blob: ea5fbcd133ae4c743545945def00790ec74e2bb6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* NET3 Protocol independent device support routines.
*
* Derived from the non IP parts of dev.c 1.0.19
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
*
* Additional Authors:
* Florian la Roche <rzsfl@rz.uni-sb.de>
* Alan Cox <gw4pts@gw4pts.ampr.org>
* David Hinds <dahinds@users.sourceforge.net>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
* Adam Sulmicki <adam@cfar.umd.edu>
* Pekka Riikonen <priikone@poesidon.pspt.fi>
*
* Changes:
* D.J. Barrow : Fixed bug where dev->refcnt gets set
* to 2 if register_netdev gets called
* before net_dev_init & also removed a
* few lines of code in the process.
* Alan Cox : device private ioctl copies fields back.
* Alan Cox : Transmit queue code does relevant
* stunts to keep the queue safe.
* Alan Cox : Fixed double lock.
* Alan Cox : Fixed promisc NULL pointer trap
* ???????? : Support the full private ioctl range
* Alan Cox : Moved ioctl permission check into
* drivers
* Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
* Alan Cox : 100 backlog just doesn't cut it when
* you start doing multicast video 8)
* Alan Cox : Rewrote net_bh and list manager.
* Alan Cox : Fix ETH_P_ALL echoback lengths.
* Alan Cox : Took out transmit every packet pass
* Saved a few bytes in the ioctl handler
* Alan Cox : Network driver sets packet type before
* calling netif_rx. Saves a function
* call a packet.
* Alan Cox : Hashed net_bh()
* Richard Kooijman: Timestamp fixes.
* Alan Cox : Wrong field in SIOCGIFDSTADDR
* Alan Cox : Device lock protection.
* Alan Cox : Fixed nasty side effect of device close
* changes.
* Rudi Cilibrasi : Pass the right thing to
* set_mac_address()
* Dave Miller : 32bit quantity for the device lock to
* make it work out on a Sparc.
* Bjorn Ekwall : Added KERNELD hack.
* Alan Cox : Cleaned up the backlog initialise.
* Craig Metz : SIOCGIFCONF fix if space for under
* 1 device.
* Thomas Bogendoerfer : Return ENODEV for dev_open, if there
* is no device open function.
* Andi Kleen : Fix error reporting for SIOCGIFCONF
* Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
* Cyrus Durgin : Cleaned for KMOD
* Adam Sulmicki : Bug Fix : Network Device Unload
* A network device unload needs to purge
* the backlog queue.
* Paul Rusty Russell : SIOCSIFNAME
* Pekka Riikonen : Netdev boot-time settings code
* Andrew Morton : Make unregister_netdevice wait
* indefinitely on dev->refcnt
* J Hadi Salim : - Backlog queue sampling
* - netif_rx() feedback
*/
#include <linux/uaccess.h>
#include <linux/bitmap.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/hash.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/sched/isolation.h>
#include <linux/sched/mm.h>
#include <linux/smpboot.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/kthread.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/busy_poll.h>
#include <linux/rtnetlink.h>
#include <linux/stat.h>
#include <net/dsa.h>
#include <net/dst.h>
#include <net/dst_metadata.h>
#include <net/gro.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/checksum.h>
#include <net/xfrm.h>
#include <net/tcx.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/netpoll.h>
#include <linux/rcupdate.h>
#include <linux/delay.h>
#include <net/iw_handler.h>
#include <asm/current.h>
#include <linux/audit.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <net/ip.h>
#include <net/mpls.h>
#include <linux/ipv6.h>
#include <linux/in.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <trace/events/napi.h>
#include <trace/events/net.h>
#include <trace/events/skb.h>
#include <trace/events/qdisc.h>
#include <trace/events/xdp.h>
#include <linux/inetdevice.h>
#include <linux/cpu_rmap.h>
#include <linux/static_key.h>
#include <linux/hashtable.h>
#include <linux/vmalloc.h>
#include <linux/if_macvlan.h>
#include <linux/errqueue.h>
#include <linux/hrtimer.h>
#include <linux/netfilter_netdev.h>
#include <linux/crash_dump.h>
#include <linux/sctp.h>
#include <net/udp_tunnel.h>
#include <linux/net_namespace.h>
#include <linux/indirect_call_wrapper.h>
#include <net/devlink.h>
#include <linux/pm_runtime.h>
#include <linux/prandom.h>
#include <linux/once_lite.h>
#include <net/netdev_rx_queue.h>
#include <net/page_pool/types.h>
#include <net/page_pool/helpers.h>
#include <net/rps.h>
#include <linux/phy_link_topology.h>
#include "dev.h"
#include "devmem.h"
#include "net-sysfs.h"
static DEFINE_SPINLOCK(ptype_lock);
struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
static int netif_rx_internal(struct sk_buff *skb);
static int call_netdevice_notifiers_extack(unsigned long val,
struct net_device *dev,
struct netlink_ext_ack *extack);
static DEFINE_MUTEX(ifalias_mutex);
/* protects napi_hash addition/deletion and napi_gen_id */
static DEFINE_SPINLOCK(napi_hash_lock);
static unsigned int napi_gen_id = NR_CPUS;
static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
static DECLARE_RWSEM(devnet_rename_sem);
static inline void dev_base_seq_inc(struct net *net)
{
unsigned int val = net->dev_base_seq + 1;
WRITE_ONCE(net->dev_base_seq, val ?: 1);
}
static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
{
unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
}
static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
{
return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
}
#ifndef CONFIG_PREEMPT_RT
static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
static int __init setup_backlog_napi_threads(char *arg)
{
static_branch_enable(&use_backlog_threads_key);
return 0;
}
early_param("thread_backlog_napi", setup_backlog_napi_threads);
static bool use_backlog_threads(void)
{
return static_branch_unlikely(&use_backlog_threads_key);
}
#else
static bool use_backlog_threads(void)
{
return true;
}
#endif
static inline void backlog_lock_irq_save(struct softnet_data *sd,
unsigned long *flags)
{
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
else
local_irq_save(*flags);
}
static inline void backlog_lock_irq_disable(struct softnet_data *sd)
{
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
spin_lock_irq(&sd->input_pkt_queue.lock);
else
local_irq_disable();
}
static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
unsigned long *flags)
{
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
else
local_irq_restore(*flags);
}
static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
{
if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
spin_unlock_irq(&sd->input_pkt_queue.lock);
else
local_irq_enable();
}
static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
const char *name)
{
struct netdev_name_node *name_node;
name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
if (!name_node)
return NULL;
INIT_HLIST_NODE(&name_node->hlist);
name_node->dev = dev;
name_node->name = name;
return name_node;
}
static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device *dev)
{
struct netdev_name_node *name_node;
name_node = netdev_name_node_alloc(dev, dev->name);
if (!name_node)
return NULL;
INIT_LIST_HEAD(&name_node->list);
return name_node;
}
static void netdev_name_node_free(struct netdev_name_node *name_node)
{
kfree(name_node);
}
static void netdev_name_node_add(struct net *net,
struct netdev_name_node *name_node)
{
hlist_add_head_rcu(&name_node->hlist,
dev_name_hash(net, name_node->name));
}
static void netdev_name_node_del(struct netdev_name_node *name_node)
{
hlist_del_rcu(&name_node->hlist);
}
static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
const char *name)
{
struct hlist_head *head = dev_name_hash(net, name);
struct netdev_name_node *name_node;
hlist_for_each_entry(name_node, head, hlist)
if (!strcmp(name_node->name, name))
return name_node;
return NULL;
}
static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
const char *name)
{
struct hlist_head *head = dev_name_hash(net, name);
struct netdev_name_node *name_node;
hlist_for_each_entry_rcu(name_node, head, hlist)
if (!strcmp(name_node->name, name))
return name_node;
return NULL;
}
bool netdev_name_in_use(struct net *net, const char *name)
{
return netdev_name_node_lookup(net, name);
}
EXPORT_SYMBOL(netdev_name_in_use);
int netdev_name_node_alt_create(struct net_device *dev, const char *name)
{
struct netdev_name_node *name_node;
struct net *net = dev_net(dev);
name_node = netdev_name_node_lookup(net, name);
if (name_node)
return -EEXIST;
name_node = netdev_name_node_alloc(dev, name);
if (!name_node)
return -ENOMEM;
netdev_name_node_add(net, name_node);
/* The node that holds dev->name acts as a head of per-device list. */
list_add_tail_rcu(&name_node->list, &dev->name_node->list);
return 0;
}
static void netdev_name_node_alt_free(struct rcu_head *head)
{
struct netdev_name_node *name_node =
container_of(head, struct netdev_name_node, rcu);
kfree(name_node->name);
netdev_name_node_free(name_node);
}
static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
{
netdev_name_node_del(name_node);
list_del(&name_node->list);
call_rcu(&name_node->rcu, netdev_name_node_alt_free);
}
int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
{
struct netdev_name_node *name_node;
struct net *net = dev_net(dev);
name_node = netdev_name_node_lookup(net, name);
if (!name_node)
return -ENOENT;
/* lookup might have found our primary name or a name belonging
* to another device.
*/
if (name_node == dev->name_node || name_node->dev != dev)
return -EINVAL;
__netdev_name_node_alt_destroy(name_node);
return 0;
}
static void netdev_name_node_alt_flush(struct net_device *dev)
{
struct netdev_name_node *name_node, *tmp;
list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
list_del(&name_node->list);
netdev_name_node_alt_free(&name_node->rcu);
}
}
/* Device list insertion */
static void list_netdevice(struct net_device *dev)
{
struct netdev_name_node *name_node;
struct net *net = dev_net(dev);
ASSERT_RTNL();
list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
netdev_name_node_add(net, dev->name_node);
hlist_add_head_rcu(&dev->index_hlist,
dev_index_hash(net, dev->ifindex));
netdev_for_each_altname(dev, name_node)
netdev_name_node_add(net, name_node);
/* We reserved the ifindex, this can't fail */
WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
dev_base_seq_inc(net);
}
/* Device list removal
* caller must respect a RCU grace period before freeing/reusing dev
*/
static void unlist_netdevice(struct net_device *dev)
{
struct netdev_name_node *name_node;
struct net *net = dev_net(dev);
ASSERT_RTNL();
xa_erase(&net->dev_by_index, dev->ifindex);
netdev_for_each_altname(dev, name_node)
netdev_name_node_del(name_node);
/* Unlink dev from the device chain */
list_del_rcu(&dev->dev_list);
netdev_name_node_del(dev->name_node);
hlist_del_rcu(&dev->index_hlist);
dev_base_seq_inc(dev_net(dev));
}
/*
* Our notifier list
*/
static RAW_NOTIFIER_HEAD(netdev_chain);
/*
* Device drivers call our routines to queue packets here. We empty the
* queue in the local softnet handler.
*/
DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
};
EXPORT_PER_CPU_SYMBOL(softnet_data);
/* Page_pool has a lockless array/stack to alloc/recycle pages.
* PP consumers must pay attention to run APIs in the appropriate context
* (e.g. NAPI context).
*/
static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
#ifdef CONFIG_LOCKDEP
/*
* register_netdevice() inits txq->_xmit_lock and sets lockdep class
* according to dev->type
*/
static const unsigned short netdev_lock_type[] = {
ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
static const char *const netdev_lock_name[] = {
"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
static inline unsigned short netdev_lock_pos(unsigned short dev_type)
{
int i;
for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
if (netdev_lock_type[i] == dev_type)
return i;
/* the last key is used by default */
return ARRAY_SIZE(netdev_lock_type) - 1;
}
static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
unsigned short dev_type)
{
int i;
i = netdev_lock_pos(dev_type);
lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
netdev_lock_name[i]);
}
static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
{
int i;
i = netdev_lock_pos(dev->type);
lockdep_set_class_and_name(&dev->addr_list_lock,
&netdev_addr_lock_key[i],
netdev_lock_name[i]);
}
#else
static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
unsigned short dev_type)
{
}
static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
{
}
#endif
/*******************************************************************************
*
* Protocol management and registration routines
*
*******************************************************************************/
/*
* Add a protocol ID to the list. Now that the input handler is
* smarter we can dispense with all the messy stuff that used to be
* here.
*
* BEWARE!!! Protocol handlers, mangling input packets,
* MUST BE last in hash buckets and checking protocol handlers
* MUST start from promiscuous ptype_all chain in net_bh.
* It is true now, do not change it.
* Explanation follows: if protocol handler, mangling packet, will
* be the first on list, it is not able to sense, that packet
* is cloned and should be copied-on-write, so that it will
* change it and subsequent readers will get broken packet.
* --ANK (980803)
*/
static inline struct list_head *ptype_head(const struct packet_type *pt)
{
if (pt->type == htons(ETH_P_ALL))
return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
else
return pt->dev ? &pt->dev->ptype_specific :
&ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
}
/**
* dev_add_pack - add packet handler
* @pt: packet type declaration
*
* Add a protocol handler to the networking stack. The passed &packet_type
* is linked into kernel lists and may not be freed until it has been
* removed from the kernel lists.
*
* This call does not sleep therefore it can not
* guarantee all CPU's that are in middle of receiving packets
* will see the new packet type (until the next received packet).
*/
void dev_add_pack(struct packet_type *pt)
{
struct list_head *head = ptype_head(pt);
spin_lock(&ptype_lock);
list_add_rcu(&pt->list, head);
spin_unlock(&ptype_lock);
}
EXPORT_SYMBOL(dev_add_pack);
/**
* __dev_remove_pack - remove packet handler
* @pt: packet type declaration
*
* Remove a protocol handler that was previously added to the kernel
* protocol handlers by dev_add_pack(). The passed &packet_type is removed
* from the kernel lists and can be freed or reused once this function
* returns.
*
* The packet type might still be in use by receivers
* and must not be freed until after all the CPU's have gone
* through a quiescent state.
*/
void __dev_remove_pack(struct packet_type *pt)
{
struct list_head *head = ptype_head(pt);
struct packet_type *pt1;
spin_lock(&ptype_lock);
list_for_each_entry(pt1, head, list) {
if (pt == pt1) {
list_del_rcu(&pt->list);
goto out;
}
}
pr_warn("dev_remove_pack: %p not found\n", pt);
out:
spin_unlock(&ptype_lock);
}
EXPORT_SYMBOL(__dev_remove_pack);
/**
* dev_remove_pack - remove packet handler
* @pt: packet type declaration
*
* Remove a protocol handler that was previously added to the kernel
* protocol handlers by dev_add_pack(). The passed &packet_type is removed
* from the kernel lists and can be freed or reused once this function
* returns.
*
* This call sleeps to guarantee that no CPU is looking at the packet
* type after return.
*/
void dev_remove_pack(struct packet_type *pt)
{
__dev_remove_pack(pt);
synchronize_net();
}
EXPORT_SYMBOL(dev_remove_pack);
/*******************************************************************************
*
* Device Interface Subroutines
*
*******************************************************************************/
/**
* dev_get_iflink - get 'iflink' value of a interface
* @dev: targeted interface
*
* Indicates the ifindex the interface is linked to.
* Physical interfaces have the same 'ifindex' and 'iflink' values.
*/
int dev_get_iflink(const struct net_device *dev)
{
if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
return dev->netdev_ops->ndo_get_iflink(dev);
return READ_ONCE(dev->ifindex);
}
EXPORT_SYMBOL(dev_get_iflink);
/**
* dev_fill_metadata_dst - Retrieve tunnel egress information.
* @dev: targeted interface
* @skb: The packet.
*
* For better visibility of tunnel traffic OVS needs to retrieve
* egress tunnel information for a packet. Following API allows
* user to get this info.
*/
int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
{
struct ip_tunnel_info *info;
if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
return -EINVAL;
info = skb_tunnel_info_unclone(skb);
if (!info)
return -ENOMEM;
if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
return -EINVAL;
return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
}
EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
{
int k = stack->num_paths++;
if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
return NULL;
return &stack->path[k];
}
int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
struct net_device_path_stack *stack)
{
const struct net_device *last_dev;
struct net_device_path_ctx ctx = {
.dev = dev,
};
struct net_device_path *path;
int ret = 0;
memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
stack->num_paths = 0;
while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
last_dev = ctx.dev;
path = dev_fwd_path(stack);
if (!path)
return -1;
memset(path, 0, sizeof(struct net_device_path));
ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
if (ret < 0)
return -1;
if (WARN_ON_ONCE(last_dev == ctx.dev))
return -1;
}
if (!ctx.dev)
return ret;
path = dev_fwd_path(stack);
if (!path)
return -1;
path->type = DEV_PATH_ETHERNET;
path->dev = ctx.dev;
return ret;
}
EXPORT_SYMBOL_GPL(dev_fill_forward_path);
/**
* __dev_get_by_name - find a device by its name
* @net: the applicable net namespace
* @name: name to find
*
* Find an interface by name. Must be called under RTNL semaphore.
* If the name is found a pointer to the device is returned.
* If the name is not found then %NULL is returned. The
* reference counters are not incremented so the caller must be
* careful with locks.
*/
struct net_device *__dev_get_by_name(struct net *net, const char *name)
{
struct netdev_name_node *node_name;
node_name = netdev_name_node_lookup(net, name);
return node_name ? node_name->dev : NULL;
}
EXPORT_SYMBOL(__dev_get_by_name);
/**
* dev_get_by_name_rcu - find a device by its name
* @net: the applicable net namespace
* @name: name to find
*
* Find an interface by name.
* If the name is found a pointer to the device is returned.
* If the name is not found then %NULL is returned.
* The reference counters are not incremented so the caller must be
* careful with locks. The caller must hold RCU lock.
*/
struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
{
struct netdev_name_node *node_name;
node_name = netdev_name_node_lookup_rcu(net, name);
return node_name ? node_name->dev : NULL;
}
EXPORT_SYMBOL(dev_get_by_name_rcu);
/* Deprecated for new users, call netdev_get_by_name() instead */
struct net_device *dev_get_by_name(struct net *net, const char *name)
{
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_name_rcu(net, name);
dev_hold(dev);
rcu_read_unlock();
return dev;
}
EXPORT_SYMBOL(dev_get_by_name);
/**
* netdev_get_by_name() - find a device by its name
* @net: the applicable net namespace
* @name: name to find
* @tracker: tracking object for the acquired reference
* @gfp: allocation flags for the tracker
*
* Find an interface by name. This can be called from any
* context and does its own locking. The returned handle has
* the usage count incremented and the caller must use netdev_put() to
* release it when it is no longer needed. %NULL is returned if no
* matching device is found.
*/
struct net_device *netdev_get_by_name(struct net *net, const char *name,
netdevice_tracker *tracker, gfp_t gfp)
{
struct net_device *dev;
dev = dev_get_by_name(net, name);
if (dev)
netdev_tracker_alloc(dev, tracker, gfp);
return dev;
}
EXPORT_SYMBOL(netdev_get_by_name);
/**
* __dev_get_by_index - find a device by its ifindex
* @net: the applicable net namespace
* @ifindex: index of device
*
* Search for an interface by index. Returns %NULL if the device
* is not found or a pointer to the device. The device has not
* had its reference counter increased so the caller must be careful
* about locking. The caller must hold the RTNL semaphore.
*/
struct net_device *__dev_get_by_index(struct net *net, int ifindex)
{
struct net_device *dev;
struct hlist_head *head = dev_index_hash(net, ifindex);
hlist_for_each_entry(dev, head, index_hlist)
if (dev->ifindex == ifindex)
return dev;
return NULL;
}
EXPORT_SYMBOL(__dev_get_by_index);
/**
* dev_get_by_index_rcu - find a device by its ifindex
* @net: the applicable net namespace
* @ifindex: index of device
*
* Search for an interface by index. Returns %NULL if the device
* is not found or a pointer to the device. The device has not
* had its reference counter increased so the caller must be careful
* about locking. The caller must hold RCU lock.
*/
struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
{
struct net_device *dev;
struct hlist_head *head = dev_index_hash(net, ifindex);
hlist_for_each_entry_rcu(dev, head, index_hlist)
if (dev->ifindex == ifindex)
return dev;
return NULL;
}
EXPORT_SYMBOL(dev_get_by_index_rcu);
/* Deprecated for new users, call netdev_get_by_index() instead */
struct net_device *dev_get_by_index(struct net *net, int ifindex)
{
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_index_rcu(net, ifindex);
dev_hold(dev);
rcu_read_unlock();
return dev;
}
EXPORT_SYMBOL(dev_get_by_index);
/**
* netdev_get_by_index() - find a device by its ifindex
* @net: the applicable net namespace
* @ifindex: index of device
* @tracker: tracking object for the acquired reference
* @gfp: allocation flags for the tracker
*
* Search for an interface by index. Returns NULL if the device
* is not found or a pointer to the device. The device returned has
* had a reference added and the pointer is safe until the user calls
* netdev_put() to indicate they have finished with it.
*/
struct net_device *netdev_get_by_index(struct net *net, int ifindex,
netdevice_tracker *tracker, gfp_t gfp)
{
struct net_device *dev;
dev = dev_get_by_index(net, ifindex);
if (dev)
netdev_tracker_alloc(dev, tracker, gfp);
return dev;
}
EXPORT_SYMBOL(netdev_get_by_index);
/**
* dev_get_by_napi_id - find a device by napi_id
* @napi_id: ID of the NAPI struct
*
* Search for an interface by NAPI ID. Returns %NULL if the device
* is not found or a pointer to the device. The device has not had
* its reference counter increased so the caller must be careful
* about locking. The caller must hold RCU lock.
*/
struct net_device *dev_get_by_napi_id(unsigned int napi_id)
{
struct napi_struct *napi;
WARN_ON_ONCE(!rcu_read_lock_held());
if (napi_id < MIN_NAPI_ID)
return NULL;
napi = napi_by_id(napi_id);
return napi ? napi->dev : NULL;
}
EXPORT_SYMBOL(dev_get_by_napi_id);
static DEFINE_SEQLOCK(netdev_rename_lock);
void netdev_copy_name(struct net_device *dev, char *name)
{
unsigned int seq;
do {
seq = read_seqbegin(&netdev_rename_lock);
strscpy(name, dev->name, IFNAMSIZ);
} while (read_seqretry(&netdev_rename_lock, seq));
}
/**
* netdev_get_name - get a netdevice name, knowing its ifindex.
* @net: network namespace
* @name: a pointer to the buffer where the name will be stored.
* @ifindex: the ifindex of the interface to get the name from.
*/
int netdev_get_name(struct net *net, char *name, int ifindex)
{
struct net_device *dev;
int ret;
rcu_read_lock();
dev = dev_get_by_index_rcu(net, ifindex);
if (!dev) {
ret = -ENODEV;
goto out;
}
netdev_copy_name(dev, name);
ret = 0;
out:
rcu_read_unlock();
return ret;
}
/**
* dev_getbyhwaddr_rcu - find a device by its hardware address
* @net: the applicable net namespace
* @type: media type of device
* @ha: hardware address
*
* Search for an interface by MAC address. Returns NULL if the device
* is not found or a pointer to the device.
* The caller must hold RCU or RTNL.
* The returned device has not had its ref count increased
* and the caller must therefore be careful about locking
*
*/
struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
const char *ha)
{
struct net_device *dev;
for_each_netdev_rcu(net, dev)
if (dev->type == type &&
!memcmp(dev->dev_addr, ha, dev->addr_len))
return dev;
return NULL;
}
EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
{
struct net_device *dev, *ret = NULL;
rcu_read_lock();
for_each_netdev_rcu(net, dev)
if (dev->type == type) {
dev_hold(dev);
ret = dev;
break;
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(dev_getfirstbyhwtype);
/**
* __dev_get_by_flags - find any device with given flags
* @net: the applicable net namespace
* @if_flags: IFF_* values
* @mask: bitmask of bits in if_flags to check
*
* Search for any interface with the given flags. Returns NULL if a device
* is not found or a pointer to the device. Must be called inside
* rtnl_lock(), and result refcount is unchanged.
*/
struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
unsigned short mask)
{
struct net_device *dev, *ret;
ASSERT_RTNL();
ret = NULL;
for_each_netdev(net, dev) {
if (((dev->flags ^ if_flags) & mask) == 0) {
ret = dev;
break;
}
}
return ret;
}
EXPORT_SYMBOL(__dev_get_by_flags);
/**
* dev_valid_name - check if name is okay for network device
* @name: name string
*
* Network device names need to be valid file names to
* allow sysfs to work. We also disallow any kind of
* whitespace.
*/
bool dev_valid_name(const char *name)
{
if (*name == '\0')
return false;
if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
return false;
if (!strcmp(name, ".") || !strcmp(name, ".."))
return false;
while (*name) {
if (*name == '/' || *name == ':' || isspace(*name))
return false;
name++;
}
return true;
}
EXPORT_SYMBOL(dev_valid_name);
/**
* __dev_alloc_name - allocate a name for a device
* @net: network namespace to allocate the device name in
* @name: name format string
* @res: result name string
*
* Passed a format string - eg "lt%d" it will try and find a suitable
* id. It scans list of devices to build up a free map, then chooses
* the first empty slot. The caller must hold the dev_base or rtnl lock
* while allocating the name and adding the device in order to avoid
* duplicates.
* Limited to bits_per_byte * page size devices (ie 32K on most platforms).
* Returns the number of the unit assigned or a negative errno code.
*/
static int __dev_alloc_name(struct net *net, const char *name, char *res)
{
int i = 0;
const char *p;
const int max_netdevices = 8*PAGE_SIZE;
unsigned long *inuse;
struct net_device *d;
char buf[IFNAMSIZ];
/* Verify the string as this thing may have come from the user.
* There must be one "%d" and no other "%" characters.
*/
p = strchr(name, '%');
if (!p || p[1] != 'd' || strchr(p + 2, '%'))
return -EINVAL;
/* Use one page as a bit array of possible slots */
inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
if (!inuse)
return -ENOMEM;
for_each_netdev(net, d) {
struct netdev_name_node *name_node;
netdev_for_each_altname(d, name_node) {
if (!sscanf(name_node->name, name, &i))
continue;
if (i < 0 || i >= max_netdevices)
continue;
/* avoid cases where sscanf is not exact inverse of printf */
snprintf(buf, IFNAMSIZ, name, i);
if (!strncmp(buf, name_node->name, IFNAMSIZ))
__set_bit(i, inuse);
}
if (!sscanf(d->name, name, &i))
continue;
if (i < 0 || i >= max_netdevices)
continue;
/* avoid cases where sscanf is not exact inverse of printf */
snprintf(buf, IFNAMSIZ, name, i);
if (!strncmp(buf, d->name, IFNAMSIZ))
__set_bit(i, inuse);
}
i = find_first_zero_bit(inuse, max_netdevices);
bitmap_free(inuse);
if (i == max_netdevices)
return -ENFILE;
/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
strscpy(buf, name, IFNAMSIZ);
snprintf(res, IFNAMSIZ, buf, i);
return i;
}
/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
static int dev_prep_valid_name(struct net *net, struct net_device *dev,
const char *want_name, char *out_name,
int dup_errno)
{
if (!dev_valid_name(want_name))
return -EINVAL;
if (strchr(want_name, '%'))
return __dev_alloc_name(net, want_name, out_name);
if (netdev_name_in_use(net, want_name))
return -dup_errno;
if (out_name != want_name)
strscpy(out_name, want_name, IFNAMSIZ);
return 0;
}
/**
* dev_alloc_name - allocate a name for a device
* @dev: device
* @name: name format string
*
* Passed a format string - eg "lt%d" it will try and find a suitable
* id. It scans list of devices to build up a free map, then chooses
* the first empty slot. The caller must hold the dev_base or rtnl lock
* while allocating the name and adding the device in order to avoid
* duplicates.
* Limited to bits_per_byte * page size devices (ie 32K on most platforms).
* Returns the number of the unit assigned or a negative errno code.
*/
int dev_alloc_name(struct net_device *dev, const char *name)
{
return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
}
EXPORT_SYMBOL(dev_alloc_name);
static int dev_get_valid_name(struct net *net, struct net_device *dev,
const char *name)
{
int ret;
ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
return ret < 0 ? ret : 0;
}
/**
* dev_change_name - change name of a device
* @dev: device
* @newname: name (or format string) must be at least IFNAMSIZ
*
* Change name of a device, can pass format strings "eth%d".
* for wildcarding.
*/
int dev_change_name(struct net_device *dev, const char *newname)
{
unsigned char old_assign_type;
char oldname[IFNAMSIZ];
int err = 0;
int ret;
struct net *net;
ASSERT_RTNL();
BUG_ON(!dev_net(dev));
net = dev_net(dev);
down_write(&devnet_rename_sem);
if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
up_write(&devnet_rename_sem);
return 0;
}
memcpy(oldname, dev->name, IFNAMSIZ);
write_seqlock_bh(&netdev_rename_lock);
err = dev_get_valid_name(net, dev, newname);
write_sequnlock_bh(&netdev_rename_lock);
if (err < 0) {
up_write(&devnet_rename_sem);
return err;
}
if (oldname[0] && !strchr(oldname, '%'))
netdev_info(dev, "renamed from %s%s\n", oldname,
dev->flags & IFF_UP ? " (while UP)" : "");
old_assign_type = dev->name_assign_type;
WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
rollback:
ret = device_rename(&dev->dev, dev->name);
if (ret) {
memcpy(dev->name, oldname, IFNAMSIZ);
WRITE_ONCE(dev->name_assign_type, old_assign_type);
up_write(&devnet_rename_sem);
return ret;
}
up_write(&devnet_rename_sem);
netdev_adjacent_rename_links(dev, oldname);
netdev_name_node_del(dev->name_node);
synchronize_net();
netdev_name_node_add(net, dev->name_node);
ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
ret = notifier_to_errno(ret);
if (ret) {
/* err >= 0 after dev_alloc_name() or stores the first errno */
if (err >= 0) {
err = ret;
down_write(&devnet_rename_sem);
write_seqlock_bh(&netdev_rename_lock);
memcpy(dev->name, oldname, IFNAMSIZ);
write_sequnlock_bh(&netdev_rename_lock);
memcpy(oldname, newname, IFNAMSIZ);
WRITE_ONCE(dev->name_assign_type, old_assign_type);
old_assign_type = NET_NAME_RENAMED;
goto rollback;
} else {
netdev_err(dev, "name change rollback failed: %d\n",
ret);
}
}
return err;
}
/**
* dev_set_alias - change ifalias of a device
* @dev: device
* @alias: name up to IFALIASZ
* @len: limit of bytes to copy from info
*
* Set ifalias for a device,
*/
int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
{
struct dev_ifalias *new_alias = NULL;
if (len >= IFALIASZ)
return -EINVAL;
if (len) {
new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
if (!new_alias)
return -ENOMEM;
memcpy(new_alias->ifalias, alias, len);
new_alias->ifalias[len] = 0;
}
mutex_lock(&ifalias_mutex);
new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
mutex_is_locked(&ifalias_mutex));
mutex_unlock(&ifalias_mutex);
if (new_alias)
kfree_rcu(new_alias, rcuhead);
return len;
}
EXPORT_SYMBOL(dev_set_alias);
/**
* dev_get_alias - get ifalias of a device
* @dev: device
* @name: buffer to store name of ifalias
* @len: size of buffer
*
* get ifalias for a device. Caller must make sure dev cannot go
* away, e.g. rcu read lock or own a reference count to device.
*/
int dev_get_alias(const struct net_device *dev, char *name, size_t len)
{
const struct dev_ifalias *alias;
int ret = 0;
rcu_read_lock();
alias = rcu_dereference(dev->ifalias);
if (alias)
ret = snprintf(name, len, "%s", alias->ifalias);
rcu_read_unlock();
return ret;
}
/**
* netdev_features_change - device changes features
* @dev: device to cause notification
*
* Called to indicate a device has changed features.
*/
void netdev_features_change(struct net_device *dev)
{
call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
}
EXPORT_SYMBOL(netdev_features_change);
/**
* netdev_state_change - device changes state
* @dev: device to cause notification
*
* Called to indicate a device has changed state. This function calls
* the notifier chains for netdev_chain and sends a NEWLINK message
* to the routing socket.
*/
void netdev_state_change(struct net_device *dev)
{
if (dev->flags & IFF_UP) {
struct netdev_notifier_change_info change_info = {
.info.dev = dev,
};
call_netdevice_notifiers_info(NETDEV_CHANGE,
&change_info.info);
rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
}
}
EXPORT_SYMBOL(netdev_state_change);
/**
* __netdev_notify_peers - notify network peers about existence of @dev,
* to be called when rtnl lock is already held.
