (!test_bit(JOURNAL_running, &c->journal.flags)) {
ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s));
if (ret)
goto err;
struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries);
journal_entry_init(&l->entry, BCH_JSET_ENTRY_log, 0, 1, u64s);
memcpy(l->d, buf.buf, buf.pos);
c->journal.early_journal_entries.nr += jset_u64s(u64s);
} else {
ret = bch2_trans_do(c, NULL, NULL,
BCH_TRANS_COMMIT_lazy_rw|commit_flags,
__bch2_trans_log_msg(trans, &buf, u64s));
}
err:
printbuf_exit(&buf);
return ret;
}
__printf(2, 3)
int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
{
va_list args;
int ret;
va_start(args, fmt);
ret = __bch2_fs_log_msg(c, 0, fmt, args);
va_end(args);
return ret;
}
/*
* Use for logging messages during recovery to enable reserved space and avoid
* blocking.
*/
__printf(2, 3)
int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
{
va_list args;
int ret;
va_start(args, fmt);
ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
va_end(args);
return ret;
}