* @dev: network device
*
* Generate traffic such that interested network peers are aware of
* @dev, such as by generating a gratuitous ARP. This may be used when
* a device wants to inform the rest of the network about some sort of
* reconfiguration such as a failover event or virtual machine
* migration.
*/
void __netdev_notify_peers(struct net_device *dev)
{
ASSERT_RTNL();
call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
}
EXPORT_SYMBOL(__netdev_notify_peers);
/**
* netdev_notify_peers - notify network peers about existence of @dev
* @dev: network device
*
* Generate traffic such that interested network peers are aware of
* @dev, such as by generating a gratuitous ARP. This may be used when
* a device wants to inform the rest of the network about some sort of
* reconfiguration such as a failover event or virtual machine
* migration.
*/
void netdev_notify_peers(struct net_device *dev)
{
rtnl_lock();
__netdev_notify_peers(dev);
rtnl_unlock();
}
EXPORT_SYMBOL(netdev_notify_peers);
static int napi_threaded_poll(void *data);
static int napi_kthread_create(struct napi_struct *n)
{
int err = 0;
/* Create and wake up the kthread once to put it in
* TASK_INTERRUPTIBLE mode to avoid the blocked task
* warning and work with loadavg.
*/
n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
n->dev->name, n->napi_id);
if (IS_ERR(n->thread)) {
err = PTR_ERR(n->thread);
pr_err("kthread_run failed with err %d\n", err);
n->thread = NULL;
}
return err;
}
static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
{
const struct net_device_ops *ops = dev->netdev_ops;
int ret;
ASSERT_RTNL();
dev_addr_check(dev);
if (!netif_device_present(dev)) {
/* may be detached because parent is runtime-suspended */
if (dev->dev.parent)
pm_runtime_resume(dev->dev.parent);
if (!netif_device_present(dev))
return -ENODEV;
}
/* Block netpoll from trying to do any rx path servicing.
* If we don't do this there is a chance ndo_poll_controller
* or ndo_poll may be running while we open the device
*/
netpoll_poll_disable(dev);
ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
ret = notifier_to_errno(ret);
if (ret)
return ret;
set_bit(__LINK_STATE_START, &dev->state);
if (ops->ndo_validate_addr)
ret = ops->ndo_validate_addr(dev);
if (!ret && ops->ndo_open)
ret = ops->ndo_open(dev);
netpoll_poll_enable(dev);
if (ret)
clear_bit(__LINK_STATE_START, &dev->state);
else {
dev->flags |= IFF_UP;
dev_set_rx_mode(dev);
dev_activate(dev);
add_device_randomness(dev->dev_addr, dev->addr_len);
}
return ret;
}
/**
* dev_open - prepare an interface for use.
* @dev: device to open
* @extack: netlink extended ack
*
* Takes a device from down to up state. The device's private open
* function is invoked and then the multicast lists are loaded. Finally
* the device is moved into the up state and a %NETDEV_UP message is
* sent to the netdev notifier chain.
*
* Calling this function on an active interface is a nop. On a failure
* a negative errno code is returned.
*/
int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
{
int ret;
if (dev->flags & IFF_UP)
return 0;
ret = __dev_open(dev, extack);
if (ret < 0)
return ret;
rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
call_netdevice_notifiers(NETDEV_UP, dev);
return ret;
}
EXPORT_SYMBOL(dev_open);
static void __dev_close_many(struct list_head *head)
{
struct net_device *dev;
ASSERT_RTNL();
might_sleep();
list_for_each_entry(dev, head, close_list) {
/* Temporarily disable netpoll until the interface is down */
netpoll_poll_disable(dev);
call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
clear_bit(__LINK_STATE_START, &dev->state);
/* Synchronize to scheduled poll. We cannot touch poll list, it
* can be even on different cpu. So just clear netif_running().
*
* dev->stop() will invoke napi_disable() on all of it's
* napi_struct instances on this device.
*/
smp_mb__after_atomic(); /* Commit netif_running(). */
}
dev_deactivate_many(head);
list_for_each_entry(dev, head, close_list) {
const struct net_device_ops *ops = dev->netdev_ops;
/*
* Call the device specific close. This cannot fail.
* Only if device is UP
*
* We allow it to be called even after a DETACH hot-plug
* event.
*/
if (ops->ndo_stop)
ops->ndo_stop(dev);
dev->flags &= ~IFF_UP;
netpoll_poll_enable(dev);
}
}
static void __dev_close(struct net_device *dev)
{
LIST_HEAD(single);
list_add(&dev->close_list, &single);
__dev_close_many(&single);
list_del(&single);
}
void dev_close_many(struct list_head *head, bool unlink)
{
struct net_device *dev, *tmp;
/* Remove the devices that don't need to be closed */
list_for_each_entry_safe(dev, tmp, head, close_list)
if (!(dev->flags & IFF_UP))
list_del_init(&dev->close_list);
__dev_close_many(head);
list_for_each_entry_safe(dev, tmp, head, close_list) {
rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
call_netdevice_notifiers(NETDEV_DOWN, dev);
if (unlink)
list_del_init(&dev->close_list);
}
}
EXPORT_SYMBOL(dev_close_many);
/**
* dev_close - shutdown an interface.
* @dev: device to shutdown
*
* This function moves an active device into down state. A
* %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
* is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
* chain.
*/
void dev_close(struct net_device *dev)
{
if (dev->flags & IFF_UP) {
LIST_HEAD(single);
list_add(&dev->close_list, &single);
dev_close_many(&single, true);
list_del(&single);
}
}
EXPORT_SYMBOL(dev_close);
/**
* dev_disable_lro - disable Large Receive Offload on a device
* @dev: device
*
* Disable Large Receive Offload (LRO) on a net device. Must be
* called under RTNL. This is needed if received packets may be
* forwarded to another interface.
*/
void dev_disable_lro(struct net_device *dev)
{
struct net_device *lower_dev;
struct list_head *iter;
dev->wanted_features &= ~NETIF_F_LRO;
netdev_update_features(dev);
if (unlikely(dev->features & NETIF_F_LRO))
netdev_WARN(dev, "failed to disable LRO!\n");
netdev_for_each_lower_dev(dev, lower_dev, iter)
dev_disable_lro(lower_dev);
}
EXPORT_SYMBOL(dev_disable_lro);
/**
* dev_disable_gro_hw - disable HW Generic Receive Offload on a device
* @dev: device
*
* Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
* called under RTNL. This is needed if Generic XDP is installed on
* the device.
*/
static void dev_disable_gro_hw(struct net_device *dev)
{
dev->wanted_features &= ~NETIF_F_GRO_HW;
netdev_update_features(dev);
if (unlikely(dev->features & NETIF_F_GRO_HW))
netdev_WARN(dev, "failed to disable GRO_HW!\n");
}
const char *netdev_cmd_to_name(enum netdev_cmd cmd)
{
#define N(val) \
case NETDEV_##val: \
return "NETDEV_" __stringify(val);
switch (cmd) {
N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
N(XDP_FEAT_CHANGE)
}
#undef N
return "UNKNOWN_NETDEV_EVENT";
}
EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
struct net_device *dev)
{
struct netdev_notifier_info info = {
.dev = dev,
};
return nb->notifier_call(nb, val, &info);
}
static int call_netdevice_register_notifiers(struct notifier_block *nb,
struct net_device *dev)
{
int err;
err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
err = notifier_to_errno(err);
if (err)
return err;
if (!(dev->flags & IFF_UP))
return 0;
call_netdevice_notifier(nb, NETDEV_UP, dev);
return 0;
}
static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
struct net_device *dev)
{
if (dev->flags & IFF_UP) {
call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
dev);
call_netdevice_notifier(nb, NETDEV_DOWN, dev);
}
call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
}
static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
struct net *net)
{
struct net_device *dev;
int err;
for_each_netdev(net, dev) {
err = call_netdevice_register_notifiers(nb, dev);
if (err)
goto rollback;
}
return 0;
rollback:
for_each_netdev_continue_reverse(net, dev)
call_netdevice_unregister_notifiers(nb, dev);
return err;
}
static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
struct net *net)
{
struct net_device *dev;
for_each_netdev(net, dev)
call_netdevice_unregister_notifiers(nb, dev);
}
static int dev_boot_phase = 1;
/**
* register_netdevice_notifier - register a network notifier block
* @nb: notifier
*
* Register a notifier to be called when network device events occur.
* The notifier passed is linked into the kernel structures and must
* not be reused until it has been unregistered. A negative errno code
* is returned on a failure.
*
* When registered all registration and up events are replayed
* to the new notifier to allow device to have a race free
* view of the network device list.
*/
int register_netdevice_notifier(struct notifier_block *nb)
{
struct net *net;
int err;
/* Close race with setup_net() and cleanup_net() */
down_write(&pernet_ops_rwsem);
rtnl_lock();
err = raw_notifier_chain_register(&netdev_chain, nb);
if (err)
goto unlock;
if (dev_boot_phase)
goto unlock;
for_each_net(net) {
err = call_netdevice_register_net_notifiers(nb, net);
if (err)
goto rollback;
}
unlock:
rtnl_unlock();
up_write(&pernet_ops_rwsem);
return err;
rollback:
for_each_net_continue_reverse(net)
call_netdevice_unregister_net_notifiers(nb, net);
raw_notifier_chain_unregister(&netdev_chain, nb);
goto unlock;
}
EXPORT_SYMBOL(register_netdevice_notifier);
/**
* unregister_netdevice_notifier - unregister a network notifier block
* @nb: notifier
*
* Unregister a notifier previously registered by
* register_netdevice_notifier(). The notifier is unlinked into the
* kernel structures and may then be reused. A negative errno code
* is returned on a failure.
*
* After unregistering unregister and down device events are synthesized
* for all devices on the device list to the removed notifier to remove
* the need for special case cleanup code.
*/
int unregister_netdevice_notifier(struct notifier_block *nb)
{
struct net *net;
int err;
/* Close race with setup_net() and cleanup_net() */
down_write(&pernet_ops_rwsem);
rtnl_lock();
err = raw_notifier_chain_unregister(&netdev_chain, nb);
if (err)
goto unlock;
for_each_net(net)
call_netdevice_unregister_net_notifiers(nb, net);
unlock:
rtnl_unlock();
up_write(&pernet_ops_rwsem);
return err;
}
EXPORT_SYMBOL(unregister_netdevice_notifier);
static int __register_netdevice_notifier_net(struct net *net,
struct notifier_block *nb,
bool ignore_call_fail)
{
int err;
err = raw_notifier_chain_register(&net->netdev_chain, nb);
if (err)
return err;
if (dev_boot_phase)
return 0;
err = call_netdevice_register_net_notifiers(nb, net);
if (err && !ignore_call_fail)
goto chain_unregister;
return 0;
chain_unregister:
raw_notifier_chain_unregister(&net->netdev_chain, nb);
return err;
}
static int __unregister_netdevice_notifier_net(struct net *net,
struct notifier_block *nb)
{
int err;
err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
if (err)
return err;
call_netdevice_unregister_net_notifiers(nb, net);
return 0;
}
/**
* register_netdevice_notifier_net - register a per-netns network notifier block
* @net: network namespace
* @nb: notifier
*
* Register a notifier to be called when network device events occur.
* The notifier passed is linked into the kernel structures and must
* not be reused until it has been unregistered. A negative errno code
* is returned on a failure.
*
* When registered all registration and up events are replayed
* to the new notifier to allow device to have a race free
* view of the network device list.
*/
int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
{
int err;
rtnl_lock();
err = __register_netdevice_notifier_net(net, nb, false);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(register_netdevice_notifier_net);
/**
* unregister_netdevice_notifier_net - unregister a per-netns
* network notifier block
* @net: network namespace
* @nb: notifier
*
* Unregister a notifier previously registered by
* register_netdevice_notifier_net(). The notifier is unlinked from the
* kernel structures and may then be reused. A negative errno code
* is returned on a failure.
*
* After unregistering unregister and down device events are synthesized
* for all devices on the device list to the removed notifier to remove
* the need for special case cleanup code.
*/
int unregister_netdevice_notifier_net(struct net *net,
struct notifier_block *nb)
{
int err;
rtnl_lock();
err = __unregister_netdevice_notifier_net(net, nb);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(unregister_netdevice_notifier_net);
static void __move_netdevice_notifier_net(struct net *src_net,
struct net *dst_net,
struct notifier_block *nb)
{
__unregister_netdevice_notifier_net(src_net, nb);
__register_netdevice_notifier_net(dst_net, nb, true);
}
int register_netdevice_notifier_dev_net(struct net_device *dev,
struct notifier_block *nb,
struct netdev_net_notifier *nn)
{
int err;
rtnl_lock();
err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
if (!err) {
nn->nb = nb;
list_add(&nn->list, &dev->net_notifier_list);
}
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
int unregister_netdevice_notifier_dev_net(struct net_device *dev,
struct notifier_block *nb,
struct netdev_net_notifier *nn)
{
int err;
rtnl_lock();
list_del(&nn->list);
err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
static void move_netdevice_notifiers_dev_net(struct net_device *dev,
struct net *net)
{
struct netdev_net_notifier *nn;
list_for_each_entry(nn, &dev->net_notifier_list, list)
__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
}
/**
* call_netdevice_notifiers_info - call all network notifier blocks
* @val: value passed unmodified to notifier function
* @info: notifier information data
*
* Call all network notifier blocks. Parameters and return value
* are as for raw_notifier_call_chain().
*/
int call_netdevice_notifiers_info(unsigned long val,
struct netdev_notifier_info *info)
{
struct net *net = dev_net(info->dev);
int ret;
ASSERT_RTNL();
/* Run per-netns notifier block chain first, then run the global one.
* Hopefully, one day, the global one is going to be removed after
* all notifier block registrators get converted to be per-netns.
*/
ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
if (ret & NOTIFY_STOP_MASK)
return ret;
return raw_notifier_call_chain(&netdev_chain, val, info);
}
/**
* call_netdevice_notifiers_info_robust - call per-netns notifier blocks
* for and rollback on error
* @val_up: value passed unmodified to notifier function
* @val_down: value passed unmodified to the notifier function when
* recovering from an error on @val_up
* @info: notifier information data
*
* Call all per-netns network notifier blocks, but not notifier blocks on
* the global notifier chain. Parameters and return value are as for
* raw_notifier_call_chain_robust().
*/
static int
call_netdevice_notifiers_info_robust(unsigned long val_up,
unsigned long val_down,
struct netdev_notifier_info *info)
{
struct net *net = dev_net(info->dev);
ASSERT_RTNL();
return raw_notifier_call_chain_robust(&net->netdev_chain,
val_up, val_down, info);
}
static int call_netdevice_notifiers_extack(unsigned long val,
struct net_device *dev,
struct netlink_ext_ack *extack)
{
struct netdev_notifier_info info = {
.dev = dev,
.extack = extack,
};
return call_netdevice_notifiers_info(val, &info);
}
/**
* call_netdevice_notifiers - call all network notifier blocks
* @val: value passed unmodified to notifier function
* @dev: net_device pointer passed unmodified to notifier function
*
* Call all network notifier blocks. Parameters and return value
* are as for raw_notifier_call_chain().
*/
int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
{
return call_netdevice_notifiers_extack(val, dev, NULL);
}
EXPORT_SYMBOL(call_netdevice_notifiers);
/**
* call_netdevice_notifiers_mtu - call all network notifier blocks
* @val: value passed unmodified to notifier function
* @dev: net_device pointer passed unmodified to notifier function
* @arg: additional u32 argument passed to the notifier function
*
* Call all network notifier blocks. Parameters and return value
* are as for raw_notifier_call_chain().
*/
static int call_netdevice_notifiers_mtu(unsigned long val,
struct net_device *dev, u32 arg)
{
struct netdev_notifier_info_ext info = {
.info.dev = dev,
.ext.mtu = arg,
};
BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
return call_netdevice_notifiers_info(val, &info.info);
}
#ifdef CONFIG_NET_INGRESS
static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
void net_inc_ingress_queue(void)
{
static_branch_inc(&ingress_needed_key);
}
EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
void net_dec_ingress_queue(void)
{
static_branch_dec(&ingress_needed_key);
}
EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
#endif
#ifdef CONFIG_NET_EGRESS
static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
void net_inc_egress_queue(void)
{
static_branch_inc(&egress_needed_key);
}
EXPORT_SYMBOL_GPL(net_inc_egress_queue);
void net_dec_egress_queue(void)
{
static_branch_dec(&egress_needed_key);
}
EXPORT_SYMBOL_GPL(net_dec_egress_queue);
#endif
#ifdef CONFIG_NET_CLS_ACT
DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
EXPORT_SYMBOL(tcf_bypass_check_needed_key);
#endif
DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
EXPORT_SYMBOL(netstamp_needed_key);
#ifdef CONFIG_JUMP_LABEL
static atomic_t netstamp_needed_deferred;
static atomic_t netstamp_wanted;
static void netstamp_clear(struct work_struct *work)
{
int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
int wanted;
wanted = atomic_add_return(deferred, &netstamp_wanted);
if (wanted > 0)
static_branch_enable(&netstamp_needed_key);
else
static_branch_disable(&netstamp_needed_key);
}
static DECLARE_WORK(netstamp_work, netstamp_clear);
#endif
void net_enable_timestamp(void)
{
#ifdef CONFIG_JUMP_LABEL
int wanted = atomic_read(&netstamp_wanted);
while (wanted > 0) {
if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
return;
}
atomic_inc(&netstamp_needed_deferred);
schedule_work(&netstamp_work);
#else
static_branch_inc(&netstamp_needed_key);
#endif
}
EXPORT_SYMBOL(net_enable_timestamp);
void net_disable_timestamp(void)
{
#ifdef CONFIG_JUMP_LABEL
int wanted = atomic_read(&netstamp_wanted);
while (wanted > 1) {
if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
return;
}
atomic_dec(&netstamp_needed_deferred);
schedule_work(&netstamp_work);
#else
static_branch_dec(&netstamp_needed_key);
#endif
}
EXPORT_SYMBOL(net_disable_timestamp);
static inline void net_timestamp_set(struct sk_buff *skb)
{
skb->tstamp = 0;
skb->tstamp_type = SKB_CLOCK_REALTIME;
if (static_branch_unlikely(&netstamp_needed_key))
skb->tstamp = ktime_get_real();
}
#define net_timestamp_check(COND, SKB) \
if (static_branch_unlikely(&netstamp_needed_key)) { \
if ((COND) && !(SKB)->tstamp) \
(SKB)->tstamp = ktime_get_real(); \
} \
bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
{
return __is_skb_forwardable(dev, skb, true);
}
EXPORT_SYMBOL_GPL(is_skb_forwardable);
static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
bool check_mtu)
{
int ret = ____dev_forward_skb(dev, skb, check_mtu);
if (likely(!ret)) {
skb->protocol = eth_type_trans(skb, dev);
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
}
return ret;
}
int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
{
return __dev_forward_skb2(dev, skb, true);
}
EXPORT_SYMBOL_GPL(__dev_forward_skb);
/**
* dev_forward_skb - loopback an skb to another netif
*
* @dev: destination network device
* @skb: buffer to forward
*
* return values:
* NET_RX_SUCCESS (no congestion)
* NET_RX_DROP (packet was dropped, but freed)
*
* dev_forward_skb can be used for injecting an skb from the
* start_xmit function of one device into the receive queue
* of another device.
*
* The receiving device may be in another namespace, so
* we have to clear all information in the skb that could
* impact namespace isolation.
*/
int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
{
return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
}
EXPORT_SYMBOL_GPL(dev_forward_skb);
int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
{
return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
}
static inline int deliver_skb(struct sk_buff *skb,
struct packet_type *pt_prev,
struct net_device *orig_dev)
{
if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
return -ENOMEM;
refcount_inc(&skb->users);
return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
}
static inline void deliver_ptype_list_skb(struct sk_buff *skb,
struct packet_type **pt,
struct net_device *orig_dev,
__be16 type,
struct list_head *ptype_list)
{
struct packet_type *ptype, *pt_prev = *pt;
list_for_each_entry_rcu(ptype, ptype_list, list) {
if (ptype->type != type)
continue;
if (pt_prev)
deliver_skb(skb, pt_prev, orig_dev);
pt_prev = ptype;
}
*pt = pt_prev;
}
static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
{
if (!ptype->af_packet_priv || !skb->sk)
return false;
if (ptype->id_match)
return ptype->id_match(ptype, skb->sk);
else if ((struct sock *)ptype->af_packet_priv == skb->sk)
return true;
return false;
}
/**
* dev_nit_active - return true if any network interface taps are in use
*
* @dev: network device to check for the presence of taps
*/
bool dev_nit_active(struct net_device *dev)
{
return !list_empty(&net_hotdata.ptype_all) ||
!list_empty(&dev->ptype_all);
}
EXPORT_SYMBOL_GPL(dev_nit_active);
/*
* Support routine. Sends outgoing frames to any network
* taps currently in use.
*/
void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
{
struct list_head *ptype_list = &net_hotdata.ptype_all;
struct packet_type *ptype, *pt_prev = NULL;
struct sk_buff *skb2 = NULL;
rcu_read_lock();
again:
list_for_each_entry_rcu(ptype, ptype_list, list) {
if (READ_ONCE(ptype->ignore_outgoing))
continue;
/* Never send packets back to the socket
* they originated from - MvS (miquels@drinkel.ow.org)
*/
if (skb_loop_sk(ptype, skb))
continue;
if (pt_prev) {
deliver_skb(skb2, pt_prev, skb->dev);
pt_prev = ptype;
continue;
}
/* need to clone skb, done only once */
skb2 = skb_clone(skb, GFP_ATOMIC);
if (!skb2)
goto out_unlock;
net_timestamp_set(skb2);
/* skb->nh should be correctly
* set by sender, so that the second statement is
* just protection against buggy protocols.
*/
skb_reset_mac_header(skb2);
if (skb_network_header(skb2) < skb2->data ||
skb_network_header(skb2) > skb_tail_pointer(skb2)) {
net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
ntohs(skb2->protocol),
dev->name);
skb_reset_network_header(skb2);
}
skb2->transport_header = skb2->network_header;
skb2->pkt_type = PACKET_OUTGOING;
pt_prev = ptype;
}
if (ptype_list == &net_hotdata.ptype_all) {
ptype_list = &dev->ptype_all;
goto again;
}
out_unlock:
if (pt_prev) {
if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
else
kfree_skb(skb2);
}
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
/**
* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
* @dev: Network device
* @txq: number of queues available
*
* If real_num_tx_queues is changed the tc mappings may no longer be
* valid. To resolve this verify the tc mapping remains valid and if
* not NULL the mapping. With no priorities mapping to this
* offset/count pair it will no longer be used. In the worst case TC0
* is invalid nothing can be done so disable priority mappings. If is
* expected that drivers will fix this mapping if they can before
* calling netif_set_real_num_tx_queues.
*/
static void netif_setup_tc(struct net_device *dev, unsigned int txq)
{
int i;
struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
/* If TC0 is invalidated disable TC mapping */
if (tc->offset + tc->count > txq) {
netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
dev->num_tc = 0;
return;
}
/* Invalidated prio to tc mappings set to TC0 */
for (i = 1; i < TC_BITMASK + 1; i++) {
int q = netdev_get_prio_tc_map(dev, i);
tc = &dev->tc_to_txq[q];
if (tc->offset + tc->count > txq) {
netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
i, q);
netdev_set_prio_tc_map(dev, i, 0);
}
}
}
int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
{
if (dev->num_tc) {
struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
int i;
/* walk through the TCs and see if it falls into any of them */
for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
if ((txq - tc->offset) < tc->count)
return i;
}
/* didn't find it, just return -1 to indicate no match */
return -1;
}
return 0;
}
EXPORT_SYMBOL(netdev_txq_to_tc);
#ifdef CONFIG_XPS
static struct static_key xps_needed __read_mostly;
static struct static_key xps_rxqs_needed __read_mostly;
static DEFINE_MUTEX(xps_map_mutex);
#define xmap_dereference(P) \
rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
struct xps_dev_maps *old_maps, int tci, u16 index)
{
struct xps_map *map = NULL;
int pos;
map = xmap_dereference(dev_maps->attr_map[tci]);
if (!map)
return false;
for (pos = map->len; pos--;) {
if (map->queues[pos] != index)
continue;
if (map->len > 1) {
map->queues[pos] = map->queues[--map->len];
break;
}
if (old_maps)
RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
kfree_rcu(map, rcu);
return false;
}
return true;
}
static bool remove_xps_queue_cpu(struct net_device *dev,
struct xps_dev_maps *dev_maps,
int cpu, u16 offset, u16 count)
{
int num_tc = dev_maps->num_tc;
bool active = false;
int tci;
for (tci = cpu * num_tc; num_tc--; tci++) {
int i, j;
for (i = count, j = offset; i--; j++) {
if (!remove_xps_queue(dev_maps, NULL, tci, j))
break;
}
active |= i < 0;
}
return active;
}
static void reset_xps_maps(struct net_device *dev,
struct xps_dev_maps *dev_maps,
enum xps_map_type type)
{
static_key_slow_dec_cpuslocked(&xps_needed);
if (type == XPS_RXQS)
static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
RCU_INIT_POINTER(dev->xps_maps[type], NULL);
kfree_rcu(dev_maps, rcu);
}
static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
u16 offset, u16 count)
{
struct xps_dev_maps *dev_maps;
bool active = false;
int i, j;
dev_maps = xmap_dereference(dev->xps_maps[type]);
if (!dev_maps)
return;
for (j = 0; j < dev_maps->nr_ids; j++)
active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
if (!active)
reset_xps_maps(dev, dev_maps, type);
if (type == XPS_CPUS) {
for (i = offset + (count - 1); count--; i--)
netdev_queue_numa_node_write(
netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
}
}
static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
u16 count)
{
if (!static_key_false(&xps_needed))
return;
cpus_read_lock();
mutex_lock(&xps_map_mutex);
if (static_key_false(&xps_rxqs_needed))
clean_xps_maps(dev, XPS_RXQS, offset, count);
clean_xps_maps(dev, XPS_CPUS, offset, count);
mutex_unlock(&xps_map_mutex);
cpus_read_unlock();
}
static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
{
netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
}
static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
u16 index, bool is_rxqs_map)
{
struct xps_map *new_map;
int alloc_len = XPS_MIN_MAP_ALLOC;
int i, pos;
for (pos = 0; map && pos < map->len; pos++) {
if (map->queues[pos] != index)
continue;
return map;
}
/* Need to add tx-queue to this CPU's/rx-queue's existing map */
if (map) {
if (pos < map->alloc_len)
return map;
alloc_len = map->alloc_len * 2;
}
/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
* map
*/
if (is_rxqs_map)
new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
else
new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
cpu_to_node(attr_index));
if (!new_map)
return NULL;
for (i = 0; i < pos; i++)
new_map->queues[i] = map->queues[i];
new_map->alloc_len = alloc_len;
new_map->len = pos;
return new_map;
}
/* Copy xps maps at a given index */
static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
struct xps_dev_maps *new_dev_maps, int index,
int tc, bool skip_tc)
{
int i, tci = index * dev_maps->num_tc;
struct xps_map *map;
/* copy maps belonging to foreign traffic classes */
for (i = 0; i < dev_maps->num_tc; i++, tci++) {
if (i == tc && skip_tc)
continue;
/* fill in the new device map from the old device map */
map = xmap_dereference(dev_maps->attr_map[tci]);
RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
}
}
/* Must be called under cpus_read_lock */
int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
u16 index, enum xps_map_type type)
{
struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
const unsigned long *online_mask = NULL;
bool active = false, copy = false;
int i, j, tci, numa_node_id = -2;
int maps_sz, num_tc = 1, tc = 0;
struct xps_map *map, *new_map;
unsigned int nr_ids;
WARN_ON_ONCE(index >= dev->num_tx_queues);
if (dev->num_tc) {
/* Do not allow XPS on subordinate device directly */
num_tc = dev->num_tc;
if (num_tc < 0)
return -EINVAL;
/* If queue belongs to subordinate dev use its map */
dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
tc = netdev_txq_to_tc(dev, index);
if (tc < 0)
return -EINVAL;
}
mutex_lock(&xps_map_mutex);
dev_maps = xmap_dereference(dev->xps_maps[type]);
if (type == XPS_RXQS) {
maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
nr_ids = dev->num_rx_queues;
} else {
maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
if (num_possible_cpus() > 1)
online_mask = cpumask_bits(cpu_online_mask);
nr_ids = nr_cpu_ids;
}
if (maps_sz < L1_CACHE_BYTES)
maps_sz = L1_CACHE_BYTES;
/* The old dev_maps could be larger or smaller than the one we're
* setting up now, as dev->num_tc or nr_ids could have been updated in
* between. We could try to be smart, but let's be safe instead and only
* copy foreign traffic classes if the two map sizes match.
*/
if (dev_maps &&
dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
copy = true;
/* allocate memory for queue storage */
for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
j < nr_ids;) {
if (!new_dev_maps) {
new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
if (!new_dev_maps) {
mutex_unlock(&xps_map_mutex);
return -ENOMEM;
}
new_dev_maps->nr_ids = nr_ids;
new_dev_maps->num_tc = num_tc;
}
tci = j * num_tc + tc;
map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
map = expand_xps_map(map, j, index, type == XPS_RXQS);
if (!map)
goto error;
RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
}
if (!new_dev_maps)
goto out_no_new_maps;
if (!dev_maps) {
/* Increment static keys at most once per type */
static_key_slow_inc_cpuslocked(&xps_needed);
if (type == XPS_RXQS)
static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
}
for (j = 0; j < nr_ids; j++) {
bool skip_tc = false;
tci = j * num_tc + tc;
if (netif_attr_test_mask(j, mask, nr_ids) &&
netif_attr_test_online(j, online_mask, nr_ids)) {
/* add tx-queue to CPU/rx-queue maps */
int pos = 0;
skip_tc = true;
map = xmap_dereference(new_dev_maps->attr_map[tci]);
while ((pos < map->len) && (map->queues[pos] != index))
pos++;
if (pos == map->len)
map->queues[map->len++] = index;
#ifdef CONFIG_NUMA
if (type == XPS_CPUS) {
if (numa_node_id == -2)
numa_node_id = cpu_to_node(j);
else if (numa_node_id != cpu_to_node(j))
numa_node_id = -1;
}
#endif
}
if (copy)
xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
skip_tc);
}
rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
/* Cleanup old maps */
if (!dev_maps)
goto out_no_old_maps;
for (j = 0; j < dev_maps->nr_ids; j++) {
for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
map = xmap_dereference(dev_maps->attr_map[tci]);
if (!map)
continue;
if (copy) {
new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
if (map == new_map)
continue;
}
RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
kfree_rcu(map, rcu);
}
}
old_dev_maps = dev_maps;
out_no_old_maps:
dev_maps = new_dev_maps;
active = true;
out_no_new_maps:
if (type == XPS_CPUS)
/* update Tx queue numa node */
netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
(numa_node_id >= 0) ?
numa_node_id : NUMA_NO_NODE);
if (!dev_maps)
goto out_no_maps;
/* removes tx-queue from unused CPUs/rx-queues */
for (j = 0; j < dev_maps->nr_ids; j++) {
tci = j * dev_maps->num_tc;
for (i = 0; i < dev_maps->num_tc; i++, tci++) {
if (i == tc &&
netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
continue;
active |= remove_xps_queue(dev_maps,
copy ? old_dev_maps : NULL,
tci, index);
}
}
if (old_dev_maps)
kfree_rcu(old_dev_maps, rcu);
/* free map if not active */
if (!active)
reset_xps_maps(dev, dev_maps, type);
out_no_maps:
mutex_unlock(&xps_map_mutex);
return 0;
error:
/* remove any maps that we added */
for (j = 0; j < nr_ids; j++) {
for (i = num_tc, tci = j * num_tc; i--; tci++) {
new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
map = copy ?
xmap_dereference(dev_maps->attr_map[tci]) :
NULL;
if (new_map && new_map != map)
kfree(new_map);
}
}
mutex_unlock(&xps_map_mutex);
kfree(new_dev_maps);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
u16 index)
{
int ret;
cpus_read_lock();
ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
cpus_read_unlock();
return ret;
}
EXPORT_SYMBOL(netif_set_xps_queue);
#endif
static void netdev_unbind_all_sb_channels(struct net_device *dev)
{
struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
/* Unbind any subordinate channels */
while (txq-- != &dev->_tx[0]) {
if (txq->sb_dev)
netdev_unbind_sb_channel(dev, txq->sb_dev);
}
}
void netdev_reset_tc(struct net_device *dev)
{
#ifdef CONFIG_XPS
netif_reset_xps_queues_gt(dev, 0);
#endif
netdev_unbind_all_sb_channels(dev);
/* Reset TC configuration of device */
dev->num_tc = 0;
memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
}
EXPORT_SYMBOL(netdev_reset_tc);
int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
{
if (tc >= dev->num_tc)
return -EINVAL;
#ifdef CONFIG_XPS
netif_reset_xps_queues(dev, offset, count);
#endif
dev->tc_to_txq[tc].count = count;
dev->tc_to_txq[tc].offset = offset;
return 0;
}
EXPORT_SYMBOL(netdev_set_tc_queue);
int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
{
if (num_tc > TC_MAX_QUEUE)
return -EINVAL;
#ifdef CONFIG_XPS
netif_reset_xps_queues_gt(dev, 0);
#endif
netdev_unbind_all_sb_channels(dev);
dev->num_tc = num_tc;
return 0;
}
EXPORT_SYMBOL(netdev_set_num_tc);
void netdev_unbind_sb_channel(struct net_device *dev,
struct net_device *sb_dev)
{
struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
#ifdef CONFIG_XPS
netif_reset_xps_queues_gt(sb_dev, 0);
#endif
memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
while (txq-- != &dev->_tx[0]) {
if (txq->sb_dev == sb_dev)
txq->sb_dev = NULL;
}
}
EXPORT_SYMBOL(netdev_unbind_sb_channel);
int netdev_bind_sb_channel_queue(struct net_device *dev,
struct net_device *sb_dev,
u8 tc, u16 count, u16 offset)
{
/* Make certain the sb_dev and dev are already configured */
if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
return -EINVAL;
/* We cannot hand out queues we don't have */
if ((offset + count) > dev->real_num_tx_queues)
return -EINVAL;
/* Record the mapping */
sb_dev->tc_to_txq[tc].count = count;
sb_dev->tc_to_txq[tc].offset = offset;
/* Provide a way for Tx queue to find the tc_to_txq map or
* XPS map for itself.
*/
while (count--)
netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
return 0;
}
EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
int netdev_set_sb_channel(struct net_device *dev, u16 channel)
{
/* Do not use a multiqueue device to represent a subordinate channel */
if (netif_is_multiqueue(dev))
return -ENODEV;
/* We allow channels 1 - 32767 to be used for subordinate channels.
* Channel 0 is meant to be "native" mode and used only to represent
* the main root device. We allow writing 0 to reset the device back
* to normal mode after being used as a subordinate channel.
*/
if (channel > S16_MAX)
return -EINVAL;
dev->num_tc = -channel;
return 0;
}
EXPORT_SYMBOL(netdev_set_sb_channel);
/*
* Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
* greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
*/
int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
{
bool disabling;
int rc;
disabling = txq < dev->real_num_tx_queues;
if (txq < 1 || txq > dev->num_tx_queues)
return -EINVAL;
if (dev->reg_state == NETREG_REGISTERED ||
dev->reg_state == NETREG_UNREGISTERING) {
ASSERT_RTNL();
rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
txq);
if (rc)
return rc;
if (dev->num_tc)
netif_setup_tc(dev, txq);
dev_qdisc_change_real_num_tx(dev, txq);
dev->real_num_tx_queues = txq;
if (disabling) {
synchronize_net();
qdisc_reset_all_tx_gt(dev, txq);
#ifdef CONFIG_XPS
netif_reset_xps_queues_gt(dev, txq);
#endif
}
} else {
dev->real_num_tx_queues = txq;
}
return 0;
}
EXPORT_SYMBOL(netif_set_real_num_tx_queues);
#ifdef CONFIG_SYSFS
/**
* netif_set_real_num_rx_queues - set actual number of RX queues used
* @dev: Network device
* @rxq: Actual number of RX queues
*
* This must be called either with the rtnl_lock held or before
* registration of the net device. Returns 0 on success, or a
* negative error code. If called before registration, it always
* succeeds.
*/
int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
{
int rc;
if (rxq < 1 || rxq > dev->num_rx_queues)
return -EINVAL;
if (dev->reg_state == NETREG_REGISTERED) {
ASSERT_RTNL();
rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
rxq);
if (rc)
return rc;
}
dev->real_num_rx_queues = rxq;
return 0;
}
EXPORT_SYMBOL(netif_set_real_num_rx_queues);
#endif
/**
* netif_set_real_num_queues - set actual number of RX and TX queues used
* @dev: Network device
* @txq: Actual number of TX queues
* @rxq: Actual number of RX queues
*
* Set the real number of both TX and RX queues.
* Does nothing if the number of queues is already correct.
*/
int netif_set_real_num_queues(struct net_device *dev,
unsigned int txq, unsigned int rxq)
{
unsigned int old_rxq = dev->real_num_rx_queues;
int err;
if (txq < 1 || txq > dev->num_tx_queues ||
rxq < 1 || rxq > dev->num_rx_queues)
return -EINVAL;
/* Start from increases, so the error path only does decreases -
* decreases can't fail.
*/
if (rxq > dev->real_num_rx_queues) {
err = netif_set_real_num_rx_queues(dev, rxq);
if (err)
return err;
}
if (txq > dev->real_num_tx_queues) {
err = netif_set_real_num_tx_queues(dev, txq);
if (err)
goto undo_rx;
}
if (rxq < dev->real_num_rx_queues)
WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
if (txq < dev->real_num_tx_queues)
WARN_ON(netif_set_real_num_tx_queues(dev, txq));
return 0;
undo_rx:
WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
return err;
}
EXPORT_SYMBOL(netif_set_real_num_queues);
/**
* netif_set_tso_max_size() - set the max size of TSO frames supported
* @dev: netdev to update
* @size: max skb->len of a TSO frame
*
* Set the limit on the size of TSO super-frames the device can handle.
* Unless explicitly set the stack will assume the value of
* %GSO_LEGACY_MAX_SIZE.
*/
void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
{
dev->tso_max_size = min(GSO_MAX_SIZE, size);
if (size < READ_ONCE(dev->gso_max_size))
netif_set_gso_max_size(dev, size);
if (size < READ_ONCE(dev->gso_ipv4_max_size))
netif_set_gso_ipv4_max_size(dev, size);
}
EXPORT_SYMBOL(netif_set_tso_max_size);
/**
* netif_set_tso_max_segs() - set the max number of segs supported for TSO
* @dev: netdev to update
* @segs: max number of TCP segments
*
* Set the limit on the number of TCP segments the device can generate from
* a single TSO super-frame.
* Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
*/
void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
{
dev->tso_max_segs = segs;
if (segs < READ_ONCE(dev->gso_max_segs))
netif_set_gso_max_segs(dev, segs);
}
EXPORT_SYMBOL(netif_set_tso_max_segs);
/**
* netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
* @to: netdev to update
* @from: netdev from which to copy the limits
*/
void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
{
netif_set_tso_max_size(to, from->tso_max_size);
netif_set_tso_max_segs(to, from->tso_max_segs);
}
EXPORT_SYMBOL(netif_inherit_tso_max);
/**
* netif_get_num_default_rss_queues - default number of RSS queues
*
* Default value is the number of physical cores if there are only 1 or 2, or
* divided by 2 if there are more.
*/
int netif_get_num_default_rss_queues(void)
{
cpumask_var_t cpus;
int cpu, count = 0;
if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
return 1;
cpumask_copy(cpus, cpu_online_mask);
for_each_cpu(cpu, cpus) {
++count;
cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
}
free_cpumask_var(cpus);
return count > 2 ? DIV_ROUND_UP(count, 2) : count;
}
EXPORT_SYMBOL(netif_get_num_default_rss_queues);
static void __netif_reschedule(struct Qdisc *q)
{
struct softnet_data *sd;
unsigned long flags;
local_irq_save(flags);
sd = this_cpu_ptr(&softnet_data);
q->next_sched = NULL;
*sd->output_queue_tailp = q;
sd->output_queue_tailp = &q->next_sched;
raise_softirq_irqoff(NET_TX_SOFTIRQ);
local_irq_restore(flags);
}
void __netif_schedule(struct Qdisc *q)
{
if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
__netif_reschedule(q);
}
EXPORT_SYMBOL(__netif_schedule);
struct dev_kfree_skb_cb {
enum skb_drop_reason reason;
};
static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
{
return (struct dev_kfree_skb_cb *)skb->cb;
}
void netif_schedule_queue(struct netdev_queue *txq)
{
rcu_read_lock();
if (!netif_xmit_stopped(txq)) {
struct Qdisc *q = rcu_dereference(txq->qdisc);
__netif_schedule(q);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(netif_schedule_queue);
void netif_tx_wake_queue(struct netdev_queue *dev_queue)
{
if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
struct Qdisc *q;
rcu_read_lock();
q = rcu_dereference(dev_queue->qdisc);
__netif_schedule(q);
rcu_read_unlock();
}
}
EXPORT_SYMBOL(netif_tx_wake_queue);
void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
{
unsigned long flags;
if (unlikely(!skb))
return;
if (likely(refcount_read(&skb->users) == 1)) {
smp_rmb();
refcount_set(&skb->users, 0);
} else if (likely(!refcount_dec_and_test(&skb->users))) {
return;
}
get_kfree_skb_cb(skb)->reason = reason;
local_irq_save(flags);
skb->next = __this_cpu_read(softnet_data.completion_queue);
__this_cpu_write(softnet_data.completion_queue, skb);
raise_softirq_irqoff(NET_TX_SOFTIRQ);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
{
if (in_hardirq() || irqs_disabled())
dev_kfree_skb_irq_reason(skb, reason);
else
kfree_skb_reason(skb, reason);
}
EXPORT_SYMBOL(dev_kfree_skb_any_reason);
/**
* netif_device_detach - mark device as removed
* @dev: network device
*
* Mark device as removed from system and therefore no longer available.
*/
void netif_device_detach(struct net_device *dev)
{
if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
netif_running(dev)) {
netif_tx_stop_all_queues(dev);
}
}
EXPORT_SYMBOL(netif_device_detach);
/**
* netif_device_attach - mark device as attached
* @dev: network device
*
* Mark device as attached from system and restart if needed.
*/
void netif_device_attach(struct net_device *dev)
{
if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
netif_running(dev)) {
netif_tx_wake_all_queues(dev);
__netdev_watchdog_up(dev);
}
}
EXPORT_SYMBOL(netif_device_attach);
/*
* Returns a Tx hash based on the given packet descriptor a Tx queues' number
* to be used as a distribution range.
*/
static u16 skb_tx_hash(const struct net_device *dev,
const struct net_device *sb_dev,
struct sk_buff *skb)
{
u32 hash;
u16 qoffset = 0;
u16 qcount = dev->real_num_tx_queues;
if (dev->num_tc) {
u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
qoffset = sb_dev->tc_to_txq[tc].offset;
qcount = sb_dev->tc_to_txq[tc].count;
if (unlikely(!qcount)) {
net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
sb_dev->name, qoffset, tc);
qoffset = 0;
qcount = dev->real_num_tx_queues;
}
}
if (skb_rx_queue_recorded(skb)) {
DEBUG_NET_WARN_ON_ONCE(qcount == 0);
hash = skb_get_rx_queue(skb);
if (hash >= qoffset)
hash -= qoffset;
while (unlikely(hash >= qcount))
hash -= qcount;
return hash + qoffset;
}
return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
}
void skb_warn_bad_offload(const struct sk_buff *skb)
{
static const netdev_features_t null_features;
struct net_device *dev = skb->dev;
const char *name = "";
if (!net_ratelimit())
return;
if (dev) {
if (dev->dev.parent)
name = dev_driver_string(dev->dev.parent);
else
name = netdev_name(dev);
}
skb_dump(KERN_WARNING, skb, false);
WARN(1, "%s: caps=(%pNF, %pNF)\n",
name, dev ? &dev->features : &null_features,
skb->sk ? &skb->sk->sk_route_caps : &null_features);
}
/*
* Invalidate hardware checksum when packet is to be mangled, and
* complete checksum manually on outgoing path.
*/
int skb_checksum_help(struct sk_buff *skb)
{
__wsum csum;
int ret = 0, offset;
if (skb->ip_summed == CHECKSUM_COMPLETE)
goto out_set_summed;
if (unlikely(skb_is_gso(skb))) {
skb_warn_bad_offload(skb);
return -EINVAL;
}
if (!skb_frags_readable(skb)) {
return -EFAULT;
}
/* Before computing a checksum, we should make sure no frag could
* be modified by an external entity : checksum could be wrong.
*/
if (skb_has_shared_frag(skb)) {
ret = __skb_linearize(skb);
if (ret)
goto out;
}
offset = skb_checksum_start_offset(skb);
ret = -EINVAL;
if (unlikely(offset >= skb_headlen(skb))) {
DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
offset, skb_headlen(skb));
goto out;
}
csum = skb_checksum(skb, offset, skb->len - offset, 0);
offset += skb->csum_offset;
if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
offset + sizeof(__sum16), skb_headlen(skb));
goto out;
}
ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
if (ret)
goto out;
*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
out_set_summed:
skb->ip_summed = CHECKSUM_NONE;
out:
return ret;
}
EXPORT_SYMBOL(skb_checksum_help);
int skb_crc32c_csum_help(struct sk_buff *skb)
{
__le32 crc32c_csum;
int ret = 0, offset, start;
if (skb->ip_summed != CHECKSUM_PARTIAL)
goto out;
if (unlikely(skb_is_gso(skb)))
goto out;
/* Before computing a checksum, we should make sure no frag could
* be modified by an external entity : checksum could be wrong.
*/
if (unlikely(skb_has_shared_frag(skb))) {
ret = __skb_linearize(skb);
if (ret)
goto out;
}
start = skb_checksum_start_offset(skb);
offset = start + offsetof(struct sctphdr, checksum);
if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
ret = -EINVAL;
goto out;
}
ret = skb_ensure_writable(skb, offset + sizeof(__le32));
if (ret)
goto out;
crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
skb->len - start, ~(__u32)0,
crc32c_csum_stub));
*(__le32 *)(skb->data + offset) = crc32c_csum;
skb_reset_csum_not_inet(skb);
out:
return ret;
}
EXPORT_SYMBOL(skb_crc32c_csum_help);
__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
{
__be16 type = skb->protocol;
/* Tunnel gso handlers can set protocol to ethernet. */
if (type == htons(ETH_P_TEB)) {
struct ethhdr *eth;
if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
return 0;
eth = (struct ethhdr *)skb->data;
type = eth->h_proto;
}
return vlan_get_protocol_and_depth(skb, type, depth);
}
/* Take action when hardware reception checksum errors are detected. */
#ifdef CONFIG_BUG
static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
{
netdev_err(dev, "hw csum failure\n");
skb_dump(KERN_ERR, skb, true);
dump_stack();
}
void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
{
DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
}
EXPORT_SYMBOL(netdev_rx_csum_fault);
#endif
/* XXX: check that highmem exists at all on the given machine. */
static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
{
#ifdef CONFIG_HIGHMEM
int i;
if (!(dev->features & NETIF_F_HIGHDMA)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
struct page *page = skb_frag_page(frag);
if (page && PageHighMem(page))
return 1;
}
}
#endif
return 0;
}
/* If MPLS offload request, verify we are testing hardware MPLS features
* instead of standard features for the netdev.
*/
#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
static netdev_features_t net_mpls_features(struct sk_buff *skb,
netdev_features_t features,
__be16 type)
{
if (eth_p_mpls(type))
features &= skb->dev->mpls_features;
return features;
}
#else
static netdev_features_t net_mpls_features(struct sk_buff *skb,
netdev_features_t features,
__be16 type)
{
return features;
}
#endif
static netdev_features_t harmonize_features(struct sk_buff *skb,
netdev_features_t features)
{
__be16 type;
type = skb_network_protocol(skb, NULL);
features = net_mpls_features(skb, features, type);
if (skb->ip_summed != CHECKSUM_NONE &&
!can_checksum_protocol(features, type)) {
features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
if (illegal_highdma(skb->dev, skb))
features &= ~NETIF_F_SG;
return features;
}
netdev_features_t passthru_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
return features;
}
EXPORT_SYMBOL(passthru_features_check);
static netdev_features_t dflt_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
return vlan_features_check(skb, features);
}
static netdev_features_t gso_features_check(const struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
u16 gso_segs = skb_shinfo(skb)->gso_segs;
if (gso_segs > READ_ONCE(dev->gso_max_segs))
return features & ~NETIF_F_GSO_MASK;
if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
return features & ~NETIF_F_GSO_MASK;
if (!skb_shinfo(skb)->gso_type) {
skb_warn_bad_offload(skb);
return features & ~NETIF_F_GSO_MASK;
}
/* Support for GSO partial features requires software
* intervention before we can actually process the packets
* so we need to strip support for any partial features now
* and we can pull them back in after we have partially
* segmented the frame.
*/
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
features &= ~dev->gso_partial_features;
/* Make sure to clear the IPv4 ID mangling feature if the
* IPv4 header has the potential to be fragmented.
*/
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
struct iphdr *iph = skb->encapsulation ?
inner_ip_hdr(skb) : ip_hdr(skb);
if (!(iph->frag_off & htons(IP_DF)))
features &= ~NETIF_F_TSO_MANGLEID;
}
return features;
}
netdev_features_t netif_skb_features(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
netdev_features_t features = dev->features;
if (skb_is_gso(skb))
features = gso_features_check(skb, dev, features);
/* If encapsulation offload request, verify we are testing
* hardware encapsulation features instead of standard
* features for the netdev
*/
if (skb->encapsulation)
features &= dev->hw_enc_features;
if (skb_vlan_tagged(skb))
features = netdev_intersect_features(features,
dev->vlan_features |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_STAG_TX);
if (dev->netdev_ops->ndo_features_check)
features &= dev->netdev_ops->ndo_features_check(skb, dev,
features);
else
features &= dflt_features_check(skb, dev, features);
return harmonize_features(skb, features);
}
EXPORT_SYMBOL(netif_skb_features);
static int xmit_one(struct sk_buff *skb, struct net_device *dev,
struct netdev_queue *txq, bool more)
{
unsigned int len;
int rc;
if (dev_nit_active(dev))
dev_queue_xmit_nit(skb, dev);
len = skb->len;
trace_net_dev_start_xmit(skb, dev);
rc = netdev_start_xmit(skb, dev, txq, more);
trace_net_dev_xmit(skb, rc, dev, len);
return rc;
}
struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
struct netdev_queue *txq, int *ret)
{
struct sk_buff *skb = first;
int rc = NETDEV_TX_OK;
while (skb) {
struct sk_buff *next = skb->next;
skb_mark_not_on_list(skb);
rc = xmit_one(skb, dev, txq, next != NULL);
if (unlikely(!dev_xmit_complete(rc))) {
skb->next = next;
goto out;
}
skb = next;
if (netif_tx_queue_stopped(txq) && skb) {
rc = NETDEV_TX_BUSY;
break;
}
}
out:
*ret = rc;
return skb;
}
static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
netdev_features_t features)
{
if (skb_vlan_tag_present(skb) &&
!vlan_hw_offload_capable(features, skb->vlan_proto))
skb = __vlan_hwaccel_push_inside(skb);
return skb;
}
int skb_csum_hwoffload_help(struct sk_buff *skb,
const netdev_features_t features)
{
if (unlikely(skb_csum_is_sctp(skb)))
return !!(features & NETIF_F_SCTP_CRC) ? 0 :
skb_crc32c_csum_help(skb);
if (features & NETIF_F_HW_CSUM)
return 0;
if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
switch (skb->csum_offset) {
case offsetof(struct tcphdr, check):
case offsetof(struct udphdr, check):
return 0;
}
}
return skb_checksum_help(skb);
}
EXPORT_SYMBOL(skb_csum_hwoffload_help);
static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
{
netdev_features_t features;
features = netif_skb_features(skb);
skb = validate_xmit_vlan(skb, features);
if (unlikely(!skb))
goto out_null;
skb = sk_validate_xmit_skb(skb, dev);
if (unlikely(!skb))
goto out_null;
if (netif_needs_gso(skb, features)) {
struct sk_buff *segs;
segs = skb_gso_segment(skb, features);
if (IS_ERR(segs)) {
goto out_kfree_skb;
} else if (segs) {
consume_skb(skb);
skb = segs;
}
} else {
if (skb_needs_linearize(skb, features) &&
__skb_linearize(skb))
goto out_kfree_skb;
/* If packet is not checksummed and device does not
* support checksumming for this protocol, complete
* checksumming here.
*/
if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb->encapsulation)
skb_set_inner_transport_header(skb,
skb_checksum_start_offset(skb));
else
skb_set_transport_header(skb,
skb_checksum_start_offset(skb));
if (skb_csum_hwoffload_help(skb, features))
goto out_kfree_skb;
}
}
skb = validate_xmit_xfrm(skb, features, again);
return skb;
out_kfree_skb:
kfree_skb(skb);
out_null:
dev_core_stats_tx_dropped_inc(dev);
return NULL;
}
struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
{
struct sk_buff *next, *head = NULL, *tail;
for (; skb != NULL; skb = next) {
next = skb->next;
skb_mark_not_on_list(skb);
/* in case skb won't be segmented, point to itself */
skb->prev = skb;
skb = validate_xmit_skb(skb, dev, again);
if (!skb)
continue;
if (!head)
head = skb;
else
tail->next = skb;
/* If skb was segmented, skb->prev points to
* the last segment. If not, it still contains skb.
*/
tail = skb->prev;
}
return head;
}
EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
static void qdisc_pkt_len_init(struct sk_buff *skb)
{
const struct skb_shared_info *shinfo = skb_shinfo(skb);
qdisc_skb_cb(skb)->pkt_len = skb->len;
/* To get more precise estimation of bytes sent on wire,
* we add to pkt_len the headers size of all segments
*/
if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
u16 gso_segs = shinfo->gso_segs;
unsigned int hdr_len;
/* mac layer + network layer */
hdr_len = skb_transport_offset(skb);
/* + transport layer */
if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
const struct tcphdr *th;
struct tcphdr _tcphdr;
th = skb_header_pointer(skb, hdr_len,
sizeof(_tcphdr), &_tcphdr);
if (likely(th))
hdr_len += __tcp_hdrlen(th);
} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
struct udphdr _udphdr;
if (skb_header_pointer(skb, hdr_len,
sizeof(_udphdr), &_udphdr))
hdr_len += sizeof(struct udphdr);
}
if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
int payload = skb->len - hdr_len;
/* Malicious packet. */
if (payload <= 0)
return;
gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
}
qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
}
}
static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
struct sk_buff **to_free,
struct netdev_queue *txq)
{
int rc;
rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
if (rc == NET_XMIT_SUCCESS)
trace_qdisc_enqueue(q, txq, skb);
return rc;
}
static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
struct net_device *dev,
struct netdev_queue *txq)
{
spinlock_t *root_lock = qdisc_lock(q);
struct sk_buff *to_free = NULL;
bool contended;
int rc;
qdisc_calculate_pkt_len(skb, q);
tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
if (q->flags & TCQ_F_NOLOCK) {
if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
qdisc_run_begin(q)) {
/* Retest nolock_qdisc_is_empty() within the protection
* of q->seqlock to protect from racing with requeuing.
*/
if (unlikely(!nolock_qdisc_is_empty(q))) {
rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
__qdisc_run(q);
qdisc_run_end(q);
goto no_lock_out;
}
qdisc_bstats_cpu_update(q, skb);
if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
!nolock_qdisc_is_empty(q))
__qdisc_run(q);
qdisc_run_end(q);
return NET_XMIT_SUCCESS;
}
rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
qdisc_run(q);
no_lock_out:
if (unlikely(to_free))
kfree_skb_list_reason(to_free,
tcf_get_drop_reason(to_free));
return rc;
}
if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
return NET_XMIT_DROP;
}
/*
* Heuristic to force contended enqueues to serialize on a
* separate lock before trying to get qdisc main lock.
* This permits qdisc->running owner to get the lock more
* often and dequeue packets faster.
* On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
* and then other tasks will only enqueue packets. The packets will be
* sent after the qdisc owner is scheduled again. To prevent this
* scenario the task always serialize on the lock.
*/
contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
if (unlikely(contended))
spin_lock(&q->busylock);
spin_lock(root_lock);
if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
__qdisc_drop(skb, &to_free);
rc = NET_XMIT_DROP;
} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
qdisc_run_begin(q)) {
/*
* This is a work-conserving queue; there are no old skbs
* waiting to be sent out; and the qdisc is not running -
* xmit the skb directly.
*/
qdisc_bstats_update(q, skb);
if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
if (unlikely(contended)) {
spin_unlock(&q->busylock);
contended = false;
}
__qdisc_run(q);
}
qdisc_run_end(q);
rc = NET_XMIT_SUCCESS;
} else {
WRITE_ONCE(q->owner, smp_processor_id());
rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
WRITE_ONCE(q->owner, -1);
if (qdisc_run_begin(q)) {
if (unlikely(contended)) {
spin_unlock(&q->busylock);
contended = false;
}
__qdisc_run(q);
qdisc_run_end(q);
}
}
spin_unlock(root_lock);
if (unlikely(to_free))
kfree_skb_list_reason(to_free,
tcf_get_drop_reason(to_free));
if (unlikely(contended))
spin_unlock(&q->busylock);
return rc;
}
#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
static void skb_update_prio(struct sk_buff *skb)
{
const struct netprio_map *map;
const struct sock *sk;
unsigned int prioidx;
if (skb->priority)
return;
map = rcu_dereference_bh(skb->dev->priomap);
if (!map)
return;
sk = skb_to_full_sk(skb);
if (!sk)
return;
prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
if (prioidx < map->priomap_len)
skb->priority = map->priomap[prioidx];
}
#else
#define skb_update_prio(skb)
#endif
/**
* dev_loopback_xmit - loop back @skb
* @net: network namespace this loopback is happening in
* @sk: sk needed to be a netfilter okfn
* @skb: buffer to transmit
*/
int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
{
skb_reset_mac_header(skb);
__skb_pull(skb, skb_network_offset(skb));
skb->pkt_type = PACKET_LOOPBACK;
if (skb->ip_summed == CHECKSUM_NONE)
skb->ip_summed = CHECKSUM_UNNECESSARY;
DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
skb_dst_force(skb);
netif_rx(skb);
return 0;
}
EXPORT_SYMBOL(dev_loopback_xmit);
#ifdef CONFIG_NET_EGRESS
static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
{
int qm = skb_get_queue_mapping(skb);
return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
}
#ifndef CONFIG_PREEMPT_RT
static bool netdev_xmit_txqueue_skipped(void)
{
return __this_cpu_read(softnet_data.xmit.skip_txqueue);
}
void netdev_xmit_skip_txqueue(bool skip)
{
__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
}
EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
#else
static bool netdev_xmit_txqueue_skipped(void)
{
return current->net_xmit.skip_txqueue;
}
void netdev_xmit_skip_txqueue(bool skip)
{
current->net_xmit.skip_txqueue = skip;
}
EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
#endif
#endif /* CONFIG_NET_EGRESS */
#ifdef CONFIG_NET_XGRESS
static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
enum skb_drop_reason *drop_reason)
{
int ret = TC_ACT_UNSPEC;
#ifdef CONFIG_NET_CLS_ACT
struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
struct tcf_result res;
if (!miniq)
return ret;
if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
if (tcf_block_bypass_sw(miniq->block))
return ret;
}
tc_skb_cb(skb)->mru = 0;
tc_skb_cb(skb)->post_ct = false;
tcf_set_drop_reason(skb, *drop_reason);
mini_qdisc_bstats_cpu_update(miniq, skb);
ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
/* Only tcf related quirks below. */
switch (ret) {
case TC_ACT_SHOT:
*drop_reason = tcf_get_drop_reason(skb);
mini_qdisc_qstats_cpu_drop(miniq);
break;
case TC_ACT_OK:
case TC_ACT_RECLASSIFY:
skb->tc_index = TC_H_MIN(res.classid);
break;
}
#endif /* CONFIG_NET_CLS_ACT */
return ret;
}
static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
void tcx_inc(void)
{
static_branch_inc(&tcx_needed_key);
}
void tcx_dec(void)
{
static_branch_dec(&tcx_needed_key);
}
static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
const bool needs_mac)
{
const struct bpf_mprog_fp *fp;
const struct bpf_prog *prog;
int ret = TCX_NEXT;
if (needs_mac)
__skb_push(skb, skb->mac_len);
bpf_mprog_foreach_prog(entry, fp, prog) {
bpf_compute_data_pointers(skb);
ret = bpf_prog_run(prog, skb);
if (ret != TCX_NEXT)
break;
}
if (needs_mac)
__skb_pull(skb, skb->mac_len);
return tcx_action_code(skb, ret);
}
static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
struct net_device *orig_dev, bool *another)
{
struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
int sch_ret;
if (!entry)
return skb;
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
if (*pt_prev) {
*ret = deliver_skb(skb, *pt_prev, orig_dev);
*pt_prev = NULL;
}
qdisc_skb_cb(skb)->pkt_len = skb->len;
tcx_set_ingress(skb, true);
if (static_branch_unlikely(&tcx_needed_key)) {
sch_ret = tcx_run(entry, skb, true);
if (sch_ret != TC_ACT_UNSPEC)
goto ingress_verdict;
}
sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
ingress_verdict:
switch (sch_ret) {
case TC_ACT_REDIRECT:
/* skb_mac_header check was done by BPF, so we can safely
* push the L2 header back before redirecting to another
* netdev.
*/
__skb_push(skb, skb->mac_len);
if (skb_do_redirect(skb) == -EAGAIN) {
__skb_pull(skb, skb->mac_len);
*another = true;
break;
}
*ret = NET_RX_SUCCESS;
bpf_net_ctx_clear(bpf_net_ctx);
return NULL;
case TC_ACT_SHOT:
kfree_skb_reason(skb, drop_reason);
*ret = NET_RX_DROP;
bpf_net_ctx_clear(bpf_net_ctx);
return NULL;
/* used by tc_run */
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
consume_skb(skb);
fallthrough;
case TC_ACT_CONSUMED:
*ret = NET_RX_SUCCESS;
bpf_net_ctx_clear(bpf_net_ctx);
return NULL;
}
bpf_net_ctx_clear(bpf_net_ctx);
return skb;
}
static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
{
struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
int sch_ret;
if (!entry)
return skb;
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
* already set by the caller.
*/
if (static_branch_unlikely(&tcx_needed_key)) {
sch_ret = tcx_run(entry, skb, false);
if (sch_ret != TC_ACT_UNSPEC)
goto egress_verdict;
}
sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
egress_verdict:
switch (sch_ret) {
case TC_ACT_REDIRECT:
/* No need to push/pop skb's mac_header here on egress! */
skb_do_redirect(skb);
*ret = NET_XMIT_SUCCESS;
bpf_net_ctx_clear(bpf_net_ctx);
return NULL;
case TC_ACT_SHOT:
kfree_skb_reason(skb, drop_reason);
*ret = NET_XMIT_DROP;
bpf_net_ctx_clear(bpf_net_ctx);
return NULL;
/* used by tc_run */
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
consume_skb(skb);
fallthrough;
case TC_ACT_CONSUMED:
*ret = NET_XMIT_SUCCESS;
bpf_net_ctx_clear(bpf_net_ctx);
return NULL;
}
bpf_net_ctx_clear(bpf_net_ctx);
return skb;
}
#else
static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
struct net_device *orig_dev, bool *another)
{
return skb;
}
static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
{
return skb;
}
#endif /* CONFIG_NET_XGRESS */
#ifdef CONFIG_XPS
static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
struct xps_dev_maps *dev_maps, unsigned int tci)
{
int tc = netdev_get_prio_tc_map(dev, skb->priority);
struct xps_map *map;
int queue_index = -1;
if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
return queue_index;
tci *= dev_maps->num_tc;
tci += tc;
map = rcu_dereference(dev_maps->attr_map[tci]);
if (map) {
if (map->len == 1)
queue_index = map->queues[0];
else
queue_index = map->queues[reciprocal_scale(
skb_get_hash(skb), map->len)];
if (unlikely(queue_index >= dev->real_num_tx_queues))
queue_index = -1;
}
return queue_index;
}
#endif
static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
struct sk_buff *skb)
{
#ifdef CONFIG_XPS
struct xps_dev_maps *dev_maps;
struct sock *sk = skb->sk;
int queue_index = -1;
if (!static_key_false(&xps_needed))
return -1;
rcu_read_lock();
if (!static_key_false(&xps_rxqs_needed))
goto get_cpus_map;
dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
if (dev_maps) {
int tci = sk_rx_queue_get(sk);
if (tci >= 0)
queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
tci);
}
get_cpus_map:
if (queue_index < 0) {
dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
if (dev_maps) {
unsigned int tci = skb->sender_cpu - 1;
queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
tci);
}
}
rcu_read_unlock();
return queue_index;
#else
return -1;
#endif
}
u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
return 0;
}
EXPORT_SYMBOL(dev_pick_tx_zero);
u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
struct sock *sk = skb->sk;
int queue_index = sk_tx_queue_get(sk);
sb_dev = sb_dev ? : dev;
if (queue_index < 0 || skb->ooo_okay ||
queue_index >= dev->real_num_tx_queues) {
int new_index = get_xps_queue(dev, sb_dev, skb);
if (new_index < 0)
new_index = skb_tx_hash(dev, sb_dev, skb);
if (queue_index != new_index && sk &&
sk_fullsock(sk) &&
rcu_access_pointer(sk->sk_dst_cache))
sk_tx_queue_set(sk, new_index);
queue_index = new_index;
}
return queue_index;
}
EXPORT_SYMBOL(netdev_pick_tx);
struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
struct sk_buff *skb,
struct net_device *sb_dev)
{
int queue_index = 0;
#ifdef CONFIG_XPS
u32 sender_cpu = skb->sender_cpu - 1;
if (sender_cpu >= (u32)NR_CPUS)
skb->sender_cpu = raw_smp_processor_id() + 1;
#endif
if (dev->real_num_tx_queues != 1) {
const struct net_device_ops *ops = dev->netdev_ops;
if (ops->ndo_select_queue)
queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
else
queue_index = netdev_pick_tx(dev, skb, sb_dev);
queue_index = netdev_cap_txqueue(dev, queue_index);
}
skb_set_queue_mapping(skb, queue_index);
return netdev_get_tx_queue(dev, queue_index);
}
/**
* __dev_queue_xmit() - transmit a buffer
* @skb: buffer to transmit
* @sb_dev: suboordinate device used for L2 forwarding offload
*
* Queue a buffer for transmission to a network device. The caller must
* have set the device and priority and built the buffer before calling
* this function. The function can be called from an interrupt.
*
* When calling this method, interrupts MUST be enabled. This is because
* the BH enable code must have IRQs enabled so that it will not deadlock.
*
* Regardless of the return value, the skb is consumed, so it is currently
* difficult to retry a send to this method. (You can bump the ref count
* before sending to hold a reference for retry if you are careful.)
*
* Return:
* * 0 - buffer successfully transmitted
* * positive qdisc return code - NET_XMIT_DROP etc.
* * negative errno - other errors
*/
int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
{
struct net_device *dev = skb->dev;
struct netdev_queue *txq = NULL;
struct Qdisc *q;
int rc = -ENOMEM;
bool again = false;
skb_reset_mac_header(skb);
skb_assert_len(skb);
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
/* Disable soft irqs for various locks below. Also
* stops preemption for RCU.
*/
rcu_read_lock_bh();
skb_update_prio(skb);
qdisc_pkt_len_init(skb);
tcx_set_ingress(skb, false);
#ifdef CONFIG_NET_EGRESS
if (static_branch_unlikely(&egress_needed_key)) {
if (nf_hook_egress_active()) {
skb = nf_hook_egress(skb, &rc, dev);
if (!skb)
goto out;
}
netdev_xmit_skip_txqueue(false);
nf_skip_egress(skb, true);
skb = sch_handle_egress(skb, &rc, dev);
if (!skb)
goto out;
nf_skip_egress(skb, false);
if (netdev_xmit_txqueue_skipped())
txq = netdev_tx_queue_mapping(dev, skb);
}
#endif
/* If device/qdisc don't need skb->dst, release it right now while
* its hot in this cpu cache.
*/
if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
skb_dst_drop(skb);
else
skb_dst_force(skb);
if (!txq)
txq = netdev_core_pick_tx(dev, skb, sb_dev);
q = rcu_dereference_bh(txq->qdisc);
trace_net_dev_queue(skb);
if (q->enqueue) {
rc = __dev_xmit_skb(skb, q, dev, txq);
goto out;
}
/* The device has no queue. Common case for software devices:
* loopback, all the sorts of tunnels...
* Really, it is unlikely that netif_tx_lock protection is necessary
* here. (f.e. loopback and IP tunnels are clean ignoring statistics
* counters.)
* However, it is possible, that they rely on protection
* made by us here.
* Check this and shot the lock. It is not prone from deadlocks.
*Either shot noqueue qdisc, it is even simpler 8)
*/
if (dev->flags & IFF_UP) {
int cpu = smp_processor_id(); /* ok because BHs are off */
/* Other cpus might concurrently change txq->xmit_lock_owner
* to -1 or to their cpu id, but not to our id.
*/
if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
if (dev_xmit_recursion())
goto recursion_alert;
skb = validate_xmit_skb(skb, dev, &again);
if (!skb)
goto out;
HARD_TX_LOCK(dev, txq, cpu);
if (!netif_xmit_stopped(txq)) {
dev_xmit_recursion_inc();
skb = dev_hard_start_xmit(skb, dev, txq, &rc);
dev_xmit_recursion_dec();
if (dev_xmit_complete(rc)) {
HARD_TX_UNLOCK(dev, txq);
goto out;
}
}
HARD_TX_UNLOCK(dev, txq);
net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
dev->name);
} else {
/* Recursion is detected! It is possible,
* unfortunately
*/
recursion_alert:
net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
dev->name);
}
}
rc = -ENETDOWN;
rcu_read_unlock_bh();
dev_core_stats_tx_dropped_inc(dev);
kfree_skb_list(skb);
return rc;
out:
rcu_read_unlock_bh();
return rc;
}
EXPORT_SYMBOL(__dev_queue_xmit);
int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
{
struct net_device *dev = skb->dev;
struct sk_buff *orig_skb = skb;
struct netdev_queue *txq;
int ret = NETDEV_TX_BUSY;
bool again = false;
if (unlikely(!netif_running(dev) ||
!netif_carrier_ok(dev)))
goto drop;
skb = validate_xmit_skb_list(skb, dev, &again);
if (skb != orig_skb)
goto drop;
skb_set_queue_mapping(skb, queue_id);
txq = skb_get_tx_queue(dev, skb);
local_bh_disable();
dev_xmit_recursion_inc();
HARD_TX_LOCK(dev, txq, smp_processor_id());
if (!netif_xmit_frozen_or_drv_stopped(txq))
ret = netdev_start_xmit(skb, dev, txq, false);
HARD_TX_UNLOCK(dev, txq);
dev_xmit_recursion_dec();
local_bh_enable();
return ret;
drop:
dev_core_stats_tx_dropped_inc(dev);
kfree_skb_list(skb);
return NET_XMIT_DROP;
}
EXPORT_SYMBOL(__dev_direct_xmit);
/*************************************************************************
* Receiver routines
*************************************************************************/
static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
int weight_p __read_mostly = 64; /* old backlog weight */
int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
/* Called with irq disabled */
static inline void ____napi_schedule(struct softnet_data *sd,
struct napi_struct *napi)
{
struct task_struct *thread;
lockdep_assert_irqs_disabled();
if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
/* Paired with smp_mb__before_atomic() in
* napi_enable()/dev_set_threaded().
* Use READ_ONCE() to guarantee a complete
* read on napi->thread. Only call
* wake_up_process() when it's not NULL.
*/
thread = READ_ONCE(napi->thread);
if (thread) {
if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
goto use_local_napi;
set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
wake_up_process(thread);
return;
}
}
use_local_napi:
list_add_tail(&napi->poll_list, &sd->poll_list);
WRITE_ONCE(napi->list_owner, smp_processor_id());
/* If not called from net_rx_action()
* we have to raise NET_RX_SOFTIRQ.
*/
if (!sd->in_net_rx_action)
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
}
#ifdef CONFIG_RPS
struct static_key_false rps_needed __read_mostly;
EXPORT_SYMBOL(rps_needed);
struct static_key_false rfs_needed __read_mostly;
EXPORT_SYMBOL(rfs_needed);
static struct rps_dev_flow *
set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
struct rps_dev_flow *rflow, u16 next_cpu)
{
if (next_cpu < nr_cpu_ids) {
u32 head;
#ifdef CONFIG_RFS_ACCEL
struct netdev_rx_queue *rxqueue;
struct rps_dev_flow_table *flow_table;
struct rps_dev_flow *old_rflow;
u16 rxq_index;
u32 flow_id;
int rc;
/* Should we steer this flow to a different hardware queue? */
if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
!(dev->features & NETIF_F_NTUPLE))
goto out;
rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
if (rxq_index == skb_get_rx_queue(skb))
goto out;
rxqueue = dev->_rx + rxq_index;
flow_table = rcu_dereference(rxqueue->rps_flow_table);
if (!flow_table)
goto out;
flow_id = skb_get_hash(skb) & flow_table->mask;
rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
rxq_index, flow_id);
if (rc < 0)
goto out;
old_rflow = rflow;
rflow = &flow_table->flows[flow_id];
WRITE_ONCE(rflow->filter, rc);
if (old_rflow->filter == rc)
WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
out:
#endif
head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
rps_input_queue_tail_save(&rflow->last_qtail, head);
}
WRITE_ONCE(rflow->cpu, next_cpu);
return rflow;
}
/*
* get_rps_cpu is called from netif_receive_skb and returns the target
* CPU from the RPS map of the receiving queue for a given skb.
* rcu_read_lock must be held on entry.
*/
static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
struct rps_dev_flow **rflowp)
{
const struct rps_sock_flow_table *sock_flow_table;
struct netdev_rx_queue *rxqueue = dev->_rx;
struct rps_dev_flow_table *flow_table;
struct rps_map *map;
int cpu = -1;
u32 tcpu;
u32 hash;
if (skb_rx_queue_recorded(skb)) {
u16 index = skb_get_rx_queue(skb);
if (unlikely(index >= dev->real_num_rx_queues)) {
WARN_ONCE(dev->real_num_rx_queues > 1,
"%s received packet on queue %u, but number "
"of RX queues is %u\n",
dev->name, index, dev->real_num_rx_queues);
goto done;
}
rxqueue += index;
}
/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
flow_table = rcu_dereference(rxqueue->rps_flow_table);
map = rcu_dereference(rxqueue->rps_map);
if (!flow_table && !map)
goto done;
skb_reset_network_header(skb);
hash = skb_get_hash(skb);
if (!hash)
goto done;
sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
if (flow_table && sock_flow_table) {
struct rps_dev_flow *rflow;
u32 next_cpu;
u32 ident;
/* First check into global flow table if there is a match.
* This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
*/
ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
goto try_rps;
next_cpu = ident & net_hotdata.rps_cpu_mask;
/* OK, now we know there is a match,
* we can look at the local (per receive queue) flow table
*/
rflow = &flow_table->flows[hash & flow_table->mask];
tcpu = rflow->cpu;
/*
* If the desired CPU (where last recvmsg was done) is
* different from current CPU (one in the rx-queue flow
* table entry), switch if one of the following holds:
* - Current CPU is unset (>= nr_cpu_ids).
* - Current CPU is offline.
* - The current CPU's queue tail has advanced beyond the
* last packet that was enqueued using this table entry.
* This guarantees that all previous packets for the flow
* have been dequeued, thus preserving in order delivery.
*/
if (unlikely(tcpu != next_cpu) &&
(tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
rflow->last_qtail)) >= 0)) {
tcpu = next_cpu;
rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
}
if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
*rflowp = rflow;
cpu = tcpu;
goto done;
}
}
try_rps:
if (map) {
tcpu = map->cpus[reciprocal_scale(hash, map->len)];
if (cpu_online(tcpu)) {
cpu = tcpu;
goto done;
}
}
done:
return cpu;
}
#ifdef CONFIG_RFS_ACCEL
/**
* rps_may_expire_flow - check whether an RFS hardware filter may be removed
* @dev: Device on which the filter was set
* @rxq_index: RX queue index
* @flow_id: Flow ID passed to ndo_rx_flow_steer()
* @filter_id: Filter ID returned by ndo_rx_flow_steer()
*
* Drivers that implement ndo_rx_flow_steer() should periodically call
* this function for each installed filter and remove the filters for
* which it returns %true.
*/
bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
u32 flow_id, u16 filter_id)
{
struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
struct rps_dev_flow_table *flow_table;
struct rps_dev_flow *rflow;
bool expire = true;
unsigned int cpu;
rcu_read_lock();
flow_table = rcu_dereference(rxqueue->rps_flow_table);
if (flow_table && flow_id <= flow_table->mask) {
rflow = &flow_table->flows[flow_id];
cpu = READ_ONCE(rflow->cpu);
if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
READ_ONCE(rflow->last_qtail)) <
(int)(10 * flow_table->mask)))
expire = false;
}
rcu_read_unlock();
return expire;
}
EXPORT_SYMBOL(rps_may_expire_flow);
#endif /* CONFIG_RFS_ACCEL */
/* Called from hardirq (IPI) context */
static void rps_trigger_softirq(void *data)
{
struct softnet_data *sd = data;
____napi_schedule(sd, &sd->backlog);
sd->received_rps++;
}
#endif /* CONFIG_RPS */
/* Called from hardirq (IPI) context */
static void trigger_rx_softirq(void *data)
{
struct softnet_data *sd = data;
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
smp_store_release(&sd->defer_ipi_scheduled, 0);
}
/*
* After we queued a packet into sd->input_pkt_queue,
* we need to make sure this queue is serviced soon.
*
* - If this is another cpu queue, link it to our rps_ipi_list,
* and make sure we will process rps_ipi_list from net_rx_action().
*
* - If this is our own queue, NAPI schedule our backlog.
* Note that this also raises NET_RX_SOFTIRQ.
*/
static void napi_schedule_rps(struct softnet_data *sd)
{
struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
#ifdef CONFIG_RPS
if (sd != mysd) {
if (use_backlog_threads()) {
__napi_schedule_irqoff(&sd->backlog);
return;
}
sd->rps_ipi_next = mysd->rps_ipi_list;
mysd->rps_ipi_list = sd;
/* If not called from net_rx_action() or napi_threaded_poll()
* we have to raise NET_RX_SOFTIRQ.
*/
if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
return;
}
#endif /* CONFIG_RPS */
__napi_schedule_irqoff(&mysd->backlog);
}
void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
{
unsigned long flags;
if (use_backlog_threads()) {
backlog_lock_irq_save(sd, &flags);
if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
__napi_schedule_irqoff(&sd->backlog);
backlog_unlock_irq_restore(sd, &flags);
} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
smp_call_function_single_async(cpu, &sd->defer_csd);
}
}
#ifdef CONFIG_NET_FLOW_LIMIT
int netdev_flow_limit_table_len __read_mostly = (1 << 12);
#endif
static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
{
#ifdef CONFIG_NET_FLOW_LIMIT
struct sd_flow_limit *fl;
struct softnet_data *sd;
unsigned int old_flow, new_flow;
if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
return false;
sd = this_cpu_ptr(&softnet_data);
rcu_read_lock();
fl = rcu_dereference(sd->flow_limit);
if (fl) {
new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
old_flow = fl->history[fl->history_head];
fl->history[fl->history_head] = new_flow;
fl->history_head++;
fl->history_head &= FLOW_LIMIT_HISTORY - 1;
if (likely(fl->buckets[old_flow]))
fl->buckets[old_flow]--;
if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
fl->count++;
rcu_read_unlock();
return true;
}
}
rcu_read_unlock();
#endif
return false;
}
/*
* enqueue_to_backlog is called to queue an skb to a per CPU backlog
* queue (may be a remote CPU queue).
*/
static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
unsigned int *qtail)
{
enum skb_drop_reason reason;
struct softnet_data *sd;
unsigned long flags;
unsigned int qlen;
int max_backlog;
u32 tail;
reason = SKB_DROP_REASON_DEV_READY;
if (!netif_running(skb->dev))
goto bad_dev;
reason = SKB_DROP_REASON_CPU_BACKLOG;
sd = &per_cpu(softnet_data, cpu);
qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
max_backlog = READ_ONCE(net_hotdata.max_backlog);
if (unlikely(qlen > max_backlog))
goto cpu_backlog_drop;
backlog_lock_irq_save(sd, &flags);
qlen = skb_queue_len(&sd->input_pkt_queue);
if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
if (!qlen) {
/* Schedule NAPI for backlog device. We can use
* non atomic operation as we own the queue lock.
*/
if (!__test_and_set_bit(NAPI_STATE_SCHED,
&sd->backlog.state))
napi_schedule_rps(sd);
}
__skb_queue_tail(&sd->input_pkt_queue, skb);
tail = rps_input_queue_tail_incr(sd);
backlog_unlock_irq_restore(sd, &flags);
/* save the tail outside of the critical section */
rps_input_queue_tail_save(qtail, tail);
return NET_RX_SUCCESS;
}
backlog_unlock_irq_restore(sd, &flags);
cpu_backlog_drop:
atomic_inc(&sd->dropped);
bad_dev:
dev_core_stats_rx_dropped_inc(skb->dev);
kfree_skb_reason(skb, reason);
return NET_RX_DROP;
}
static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
struct netdev_rx_queue *rxqueue;
rxqueue = dev->_rx;
if (skb_rx_queue_recorded(skb)) {
u16 index = skb_get_rx_queue(skb);
if (unlikely(index >= dev->real_num_rx_queues)) {
WARN_ONCE(dev->real_num_rx_queues > 1,
"%s received packet on queue %u, but number "
"of RX queues is %u\n",
dev->name, index, dev->real_num_rx_queues);
return rxqueue; /* Return first rxqueue */
}
rxqueue += index;
}
return rxqueue;
}
u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
struct bpf_prog *xdp_prog)
{
void *orig_data, *orig_data_end, *hard_start;
struct netdev_rx_queue *rxqueue;
bool orig_bcast, orig_host;
u32 mac_len, frame_sz;
__be16 orig_eth_type;
struct ethhdr *eth;
u32 metalen, act;
int off;
/* The XDP program wants to see the packet starting at the MAC
* header.
*/
mac_len = skb->data - skb_mac_header(skb);
hard_start = skb->data - skb_headroom(skb);
/* SKB "head" area always have tailroom for skb_shared_info */
frame_sz = (void *)skb_end_pointer(skb) - hard_start;
frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
rxqueue = netif_get_rxqueue(skb);
xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
skb_headlen(skb) + mac_len, true);
if (skb_is_nonlinear(skb)) {
skb_shinfo(skb)->xdp_frags_size = skb->data_len;
xdp_buff_set_frags_flag(xdp);
} else {
xdp_buff_clear_frags_flag(xdp);
}
orig_data_end = xdp->data_end;
orig_data = xdp->data;
eth = (struct ethhdr *)xdp->data;
orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
orig_eth_type = eth->h_proto;
act = bpf_prog_run_xdp(xdp_prog, xdp);
/* check if bpf_xdp_adjust_head was used */
off = xdp->data - orig_data;
if (off) {
if (off > 0)
__skb_pull(skb, off);
else if (off < 0)
__skb_push(skb, -off);
skb->mac_header += off;
skb_reset_network_header(skb);
}
/* check if bpf_xdp_adjust_tail was used */
off = xdp->data_end - orig_data_end;
if (off != 0) {
skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
skb->len += off; /* positive on grow, negative on shrink */
}
/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
* (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
*/
if (xdp_buff_has_frags(xdp))
skb->data_len = skb_shinfo(skb)->xdp_frags_size;
else
skb->data_len = 0;
/* check if XDP changed eth hdr such SKB needs update */
eth = (struct ethhdr *)xdp->data;
if ((orig_eth_type != eth->h_proto) ||
(orig_host != ether_addr_equal_64bits(eth->h_dest,
skb->dev->dev_addr)) ||
(orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
__skb_push(skb, ETH_HLEN);
skb->pkt_type = PACKET_HOST;
skb->protocol = eth_type_trans(skb, skb->dev);
}
/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
* before calling us again on redirect path. We do not call do_redirect
* as we leave that up to the caller.
*
* Caller is responsible for managing lifetime of skb (i.e. calling
* kfree_skb in response to actions it cannot handle/XDP_DROP).
*/
switch (act) {
case XDP_REDIRECT:
case XDP_TX:
__skb_push(skb, mac_len);
break;
case XDP_PASS:
metalen = xdp->data - xdp->data_meta;
if (metalen)
skb_metadata_set(skb, metalen);
break;
}
return act;
}
static int
netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
{
struct sk_buff *skb = *pskb;
int err, hroom, troom;
if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
return 0;
/* In case we have to go down the path and also linearize,
* then lets do the pskb_expand_head() work just once here.
*/
hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
troom = skb->tail + skb->data_len - skb->end;
err = pskb_expand_head(skb,
hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
if (err)
return err;
return skb_linearize(skb);
}
static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
struct xdp_buff *xdp,
struct bpf_prog *xdp_prog)
{
struct sk_buff *skb = *pskb;
u32 mac_len, act = XDP_DROP;
/* Reinjected packets coming from act_mirred or similar should
* not get XDP generic processing.
*/
if (skb_is_redirected(skb))
return XDP_PASS;
/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
* bytes. This is the guarantee that also native XDP provides,
* thus we need to do it here as well.
*/
mac_len = skb->data - skb_mac_header(skb);
__skb_push(skb, mac_len);
if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
skb_headroom(skb) < XDP_PACKET_HEADROOM) {
if (netif_skb_check_for_xdp(pskb, xdp_prog))
goto do_drop;
}
__skb_pull(*pskb, mac_len);
act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
switch (act) {
case XDP_REDIRECT:
case XDP_TX:
case XDP_PASS:
break;
default:
bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception((*pskb)->dev, xdp_prog, act);
fallthrough;
case XDP_DROP:
do_drop:
kfree_skb(*pskb);
break;
}
return act;
}
/* When doing generic XDP we have to bypass the qdisc layer and the
* network taps in order to match in-driver-XDP behavior. This also means
* that XDP packets are able to starve other packets going through a qdisc,
* and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
* queues, so they do not have this starvation issue.
*/
void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
{
struct net_device *dev = skb->dev;
struct netdev_queue *txq;
bool free_skb = true;
int cpu, rc;
txq = netdev_core_pick_tx(dev, skb, NULL);
cpu = smp_processor_id();
HARD_TX_LOCK(dev, txq, cpu);
if (!netif_xmit_frozen_or_drv_stopped(txq)) {
rc = netdev_start_xmit(skb, dev, txq, 0);
if (dev_xmit_complete(rc))
free_skb = false;
}
HARD_TX_UNLOCK(dev, txq);
if (free_skb) {
trace_xdp_exception(dev, xdp_prog, XDP_TX);
dev_core_stats_tx_dropped_inc(dev);
kfree_skb(skb);
}
}
static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
{
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
if (xdp_prog) {
struct xdp_buff xdp;
u32 act;
int err;
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
if (act != XDP_PASS) {
switch (act) {
case XDP_REDIRECT:
err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
&xdp, xdp_prog);
if (err)
goto out_redir;
break;
case XDP_TX:
generic_xdp_tx(*pskb, xdp_prog);
break;
}
bpf_net_ctx_clear(bpf_net_ctx);
return XDP_DROP;
}
bpf_net_ctx_clear(bpf_net_ctx);
}
return XDP_PASS;
out_redir:
bpf_net_ctx_clear(bpf_net_ctx);
kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
return XDP_DROP;
}
EXPORT_SYMBOL_GPL(do_xdp_generic);
static int netif_rx_internal(struct sk_buff *skb)
{
int ret;
net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
trace_netif_rx(skb);
#ifdef CONFIG_RPS
if (static_branch_unlikely(&rps_needed)) {
struct rps_dev_flow voidflow, *rflow = &voidflow;
int cpu;
rcu_read_lock();
cpu = get_rps_cpu(skb->dev, skb, &rflow);
if (cpu < 0)
cpu = smp_processor_id();
ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
rcu_read_unlock();
} else
#endif
{
unsigned int qtail;
ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
}
return ret;
}
/**
* __netif_rx - Slightly optimized version of netif_rx
* @skb: buffer to post
*
* This behaves as netif_rx except that it does not disable bottom halves.
* As a result this function may only be invoked from the interrupt context
* (either hard or soft interrupt).
*/
int __netif_rx(struct sk_buff *skb)
{
int ret;
lockdep_assert_once(hardirq_count() | softirq_count());
trace_netif_rx_entry(skb);
ret = netif_rx_internal(skb);
trace_netif_rx_exit(ret);
return ret;
}
EXPORT_SYMBOL(__netif_rx);
/**
* netif_rx - post buffer to the network code
* @skb: buffer to post
*
* This function receives a packet from a device driver and queues it for
* the upper (protocol) levels to process via the backlog NAPI device. It
* always succeeds. The buffer may be dropped during processing for
* congestion control or by the protocol layers.
* The network buffer is passed via the backlog NAPI device. Modern NIC
* driver should use NAPI and GRO.
* This function can used from interrupt and from process context. The
* caller from process context must not disable interrupts before invoking
* this function.
*
* return values:
* NET_RX_SUCCESS (no congestion)
* NET_RX_DROP (packet was dropped)
*
*/
int netif_rx(struct sk_buff *skb)
{
bool need_bh_off = !(hardirq_count() | softirq_count());
int ret;
if (need_bh_off)
local_bh_disable();
trace_netif_rx_entry(skb);
ret = netif_rx_internal(skb);
trace_netif_rx_exit(ret);
if (need_bh_off)
local_bh_enable();
return ret;
}
EXPORT_SYMBOL(netif_rx);
static __latent_entropy void net_tx_action(void)
{
struct softnet_data *sd = this_cpu_ptr(&softnet_data);
if (sd->completion_queue) {
struct sk_buff *clist;
local_irq_disable();
clist = sd->completion_queue;
sd->completion_queue = NULL;
local_irq_enable();
while (clist) {
struct sk_buff *skb = clist;
clist = clist->next;
WARN_ON(refcount_read(&skb->users));
if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
trace_consume_skb(skb, net_tx_action);
else
trace_kfree_skb(skb, net_tx_action,
get_kfree_skb_cb(skb)->reason, NULL);
if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
__kfree_skb(skb);
else
__napi_kfree_skb(skb,
get_kfree_skb_cb(skb)->reason);
}
}
if (sd->output_queue) {
struct Qdisc *head;
local_irq_disable();
head = sd->output_queue;
sd->output_queue = NULL;
sd->output_queue_tailp = &sd->output_queue;
local_irq_enable();
rcu_read_lock();
while (head) {
struct Qdisc *q = head;
spinlock_t *root_lock = NULL;
head = head->next_sched;
/* We need to make sure head->next_sched is read
* before clearing __QDISC_STATE_SCHED
*/
smp_mb__before_atomic();
if (!(q->flags & TCQ_F_NOLOCK)) {
root_lock = qdisc_lock(q);
spin_lock(root_lock);
} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
&q->state))) {
/* There is a synchronize_net() between
* STATE_DEACTIVATED flag being set and
* qdisc_reset()/some_qdisc_is_busy() in
* dev_deactivate(), so we can safely bail out
* early here to avoid data race between
* qdisc_deactivate() and some_qdisc_is_busy()
* for lockless qdisc.
*/
clear_bit(__QDISC_STATE_SCHED, &q->state);
continue;
}
clear_bit(__QDISC_STATE_SCHED, &q->state);
qdisc_run(q);
if (root_lock)
spin_unlock(root_lock);
}
rcu_read_unlock();
}
xfrm_dev_backlog(sd);
}
#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
/* This hook is defined here for ATM LANE */
int (*br_fdb_test_addr_hook)(struct net_device *dev,
unsigned char *addr) __read_mostly;
EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
#endif
/**
* netdev_is_rx_handler_busy - check if receive handler is registered
* @dev: device to check
*
* Check if a receive handler is already registered for a given device.
* Return true if there one.
*
* The caller must hold the rtnl_mutex.
*/
bool netdev_is_rx_handler_busy(struct net_device *dev)
{
ASSERT_RTNL();
return dev && rtnl_dereference(dev->rx_handler);
}
EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
/**
* netdev_rx_handler_register - register receive handler
* @dev: device to register a handler for
* @rx_handler: receive handler to register
* @rx_handler_data: data pointer that is used by rx handler
*
* Register a receive handler for a device. This handler will then be
* called from __netif_receive_skb. A negative errno code is returned
* on a failure.
*
* The caller must hold the rtnl_mutex.
*
* For a general description of rx_handler, see enum rx_handler_result.
*/
int netdev_rx_handler_register(struct net_device *dev,
rx_handler_func_t *rx_handler,
void *rx_handler_data)
{
if (netdev_is_rx_handler_busy(dev))
return -EBUSY;
if (dev->priv_flags & IFF_NO_RX_HANDLER)
return -EINVAL;
/* Note: rx_handler_data must be set before rx_handler */
rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
rcu_assign_pointer(dev->rx_handler, rx_handler);
return 0;
}
EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
/**
* netdev_rx_handler_unregister - unregister receive handler
* @dev: device to unregister a handler from
*
* Unregister a receive handler from a device.
*
* The caller must hold the rtnl_mutex.
*/
void netdev_rx_handler_unregister(struct net_device *dev)
{
ASSERT_RTNL();
RCU_INIT_POINTER(dev->rx_handler, NULL);
/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
* section has a guarantee to see a non NULL rx_handler_data
* as well.
*/
synchronize_net();
RCU_INIT_POINTER(dev->rx_handler_data, NULL);
}
EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
/*
* Limit the use of PFMEMALLOC reserves to those protocols that implement
* the special handling of PFMEMALLOC skbs.
*/
static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
{
switch (skb->protocol) {
case htons(ETH_P_ARP):
case htons(ETH_P_IP):
case htons(ETH_P_IPV6):
case htons(ETH_P_8021Q):
case htons(ETH_P_8021AD):
return true;
default:
return false;
}
}
static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
int *ret, struct net_device *orig_dev)
{
if (nf_hook_ingress_active(skb)) {
int ingress_retval;
if (*pt_prev) {
*ret = deliver_skb(skb, *pt_prev, orig_dev);
*pt_prev = NULL;
}
rcu_read_lock();
ingress_retval = nf_hook_ingress(skb);
rcu_read_unlock();
return ingress_retval;
}
return 0;
}
static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
struct packet_type **ppt_prev)
{
struct packet_type *ptype, *pt_prev;
rx_handler_func_t *rx_handler;
struct sk_buff *skb = *pskb;
struct net_device *orig_dev;
bool deliver_exact = false;
int ret = NET_RX_DROP;
__be16 type;
net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
trace_netif_receive_skb(skb);
orig_dev = skb->dev;
skb_reset_network_header(skb);
if (!skb_transport_header_was_set(skb))
skb_reset_transport_header(skb);
skb_reset_mac_len(skb);
pt_prev = NULL;
another_round:
skb->skb_iif = skb->dev->ifindex;
__this_cpu_inc(softnet_data.processed);
if (static_branch_unlikely(&generic_xdp_needed_key)) {
int ret2;
migrate_disable();
ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
&skb);
migrate_enable();
if (ret2 != XDP_PASS) {
ret = NET_RX_DROP;
goto out;
}
}
if (eth_type_vlan(skb->protocol)) {
skb = skb_vlan_untag(skb);
if (unlikely(!skb))
goto out;
}
if (skb_skip_tc_classify(skb))
goto skip_classify;
if (pfmemalloc)
goto skip_taps;
list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
if (pt_prev)
ret = deliver_skb(skb, pt_prev, orig_dev);
pt_prev = ptype;
}
list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
if (pt_prev)
ret = deliver_skb(skb, pt_prev, orig_dev);
pt_prev = ptype;
}
skip_taps:
#ifdef CONFIG_NET_INGRESS
if (static_branch_unlikely(&ingress_needed_key)) {
bool another = false;
nf_skip_egress(skb, true);
skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
&another);
if (another)
goto another_round;
if (!skb)
goto out;
nf_skip_egress(skb, false);
if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
goto out;
}
#endif
skb_reset_redirect(skb);
skip_classify:
if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
goto drop;
if (skb_vlan_tag_present(skb)) {
if (pt_prev) {
ret = deliver_skb(skb, pt_prev, orig_dev);
pt_prev = NULL;
}
if (vlan_do_receive(&skb))
goto another_round;
else if (unlikely(!skb))
goto out;
}
rx_handler = rcu_dereference(skb->dev->rx_handler);
if (rx_handler) {
if (pt_prev) {
ret = deliver_skb(skb, pt_prev, orig_dev);
pt_prev = NULL;
}
switch (rx_handler(&skb)) {
case RX_HANDLER_CONSUMED:
ret = NET_RX_SUCCESS;
goto out;
case RX_HANDLER_ANOTHER:
goto another_round;
case RX_HANDLER_EXACT:
deliver_exact = true;
break;
case RX_HANDLER_PASS:
break;
default:
BUG();
}
}
if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
check_vlan_id:
if (skb_vlan_tag_get_id(skb)) {
/* Vlan id is non 0 and vlan_do_receive() above couldn't
* find vlan device.
*/
skb->pkt_type = PACKET_OTHERHOST;
} else if (eth_type_vlan(skb->protocol)) {
/* Outer header is 802.1P with vlan 0, inner header is
* 802.1Q or 802.1AD and vlan_do_receive() above could
* not find vlan dev for vlan id 0.
*/
__vlan_hwaccel_clear_tag(skb);
skb = skb_vlan_untag(skb);
if (unlikely(!skb))
goto out;
if (vlan_do_receive(&skb))
/* After stripping off 802.1P header with vlan 0
* vlan dev is found for inner header.
*/
goto another_round;
else if (unlikely(!skb))
goto out;
else
/* We have stripped outer 802.1P vlan 0 header.
* But could not find vlan dev.
* check again for vlan id to set OTHERHOST.
*/
goto check_vlan_id;
}
/* Note: we might in the future use prio bits
* and set skb->priority like in vlan_do_receive()
* For the time being, just ignore Priority Code Point
*/
__vlan_hwaccel_clear_tag(skb);
}
type = skb->protocol;
/* deliver only exact match when indicated */
if (likely(!deliver_exact)) {
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
&ptype_base[ntohs(type) &
PTYPE_HASH_MASK]);
}
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
&orig_dev->ptype_specific);
if (unlikely(skb->dev != orig_dev)) {
deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
&skb->dev->ptype_specific);
}
if (pt_prev) {
if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
goto drop;
*ppt_prev = pt_prev;
} else {
drop:
if (!deliver_exact)
dev_core_stats_rx_dropped_inc(skb->dev);
else
dev_core_stats_rx_nohandler_inc(skb->dev);
kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
/* Jamal, now you will not able to escape explaining
* me how you were going to use this. :-)
*/
ret = NET_RX_DROP;
}
out:
/* The invariant here is that if *ppt_prev is not NULL
* then skb should also be non-NULL.
*
* Apparently *ppt_prev assignment above holds this invariant due to
* skb dereferencing near it.
*/
*pskb = skb;
return ret;
}
static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
{
struct net_device *orig_dev = skb->dev;
struct packet_type *pt_prev = NULL;
int ret;
ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
if (pt_prev)
ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
skb->dev, pt_prev, orig_dev);
return ret;
}
/**
* netif_receive_skb_core - special purpose version of netif_receive_skb
* @skb: buffer to process
*
* More direct receive version of netif_receive_skb(). It should
* only be used by callers that have a need to skip RPS and Generic XDP.
* Caller must also take care of handling if ``(page_is_)pfmemalloc``.
*
* This function may only be called from softirq context and interrupts
* should be enabled.
*
* Return values (usually ignored):
* NET_RX_SUCCESS: no congestion
* NET_RX_DROP: packet was dropped
*/
int netif_receive_skb_core(struct sk_buff *skb)
{
int ret;
rcu_read_lock();
ret = __netif_receive_skb_one_core(skb, false);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(netif_receive_skb_core);
static inline void __netif_receive_skb_list_ptype(struct list_head *head,
struct packet_type *pt_prev,
struct net_device *orig_dev)
{
struct sk_buff *skb, *next;
if (!pt_prev)
return;
if (list_empty(head))
return;
if (pt_prev->list_func != NULL)
INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
ip_list_rcv, head, pt_prev, orig_dev);
else
list_for_each_entry_safe(skb, next, head, list) {
skb_list_del_init(skb);
pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
}
}
static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
{
/* Fast-path assumptions:
* - There is no RX handler.
* - Only one packet_type matches.
* If either of these fails, we will end up doing some per-packet
* processing in-line, then handling the 'last ptype' for the whole
* sublist. This can't cause out-of-order delivery to any single ptype,
* because the 'last ptype' must be constant across the sublist, and all
* other ptypes are handled per-packet.
*/
/* Current (common) ptype of sublist */
struct packet_type *pt_curr = NULL;
/* Current (common) orig_dev of sublist */
struct net_device *od_curr = NULL;
struct sk_buff *skb, *next;
LIST_HEAD(sublist);
list_for_each_entry_safe(skb, next, head, list) {
struct net_device *orig_dev = skb->dev;
struct packet_type *pt_prev = NULL;
skb_list_del_init(skb);
__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
if (!pt_prev)
continue;
if (pt_curr != pt_prev || od_curr != orig_dev) {
/* dispatch old sublist */
__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
/* start new sublist */
INIT_LIST_HEAD(&sublist);
pt_curr = pt_prev;
od_curr = orig_dev;
}
list_add_tail(&skb->list, &sublist);
}
/* dispatch final sublist */
__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
}
static int __netif_receive_skb(struct sk_buff *skb)
{
int ret;
if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
unsigned int noreclaim_flag;
/*
* PFMEMALLOC skbs are special, they should
* - be delivered to SOCK_MEMALLOC sockets only
* - stay away from userspace
* - have bounded memory usage
*
* Use PF_MEMALLOC as this saves us from propagating the allocation
* context down to all allocation sites.
*/
noreclaim_flag = memalloc_noreclaim_save();
ret = __netif_receive_skb_one_core(skb, true);
memalloc_noreclaim_restore(noreclaim_flag);
} else
ret = __netif_receive_skb_one_core(skb, false);
return ret;
}
static void __netif_receive_skb_list(struct list_head *head)
{
unsigned long noreclaim_flag = 0;
struct sk_buff *skb, *next;
bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
list_for_each_entry_safe(skb, next, head, list) {
if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
struct list_head sublist;
/* Handle the previous sublist */
list_cut_before(&sublist, head, &skb->list);
if (!list_empty(&sublist))
__netif_receive_skb_list_core(&sublist, pfmemalloc);
pfmemalloc = !pfmemalloc;
/* See comments in __netif_receive_skb */
if (pfmemalloc)
noreclaim_flag = memalloc_noreclaim_save();
else
memalloc_noreclaim_restore(noreclaim_flag);
}
}
/* Handle the remaining sublist */
if (!list_empty(head))
__netif_receive_skb_list_core(head, pfmemalloc);
/* Restore pflags */
if (pfmemalloc)
memalloc_noreclaim_restore(noreclaim_flag);
}
static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
{
struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
struct bpf_prog *new = xdp->prog;
int ret = 0;
switch (xdp->command) {
case XDP_SETUP_PROG:
rcu_assign_pointer(dev->xdp_prog, new);
if (old)
bpf_prog_put(old);
if (old && !new) {
static_branch_dec(&generic_xdp_needed_key);
} else if (new && !old) {
static_branch_inc(&generic_xdp_needed_key);
dev_disable_lro(dev);
dev_disable_gro_hw(dev);
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int netif_receive_skb_internal(struct sk_buff *skb)
{
int ret;
net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
if (skb_defer_rx_timestamp(skb))
return NET_RX_SUCCESS;
rcu_read_lock();
#ifdef CONFIG_RPS
if (static_branch_unlikely(&rps_needed)) {
struct rps_dev_flow voidflow, *rflow = &voidflow;
int cpu = get_rps_cpu(skb->dev, skb, &rflow);
if (cpu >= 0) {
ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
rcu_read_unlock();
return ret;
}
}
#endif
ret = __netif_receive_skb(skb);
rcu_read_unlock();
return ret;
}
void netif_receive_skb_list_internal(struct list_head *head)
{
struct sk_buff *skb, *next;
LIST_HEAD(sublist);
list_for_each_entry_safe(skb, next, head, list) {
net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
skb);
skb_list_del_init(skb);
if (!skb_defer_rx_timestamp(skb))
list_add_tail(&skb->list, &sublist);
}
list_splice_init(&sublist, head);
rcu_read_lock();
#ifdef CONFIG_RPS
if (static_branch_unlikely(&rps_needed)) {
list_for_each_entry_safe(skb, next, head, list) {
struct rps_dev_flow voidflow, *rflow = &voidflow;
int cpu = get_rps_cpu(skb->dev, skb, &rflow);
if (cpu >= 0) {
/* Will be handled, remove from list */
skb_list_del_init(skb);
enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
}
}
}
#endif
__netif_receive_skb_list(head);
rcu_read_unlock();
}
/**
* netif_receive_skb - process receive buffer from network
* @skb: buffer to process
*
* netif_receive_skb() is the main receive data processing function.
* It always succeeds. The buffer may be dropped during processing
* for congestion control or by the protocol layers.
*
* This function may only be called from softirq context and interrupts
* should be enabled.
*
* Return values (usually ignored):
* NET_RX_SUCCESS: no congestion
* NET_RX_DROP: packet was dropped
*/
int netif_receive_skb(struct sk_buff *skb)
{
int ret;
trace_netif_receive_skb_entry(skb);
ret = netif_receive_skb_internal(skb);
trace_netif_receive_skb_exit(ret);
return ret;
}
EXPORT_SYMBOL(netif_receive_skb);
/**
* netif_receive_skb_list - process many receive buffers from network
* @head: list of skbs to process.
*
* Since return value of netif_receive_skb() is normally ignored, and
* wouldn't be meaningful for a list, this function returns void.
*
* This function may only be called from softirq context and interrupts
* should be enabled.
*/
void netif_receive_skb_list(struct list_head *head)
{
struct sk_buff *skb;
if (list_empty(head))
return;
if (trace_netif_receive_skb_list_entry_enabled()) {
list_for_each_entry(skb, head, list)
trace_netif_receive_skb_list_entry(skb);
}
netif_receive_skb_list_internal(head);
trace_netif_receive_skb_list_exit(0);
}
EXPORT_SYMBOL(netif_receive_skb_list);
static DEFINE_PER_CPU(struct work_struct, flush_works);
/* Network device is going away, flush any packets still pending */
static void flush_backlog(struct work_struct *work)
{
struct sk_buff *skb, *tmp;
struct softnet_data *sd;
local_bh_disable();
sd = this_cpu_ptr(&softnet_data);
backlog_lock_irq_disable(sd);
skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
if (skb->dev->reg_state == NETREG_UNREGISTERING) {
__skb_unlink(skb, &sd->input_pkt_queue);
dev_kfree_skb_irq(skb);
rps_input_queue_head_incr(sd);
}
}
backlog_unlock_irq_enable(sd);
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
if (skb->dev->reg_state == NETREG_UNREGISTERING) {
__skb_unlink(skb, &sd->process_queue);
kfree_skb(skb);
rps_input_queue_head_incr(sd);
}
}
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
local_bh_enable();
}
static bool flush_required(int cpu)
{
#if IS_ENABLED(CONFIG_RPS)
struct softnet_data *sd = &per_cpu(softnet_data, cpu);
bool do_flush;
backlog_lock_irq_disable(sd);
/* as insertion into process_queue happens with the rps lock held,
* process_queue access may race only with dequeue
*/
do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
!skb_queue_empty_lockless(&sd->process_queue);
backlog_unlock_irq_enable(sd);
return do_flush;
#endif
/* without RPS we can't safely check input_pkt_queue: during a
* concurrent remote skb_queue_splice() we can detect as empty both
* input_pkt_queue and process_queue even if the latter could end-up
* containing a lot of packets.
*/
return true;
}
static void flush_all_backlogs(void)
{
static cpumask_t flush_cpus;
unsigned int cpu;
/* since we are under rtnl lock protection we can use static data
* for the cpumask and avoid allocating on stack the possibly
* large mask
*/
ASSERT_RTNL();
cpus_read_lock();
cpumask_clear(&flush_cpus);
for_each_online_cpu(cpu) {
if (flush_required(cpu)) {
queue_work_on(cpu, system_highpri_wq,
per_cpu_ptr(&flush_works, cpu));
cpumask_set_cpu(cpu, &flush_cpus);
}
}
/* we can have in flight packet[s] on the cpus we are not flushing,
* synchronize_net() in unregister_netdevice_many() will take care of
* them
*/
for_each_cpu(cpu, &flush_cpus)
flush_work(per_cpu_ptr(&flush_works, cpu));
cpus_read_unlock();
}
static void net_rps_send_ipi(struct softnet_data *remsd)
{
#ifdef CONFIG_RPS
while (remsd) {
struct softnet_data *next = remsd->rps_ipi_next;
if (cpu_online(remsd->cpu))
smp_call_function_single_async(remsd->cpu, &remsd->csd);
remsd = next;
}
#endif
}
/*
* net_rps_action_and_irq_enable sends any pending IPI's for rps.
* Note: called with local irq disabled, but exits with local irq enabled.
*/
static void net_rps_action_and_irq_enable(struct softnet_data *sd)
{
#ifdef CONFIG_RPS
struct softnet_data *remsd = sd->rps_ipi_list;
if (!use_backlog_threads() && remsd) {
sd->rps_ipi_list = NULL;
local_irq_enable();
/* Send pending IPI's to kick RPS processing on remote cpus. */
net_rps_send_ipi(remsd);
} else
#endif
local_irq_enable();
}
static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
{
#ifdef CONFIG_RPS
return !use_backlog_threads() && sd->rps_ipi_list;
#else
return false;
#endif
}
static int process_backlog(struct napi_struct *napi, int quota)
{
struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
bool again = true;
int work = 0;
/* Check if we have pending ipi, its better to send them now,
* not waiting net_rx_action() end.
*/
if (sd_has_rps_ipi_waiting(sd)) {
local_irq_disable();
net_rps_action_and_irq_enable(sd);
}
napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
while (again) {
struct sk_buff *skb;
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
while ((skb = __skb_dequeue(&sd->process_queue))) {
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
rcu_read_lock();
__netif_receive_skb(skb);
rcu_read_unlock();
if (++work >= quota) {
rps_input_queue_head_add(sd, work);
return work;
}
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
}
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
backlog_lock_irq_disable(sd);
if (skb_queue_empty(&sd->input_pkt_queue)) {
/*
* Inline a custom version of __napi_complete().
* only current cpu owns and manipulates this napi,
* and NAPI_STATE_SCHED is the only possible flag set
* on backlog.
* We can use a plain write instead of clear_bit(),
* and we dont need an smp_mb() memory barrier.
*/
napi->state &= NAPIF_STATE_THREADED;
again = false;
} else {
local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
skb_queue_splice_tail_init(&sd->input_pkt_queue,
&sd->process_queue);
local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
}
backlog_unlock_irq_enable(sd);
}
if (work)
rps_input_queue_head_add(sd, work);
return work;
}
/**
* __napi_schedule - schedule for receive
* @n: entry to schedule
*
* The entry's receive function will be scheduled to run.
* Consider using __napi_schedule_irqoff() if hard irqs are masked.
*/
void __napi_schedule(struct napi_struct *n)
{
unsigned long flags;
local_irq_save(flags);
____napi_schedule(this_cpu_ptr(&softnet_data), n);
local_irq_restore(flags);
}
EXPORT_SYMBOL(__napi_schedule);
/**
* napi_schedule_prep - check if napi can be scheduled
* @n: napi context
*
* Test if NAPI routine is already running, and if not mark
* it as running. This is used as a condition variable to
* insure only one NAPI poll instance runs. We also make
* sure there is no pending NAPI disable.
*/
bool napi_schedule_prep(struct napi_struct *n)
{
unsigned long new, val = READ_ONCE(n->state);
do {
if (unlikely(val & NAPIF_STATE_DISABLE))
return false;
new = val | NAPIF_STATE_SCHED;
/* Sets STATE_MISSED bit if STATE_SCHED was already set
* This was suggested by Alexander Duyck, as compiler
* emits better code than :
* if (val & NAPIF_STATE_SCHED)
* new |= NAPIF_STATE_MISSED;
*/
new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
NAPIF_STATE_MISSED;
} while (!try_cmpxchg(&n->state, &val, new));
return !(val & NAPIF_STATE_SCHED);
}
EXPORT_SYMBOL(napi_schedule_prep);
/**
* __napi_schedule_irqoff - schedule for receive
* @n: entry to schedule
*
* Variant of __napi_schedule() assuming hard irqs are masked.
*
* On PREEMPT_RT enabled kernels this maps to __napi_schedule()
* because the interrupt disabled assumption might not be true
* due to force-threaded interrupts and spinlock substitution.
*/
void __napi_schedule_irqoff(struct napi_struct *n)
{
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
____napi_schedule(this_cpu_ptr(&softnet_data), n);
else
__napi_schedule(n);
}
EXPORT_SYMBOL(__napi_schedule_irqoff);
bool napi_complete_done(struct napi_struct *n, int work_done)
{
unsigned long flags, val, new, timeout = 0;
bool ret = true;
/*
* 1) Don't let napi dequeue from the cpu poll list
* just in case its running on a different cpu.
* 2) If we are busy polling, do nothing here, we have
* the guarantee we will be called later.
*/
if (unlikely(n->state & (NAPIF_STATE_NPSVC |
NAPIF_STATE_IN_BUSY_POLL)))
return false;
if (work_done) {
if (n->gro_bitmask)
timeout = READ_ONCE(n->dev->gro_flush_timeout);
n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
}
if (n->defer_hard_irqs_count > 0) {
n->defer_hard_irqs_count--;
timeout = READ_ONCE(n->dev->gro_flush_timeout);
if (timeout)
ret = false;
}
if (n->gro_bitmask) {
/* When the NAPI instance uses a timeout and keeps postponing
* it, we need to bound somehow the time packets are kept in
* the GRO layer
*/
napi_gro_flush(n, !!timeout);
}
gro_normal_list(n);
if (unlikely(!list_empty(&n->poll_list))) {
/* If n->poll_list is not empty, we need to mask irqs */
local_irq_save(flags);
list_del_init(&n->poll_list);
local_irq_restore(flags);
}
WRITE_ONCE(n->list_owner, -1);
val = READ_ONCE(n->state);
do {
WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
NAPIF_STATE_SCHED_THREADED |
NAPIF_STATE_PREFER_BUSY_POLL);
/* If STATE_MISSED was set, leave STATE_SCHED set,
* because we will call napi->poll() one more time.
* This C code was suggested by Alexander Duyck to help gcc.
*/
new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
NAPIF_STATE_SCHED;
} while (!try_cmpxchg(&n->state, &val, new));
if (unlikely(val & NAPIF_STATE_MISSED)) {
__napi_schedule(n);
return false;
}
if (timeout)
hrtimer_start(&n->timer, ns_to_ktime(timeout),
HRTIMER_MODE_REL_PINNED);
return ret;
}
EXPORT_SYMBOL(napi_complete_done);
/* must be called under rcu_read_lock(), as we dont take a reference */
struct napi_struct *napi_by_id(unsigned int napi_id)
{
unsigned int hash = napi_id % HASH_SIZE(napi_hash);
struct napi_struct *napi;
hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
if (napi->napi_id == napi_id)
return napi;
return NULL;
}
static void skb_defer_free_flush(struct softnet_data *sd)
{
struct sk_buff *skb, *next;
/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
if (!READ_ONCE(sd->defer_list))
return;
spin_lock(&sd->defer_lock);
skb = sd->defer_list;
sd->defer_list = NULL;
sd->defer_count = 0;
spin_unlock(&sd->defer_lock);
while (skb != NULL) {
next = skb->next;
napi_consume_skb(skb, 1);
skb = next;
}
}
#if defined(CONFIG_NET_RX_BUSY_POLL)
static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
{
if (!skip_schedule) {
gro_normal_list(napi);
__napi_schedule(napi);
return;
}
if (napi->gro_bitmask) {
/* flush too old packets
* If HZ < 1000, flush all packets.
*/
napi_gro_flush(napi, HZ >= 1000);
}
gro_normal_list(napi);
clear_bit(NAPI_STATE_SCHED, &napi->state);
}
enum {
NAPI_F_PREFER_BUSY_POLL = 1,
NAPI_F_END_ON_RESCHED = 2,
};
static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
unsigned flags, u16 budget)
{
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
bool skip_schedule = false;
unsigned long timeout;
int rc;
/* Busy polling means there is a high chance device driver hard irq
* could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
* set in napi_schedule_prep().
* Since we are about to call napi->poll() once more, we can safely
* clear NAPI_STATE_MISSED.
*
* Note: x86 could use a single "lock and ..." instruction
* to perform these two clear_bit()
*/
clear_bit(NAPI_STATE_MISSED, &napi->state);
clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
local_bh_disable();
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
if (flags & NAPI_F_PREFER_BUSY_POLL) {
napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
timeout = READ_ONCE(napi->dev->gro_flush_timeout);
if (napi->defer_hard_irqs_count && timeout) {
hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
skip_schedule = true;
}
}
/* All we really want here is to re-enable device interrupts.
* Ideally, a new ndo_busy_poll_stop() could avoid another round.
*/
rc = napi->poll(napi, budget);
/* We can't gro_normal_list() here, because napi->poll() might have
* rearmed the napi (napi_complete_done()) in which case it could
* already be running on another CPU.
*/
trace_napi_poll(napi, rc, budget);
netpoll_poll_unlock(have_poll_lock);
if (rc == budget)
__busy_poll_stop(napi, skip_schedule);
bpf_net_ctx_clear(bpf_net_ctx);
local_bh_enable();
}
static void __napi_busy_loop(unsigned int napi_id,
bool (*loop_end)(void *, unsigned long),
void *loop_end_arg, unsigned flags, u16 budget)
{
unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
int (*napi_poll)(struct napi_struct *napi, int budget);
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
void *have_poll_lock = NULL;
struct napi_struct *napi;
WARN_ON_ONCE(!rcu_read_lock_held());
restart:
napi_poll = NULL;
napi = napi_by_id(napi_id);
if (!napi)
return;
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
preempt_disable();
for (;;) {
int work = 0;
local_bh_disable();
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
if (!napi_poll) {
unsigned long val = READ_ONCE(napi->state);
/* If multiple threads are competing for this napi,
* we avoid dirtying napi->state as much as we can.
*/
if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
NAPIF_STATE_IN_BUSY_POLL)) {
if (flags & NAPI_F_PREFER_BUSY_POLL)
set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
goto count;
}
if (cmpxchg(&napi->state, val,
val | NAPIF_STATE_IN_BUSY_POLL |
NAPIF_STATE_SCHED) != val) {
if (flags & NAPI_F_PREFER_BUSY_POLL)
set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
goto count;
}
have_poll_lock = netpoll_poll_lock(napi);
napi_poll = napi->poll;
}
work = napi_poll(napi, budget);
trace_napi_poll(napi, work, budget);
gro_normal_list(napi);
count:
if (work > 0)
__NET_ADD_STATS(dev_net(napi->dev),
LINUX_MIB_BUSYPOLLRXPACKETS, work);
skb_defer_free_flush(this_cpu_ptr(&softnet_data));
bpf_net_ctx_clear(bpf_net_ctx);
local_bh_enable();
if (!loop_end || loop_end(loop_end_arg, start_time))
break;
if (unlikely(need_resched())) {
if (flags & NAPI_F_END_ON_RESCHED)
break;
if (napi_poll)
busy_poll_stop(napi, have_poll_lock, flags, budget);
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
preempt_enable();
rcu_read_unlock();
cond_resched();
rcu_read_lock();
if (loop_end(loop_end_arg, start_time))
return;
goto restart;
}
cpu_relax();
}
if (napi_poll)
busy_poll_stop(napi, have_poll_lock, flags, budget);
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
preempt_enable();
}
void napi_busy_loop_rcu(unsigned int napi_id,
bool (*loop_end)(void *, unsigned long),
void *loop_end_arg, bool prefer_busy_poll, u16 budget)
{
unsigned flags = NAPI_F_END_ON_RESCHED;
if (prefer_busy_poll)
flags |= NAPI_F_PREFER_BUSY_POLL;
__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
}
void napi_busy_loop(unsigned int napi_id,
bool (*loop_end)(void *, unsigned long),
void *loop_end_arg, bool prefer_busy_poll, u16 budget)
{
unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
rcu_read_lock();
__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
rcu_read_unlock();
}
EXPORT_SYMBOL(napi_busy_loop);
#endif /* CONFIG_NET_RX_BUSY_POLL */
static void napi_hash_add(struct napi_struct *napi)
{
if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
return;
spin_lock(&napi_hash_lock);
/* 0..NR_CPUS range is reserved for sender_cpu use */
do {
if (unlikely(++napi_gen_id < MIN_NAPI_ID))
napi_gen_id = MIN_NAPI_ID;
} while (napi_by_id(napi_gen_id));
napi->napi_id = napi_gen_id;
hlist_add_head_rcu(&napi->napi_hash_node,
&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
spin_unlock(&napi_hash_lock);
}
/* Warning : caller is responsible to make sure rcu grace period
* is respected before freeing memory containing @napi
*/
static void napi_hash_del(struct napi_struct *napi)
{
spin_lock(&napi_hash_lock);
hlist_del_init_rcu(&napi->napi_hash_node);
spin_unlock(&napi_hash_lock);
}
static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
{
struct napi_struct *napi;
napi = container_of(timer, struct napi_struct, timer);
/* Note : we use a relaxed variant of napi_schedule_prep() not setting
* NAPI_STATE_MISSED, since we do not react to a device IRQ.
*/
if (!napi_disable_pending(napi) &&
!test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
__napi_schedule_irqoff(napi);
}
return HRTIMER_NORESTART;
}
static void init_gro_hash(struct napi_struct *napi)
{
int i;
for (i = 0; i < GRO_HASH_BUCKETS; i++) {
INIT_LIST_HEAD(&napi->gro_hash[i].list);
napi->gro_hash[i].count = 0;
}
napi->gro_bitmask = 0;
}
int dev_set_threaded(struct net_device *dev, bool threaded)
{
struct napi_struct *napi;
int err = 0;
if (dev->threaded == threaded)
return 0;
if (threaded) {
list_for_each_entry(napi, &dev->napi_list, dev_list) {
if (!napi->thread) {
err = napi_kthread_create(napi);
if (err) {
threaded = false;
break;
}
}
}
}
WRITE_ONCE(dev->threaded, threaded);
/* Make sure kthread is created before THREADED bit
* is set.
*/
smp_mb__before_atomic();
/* Setting/unsetting threaded mode on a napi might not immediately
* take effect, if the current napi instance is actively being
* polled. In this case, the switch between threaded mode and
* softirq mode will happen in the next round of napi_schedule().
* This should not cause hiccups/stalls to the live traffic.
*/
list_for_each_entry(napi, &dev->napi_list, dev_list)
assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
return err;
}
EXPORT_SYMBOL(dev_set_threaded);
/**
* netif_queue_set_napi - Associate queue with the napi
* @dev: device to which NAPI and queue belong
* @queue_index: Index of queue
* @type: queue type as RX or TX
* @napi: NAPI context, pass NULL to clear previously set NAPI
*
* Set queue with its corresponding napi context. This should be done after
* registering the NAPI handler for the queue-vector and the queues have been
* mapped to the corresponding interrupt vector.
*/
void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
enum netdev_queue_type type, struct napi_struct *napi)
{
struct netdev_rx_queue *rxq;
struct netdev_queue *txq;
if (WARN_ON_ONCE(napi && !napi->dev))
return;
if (dev->reg_state >= NETREG_REGISTERED)
ASSERT_RTNL();
switch (type) {
case NETDEV_QUEUE_TYPE_RX:
rxq = __netif_get_rx_queue(dev, queue_index);
rxq->napi = napi;
return;
case NETDEV_QUEUE_TYPE_TX:
txq = netdev_get_tx_queue(dev, queue_index);
txq->napi = napi;
return;
default:
return;
}
}
EXPORT_SYMBOL(netif_queue_set_napi);
void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
int (*poll)(struct napi_struct *, int), int weight)
{
if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
return;
INIT_LIST_HEAD(&napi->poll_list);
INIT_HLIST_NODE(&napi->napi_hash_node);
hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
napi->timer.function = napi_watchdog;
init_gro_hash(napi);
napi->skb = NULL;
INIT_LIST_HEAD(&napi->rx_list);
napi->rx_count = 0;
napi->poll = poll;
if (weight > NAPI_POLL_WEIGHT)
netdev_err_once(dev, "%s() called with weight %d\n", __func__,
weight);
napi->weight = weight;
napi->dev = dev;
#ifdef CONFIG_NETPOLL
napi->poll_owner = -1;
#endif
napi->list_owner = -1;
set_bit(NAPI_STATE_SCHED, &napi->state);
set_bit(NAPI_STATE_NPSVC, &napi->state);
list_add_rcu(&napi->dev_list, &dev->napi_list);
napi_hash_add(napi);
napi_get_frags_check(napi);
/* Create kthread for this napi if dev->threaded is set.
* Clear dev->threaded if kthread creation failed so that
* threaded mode will not be enabled in napi_enable().
*/
if (dev->threaded && napi_kthread_create(napi))
dev->threaded = false;
netif_napi_set_irq(napi, -1);
}
EXPORT_SYMBOL(netif_napi_add_weight);
void napi_disable(struct napi_struct *n)
{
unsigned long val, new;
might_sleep();
set_bit(NAPI_STATE_DISABLE, &n->state);
val = READ_ONCE(n->state);
do {
while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
usleep_range(20, 200);
val = READ_ONCE(n->state);
}
new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
} while (!try_cmpxchg(&n->state, &val, new));
hrtimer_cancel(&n->timer);
clear_bit(NAPI_STATE_DISABLE, &n->state);
}
EXPORT_SYMBOL(napi_disable);
/**
* napi_enable - enable NAPI scheduling
* @n: NAPI context
*
* Resume NAPI from being scheduled on this context.
* Must be paired with napi_disable.
*/
void napi_enable(struct napi_struct *n)
{
unsigned long new, val = READ_ONCE(n->state);
do {
BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
if (n->dev->threaded && n->thread)
new |= NAPIF_STATE_THREADED;
} while (!try_cmpxchg(&n->state, &val, new));
}
EXPORT_SYMBOL(napi_enable);
static void flush_gro_hash(struct napi_struct *napi)
{
int i;
for (i = 0; i < GRO_HASH_BUCKETS; i++) {
struct sk_buff *skb, *n;
list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
kfree_skb(skb);
napi->gro_hash[i].count = 0;
}
}
/* Must be called in process context */
void __netif_napi_del(struct napi_struct *napi)
{
if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
return;
napi_hash_del(napi);
list_del_rcu(&napi->dev_list);
napi_free_frags(napi);
flush_gro_hash(napi);
napi->gro_bitmask = 0;
if (napi->thread) {
kthread_stop(napi->thread);
napi->thread = NULL;
}
}
EXPORT_SYMBOL(__netif_napi_del);
static int __napi_poll(struct napi_struct *n, bool *repoll)
{
int work, weight;
weight = n->weight;
/* This NAPI_STATE_SCHED test is for avoiding a race
* with netpoll's poll_napi(). Only the entity which
* obtains the lock and sees NAPI_STATE_SCHED set will
* actually make the ->poll() call. Therefore we avoid
* accidentally calling ->poll() when NAPI is not scheduled.
*/
work = 0;
if (napi_is_scheduled(n)) {
work = n->poll(n, weight);
trace_napi_poll(n, work, weight);
xdp_do_check_flushed(n);
}
if (unlikely(work > weight))
netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
n->poll, work, weight);
if (likely(work < weight))
return work;
/* Drivers must not modify the NAPI state if they
* consume the entire weight. In such cases this code
* still "owns" the NAPI instance and therefore can
* move the instance around on the list at-will.
*/
if (unlikely(napi_disable_pending(n))) {
napi_complete(n);
return work;
}
/* The NAPI context has more processing work, but busy-polling
* is preferred. Exit early.
*/
if (napi_prefer_busy_poll(n)) {
if (napi_complete_done(n, work)) {
/* If timeout is not set, we need to make sure
* that the NAPI is re-scheduled.
*/
napi_schedule(n);
}
return work;
}
if (n->gro_bitmask) {
/* flush too old packets
* If HZ < 1000, flush all packets.
*/
napi_gro_flush(n, HZ >= 1000);
}
gro_normal_list(n);
/* Some drivers may have called napi_schedule
* prior to exhausting their budget.
*/
if (unlikely(!list_empty(&n->poll_list))) {
pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
n->dev ? n->dev->name : "backlog");
return work;
}
*repoll = true;
return work;
}
static int napi_poll(struct napi_struct *n, struct list_head *repoll)
{
bool do_repoll = false;
void *have;
int work;
list_del_init(&n->poll_list);
have = netpoll_poll_lock(n);
work = __napi_poll(n, &do_repoll);
if (do_repoll)
list_add_tail(&n->poll_list, repoll);
netpoll_poll_unlock(have);
return work;
}
static int napi_thread_wait(struct napi_struct *napi)
{
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
/* Testing SCHED_THREADED bit here to make sure the current
* kthread owns this napi and could poll on this napi.
* Testing SCHED bit is not enough because SCHED bit might be
* set by some other busy poll thread or by napi_disable().
*/
if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
WARN_ON(!list_empty(&napi->poll_list));
__set_current_state(TASK_RUNNING);
return 0;
}
schedule();
set_current_state(TASK_INTERRUPTIBLE);
}
__set_current_state(TASK_RUNNING);
return -1;
}
static void napi_threaded_poll_loop(struct napi_struct *napi)
{
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
struct softnet_data *sd;
unsigned long last_qs = jiffies;
for (;;) {
bool repoll = false;
void *have;
local_bh_disable();
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
sd = this_cpu_ptr(&softnet_data);
sd->in_napi_threaded_poll = true;
have = netpoll_poll_lock(napi);
__napi_poll(napi, &repoll);
netpoll_poll_unlock(have);
sd->in_napi_threaded_poll = false;
barrier();
if (sd_has_rps_ipi_waiting(sd)) {
local_irq_disable();
net_rps_action_and_irq_enable(sd);
}
skb_defer_free_flush(sd);
bpf_net_ctx_clear(bpf_net_ctx);
local_bh_enable();
if (!repoll)
break;
rcu_softirq_qs_periodic(last_qs);
cond_resched();
}
}
static int napi_threaded_poll(void *data)
{
struct napi_struct *napi = data;
while (!napi_thread_wait(napi))
napi_threaded_poll_loop(napi);
return 0;
}
static __latent_entropy void net_rx_action(void)
{
struct softnet_data *sd = this_cpu_ptr(&softnet_data);
unsigned long time_limit = jiffies +
usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
int budget = READ_ONCE(net_hotdata.netdev_budget);
LIST_HEAD(list);
LIST_HEAD(repoll);
bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
start:
sd->in_net_rx_action = true;
local_irq_disable();
list_splice_init(&sd->poll_list, &list);
local_irq_enable();
for (;;) {
struct napi_struct *n;
skb_defer_free_flush(sd);
if (list_empty(&list)) {
if (list_empty(&repoll)) {
sd->in_net_rx_action = false;
barrier();
/* We need to check if ____napi_schedule()
* had refilled poll_list while
* sd->in_net_rx_action was true.
*/
if (!list_empty(&sd->poll_list))
goto start;
if (!sd_has_rps_ipi_waiting(sd))
goto end;
}
break;
}
n = list_first_entry(&list, struct napi_struct, poll_list);
budget -= napi_poll(n, &repoll);
/* If softirq window is exhausted then punt.
* Allow this to run for 2 jiffies since which will allow
* an average latency of 1.5/HZ.
*/
if (unlikely(budget <= 0 ||
time_after_eq(jiffies, time_limit))) {
sd->time_squeeze++;
break;
}
}
local_irq_disable();
list_splice_tail_init(&sd->poll_list, &list);
list_splice_tail(&repoll, &list);
list_splice(&list, &sd->poll_list);
if (!list_empty(&sd->poll_list))
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
else
sd->in_net_rx_action = false;
net_rps_action_and_irq_enable(sd);
end:
bpf_net_ctx_clear(bpf_net_ctx);
}
struct netdev_adjacent {
struct net_device *dev;
netdevice_tracker dev_tracker;
/* upper master flag, there can only be one master device per list */
bool master;
/* lookup ignore flag */
bool ignore;
/* counter for the number of times this device was added to us */
u16 ref_nr;
/* private field for the users */
void *private;
struct list_head list;
struct rcu_head rcu;
};
static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
struct list_head *adj_list)
{
struct netdev_adjacent *adj;
list_for_each_entry(adj, adj_list, list) {
if (adj->dev == adj_dev)
return adj;
}
return NULL;
}
static int ____netdev_has_upper_dev(struct net_device *upper_dev,
struct netdev_nested_priv *priv)
{
struct net_device *dev = (struct net_device *)priv->data;
return upper_dev == dev;
}
/**
* netdev_has_upper_dev - Check if device is linked to an upper device
* @dev: device
* @upper_dev: upper device to check
*
* Find out if a device is linked to specified upper device and return true
* in case it is. Note that this checks only immediate upper device,
* not through a complete stack of devices. The caller must hold the RTNL lock.
*/
bool netdev_has_upper_dev(struct net_device *dev,
struct net_device *upper_dev)
{
struct netdev_nested_priv priv = {
.data = (void *)upper_dev,
};
ASSERT_RTNL();
return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
&priv);
}
EXPORT_SYMBOL(netdev_has_upper_dev);
/**
* netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
* @dev: device
* @upper_dev: upper device to check
*
* Find out if a device is linked to specified upper device and return true
* in case it is. Note that this checks the entire upper device chain.
* The caller must hold rcu lock.
*/
bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
struct net_device *upper_dev)
{
struct netdev_nested_priv priv = {
.data = (void *)upper_dev,
};
return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
&priv);
}
EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
/**
* netdev_has_any_upper_dev - Check if device is linked to some device
* @dev: device
*
* Find out if a device is linked to an upper device and return true in case
* it is. The caller must hold the RTNL lock.
*/
bool netdev_has_any_upper_dev(struct net_device *dev)
{
ASSERT_RTNL();
return !list_empty(&dev->adj_list.upper);
}
EXPORT_SYMBOL(netdev_has_any_upper_dev);
/**
* netdev_master_upper_dev_get - Get master upper device
* @dev: device
*
* Find a master upper device and return pointer to it or NULL in case
* it's not there. The caller must hold the RTNL lock.
*/
struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
{
struct netdev_adjacent *upper;
ASSERT_RTNL();
if (list_empty(&dev->adj_list.upper))
return NULL;
upper = list_first_entry(&dev->adj_list.upper,
struct netdev_adjacent, list);
if (likely(upper->master))
return upper->dev;
return NULL;
}
EXPORT_SYMBOL(netdev_master_upper_dev_get);
static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
{
struct netdev_adjacent *upper;
ASSERT_RTNL();
if (list_empty(&dev->adj_list.upper))
return NULL;
upper = list_first_entry(&dev->adj_list.upper,
struct netdev_adjacent, list);
if (likely(upper->master) && !upper->ignore)
return upper->dev;
return NULL;
}
/**
* netdev_has_any_lower_dev - Check if device is linked to some device
* @dev: device
*
* Find out if a device is linked to a lower device and return true in case
* it is. The caller must hold the RTNL lock.
*/
static bool netdev_has_any_lower_dev(struct net_device *dev)
{
ASSERT_RTNL();
return !list_empty(&dev->adj_list.lower);
}
void *netdev_adjacent_get_private(struct list_head *adj_list)
{
struct netdev_adjacent *adj;
adj = list_entry(adj_list, struct netdev_adjacent, list);
return adj->private;
}
EXPORT_SYMBOL(netdev_adjacent_get_private);
/**
* netdev_upper_get_next_dev_rcu - Get the next dev from upper list
* @dev: device
* @iter: list_head ** of the current position
*
* Gets the next device from the dev's upper list, starting from iter
* position. The caller must hold RCU read lock.
*/
struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
struct list_head **iter)
{
struct netdev_adjacent *upper;
WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
if (&upper->list == &dev->adj_list.upper)
return NULL;
*iter = &upper->list;
return upper->dev;
}
EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
struct list_head **iter,
bool *ignore)
{
struct netdev_adjacent *upper;
upper = list_entry((*iter)->next, struct netdev_adjacent, list);
if (&upper->list == &dev->adj_list.upper)
return NULL;
*iter = &upper->list;
*ignore = upper->ignore;
return upper->dev;
}
static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
struct list_head **iter)
{
struct netdev_adjacent *upper;
WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
if (&upper->list == &dev->adj_list.upper)
return NULL;
*iter = &upper->list;
return upper->dev;
}
static int __netdev_walk_all_upper_dev(struct net_device *dev,
int (*fn)(struct net_device *dev,
struct netdev_nested_priv *priv),
struct netdev_nested_priv *priv)
{
struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
int ret, cur = 0;
bool ignore;
now = dev;
iter = &dev->adj_list.upper;
while (1) {
if (now != dev) {
ret = fn(now, priv);
if (ret)
return ret;
}
next = NULL;
while (1) {
udev = __netdev_next_upper_dev(now, &iter, &ignore);
if (!udev)
break;
if (ignore)
continue;
next = udev;
niter = &udev->adj_list.upper;
dev_stack[cur] = now;
iter_stack[cur++] = iter;
break;
}
if (!next) {
if (!cur)
return 0;
next = dev_stack[--cur];
niter = iter_stack[cur];
}
now = next;
iter = niter;
}
return 0;
}
int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
int (*fn)(struct net_device *dev,
struct netdev_nested_priv *priv),
struct netdev_nested_priv *priv)
{
struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
int ret, cur = 0;
now = dev;
iter = &dev->adj_list.upper;
while (1) {
if (now != dev) {
ret = fn(now, priv);
if (ret)
return ret;
}
next = NULL;
while (1) {
udev = netdev_next_upper_dev_rcu(now, &iter);
if (!udev)
break;
next = udev;
niter = &udev->adj_list.upper;
dev_stack[cur] = now;
iter_stack[cur++] = iter;
break;
}
if (!next) {
if (!cur)
return 0;
next = dev_stack[--cur];
niter = iter_stack[cur];
}
now = next;
iter = niter;
}
return 0;
}
EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
static bool __netdev_has_upper_dev(struct net_device *dev,
struct net_device *upper_dev)
{
struct netdev_nested_priv priv = {
.flags = 0,
.data = (void *)upper_dev,
};
ASSERT_RTNL();
return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
&priv);
}
/**
* netdev_lower_get_next_private - Get the next ->private from the
* lower neighbour list
* @dev: device
* @iter: list_head ** of the current position
*
* Gets the next netdev_adjacent->private from the dev's lower neighbour
* list, starting from iter position. The caller must hold either hold the
* RTNL lock or its own locking that guarantees that the neighbour lower
* list will remain unchanged.
*/
void *netdev_lower_get_next_private(struct net_device *dev,
struct list_head **iter)
{
struct netdev_adjacent *lower;
lower = list_entry(*iter, struct netdev_adjacent, list);
if (&lower->list == &dev->adj_list.lower)
return NULL;
*iter = lower->list.next;
return lower->private;
}
EXPORT_SYMBOL(netdev_lower_get_next_private);
/**
* netdev_lower_get_next_private_rcu - Get the next ->private from the
* lower neighbour list, RCU
* variant
* @dev: device
* @iter: list_head ** of the current position
*
* Gets the next netdev_adjacent->private from the dev's lower neighbour
* list, starting from iter position. The caller must hold RCU read lock.
*/
void *netdev_lower_get_next_private_rcu(struct net_device *dev,
struct list_head **iter)
{
struct netdev_adjacent *lower;
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
if (&lower->list == &dev->adj_list.lower)
return NULL;
*iter = &lower->list;
return lower->private;
}
EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
/**
* netdev_lower_get_next - Get the next device from the lower neighbour
* list
* @dev: device
* @iter: list_head ** of the current position
*
* Gets the next netdev_adjacent from the dev's lower neighbour
* list, starting from iter position. The caller must hold RTNL lock or
* its own locking that guarantees that the neighbour lower
* list will remain unchanged.
*/
void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
{
struct netdev_adjacent *lower;
lower = list_entry(*iter, struct netdev_adjacent, list);
if (&lower->list == &dev->adj_list.lower)
return NULL;
*iter = lower->list.next;
return lower->dev;
}
EXPORT_SYMBOL(netdev_lower_get_next);
static struct net_device *netdev_next_lower_dev(struct net_device *dev,
struct list_head **iter)
{
struct netdev_adjacent *lower;
lower = list_entry((*iter)->next, struct netdev_adjacent, list);
if (&lower->list == &dev->adj_list.lower)
return NULL;
*iter = &lower->list;
return lower->dev;
}
static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
struct list_head **iter,
bool *ignore)
{
struct netdev_adjacent *lower;
lower = list_entry((*iter)->next, struct netdev_adjacent, list);
if (&lower->list == &dev->adj_list.lower)
return NULL;
*iter = &lower->list;
*ignore = lower->ignore;
return lower->dev;
}
int netdev_walk_all_lower_dev(struct net_device *dev,
int (*fn)(struct net_device *dev,
struct netdev_nested_priv *priv),
struct netdev_nested_priv *priv)
{
struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
int ret, cur = 0;
now = dev;
iter = &dev->adj_list.lower;
while (1) {
if (now != dev) {
ret = fn(now, priv);
if (ret)
return ret;
}
next = NULL;
while (1) {
ldev = netdev_next_lower_dev(now, &iter);
if (!ldev)
break;
next = ldev;
niter = &ldev->adj_list.lower;
dev_stack[cur] = now;
iter_stack[cur++] = iter;
break;
}
if (!next) {
if (!cur)
return 0;
next = dev_stack[--cur];
niter = iter_stack[cur];
}
now = next;
iter = niter;
}
return 0;
}
EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
static int __netdev_walk_all_lower_dev(struct net_device *dev,
int (*fn)(struct net_device *dev,
struct netdev_nested_priv *priv),
struct netdev_nested_priv *priv)
{
struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
int ret, cur = 0;
bool ignore;
now = dev;
iter = &dev->adj_list.lower;
while (1) {
if (now != dev) {
ret = fn(now, priv);
if (ret)
return ret;
}
next = NULL;
while (1) {
ldev = __netdev_next_lower_dev(now, &iter, &ignore);
if (!ldev)
break;
if (ignore)
continue;
next = ldev;
niter = &ldev->adj_list.lower;
dev_stack[cur] = now;
iter_stack[cur++] = iter;
break;
}
if (!next) {
if (!cur)
return 0;
next = dev_stack[--cur];
niter = iter_stack[cur];
}
now = next;
iter = niter;
}
return 0;
}
struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
struct list_head **iter)
{
struct netdev_adjacent *lower;
lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
if (&lower->list == &dev->adj_list.lower)
return NULL;
*iter = &lower->list;
return lower->dev;
}
EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
static u8 __netdev_upper_depth(struct net_device *dev)
{
struct net_device *udev;
struct list_head *iter;
u8 max_depth = 0;
bool ignore;
for (iter = &dev->adj_list.upper,
udev = __netdev_next_upper_dev(dev, &iter, &ignore);
udev;
udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
if (ignore)
continue;
if (max_depth < udev->upper_level)
max_depth = udev->upper_level;
}
return max_depth;
}
static u8 __netdev_lower_depth(struct net_device *dev)
{
struct net_device *ldev;
struct list_head *iter;
u8 max_depth = 0;
bool ignore;
for (iter = &dev->adj_list.lower,
ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
ldev;
ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
if (ignore)
continue;
if (max_depth < ldev->lower_level)
max_depth = ldev->lower_level;
}
return max_depth;
}
static int __netdev_update_upper_level(struct net_device *dev,
struct netdev_nested_priv *__unused)
{
dev->upper_level = __netdev_upper_depth(dev) + 1;
return 0;
}
#ifdef CONFIG_LOCKDEP
static LIST_HEAD(net_unlink_list);
static void net_unlink_todo(struct net_device *dev)
{
if (list_empty(&dev->unlink_list))
list_add_tail(&dev->unlink_list, &net_unlink_list);
}
#endif
static int __netdev_update_lower_level(struct net_device *dev,
struct netdev_nested_priv *priv)
{
dev->lower_level = __netdev_lower_depth(dev) + 1;
#ifdef CONFIG_LOCKDEP
if (!priv)
return 0;
if (priv->flags & NESTED_SYNC_IMM)
dev->nested_level = dev->lower_level - 1;
if (priv->flags & NESTED_SYNC_TODO)
net_unlink_todo(dev);
#endif
return 0;
}
int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
int (*fn)(struct net_device *dev,
struct netdev_nested_priv *priv),
struct netdev_nested_priv *priv)
{
struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
int ret, cur = 0;
now = dev;
iter = &dev->adj_list.lower;
while (1) {
if (now != dev) {
ret = fn(now, priv);
if (ret)
return ret;
}
next = NULL;
while (1) {
ldev = netdev_next_lower_dev_rcu(now, &iter);
if (!ldev)
break;
next = ldev;
niter = &ldev->adj_list.lower;
dev_stack[cur] = now;
iter_stack[cur++] = iter;
break;
}
if (!next) {
if (!cur)
return 0;
next = dev_stack[--cur];
niter = iter_stack[cur];
}
now = next;
iter = niter;
}
return 0;
}
EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
/**
* netdev_lower_get_first_private_rcu - Get the first ->private from the
* lower neighbour list, RCU
* variant
* @dev: device
*
* Gets the first netdev_adjacent->private from the dev's lower neighbour
* list. The caller must hold RCU read lock.
*/
void *netdev_lower_get_first_private_rcu(struct net_device *dev)
{
struct netdev_adjacent *lower;
lower = list_first_or_null_rcu(&dev->adj_list.lower,
struct netdev_adjacent, list);
if (lower)
return lower->private;
return NULL;
}
EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
/**
* netdev_master_upper_dev_get_rcu - Get master upper device
* @dev: device
*
* Find a master upper device and return pointer to it or NULL in case
* it's not there. The caller must hold the RCU read lock.
*/
struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
{
struct netdev_adjacent *upper;
upper = list_first_or_null_rcu(&dev->adj_list.upper,
struct netdev_adjacent, list);
if (upper && likely(upper->master))
return upper->dev;
return NULL;
}
EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
static int netdev_adjacent_sysfs_add(struct net_device *dev,
struct net_device *adj_dev,
struct list_head *dev_list)
{
char linkname[IFNAMSIZ+7];
sprintf(linkname, dev_list == &dev->adj_list.upper ?
"upper_%s" : "lower_%s", adj_dev->name);
return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
linkname);
}
static void netdev_adjacent_sysfs_del(struct net_device *dev,
char *name,
struct list_head *dev_list)
{
char linkname[IFNAMSIZ+7];
sprintf(linkname, dev_list == &dev->adj_list.upper ?
"upper_%s" : "lower_%s", name);
sysfs_remove_link(&(dev->dev.kobj), linkname);
}
static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
struct net_device *adj_dev,
struct list_head *dev_list)
{
return (dev_list == &dev->adj_list.upper ||
dev_list == &dev->adj_list.lower) &&
net_eq(dev_net(dev), dev_net(adj_dev));
}
static int __netdev_adjacent_dev_insert(struct net_device *dev,
struct net_device *adj_dev,
struct list_head *dev_list,
void *private, bool master)
{
struct netdev_adjacent *adj;
int ret;
adj = __netdev_find_adj(adj_dev, dev_list);
if (adj) {
adj->ref_nr += 1;
pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
dev->name, adj_dev->name, adj->ref_nr);
return 0;
}
adj = kmalloc(sizeof(*adj), GFP_KERNEL);
if (!adj)
return -ENOMEM;
adj->dev = adj_dev;
adj->master = master;
adj->ref_nr = 1;
adj->private = private;
adj->ignore = false;
netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
if (ret)
goto free_adj;
}
/* Ensure that master link is always the first item in list. */
if (master) {
ret = sysfs_create_link(&(dev->dev.kobj),
&(adj_dev->dev.kobj), "master");
if (ret)
goto remove_symlinks;
list_add_rcu(&adj->list, dev_list);
} else {
list_add_tail_rcu(&adj->list, dev_list);
}
return 0;
remove_symlinks:
if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
free_adj:
netdev_put(adj_dev, &adj->dev_tracker);
kfree(adj);
return ret;
}
static void __netdev_adjacent_dev_remove(struct net_device *dev,
struct net_device *adj_dev,
u16 ref_nr,
struct list_head *dev_list)
{
struct netdev_adjacent *adj;
pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
dev->name, adj_dev->name, ref_nr);
adj = __netdev_find_adj(adj_dev, dev_list);
if (!adj) {
pr_err("Adjacency does not exist for device %s from %s\n",
dev->name, adj_dev->name);
WARN_ON(1);
return;
}
if (adj->ref_nr > ref_nr) {
pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
dev->name, adj_dev->name, ref_nr,
adj->ref_nr - ref_nr);
adj->ref_nr -= ref_nr;
return;
}
if (adj->master)
sysfs_remove_link(&(dev->dev.kobj), "master");
if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
list_del_rcu(&adj->list);
pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
adj_dev->name, dev->name, adj_dev->name);
netdev_put(adj_dev, &adj->dev_tracker);
kfree_rcu(adj, rcu);
}
static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
struct net_device *upper_dev,
struct list_head *up_list,
struct list_head *down_list,
void *private, bool master)
{
int ret;
ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
private, master);
if (ret)
return ret;
ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
private, false);
if (ret) {
__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
return ret;
}
return 0;
}
static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
struct net_device *upper_dev,
u16 ref_nr,
struct list_head *up_list,
struct list_head *down_list)
{
__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
}
static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
struct net_device *upper_dev,
void *private, bool master)
{
return __netdev_adjacent_dev_link_lists(dev, upper_dev,
&dev->adj_list.upper,
&upper_dev->adj_list.lower,
private, master);
}
static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
struct net_device *upper_dev)
{
__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
&dev->adj_list.upper,
&upper_dev->adj_list.lower);
}
static int __netdev_upper_dev_link(struct net_device *dev,
struct net_device *upper_dev, bool master,
void *upper_priv, void *upper_info,
struct netdev_nested_priv *priv,
struct netlink_ext_ack *extack)
{
struct netdev_notifier_changeupper_info changeupper_info = {
.info = {
.dev = dev,
.extack = extack,
},
.upper_dev = upper_dev,
.master = master,
.linking = true,
.upper_info = upper_info,
};
struct net_device *master_dev;
int ret = 0;
ASSERT_RTNL();
if (dev == upper_dev)
return -EBUSY;
/* To prevent loops, check if dev is not upper device to upper_dev. */
if (__netdev_has_upper_dev(upper_dev, dev))
return -EBUSY;
if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
return -EMLINK;
if (!master) {
if (__netdev_has_upper_dev(dev, upper_dev))
return -EEXIST;
} else {
master_dev = __netdev_master_upper_dev_get(dev);
if (master_dev)
return master_dev == upper_dev ? -EEXIST : -EBUSY;
}
ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
&changeupper_info.info);
ret = notifier_to_errno(ret);
if (ret)
return ret;
ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
master);
if (ret)
return ret;
ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
&changeupper_info.info);
ret = notifier_to_errno(ret);
if (ret)
goto rollback;
__netdev_update_upper_level(dev, NULL);
__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
__netdev_update_lower_level(upper_dev, priv);
__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
priv);
return 0;
rollback:
__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
return ret;
}
/**
* netdev_upper_dev_link - Add a link to the upper device
* @dev: device
* @upper_dev: new upper device
* @extack: netlink extended ack
*
* Adds a link to device which is upper to this one. The caller must hold
* the RTNL lock. On a failure a negative errno code is returned.
* On success the reference counts are adjusted and the function
* returns zero.
*/
int netdev_upper_dev_link(struct net_device *dev,
struct net_device *upper_dev,
struct netlink_ext_ack *extack)
{
struct netdev_nested_priv priv = {
.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
.data = NULL,
};
return __netdev_upper_dev_link(dev, upper_dev, false,
NULL, NULL, &priv, extack);
}
EXPORT_SYMBOL(netdev_upper_dev_link);
/**
* netdev_master_upper_dev_link - Add a master link to the upper device
* @dev: device
* @upper_dev: new upper device
* @upper_priv: upper device private
* @upper_info: upper info to be passed down via notifier
* @extack: netlink extended ack
*
* Adds a link to device which is upper to this one. In this case, only
* one master upper device can be linked, although other non-master devices
* might be linked as well. The caller must hold the RTNL lock.
* On a failure a negative errno code is returned. On success the reference
* counts are adjusted and the function returns zero.
*/
int netdev_master_upper_dev_link(struct net_device *dev,
struct net_device *upper_dev,
void *upper_priv, void *upper_info,
struct netlink_ext_ack *extack)
{
struct netdev_nested_priv priv = {
.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
.data = NULL,
};
return __netdev_upper_dev_link(dev, upper_dev, true,
upper_priv, upper_info, &priv, extack);
}
EXPORT_SYMBOL(netdev_master_upper_dev_link);
static void __netdev_upper_dev_unlink(struct net_device *dev,
struct net_device *upper_dev,
struct netdev_nested_priv *priv)
{
struct netdev_notifier_changeupper_info changeupper_info = {
.info = {
.dev = dev,
},
.upper_dev = upper_dev,
.linking = false,
};
ASSERT_RTNL();
changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
&changeupper_info.info);
__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
&changeupper_info.info);
__netdev_update_upper_level(dev, NULL);
__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
__netdev_update_lower_level(upper_dev, priv);
__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
priv);
}
/**
* netdev_upper_dev_unlink - Removes a link to upper device
* @dev: device
* @upper_dev: new upper device
*
* Removes a link to device which is upper to this one. The caller must hold
* the RTNL lock.
*/
void netdev_upper_dev_unlink(struct net_device *dev,
struct net_device *upper_dev)
{
struct netdev_nested_priv priv = {
.flags = NESTED_SYNC_TODO,
.data = NULL,
};
__netdev_upper_dev_unlink(dev, upper_dev, &priv);
}
EXPORT_SYMBOL(netdev_upper_dev_unlink);
static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
struct net_device *lower_dev,
bool val)
{
struct netdev_adjacent *adj;
adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
if (adj)
adj->ignore = val;
adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
if (adj)
adj->ignore = val;
}
static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
struct net_device *lower_dev)
{
__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
}
static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
struct net_device *lower_dev)
{
__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
}
int netdev_adjacent_change_prepare(struct net_device *old_dev,
struct net_device *new_dev,
struct net_device *dev,
struct netlink_ext_ack *extack)
{
struct netdev_nested_priv priv = {
.flags = 0,
.data = NULL,
};
int err;
if (!new_dev)
return 0;
if (old_dev && new_dev != old_dev)
netdev_adjacent_dev_disable(dev, old_dev);
err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
extack);
if (err) {
if (old_dev && new_dev != old_dev)
netdev_adjacent_dev_enable(dev, old_dev);
return err;
}
return 0;
}
EXPORT_SYMBOL(netdev_adjacent_change_prepare);
void netdev_adjacent_change_commit(struct net_device *old_dev,
struct net_device *new_dev,
struct net_device *dev)
{
struct netdev_nested_priv priv = {
.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
.data = NULL,
};
if (!new_dev || !old_dev)
return;
if (new_dev == old_dev)
return;
netdev_adjacent_dev_enable(dev, old_dev);
__netdev_upper_dev_unlink(old_dev, dev, &priv);
}
EXPORT_SYMBOL(netdev_adjacent_change_commit);
void netdev_adjacent_change_abort(struct net_device *old_dev,
struct net_device *new_dev,
struct net_device *dev)
{
struct netdev_nested_priv priv = {
.flags = 0,
.data = NULL,
};
if (!new_dev)
return;
if (old_dev && new_dev != old_dev)
netdev_adjacent_dev_enable(dev, old_dev);
__netdev_upper_dev_unlink(new_dev, dev, &priv);
}
EXPORT_SYMBOL(netdev_adjacent_change_abort);
/**
* netdev_bonding_info_change - Dispatch event about slave change
* @dev: device
* @bonding_info: info to dispatch
*
* Send NETDEV_BONDING_INFO to netdev notifiers with info.
* The caller must hold the RTNL lock.
*/
void netdev_bonding_info_change(struct net_device *dev,
struct netdev_bonding_info *bonding_info)
{
struct netdev_notifier_bonding_info info = {
.info.dev = dev,
};
memcpy(&info.bonding_info, bonding_info,
sizeof(struct netdev_bonding_info));
call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
&info.info);
}
EXPORT_SYMBOL(netdev_bonding_info_change);
static int netdev_offload_xstats_enable_l3(struct net_device *dev,
struct netlink_ext_ack *extack)
{
struct netdev_notifier_offload_xstats_info info = {
.info.dev = dev,
.info.extack = extack,
.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
};
int err;
int rc;
dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
GFP_KERNEL);
if (!dev->offload_xstats_l3)
return -ENOMEM;
rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
NETDEV_OFFLOAD_XSTATS_DISABLE,
&info.info);
err = notifier_to_errno(rc);
if (err)
goto free_stats;
return 0;
free_stats:
kfree(dev->offload_xstats_l3);
dev->offload_xstats_l3 = NULL;
return err;
}
int netdev_offload_xstats_enable(struct net_device *dev,
enum netdev_offload_xstats_type type,
struct netlink_ext_ack *extack)
{
ASSERT_RTNL();
if (netdev_offload_xstats_enabled(dev, type))
return -EALREADY;
switch (type) {
case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
return netdev_offload_xstats_enable_l3(dev, extack);
}
WARN_ON(1);
return -EINVAL;
}
EXPORT_SYMBOL(netdev_offload_xstats_enable);
static void netdev_offload_xstats_disable_l3(struct net_device *dev)
{
struct netdev_notifier_offload_xstats_info info = {
.info.dev = dev,
.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
};
call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
&info.info);
kfree(dev->offload_xstats_l3);
dev->offload_xstats_l3 = NULL;
}
int netdev_offload_xstats_disable(struct net_device *dev,
enum netdev_offload_xstats_type type)
{
ASSERT_RTNL();
if (!netdev_offload_xstats_enabled(dev, type))
return -EALREADY;
switch (type) {
case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
netdev_offload_xstats_disable_l3(dev);
return 0;
}
WARN_ON(1);
return -EINVAL;
}
EXPORT_SYMBOL(netdev_offload_xstats_disable);
static void netdev_offload_xstats_disable_all(struct net_device *dev)
{
netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
}
static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device *dev,
enum netdev_offload_xstats_type type)
{
switch (type) {
case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
return dev->offload_xstats_l3;
}
WARN_ON(1);
return NULL;
}
bool netdev_offload_xstats_enabled(const struct net_device *dev,
enum netdev_offload_xstats_type type)
{
ASSERT_RTNL();
return netdev_offload_xstats_get_ptr(dev, type);
}
EXPORT_SYMBOL(netdev_offload_xstats_enabled);
struct netdev_notifier_offload_xstats_ru {
bool used;
};
struct netdev_notifier_offload_xstats_rd {
struct rtnl_hw_stats64 stats;
bool used;
};
static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
const struct rtnl_hw_stats64 *src)
{
dest->rx_packets += src->rx_packets;
dest->tx_packets += src->tx_packets;
dest->rx_bytes += src->rx_bytes;
dest->tx_bytes += src->tx_bytes;
dest->rx_errors += src->rx_errors;
dest->tx_errors += src->tx_errors;
dest->rx_dropped += src->rx_dropped;
dest->tx_dropped += src->tx_dropped;
dest->multicast += src->multicast;
}
static int netdev_offload_xstats_get_used(struct net_device *dev,
enum netdev_offload_xstats_type type,
bool *p_used,
struct netlink_ext_ack *extack)
{
struct netdev_notifier_offload_xstats_ru report_used = {};
struct netdev_notifier_offload_xstats_info info = {
.info.dev = dev,
.info.extack = extack,
.type = type,
.report_used = &report_used,
};
int rc;
WARN_ON(!netdev_offload_xstats_enabled(dev, type));
rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
&info.info);
*p_used = report_used.used;
return notifier_to_errno(rc);
}
static int netdev_offload_xstats_get_stats(struct net_device *dev,
enum netdev_offload_xstats_type type,
struct rtnl_hw_stats64 *p_stats,
bool *p_used,
struct netlink_ext_ack *extack)
{
struct netdev_notifier_offload_xstats_rd report_delta = {};
struct netdev_notifier_offload_xstats_info info = {
.info.dev = dev,
.info.extack = extack,
.type = type,
.report_delta = &report_delta,
};
struct rtnl_hw_stats64 *stats;
int rc;
stats = netdev_offload_xstats_get_ptr(dev, type);
if (WARN_ON(!stats))
return -EINVAL;
rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
&info.info);
/* Cache whatever we got, even if there was an error, otherwise the
* successful stats retrievals would get lost.
*/
netdev_hw_stats64_add(stats, &report_delta.stats);
if (p_stats)
*p_stats = *stats;
*p_used = report_delta.used;
return notifier_to_errno(rc);
}
int netdev_offload_xstats_get(struct net_device *dev,
enum netdev_offload_xstats_type type,
struct rtnl_hw_stats64 *p_stats, bool *p_used,
struct netlink_ext_ack *extack)
{
ASSERT_RTNL();
if (p_stats)
return netdev_offload_xstats_get_stats(dev, type, p_stats,
p_used, extack);
else
return netdev_offload_xstats_get_used(dev, type, p_used,
extack);
}
EXPORT_SYMBOL(netdev_offload_xstats_get);
void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
const struct rtnl_hw_stats64 *stats)
{
report_delta->used = true;
netdev_hw_stats64_add(&report_delta->stats, stats);
}
EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
{
report_used->used = true;
}
EXPORT_SYMBOL(netdev_offload_xstats_report_used);
void netdev_offload_xstats_push_delta(struct net_device *dev,
enum netdev_offload_xstats_type type,
const struct rtnl_hw_stats64 *p_stats)
{
struct rtnl_hw_stats64 *stats;
ASSERT_RTNL();
stats = netdev_offload_xstats_get_ptr(dev, type);
if (WARN_ON(!stats))
return;
netdev_hw_stats64_add(stats, p_stats);
}
EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
/**
* netdev_get_xmit_slave - Get the xmit slave of master device
* @dev: device
* @skb: The packet
* @all_slaves: assume all the slaves are active
*
* The reference counters are not incremented so the caller must be
* careful with locks. The caller must hold RCU lock.
* %NULL is returned if no slave is found.
*/
struct net_device *netdev_get_xmit_slave(struct net_device *dev,
struct sk_buff *skb,
bool all_slaves)
{
const struct net_device_ops *ops = dev->netdev_ops;
if (!ops->ndo_get_xmit_slave)
return NULL;
return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
}
EXPORT_SYMBOL(netdev_get_xmit_slave);
static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
struct sock *sk)
{
const struct net_device_ops *ops = dev->netdev_ops;
if (!ops->ndo_sk_get_lower_dev)
return NULL;
return ops->ndo_sk_get_lower_dev(dev, sk);
}
/**
* netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
* @dev: device
* @sk: the socket
*
* %NULL is returned if no lower device is found.
*/
struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
struct sock *sk)
{
struct net_device *lower;
lower = netdev_sk_get_lower_dev(dev, sk);
while (lower) {
dev = lower;
lower = netdev_sk_get_lower_dev(dev, sk);
}
return dev;
}
EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
static void netdev_adjacent_add_links(struct net_device *dev)
{
struct netdev_adjacent *iter;
struct net *net = dev_net(dev);
list_for_each_entry(iter, &dev->adj_list.upper, list) {
if (!net_eq(net, dev_net(iter->dev)))
continue;
netdev_adjacent_sysfs_add(iter->dev, dev,
&iter->dev->adj_list.lower);
netdev_adjacent_sysfs_add(dev, iter->dev,
&dev->adj_list.upper);
}
list_for_each_entry(iter, &dev->adj_list.lower, list) {
if (!net_eq(net, dev_net(iter->dev)))
continue;
netdev_adjacent_sysfs_add(iter->dev, dev,
&iter->dev->adj_list.upper);
netdev_adjacent_sysfs_add(dev, iter->dev,
&dev->adj_list.lower);
}
}
static void netdev_adjacent_del_links(struct net_device *dev)
{
struct netdev_adjacent *iter;
struct net *net = dev_net(dev);
list_for_each_entry(iter, &dev->adj_list.upper, list) {
if (!net_eq(net, dev_net(iter->dev)))
continue;
netdev_adjacent_sysfs_del(iter->dev, dev->name,
&iter->dev->adj_list.lower);
netdev_adjacent_sysfs_del(dev, iter->dev->name,
&dev->adj_list.upper);
}
list_for_each_entry(iter, &dev->adj_list.lower, list) {
if (!net_eq(net, dev_net(iter->dev)))
continue;
netdev_adjacent_sysfs_del(iter->dev, dev->name,
&iter->dev->adj_list.upper);
netdev_adjacent_sysfs_del(dev, iter->dev->name,
&dev->adj_list.lower);
}
}
void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
{
struct netdev_adjacent *iter;
struct net *net = dev_net(dev);
list_for_each_entry(iter, &dev->adj_list.upper, list) {
if (!net_eq(net, dev_net(iter->dev)))
continue;
netdev_adjacent_sysfs_del(iter->dev, oldname,
&iter->dev->adj_list.lower);
netdev_adjacent_sysfs_add(iter->dev, dev,
&iter->dev->adj_list.lower);
}
list_for_each_entry(iter, &dev->adj_list.lower, list) {
if (!net_eq(net, dev_net(iter->dev)))
continue;
netdev_adjacent_sysfs_del(iter->dev, oldname,
&iter->dev->adj_list.upper);
netdev_adjacent_sysfs_add(iter->dev, dev,
&iter->dev->adj_list.upper);
}
}
void *netdev_lower_dev_get_private(struct net_device *dev,
struct net_device *lower_dev)
{
struct netdev_adjacent *lower;
if (!lower_dev)
return NULL;
lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
if (!lower)
return NULL;
return lower->private;
}
EXPORT_SYMBOL(netdev_lower_dev_get_private);
/**
* netdev_lower_state_changed - Dispatch event about lower device state change
* @lower_dev: device
* @lower_state_info: state to dispatch
*
* Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
* The caller must hold the RTNL lock.
*/
void netdev_lower_state_changed(struct net_device *lower_dev,
void *lower_state_info)
{
struct netdev_notifier_changelowerstate_info changelowerstate_info = {
.info.dev = lower_dev,
};
ASSERT_RTNL();
changelowerstate_info.lower_state_info = lower_state_info;
call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
&changelowerstate_info.info);
}
EXPORT_SYMBOL(netdev_lower_state_changed);
static void dev_change_rx_flags(struct net_device *dev, int flags)
{
const struct net_device_ops *ops = dev->netdev_ops;
if (ops->ndo_change_rx_flags)
ops->ndo_change_rx_flags(dev, flags);
}
static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
{
unsigned int old_flags = dev->flags;
unsigned int promiscuity, flags;
kuid_t uid;
kgid_t gid;
ASSERT_RTNL();
promiscuity = dev->promiscuity + inc;
if (promiscuity == 0) {
/*
* Avoid overflow.
* If inc causes overflow, untouch promisc and return error.
*/
if (unlikely(inc > 0)) {
netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
return -EOVERFLOW;
}
flags = old_flags & ~IFF_PROMISC;
} else {
flags = old_flags | IFF_PROMISC;
}
WRITE_ONCE(dev->promiscuity, promiscuity);
if (flags != old_flags) {
WRITE_ONCE(dev->flags, flags);
netdev_info(dev, "%s promiscuous mode\n",
dev->flags & IFF_PROMISC ? "entered" : "left");
if (audit_enabled) {
current_uid_gid(&uid, &gid);
audit_log(audit_context(), GFP_ATOMIC,
AUDIT_ANOM_PROMISCUOUS,
"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
dev->name, (dev->flags & IFF_PROMISC),
(old_flags & IFF_PROMISC),
from_kuid(&init_user_ns, audit_get_loginuid(current)),
from_kuid(&init_user_ns, uid),
from_kgid(&init_user_ns, gid),
audit_get_sessionid(current));
}
dev_change_rx_flags(dev, IFF_PROMISC);
}
if (notify)
__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
return 0;
}
/**
* dev_set_promiscuity - update promiscuity count on a device
* @dev: device
* @inc: modifier
*
* Add or remove promiscuity from a device. While the count in the device
* remains above zero the interface remains promiscuous. Once it hits zero
* the device reverts back to normal filtering operation. A negative inc
* value is used to drop promiscuity on the device.
* Return 0 if successful or a negative errno code on error.
*/
int dev_set_promiscuity(struct net_device *dev, int inc)
{
unsigned int old_flags = dev->flags;
int err;
err = __dev_set_promiscuity(dev, inc, true);
if (err < 0)
return err;
if (dev->flags != old_flags)
dev_set_rx_mode(dev);
return err;
}
EXPORT_SYMBOL(dev_set_promiscuity);
static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
{
unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
unsigned int allmulti, flags;
ASSERT_RTNL();
allmulti = dev->allmulti + inc;
if (allmulti == 0) {
/*
* Avoid overflow.
* If inc causes overflow, untouch allmulti and return error.
*/
if (unlikely(inc > 0)) {
netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
return -EOVERFLOW;
}
flags = old_flags & ~IFF_ALLMULTI;
} else {
flags = old_flags | IFF_ALLMULTI;
}
WRITE_ONCE(dev->allmulti, allmulti);
if (flags != old_flags) {
WRITE_ONCE(dev->flags, flags);
netdev_info(dev, "%s allmulticast mode\n",
dev->flags & IFF_ALLMULTI ? "entered" : "left");
dev_change_rx_flags(dev, IFF_ALLMULTI);
dev_set_rx_mode(dev);
if (notify)
__dev_notify_flags(dev, old_flags,
dev->gflags ^ old_gflags, 0, NULL);
}
return 0;
}
/**
* dev_set_allmulti - update allmulti count on a device
* @dev: device
* @inc: modifier
*
* Add or remove reception of all multicast frames to a device. While the
* count in the device remains above zero the interface remains listening
* to all interfaces. Once it hits zero the device reverts back to normal
* filtering operation. A negative @inc value is used to drop the counter
* when releasing a resource needing all multicasts.
* Return 0 if successful or a negative errno code on error.
*/
int dev_set_allmulti(struct net_device *dev, int inc)
{
return __dev_set_allmulti(dev, inc, true);
}
EXPORT_SYMBOL(dev_set_allmulti);
/*
* Upload unicast and multicast address lists to device and
* configure RX filtering. When the device doesn't support unicast
* filtering it is put in promiscuous mode while unicast addresses
* are present.
*/
void __dev_set_rx_mode(struct net_device *dev)
{
const struct net_device_ops *ops = dev->netdev_ops;
/* dev_open will call this function so the list will stay sane. */
if (!(dev->flags&IFF_UP))
return;
if (!netif_device_present(dev))
return;
if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
/* Unicast addresses changes may only happen under the rtnl,
* therefore calling __dev_set_promiscuity here is safe.
*/
if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
__dev_set_promiscuity(dev, 1, false);
dev->uc_promisc = true;
} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
__dev_set_promiscuity(dev, -1, false);
dev->uc_promisc = false;
}
}
if (ops->ndo_set_rx_mode)
ops->ndo_set_rx_mode(dev);
}
void dev_set_rx_mode(struct net_device *dev)
{
netif_addr_lock_bh(dev);
__dev_set_rx_mode(dev);
netif_addr_unlock_bh(dev);
}
/**
* dev_get_flags - get flags reported to userspace
* @dev: device
*
* Get the combination of flag bits exported through APIs to userspace.
*/
unsigned int dev_get_flags(const struct net_device *dev)
{
unsigned int flags;
flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
IFF_ALLMULTI |
IFF_RUNNING |
IFF_LOWER_UP |
IFF_DORMANT)) |
(READ_ONCE(dev->gflags) & (IFF_PROMISC |
IFF_ALLMULTI));
if (netif_running(dev)) {
if (netif_oper_up(dev))
flags |= IFF_RUNNING;
if (netif_carrier_ok(dev))
flags |= IFF_LOWER_UP;
if (netif_dormant(dev))
flags |= IFF_DORMANT;
}
return flags;
}
EXPORT_SYMBOL(dev_get_flags);
int __dev_change_flags(struct net_device *dev, unsigned int flags,
struct netlink_ext_ack *extack)
{
unsigned int old_flags = dev->flags;
int ret;
ASSERT_RTNL();
/*
* Set the flags on our device.
*/
dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
IFF_AUTOMEDIA)) |
(dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
IFF_ALLMULTI));
/*
* Load in the correct multicast list now the flags have changed.
*/
if ((old_flags ^ flags) & IFF_MULTICAST)
dev_change_rx_flags(dev, IFF_MULTICAST);
dev_set_rx_mode(dev);
/*
* Have we downed the interface. We handle IFF_UP ourselves
* according to user attempts to set it, rather than blindly
* setting it.
*/
ret = 0;
if ((old_flags ^ flags) & IFF_UP) {
if (old_flags & IFF_UP)
__dev_close(dev);
else
ret = __dev_open(dev, extack);
}
if ((flags ^ dev->gflags) & IFF_PROMISC) {
int inc = (flags & IFF_PROMISC) ? 1 : -1;
unsigned int old_flags = dev->flags;
dev->gflags ^= IFF_PROMISC;
if (__dev_set_promiscuity(dev, inc, false) >= 0)
if (dev->flags != old_flags)
dev_set_rx_mode(dev);
}
/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
* is important. Some (broken) drivers set IFF_PROMISC, when
* IFF_ALLMULTI is requested not asking us and not reporting.
*/
if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
dev->gflags ^= IFF_ALLMULTI;
__dev_set_allmulti(dev, inc, false);
}
return ret;
}
void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
unsigned int gchanges, u32 portid,
const struct nlmsghdr *nlh)
{
unsigned int changes = dev->flags ^ old_flags;
if (gchanges)
rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
if (changes & IFF_UP) {
if (dev->flags & IFF_UP)
call_netdevice_notifiers(NETDEV_UP, dev);
else
call_netdevice_notifiers(NETDEV_DOWN, dev);
}
if (dev->flags & IFF_UP &&
(changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
struct netdev_notifier_change_info change_info = {
.info = {
.dev = dev,
},
.flags_changed = changes,
};
call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
}
}
/**
* dev_change_flags - change device settings
* @dev: device
* @flags: device state flags
* @extack: netlink extended ack
*
* Change settings on device based state flags. The flags are
* in the userspace exported format.
*/
int dev_change_flags(struct net_device *dev, unsigned int flags,
struct netlink_ext_ack *extack)
{
int ret;
unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
ret = __dev_change_flags(dev, flags, extack);
if (ret < 0)
return ret;
changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
__dev_notify_flags(dev, old_flags, changes, 0, NULL);
return ret;
}
EXPORT_SYMBOL(dev_change_flags);
int __dev_set_mtu(struct net_device *dev, int new_mtu)
{
const struct net_device_ops *ops = dev->netdev_ops;
if (ops->ndo_change_mtu)
return ops->ndo_change_mtu(dev, new_mtu);
/* Pairs with all the lockless reads of dev->mtu in the stack */
WRITE_ONCE(dev->mtu, new_mtu);
return 0;
}
EXPORT_SYMBOL(__dev_set_mtu);
int dev_validate_mtu(struct net_device *dev, int new_mtu,
struct netlink_ext_ack *extack)
{
/* MTU must be positive, and in range */
if (new_mtu < 0 || new_mtu < dev->min_mtu) {
NL_SET_ERR_MSG(extack, "mtu less than device minimum");
return -EINVAL;
}
if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
return -EINVAL;
}
return 0;
}
/**
* dev_set_mtu_ext - Change maximum transfer unit
* @dev: device
* @new_mtu: new transfer unit
* @extack: netlink extended ack
*
* Change the maximum transfer size of the network device.
*/
int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
struct netlink_ext_ack *extack)
{
int err, orig_mtu;
if (new_mtu == dev->mtu)
return 0;
err = dev_validate_mtu(dev, new_mtu, extack);
if (err)
return err;
if (!netif_device_present(dev))
return -ENODEV;
err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
err = notifier_to_errno(err);
if (err)
return err;
orig_mtu = dev->mtu;
err = __dev_set_mtu(dev, new_mtu);
if (!err) {
err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
orig_mtu);
err = notifier_to_errno(err);
if (err) {
/* setting mtu back and notifying everyone again,
* so that they have a chance to revert changes.
*/
__dev_set_mtu(dev, orig_mtu);
call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
new_mtu);
}
}
return err;
}
int dev_set_mtu(struct net_device *dev, int new_mtu)
{
struct netlink_ext_ack extack;
int err;
memset(&extack, 0, sizeof(extack));
err = dev_set_mtu_ext(dev, new_mtu, &extack);
if (err && extack._msg)
net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
return err;
}
EXPORT_SYMBOL(dev_set_mtu);
/**
* dev_change_tx_queue_len - Change TX queue length of a netdevice
* @dev: device
* @new_len: new tx queue length
*/
int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
{
unsigned int orig_len = dev->tx_queue_len;
int res;
if (new_len != (unsigned int)new_len)
return -ERANGE;
if (new_len != orig_len) {
WRITE_ONCE(dev->tx_queue_len, new_len);
res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
res = notifier_to_errno(res);
if (res)
goto err_rollback;
res = dev_qdisc_change_tx_queue_len(dev);
if (res)
goto err_rollback;
}
return 0;
err_rollback:
netdev_err(dev, "refused to change device tx_queue_len\n");
WRITE_ONCE(dev->tx_queue_len, orig_len);
return res;
}
/**
* dev_set_group - Change group this device belongs to
* @dev: device
* @new_group: group this device should belong to
*/
void dev_set_group(struct net_device *dev, int new_group)
{
dev->group = new_group;
}
/**
* dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
* @dev: device
* @addr: new address
* @extack: netlink extended ack
*/
int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
struct netlink_ext_ack *extack)
{
struct netdev_notifier_pre_changeaddr_info info = {
.info.dev = dev,
.info.extack = extack,
.dev_addr = addr,
};
int rc;
rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
return notifier_to_errno(rc);
}
EXPORT_SYMBOL(dev_pre_changeaddr_notify);
/**
* dev_set_mac_address - Change Media Access Control Address
* @dev: device
* @sa: new address
* @extack: netlink extended ack
*
* Change the hardware (MAC) address of the device
*/
int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
struct netlink_ext_ack *extack)
{
const struct net_device_ops *ops = dev->netdev_ops;
int err;
if (!ops->ndo_set_mac_address)
return -EOPNOTSUPP;
if (sa->sa_family != dev->type)
return -EINVAL;
if (!netif_device_present(dev))
return -ENODEV;
err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
if (err)
return err;
if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
err = ops->ndo_set_mac_address(dev, sa);
if (err)
return err;
}
dev->addr_assign_type = NET_ADDR_SET;
call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
add_device_randomness(dev->dev_addr, dev->addr_len);
return 0;
}
EXPORT_SYMBOL(dev_set_mac_address);
DECLARE_RWSEM(dev_addr_sem);
int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
struct netlink_ext_ack *extack)
{
int ret;
down_write(&dev_addr_sem);
ret = dev_set_mac_address(dev, sa, extack);
up_write(&dev_addr_sem);
return ret;
}
EXPORT_SYMBOL(dev_set_mac_address_user);
int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
{
size_t size = sizeof(sa->sa_data_min);
struct net_device *dev;
int ret = 0;
down_read(&dev_addr_sem);
rcu_read_lock();
dev = dev_get_by_name_rcu(net, dev_name);
if (!dev) {
ret = -ENODEV;
goto unlock;
}
if (!dev->addr_len)
memset(sa->sa_data, 0, size);
else
memcpy(sa->sa_data, dev->dev_addr,
min_t(size_t, size, dev->addr_len));
sa->sa_family = dev->type;
unlock:
rcu_read_unlock();
up_read(&dev_addr_sem);
return ret;
}
EXPORT_SYMBOL(dev_get_mac_address);
/**
* dev_change_carrier - Change device carrier
* @dev: device
* @new_carrier: new value
*
* Change device carrier
*/
int dev_change_carrier(struct net_device *dev, bool new_carrier)
{
const struct net_device_ops *ops = dev->netdev_ops;
if (!ops->ndo_change_carrier)
return -EOPNOTSUPP;
if (!netif_device_present(dev))
return -ENODEV;
return ops->ndo_change_carrier(dev, new_carrier);
}
/**
* dev_get_phys_port_id - Get device physical port ID
* @dev: device
* @ppid: port ID
*
* Get device physical port ID
*/
int dev_get_phys_port_id(struct net_device *dev,
struct netdev_phys_item_id *ppid)
{
const struct net_device_ops *ops = dev->netdev_ops;
if (!ops->ndo_get_phys_port_id)
return -EOPNOTSUPP;
return ops->ndo_get_phys_port_id(dev, ppid);
}
/**
* dev_get_phys_port_name - Get device physical port name
* @dev: device
* @name: port name
* @len: limit of bytes to copy to name
*
* Get device physical port name
*/
int dev_get_phys_port_name(struct net_device *dev,
char *name, size_t len)
{
const struct net_device_ops *ops = dev->netdev_ops;
int err;
if (ops->ndo_get_phys_port_name) {
err = ops->ndo_get_phys_port_name(dev, name, len);
if (err != -EOPNOTSUPP)
return err;
}
return devlink_compat_phys_port_name_get(dev, name, len);
}
/**
* dev_get_port_parent_id - Get the device's port parent identifier
* @dev: network device
* @ppid: pointer to a storage for the port's parent identifier
* @recurse: allow/disallow recursion to lower devices
*
* Get the devices's port parent identifier
*/
int dev_get_port_parent_id(struct net_device *dev,
struct netdev_phys_item_id *ppid,
bool recurse)
{
const struct net_device_ops *ops = dev->netdev_ops;
struct netdev_phys_item_id first = { };
struct net_device *lower_dev;
struct list_head *iter;
int err;
if (ops->ndo_get_port_parent_id) {
err = ops->ndo_get_port_parent_id(dev, ppid);
if (err != -EOPNOTSUPP)
return err;
}
err = devlink_compat_switch_id_get(dev, ppid);
if (!recurse || err != -EOPNOTSUPP)
return err;
netdev_for_each_lower_dev(dev, lower_dev, iter) {
err = dev_get_port_parent_id(lower_dev, ppid, true);
if (err)
break;
if (!first.id_len)
first = *ppid;
else if (memcmp(&first, ppid, sizeof(*ppid)))
return -EOPNOTSUPP;
}
return err;
}
EXPORT_SYMBOL(dev_get_port_parent_id);
/**
* netdev_port_same_parent_id - Indicate if two network devices have
* the same port parent identifier
* @a: first network device
* @b: second network device
*/
bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
{
struct netdev_phys_item_id a_id = { };
struct netdev_phys_item_id b_id = { };
if (dev_get_port_parent_id(a, &a_id, true) ||
dev_get_port_parent_id(b, &b_id, true))
return false;
return netdev_phys_item_id_same(&a_id, &b_id);
}
EXPORT_SYMBOL(netdev_port_same_parent_id);
/**
* dev_change_proto_down - set carrier according to proto_down.
*
* @dev: device
* @proto_down: new value
*/
int dev_change_proto_down(struct net_device *dev, bool proto_down)
{
if (!dev->change_proto_down)
return -EOPNOTSUPP;
if (!netif_device_present(dev))
return -ENODEV;
if (proto_down)
netif_carrier_off(dev);
else
netif_carrier_on(dev);
WRITE_ONCE(dev->proto_down, proto_down);
return 0;
}
/**
* dev_change_proto_down_reason - proto down reason
*
* @dev: device
* @mask: proto down mask
* @value: proto down value
*/
void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
u32 value)
{
u32 proto_down_reason;
int b;
if (!mask) {
proto_down_reason = value;
} else {
proto_down_reason = dev->proto_down_reason;
for_each_set_bit(b, &mask, 32) {
if (value & (1 << b))
proto_down_reason |= BIT(b);
else
proto_down_reason &= ~BIT(b);
}
}
WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
}
struct bpf_xdp_link {
struct bpf_link link;
struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
int flags;
};
static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
{
if (flags & XDP_FLAGS_HW_MODE)
return XDP_MODE_HW;
if (flags & XDP_FLAGS_DRV_MODE)
return XDP_MODE_DRV;
if (flags & XDP_FLAGS_SKB_MODE)
return XDP_MODE_SKB;
return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
}
static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
{
switch (mode) {
case XDP_MODE_SKB:
return generic_xdp_install;
case XDP_MODE_DRV:
case XDP_MODE_HW:
return dev->netdev_ops->ndo_bpf;
default:
return NULL;
}
}
static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
enum bpf_xdp_mode mode)
{
return dev->xdp_state[mode].link;
}
static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
enum bpf_xdp_mode mode)
{
struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
if (link)
return link->link.prog;
return dev->xdp_state[mode].prog;
}
u8 dev_xdp_prog_count(struct net_device *dev)
{
u8 count = 0;
int i;
for (i = 0; i < __MAX_XDP_MODE; i++)
if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
count++;
return count;
}
EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
{
if (!dev->netdev_ops->ndo_bpf)
return -EOPNOTSUPP;
if (dev_get_min_mp_channel_count(dev)) {
NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
return -EBUSY;
}
return dev->netdev_ops->ndo_bpf(dev, bpf);
}
EXPORT_SYMBOL_GPL(dev_xdp_propagate);
u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
{
struct bpf_prog *prog = dev_xdp_prog(dev, mode);
return prog ? prog->aux->id : 0;
}
static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
struct bpf_xdp_link *link)
{
dev->xdp_state[mode].link = link;
dev->xdp_state[mode].prog = NULL;
}
static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
struct bpf_prog *prog)
{
dev->xdp_state[mode].link = NULL;
dev->xdp_state[mode].prog = prog;
}
static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
bpf_op_t bpf_op, struct netlink_ext_ack *extack,
u32 flags, struct bpf_prog *prog)
{
struct netdev_bpf xdp;
int err;
if (dev_get_min_mp_channel_count(dev)) {
NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
return -EBUSY;
}
memset(&xdp, 0, sizeof(xdp));
xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
xdp.extack = extack;
xdp.flags = flags;
xdp.prog = prog;
/* Drivers assume refcnt is already incremented (i.e, prog pointer is
* "moved" into driver), so they don't increment it on their own, but
* they do decrement refcnt when program is detached or replaced.
* Given net_device also owns link/prog, we need to bump refcnt here
* to prevent drivers from underflowing it.
*/
if (prog)
bpf_prog_inc(prog);
err = bpf_op(dev, &xdp);
if (err) {
if (prog)
bpf_prog_put(prog);
return err;
}
if (mode != XDP_MODE_HW)
bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
return 0;
}
static void dev_xdp_uninstall(struct net_device *dev)
{
struct bpf_xdp_link *link;
struct bpf_prog *prog;
enum bpf_xdp_mode mode;
bpf_op_t bpf_op;
ASSERT_RTNL();
for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
prog = dev_xdp_prog(dev, mode);
if (!prog)
continue;
bpf_op = dev_xdp_bpf_op(dev, mode);
if (!bpf_op)
continue;
WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
/* auto-detach link from net device */
link = dev_xdp_link(dev, mode);
if (link)
link->dev = NULL;
else
bpf_prog_put(prog);
dev_xdp_set_link(dev, mode, NULL);
}
}
static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
struct bpf_xdp_link *link, struct bpf_prog *new_prog,
struct bpf_prog *old_prog, u32 flags)
{
unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
struct bpf_prog *cur_prog;
struct net_device *upper;
struct list_head *iter;
enum bpf_xdp_mode mode;
bpf_op_t bpf_op;
int err;
ASSERT_RTNL();
/* either link or prog attachment, never both */
if (link && (new_prog || old_prog))
return -EINVAL;
/* link supports only XDP mode flags */
if (link && (flags & ~XDP_FLAGS_MODES)) {
NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
return -EINVAL;
}
/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
if (num_modes > 1) {
NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
return -EINVAL;
}
/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
if (!num_modes && dev_xdp_prog_count(dev) > 1) {
NL_SET_ERR_MSG(extack,
"More than one program loaded, unset mode is ambiguous");
return -EINVAL;
}
/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
return -EINVAL;
}
mode = dev_xdp_mode(dev, flags);
/* can't replace attached link */
if (dev_xdp_link(dev, mode)) {
NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
return -EBUSY;
}
/* don't allow if an upper device already has a program */
netdev_for_each_upper_dev_rcu(dev, upper, iter) {
if (dev_xdp_prog_count(upper) > 0) {
NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
return -EEXIST;
}
}
cur_prog = dev_xdp_prog(dev, mode);
/* can't replace attached prog with link */
if (link && cur_prog) {
NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
return -EBUSY;
}
if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
NL_SET_ERR_MSG(extack, "Active program does not match expected");
return -EEXIST;
}
/* put effective new program into new_prog */
if (link)
new_prog = link->link.prog;
if (new_prog) {
bool offload = mode == XDP_MODE_HW;
enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
? XDP_MODE_DRV : XDP_MODE_SKB;
if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
NL_SET_ERR_MSG(extack, "XDP program already attached");
return -EBUSY;
}
if (!offload && dev_xdp_prog(dev, other_mode)) {
NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
return -EEXIST;
}
if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
return -EINVAL;
}
if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
NL_SET_ERR_MSG(extack, "Program bound to different device");
return -EINVAL;
}
if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
return -EINVAL;
}
if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
return -EINVAL;
}
}
/* don't call drivers if the effective program didn't change */
if (new_prog != cur_prog) {
bpf_op = dev_xdp_bpf_op(dev, mode);
if (!bpf_op) {
NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
return -EOPNOTSUPP;
}
err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
if (err)
return err;
}
if (link)
dev_xdp_set_link(dev, mode, link);
else
dev_xdp_set_prog(dev, mode, new_prog);
if (cur_prog)
bpf_prog_put(cur_prog);
return 0;
}
static int dev_xdp_attach_link(struct net_device *dev,
struct netlink_ext_ack *extack,
struct bpf_xdp_link *link)
{
return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
}
static int dev_xdp_detach_link(struct net_device *dev,
struct netlink_ext_ack *extack,
struct bpf_xdp_link *link)
{
enum bpf_xdp_mode mode;
bpf_op_t bpf_op;
ASSERT_RTNL();
mode = dev_xdp_mode(dev, link->flags);
if (dev_xdp_link(dev, mode) != link)
return -EINVAL;
bpf_op = dev_xdp_bpf_op(dev, mode);
WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
dev_xdp_set_link(dev, mode, NULL);
return 0;
}
static void bpf_xdp_link_release(struct bpf_link *link)
{
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
rtnl_lock();
/* if racing with net_device's tear down, xdp_link->dev might be
* already NULL, in which case link was already auto-detached
*/
if (xdp_link->dev) {
WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
xdp_link->dev = NULL;
}
rtnl_unlock();
}
static int bpf_xdp_link_detach(struct bpf_link *link)
{
bpf_xdp_link_release(link);
return 0;
}
static void bpf_xdp_link_dealloc(struct bpf_link *link)
{
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
kfree(xdp_link);
}
static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
struct seq_file *seq)
{
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
u32 ifindex = 0;
rtnl_lock();
if (xdp_link->dev)
ifindex = xdp_link->dev->ifindex;
rtnl_unlock();
seq_printf(seq, "ifindex:\t%u\n", ifindex);
}
static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
struct bpf_link_info *info)
{
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
u32 ifindex = 0;
rtnl_lock();
if (xdp_link->dev)
ifindex = xdp_link->dev->ifindex;
rtnl_unlock();
info->xdp.ifindex = ifindex;
return 0;
}
static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
struct bpf_prog *old_prog)
{
struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
enum bpf_xdp_mode mode;
bpf_op_t bpf_op;
int err = 0;
rtnl_lock();
/* link might have been auto-released already, so fail */
if (!xdp_link->dev) {
err = -ENOLINK;
goto out_unlock;
}
if (old_prog && link->prog != old_prog) {
err = -EPERM;
goto out_unlock;
}
old_prog = link->prog;
if (old_prog->type != new_prog->type ||
old_prog->expected_attach_type != new_prog->expected_attach_type) {
err = -EINVAL;
goto out_unlock;
}
if (old_prog == new_prog) {
/* no-op, don't disturb drivers */
bpf_prog_put(new_prog);
goto out_unlock;
}
mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
xdp_link->flags, new_prog);
if (err)
goto out_unlock;
old_prog = xchg(&link->prog, new_prog);
bpf_prog_put(old_prog);
out_unlock:
rtnl_unlock();
return err;
}
static const struct bpf_link_ops bpf_xdp_link_lops = {
.release = bpf_xdp_link_release,
.dealloc = bpf_xdp_link_dealloc,
.detach = bpf_xdp_link_detach,
.show_fdinfo = bpf_xdp_link_show_fdinfo,
.fill_link_info = bpf_xdp_link_fill_link_info,
.update_prog = bpf_xdp_link_update,
};
int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
{
struct net *net = current->nsproxy->net_ns;
struct bpf_link_primer link_primer;
struct netlink_ext_ack extack = {};
struct bpf_xdp_link *link;
struct net_device *dev;
int err, fd;
rtnl_lock();
dev = dev_get_by_index(net, attr->link_create.target_ifindex);
if (!dev) {
rtnl_unlock();
return -EINVAL;
}
link = kzalloc(sizeof(*link), GFP_USER);
if (!link) {
err = -ENOMEM;
goto unlock;
}
bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
link->dev = dev;
link->flags = attr->link_create.flags;
err = bpf_link_prime(&link->link, &link_primer);
if (err) {
kfree(link);
goto unlock;
}
err = dev_xdp_attach_link(dev, &extack, link);
rtnl_unlock();
if (err) {
link->dev = NULL;
bpf_link_cleanup(&link_primer);
trace_bpf_xdp_link_attach_failed(extack._msg);
goto out_put_dev;
}
fd = bpf_link_settle(&link_primer);
/* link itself doesn't hold dev's refcnt to not complicate shutdown */
dev_put(dev);
return fd;
unlock:
rtnl_unlock();
out_put_dev:
dev_put(dev);
return err;
}
/**
* dev_change_xdp_fd - set or clear a bpf program for a device rx path
* @dev: device
* @extack: netlink extended ack
* @fd: new program fd or negative value to clear
* @expected_fd: old program fd that userspace expects to replace or clear
* @flags: xdp-related flags
*
* Set or clear a bpf program for a device
*/
int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
int fd, int expected_fd, u32 flags)
{
enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
struct bpf_prog *new_prog = NULL, *old_prog = NULL;
int err;
ASSERT_RTNL();
if (fd >= 0) {
new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
mode != XDP_MODE_SKB);
if (IS_ERR(new_prog))
return PTR_ERR(new_prog);
}
if (expected_fd >= 0) {
old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
mode != XDP_MODE_SKB);
if (IS_ERR(old_prog)) {
err = PTR_ERR(old_prog);
old_prog = NULL;
goto err_out;
}
}
err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
err_out:
if (err && new_prog)
bpf_prog_put(new_prog);
if (old_prog)
bpf_prog_put(old_prog);
return err;
}
u32 dev_get_min_mp_channel_count(const struct net_device *dev)
{
int i;
ASSERT_RTNL();
for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
if (dev->_rx[i].mp_params.mp_priv)
/* The channel count is the idx plus 1. */
return i + 1;
return 0;
}
/**
* dev_index_reserve() - allocate an ifindex in a namespace
* @net: the applicable net namespace
* @ifindex: requested ifindex, pass %0 to get one allocated
*
* Allocate a ifindex for a new device. Caller must either use the ifindex
* to store the device (via list_netdevice()) or call dev_index_release()
* to give the index up.
*
* Return: a suitable unique value for a new device interface number or -errno.
*/
static int dev_index_reserve(struct net *net, u32 ifindex)
{
int err;
if (ifindex > INT_MAX) {
DEBUG_NET_WARN_ON_ONCE(1);
return -EINVAL;
}
if (!ifindex)
err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
xa_limit_31b, &net->ifindex, GFP_KERNEL);
else
err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
if (err < 0)
return err;
return ifindex;
}
static void dev_index_release(struct net *net, int ifindex)
{
/* Expect only unused indexes, unlist_netdevice() removes the used */
WARN_ON(xa_erase(&net->dev_by_index, ifindex));
}
/* Delayed registration/unregisteration */
LIST_HEAD(net_todo_list);
DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
atomic_t dev_unreg_count = ATOMIC_INIT(0);
static void net_set_todo(struct net_device *dev)
{
list_add_tail(&dev->todo_list, &net_todo_list);
}
static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
struct net_device *upper, netdev_features_t features)
{
netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
netdev_features_t feature;
int feature_bit;
for_each_netdev_feature(upper_disables, feature_bit) {
feature = __NETIF_F_BIT(feature_bit);
if (!(upper->wanted_features & feature)
&& (features & feature)) {
netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
&feature, upper->name);
features &= ~feature;
}
}
return features;
}
static void netdev_sync_lower_features(struct net_device *upper,
struct net_device *lower, netdev_features_t features)
{
netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
netdev_features_t feature;
int feature_bit;
for_each_netdev_feature(upper_disables, feature_bit) {
feature = __NETIF_F_BIT(feature_bit);
if (!(features & feature) && (lower->features & feature)) {
netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
&feature, lower->name);
lower->wanted_features &= ~feature;
__netdev_update_features(lower);
if (unlikely(lower->features & feature))
netdev_WARN(upper, "failed to disable %pNF on %s!\n",
&feature, lower->name);
else
netdev_features_change(lower);
}
}
}
static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
{
netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
bool hw_csum = features & NETIF_F_HW_CSUM;
return ip_csum || hw_csum;
}
static netdev_features_t netdev_fix_features(struct net_device *dev,
netdev_features_t features)
{
/* Fix illegal checksum combinations */
if ((features & NETIF_F_HW_CSUM) &&
(features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
netdev_warn(dev, "mixed HW and IP checksum settings.\n");
features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
}
/* TSO requires that SG is present as well. */
if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
features &= ~NETIF_F_ALL_TSO;
}
if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
!(features & NETIF_F_IP_CSUM)) {
netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
features &= ~NETIF_F_TSO;
features &= ~NETIF_F_TSO_ECN;
}
if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
!(features & NETIF_F_IPV6_CSUM)) {
netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
features &= ~NETIF_F_TSO6;
}
/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
features &= ~NETIF_F_TSO_MANGLEID;
/* TSO ECN requires that TSO is present as well. */
if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
features &= ~NETIF_F_TSO_ECN;
/* Software GSO depends on SG. */
if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
features &= ~NETIF_F_GSO;
}
/* GSO partial features require GSO partial be set */
if ((features & dev->gso_partial_features) &&
!(features & NETIF_F_GSO_PARTIAL)) {
netdev_dbg(dev,
"Dropping partially supported GSO features since no GSO partial.\n");
features &= ~dev->gso_partial_features;
}
if (!(features & NETIF_F_RXCSUM)) {
/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
* successfully merged by hardware must also have the
* checksum verified by hardware. If the user does not
* want to enable RXCSUM, logically, we should disable GRO_HW.
*/
if (features & NETIF_F_GRO_HW) {
netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
features &= ~NETIF_F_GRO_HW;
}
}
/* LRO/HW-GRO features cannot be combined with RX-FCS */
if (features & NETIF_F_RXFCS) {
if (features & NETIF_F_LRO) {
netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
features &= ~NETIF_F_LRO;
}
if (features & NETIF_F_GRO_HW) {
netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
features &= ~NETIF_F_GRO_HW;
}
}
if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
features &= ~NETIF_F_LRO;
}
if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
features &= ~NETIF_F_HW_TLS_TX;
}
if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
features &= ~NETIF_F_HW_TLS_RX;
}
if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
features &= ~NETIF_F_GSO_UDP_L4;
}
return features;
}
int __netdev_update_features(struct net_device *dev)
{
struct net_device *upper, *lower;
netdev_features_t features;
struct list_head *iter;
int err = -1;
ASSERT_RTNL();
features = netdev_get_wanted_features(dev);
if (dev->netdev_ops->ndo_fix_features)
features = dev->netdev_ops->ndo_fix_features(dev, features);
/* driver might be less strict about feature dependencies */
features = netdev_fix_features(dev, features);
/* some features can't be enabled if they're off on an upper device */
netdev_for_each_upper_dev_rcu(dev, upper, iter)
features = netdev_sync_upper_features(dev, upper, features);
if (dev->features == features)
goto sync_lower;
netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
&dev->features, &features);
if (dev->netdev_ops->ndo_set_features)
err = dev->netdev_ops->ndo_set_features(dev, features);
else
err = 0;
if (unlikely(err < 0)) {
netdev_err(dev,
"set_features() failed (%d); wanted %pNF, left %pNF\n",
err, &features, &dev->features);
/* return non-0 since some features might have changed and
* it's better to fire a spurious notification than miss it
*/
return -1;
}
sync_lower:
/* some features must be disabled on lower devices when disabled
* on an upper device (think: bonding master or bridge)
*/
netdev_for_each_lower_dev(dev, lower, iter)
netdev_sync_lower_features(dev, lower, features);
if (!err) {
netdev_features_t diff = features ^ dev->features;
if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
/* udp_tunnel_{get,drop}_rx_info both need
* NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
* device, or they won't do anything.
* Thus we need to update dev->features
* *before* calling udp_tunnel_get_rx_info,
* but *after* calling udp_tunnel_drop_rx_info.
*/
if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
dev->features = features;
udp_tunnel_get_rx_info(dev);
} else {
udp_tunnel_drop_rx_info(dev);
}
}
if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
dev->features = features;
err |= vlan_get_rx_ctag_filter_info(dev);
} else {
vlan_drop_rx_ctag_filter_info(dev);
}
}
if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
dev->features = features;
err |= vlan_get_rx_stag_filter_info(dev);
} else {
vlan_drop_rx_stag_filter_info(dev);
}
}
dev->features = features;
}
return err < 0 ? 0 : 1;
}
/**
* netdev_update_features - recalculate device features
* @dev: the device to check
*
* Recalculate dev->features set and send notifications if it
* has changed. Should be called after driver or hardware dependent
* conditions might have changed that influence the features.
*/
void netdev_update_features(struct net_device *dev)
{
if (__netdev_update_features(dev))
netdev_features_change(dev);
}
EXPORT_SYMBOL(netdev_update_features);
/**
* netdev_change_features - recalculate device features
* @dev: the device to check
*
* Recalculate dev->features set and send notifications even
* if they have not changed. Should be called instead of
* netdev_update_features() if also dev->vlan_features might
* have changed to allow the changes to be propagated to stacked
* VLAN devices.
*/
void netdev_change_features(struct net_device *dev)
{
__netdev_update_features(dev);
netdev_features_change(dev);
}
EXPORT_SYMBOL(netdev_change_features);
/**
* netif_stacked_transfer_operstate - transfer operstate
* @rootdev: the root or lower level device to transfer state from
* @dev: the device to transfer operstate to
*
* Transfer operational state from root to device. This is normally
* called when a stacking relationship exists between the root
* device and the device(a leaf device).
*/
void netif_stacked_transfer_operstate(const struct net_device *rootdev,
struct net_device *dev)
{
if (rootdev->operstate == IF_OPER_DORMANT)
netif_dormant_on(dev);
else
netif_dormant_off(dev);
if (rootdev->operstate == IF_OPER_TESTING)
netif_testing_on(dev);
else
netif_testing_off(dev);
if (netif_carrier_ok(rootdev))
netif_carrier_on(dev);
else
netif_carrier_off(dev);
}
EXPORT_SYMBOL(netif_stacked_transfer_operstate);
static int netif_alloc_rx_queues(struct net_device *dev)
{
unsigned int i, count = dev->num_rx_queues;
struct netdev_rx_queue *rx;
size_t sz = count * sizeof(*rx);
int err = 0;
BUG_ON(count < 1);
rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
if (!rx)
return -ENOMEM;
dev->_rx = rx;
for (i = 0; i < count; i++) {
rx[i].dev = dev;
/* XDP RX-queue setup */
err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
if (err < 0)
goto err_rxq_info;
}
return 0;
err_rxq_info:
/* Rollback successful reg's and free other resources */
while (i--)
xdp_rxq_info_unreg(&rx[i].xdp_rxq);
kvfree(dev->_rx);
dev->_rx = NULL;
return err;
}
static void netif_free_rx_queues(struct net_device *dev)
{
unsigned int i, count = dev->num_rx_queues;
/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
if (!dev->_rx)
return;
for (i = 0; i < count; i++)
xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
kvfree(dev->_rx);
}
static void netdev_init_one_queue(struct net_device *dev,
struct netdev_queue *queue, void *_unused)
{
/* Initialize queue lock */
spin_lock_init(&queue->_xmit_lock);
netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
queue->xmit_lock_owner = -1;
netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
queue->dev = dev;
#ifdef CONFIG_BQL
dql_init(&queue->dql, HZ);
#endif
}
static void netif_free_tx_queues(struct net_device *dev)
{
kvfree(dev->_tx);
}
static int netif_alloc_netdev_queues(struct net_device *dev)
{
unsigned int count = dev->num_tx_queues;
struct netdev_queue *tx;
size_t sz = count * sizeof(*tx);
if (count < 1 || count > 0xffff)
return -EINVAL;
tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
if (!tx)
return -ENOMEM;
dev->_tx = tx;
netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
spin_lock_init(&dev->tx_global_lock);
return 0;
}
void netif_tx_stop_all_queues(struct net_device *dev)
{
unsigned int i;
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
netif_tx_stop_queue(txq);
}
}
EXPORT_SYMBOL(netif_tx_stop_all_queues);
static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
{
void __percpu *v;
/* Drivers implementing ndo_get_peer_dev must support tstat
* accounting, so that skb_do_redirect() can bump the dev's
* RX stats upon network namespace switch.
*/
if (dev->netdev_ops->ndo_get_peer_dev &&
dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
return -EOPNOTSUPP;
switch (dev->pcpu_stat_type) {
case NETDEV_PCPU_STAT_NONE:
return 0;
case NETDEV_PCPU_STAT_LSTATS:
v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
break;
case NETDEV_PCPU_STAT_TSTATS:
v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
break;
case NETDEV_PCPU_STAT_DSTATS:
v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
break;
default:
return -EINVAL;
}
return v ? 0 : -ENOMEM;
}
static void netdev_do_free_pcpu_stats(struct net_device *dev)
{
switch (dev->pcpu_stat_type) {
case NETDEV_PCPU_STAT_NONE:
return;
case NETDEV_PCPU_STAT_LSTATS:
free_percpu(dev->lstats);
break;
case NETDEV_PCPU_STAT_TSTATS:
free_percpu(dev->tstats);
break;
case NETDEV_PCPU_STAT_DSTATS:
free_percpu(dev->dstats);
break;
}
}
static void netdev_free_phy_link_topology(struct net_device *dev)
{
struct phy_link_topology *topo = dev->link_topo;
if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
xa_destroy(&topo->phys);
kfree(topo);
dev->link_topo = NULL;
}
}
/**
* register_netdevice() - register a network device
* @dev: device to register
*
* Take a prepared network device structure and make it externally accessible.
* A %NETDEV_REGISTER message is sent to the netdev notifier chain.
* Callers must hold the rtnl lock - you may want register_netdev()
* instead of this.
*/
int register_netdevice(struct net_device *dev)
{
int ret;
struct net *net = dev_net(dev);
BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
NETDEV_FEATURE_COUNT);
BUG_ON(dev_boot_phase);
ASSERT_RTNL();
might_sleep();
/* When net_device's are persistent, this will be fatal. */
BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
BUG_ON(!net);
ret = ethtool_check_ops(dev->ethtool_ops);
if (ret)
return ret;
/* rss ctx ID 0 is reserved for the default context, start from 1 */
xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
mutex_init(&dev->ethtool->rss_lock);
spin_lock_init(&dev->addr_list_lock);
netdev_set_addr_lockdep_class(dev);
ret = dev_get_valid_name(net, dev, dev->name);
if (ret < 0)
goto out;
ret = -ENOMEM;
dev->name_node = netdev_name_node_head_alloc(dev);
if (!dev->name_node)
goto out;
/* Init, if this function is available */
if (dev->netdev_ops->ndo_init) {
ret = dev->netdev_ops->ndo_init(dev);
if (ret) {
if (ret > 0)
ret = -EIO;
goto err_free_name;
}
}
if (((dev->hw_features | dev->features) &
NETIF_F_HW_VLAN_CTAG_FILTER) &&
(!dev->netdev_ops->ndo_vlan_rx_add_vid ||
!dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
ret = -EINVAL;
goto err_uninit;
}
ret = netdev_do_alloc_pcpu_stats(dev);
if (ret)
goto err_uninit;
ret = dev_index_reserve(net, dev->ifindex);
if (ret < 0)
goto err_free_pcpu;
dev->ifindex = ret;
/* Transfer changeable features to wanted_features and enable
* software offloads (GSO and GRO).
*/
dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
dev->features |= NETIF_F_SOFT_FEATURES;
if (dev->udp_tunnel_nic_info) {
dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
}
dev->wanted_features = dev->features & dev->hw_features;
if (!(dev->flags & IFF_LOOPBACK))
dev->hw_features |= NETIF_F_NOCACHE_COPY;
/* If IPv4 TCP segmentation offload is supported we should also
* allow the device to enable segmenting the frame with the option
* of ignoring a static IP ID value. This doesn't enable the
* feature itself but allows the user to enable it later.
*/
if (dev->hw_features & NETIF_F_TSO)
dev->hw_features |= NETIF_F_TSO_MANGLEID;
if (dev->vlan_features & NETIF_F_TSO)
dev->vlan_features |= NETIF_F_TSO_MANGLEID;
if (dev->mpls_features & NETIF_F_TSO)
dev->mpls_features |= NETIF_F_TSO_MANGLEID;
if (dev->hw_enc_features & NETIF_F_TSO)
dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
*/
dev->vlan_features |= NETIF_F_HIGHDMA;
/* Make NETIF_F_SG inheritable to tunnel devices.
*/
dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
/* Make NETIF_F_SG inheritable to MPLS.
*/
dev->mpls_features |= NETIF_F_SG;
ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
ret = notifier_to_errno(ret);
if (ret)
goto err_ifindex_release;
ret = netdev_register_kobject(dev);
WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
if (ret)
goto err_uninit_notify;
__netdev_update_features(dev);
/*
* Default initial state at registry is that the
* device is present.
*/
set_bit(__LINK_STATE_PRESENT, &dev->state);
linkwatch_init_dev(dev);
dev_init_scheduler(dev);
netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
list_netdevice(dev);
add_device_randomness(dev->dev_addr, dev->addr_len);
/* If the device has permanent device address, driver should
* set dev_addr and also addr_assign_type should be set to
* NET_ADDR_PERM (default value).
*/
if (dev->addr_assign_type == NET_ADDR_PERM)
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
/* Notify protocols, that a new device appeared. */
ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
ret = notifier_to_errno(ret);
if (ret) {
/* Expect explicit free_netdev() on failure */
dev->needs_free_netdev = false;
unregister_netdevice_queue(dev, NULL);
goto out;
}
/*
* Prevent userspace races by waiting until the network
* device is fully setup before sending notifications.
*/
if (!dev->rtnl_link_ops ||
dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
out:
return ret;
err_uninit_notify:
call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
err_ifindex_release:
dev_index_release(net, dev->ifindex);
err_free_pcpu:
netdev_do_free_pcpu_stats(dev);
err_uninit:
if (dev->netdev_ops->ndo_uninit)
dev->netdev_ops->ndo_uninit(dev);
if (dev->priv_destructor)
dev->priv_destructor(dev);
err_free_name:
netdev_name_node_free(dev->name_node);
goto out;
}
EXPORT_SYMBOL(register_netdevice);
/* Initialize the core of a dummy net device.
* This is useful if you are calling this function after alloc_netdev(),
* since it does not memset the net_device fields.
*/
static void init_dummy_netdev_core(struct net_device *dev)
{
/* make sure we BUG if trying to hit standard
* register/unregister code path
*/
dev->reg_state = NETREG_DUMMY;
/* NAPI wants this */
INIT_LIST_HEAD(&dev->napi_list);
/* a dummy interface is started by default */
set_bit(__LINK_STATE_PRESENT, &dev->state);
set_bit(__LINK_STATE_START, &dev->state);
/* napi_busy_loop stats accounting wants this */
dev_net_set(dev, &init_net);
/* Note : We dont allocate pcpu_refcnt for dummy devices,
* because users of this 'device' dont need to change
* its refcount.
*/
}
/**
* init_dummy_netdev - init a dummy network device for NAPI
* @dev: device to init
*
* This takes a network device structure and initializes the minimum
* amount of fields so it can be used to schedule NAPI polls without
* registering a full blown interface. This is to be used by drivers
* that need to tie several hardware interfaces to a single NAPI
* poll scheduler due to HW limitations.
*/
void init_dummy_netdev(struct net_device *dev)
{
/* Clear everything. Note we don't initialize spinlocks
* as they aren't supposed to be taken by any of the
* NAPI code and this dummy netdev is supposed to be
* only ever used for NAPI polls
*/
memset(dev, 0, sizeof(struct net_device));
init_dummy_netdev_core(dev);
}
EXPORT_SYMBOL_GPL(init_dummy_netdev);
/**
* register_netdev - register a network device
* @dev: device to register
*
* Take a completed network device structure and add it to the kernel
* interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
* chain. 0 is returned on success. A negative errno code is returned
* on a failure to set up the device, or if the name is a duplicate.
*
* This is a wrapper around register_netdevice that takes the rtnl semaphore
* and expands the device name if you passed a format string to
* alloc_netdev.
*/
int register_netdev(struct net_device *dev)
{
int err;
if (rtnl_lock_killable())
return -EINTR;
err = register_netdevice(dev);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(register_netdev);
int netdev_refcnt_read(const struct net_device *dev)
{
#ifdef CONFIG_PCPU_DEV_REFCNT
int i, refcnt = 0;
for_each_possible_cpu(i)
refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
return refcnt;
#else
return refcount_read(&dev->dev_refcnt);
#endif
}
EXPORT_SYMBOL(netdev_refcnt_read);
int netdev_unregister_timeout_secs __read_mostly = 10;
#define WAIT_REFS_MIN_MSECS 1
#define WAIT_REFS_MAX_MSECS 250
/**
* netdev_wait_allrefs_any - wait until all references are gone.
* @list: list of net_devices to wait on
*
* This is called when unregistering network devices.
*
* Any protocol or device that holds a reference should register
* for netdevice notification, and cleanup and put back the
* reference if they receive an UNREGISTER event.
* We can get stuck here if buggy protocols don't correctly
* call dev_put.
*/
static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
{
unsigned long rebroadcast_time, warning_time;
struct net_device *dev;
int wait = 0;
rebroadcast_time = warning_time = jiffies;
list_for_each_entry(dev, list, todo_list)
if (netdev_refcnt_read(dev) == 1)
return dev;
while (true) {
if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
rtnl_lock();
/* Rebroadcast unregister notification */
list_for_each_entry(dev, list, todo_list)
call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
__rtnl_unlock();
rcu_barrier();
rtnl_lock();
list_for_each_entry(dev, list, todo_list)
if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
&dev->state)) {
/* We must not have linkwatch events
* pending on unregister. If this
* happens, we simply run the queue
* unscheduled, resulting in a noop
* for this device.
*/
linkwatch_run_queue();
break;
}
__rtnl_unlock();
rebroadcast_time = jiffies;
}
rcu_barrier();
if (!wait) {
wait = WAIT_REFS_MIN_MSECS;
} else {
msleep(wait);
wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
}
list_for_each_entry(dev, list, todo_list)
if (netdev_refcnt_read(dev) == 1)
return dev;
if (time_after(jiffies, warning_time +
READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
list_for_each_entry(dev, list, todo_list) {
pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
dev->name, netdev_refcnt_read(dev));
ref_tracker_dir_print(&dev->refcnt_tracker, 10);
}
warning_time = jiffies;
}
}
}
/* The sequence is:
*
* rtnl_lock();
* ...
* register_netdevice(x1);
* register_netdevice(x2);
* ...
* unregister_netdevice(y1);
* unregister_netdevice(y2);
* ...
* rtnl_unlock();
* free_netdev(y1);
* free_netdev(y2);
*
* We are invoked by rtnl_unlock().
* This allows us to deal with problems:
* 1) We can delete sysfs objects which invoke hotplug
* without deadlocking with linkwatch via keventd.
* 2) Since we run with the RTNL semaphore not held, we can sleep
* safely in order to wait for the netdev refcnt to drop to zero.
*
* We must not return until all unregister events added during
* the interval the lock was held have been completed.
*/
void netdev_run_todo(void)
{
struct net_device *dev, *tmp;
struct list_head list;
int cnt;
#ifdef CONFIG_LOCKDEP
struct list_head unlink_list;
list_replace_init(&net_unlink_list, &unlink_list);
while (!list_empty(&unlink_list)) {
struct net_device *dev = list_first_entry(&unlink_list,
struct net_device,
unlink_list);
list_del_init(&dev->unlink_list);
dev->nested_level = dev->lower_level - 1;
}
#endif
/* Snapshot list, allow later requests */
list_replace_init(&net_todo_list, &list);
__rtnl_unlock();
/* Wait for rcu callbacks to finish before next phase */
if (!list_empty(&list))
rcu_barrier();
list_for_each_entry_safe(dev, tmp, &list, todo_list) {
if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
netdev_WARN(dev, "run_todo but not unregistering\n");
list_del(&dev->todo_list);
continue;
}
WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
linkwatch_sync_dev(dev);
}
cnt = 0;
while (!list_empty(&list)) {
dev = netdev_wait_allrefs_any(&list);
list_del(&dev->todo_list);
/* paranoia */
BUG_ON(netdev_refcnt_read(dev) != 1);
BUG_ON(!list_empty(&dev->ptype_all));
BUG_ON(!list_empty(&dev->ptype_specific));
WARN_ON(rcu_access_pointer(dev->ip_ptr));
WARN_ON(rcu_access_pointer(dev->ip6_ptr));
netdev_do_free_pcpu_stats(dev);
if (dev->priv_destructor)
dev->priv_destructor(dev);
if (dev->needs_free_netdev)
free_netdev(dev);
cnt++;
/* Free network device */
kobject_put(&dev->dev.kobj);
}
if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
wake_up(&netdev_unregistering_wq);
}
/* Collate per-cpu network dstats statistics
*
* Read per-cpu network statistics from dev->dstats and populate the related
* fields in @s.
*/
static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
const struct pcpu_dstats __percpu *dstats)
{
int cpu;
for_each_possible_cpu(cpu) {
u64 rx_packets, rx_bytes, rx_drops;
u64 tx_packets, tx_bytes, tx_drops;
const struct pcpu_dstats *stats;
unsigned int start;
stats = per_cpu_ptr(dstats, cpu);
do {
start = u64_stats_fetch_begin(&stats->syncp);
rx_packets = u64_stats_read(&stats->rx_packets);
rx_bytes = u64_stats_read(&stats->rx_bytes);
rx_drops = u64_stats_read(&stats->rx_drops);
tx_packets = u64_stats_read(&stats->tx_packets);
tx_bytes = u64_stats_read(&stats->tx_bytes);
tx_drops = u64_stats_read(&stats->tx_drops);
} while (u64_stats_fetch_retry(&stats->syncp, start));
s->rx_packets += rx_packets;
s->rx_bytes += rx_bytes;
s->rx_dropped += rx_drops;
s->tx_packets += tx_packets;
s->tx_bytes += tx_bytes;
s->tx_dropped += tx_drops;
}
}
/* ndo_get_stats64 implementation for dtstats-based accounting.
*
* Populate @s from dev->stats and dev->dstats. This is used internally by the
* core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
*/
static void dev_get_dstats64(const struct net_device *dev,
struct rtnl_link_stats64 *s)
{
netdev_stats_to_stats64(s, &dev->stats);
dev_fetch_dstats(s, dev->dstats);
}
/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
* all the same fields in the same order as net_device_stats, with only
* the type differing, but rtnl_link_stats64 may have additional fields
* at the end for newer counters.
*/
void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
const struct net_device_stats *netdev_stats)
{
size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
const atomic_long_t *src = (atomic_long_t *)netdev_stats;
u64 *dst = (u64 *)stats64;
BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
for (i = 0; i < n; i++)
dst[i] = (unsigned long)atomic_long_read(&src[i]);
/* zero out counters that only exist in rtnl_link_stats64 */
memset((char *)stats64 + n * sizeof(u64), 0,
sizeof(*stats64) - n * sizeof(u64));
}
EXPORT_SYMBOL(netdev_stats_to_stats64);
static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
struct net_device *dev)
{
struct net_device_core_stats __percpu *p;
p = alloc_percpu_gfp(struct net_device_core_stats,
GFP_ATOMIC | __GFP_NOWARN);
if (p && cmpxchg(&dev->core_stats, NULL, p))
free_percpu(p);
/* This READ_ONCE() pairs with the cmpxchg() above */
return READ_ONCE(dev->core_stats);
}
noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
{
/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
unsigned long __percpu *field;
if (unlikely(!p)) {
p = netdev_core_stats_alloc(dev);
if (!p)
return;
}
field = (unsigned long __percpu *)((void __percpu *)p + offset);
this_cpu_inc(*field);
}
EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
/**
* dev_get_stats - get network device statistics
* @dev: device to get statistics from
* @storage: place to store stats
*
* Get network statistics from device. Return @storage.
* The device driver may provide its own method by setting
* dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
* otherwise the internal statistics structure is used.
*/
struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
const struct net_device_ops *ops = dev->netdev_ops;
const struct net_device_core_stats __percpu *p;
if (ops->ndo_get_stats64) {
memset(storage, 0, sizeof(*storage));
ops->ndo_get_stats64(dev, storage);
} else if (ops->ndo_get_stats) {
netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
dev_get_tstats64(dev, storage);
} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
dev_get_dstats64(dev, storage);
} else {
netdev_stats_to_stats64(storage, &dev->stats);
}
/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
p = READ_ONCE(dev->core_stats);
if (p) {
const struct net_device_core_stats *core_stats;
int i;
for_each_possible_cpu(i) {
core_stats = per_cpu_ptr(p, i);
storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
}
}
return storage;
}
EXPORT_SYMBOL(dev_get_stats);
/**
* dev_fetch_sw_netstats - get per-cpu network device statistics
* @s: place to store stats
* @netstats: per-cpu network stats to read from
*
* Read per-cpu network statistics and populate the related fields in @s.
*/
void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
const struct pcpu_sw_netstats __percpu *netstats)
{
int cpu;
for_each_possible_cpu(cpu) {
u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
const struct pcpu_sw_netstats *stats;
unsigned int start;
stats = per_cpu_ptr(netstats, cpu);
do {
start = u64_stats_fetch_begin(&stats->syncp);
rx_packets = u64_stats_read(&stats->rx_packets);
rx_bytes = u64_stats_read(&stats->rx_bytes);
tx_packets = u64_stats_read(&stats->tx_packets);
tx_bytes = u64_stats_read(&stats->tx_bytes);
} while (u64_stats_fetch_retry(&stats->syncp, start));
s->rx_packets += rx_packets;
s->rx_bytes += rx_bytes;
s->tx_packets += tx_packets;
s->tx_bytes += tx_bytes;
}
}
EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
/**
* dev_get_tstats64 - ndo_get_stats64 implementation
* @dev: device to get statistics from
* @s: place to store stats
*
* Populate @s from dev->stats and dev->tstats. Can be used as
* ndo_get_stats64() callback.
*/
void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
{
netdev_stats_to_stats64(s, &dev->stats);
dev_fetch_sw_netstats(s, dev->tstats);
}
EXPORT_SYMBOL_GPL(dev_get_tstats64);
struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
{
struct netdev_queue *queue = dev_ingress_queue(dev);
#ifdef CONFIG_NET_CLS_ACT
if (queue)
return queue;
queue = kzalloc(sizeof(*queue), GFP_KERNEL);
if (!queue)
return NULL;
netdev_init_one_queue(dev, queue, NULL);
RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
rcu_assign_pointer(dev->ingress_queue, queue);
#endif
return queue;
}
static const struct ethtool_ops default_ethtool_ops;
void netdev_set_default_ethtool_ops(struct net_device *dev,
const struct ethtool_ops *ops)
{
if (dev->ethtool_ops == &default_ethtool_ops)
dev->ethtool_ops = ops;
}
EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
/**
* netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
* @dev: netdev to enable the IRQ coalescing on
*
* Sets a conservative default for SW IRQ coalescing. Users can use
* sysfs attributes to override the default values.
*/
void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
{
WARN_ON(dev->reg_state == NETREG_REGISTERED);
if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
dev->gro_flush_timeout = 20000;
dev->napi_defer_hard_irqs = 1;
}
}
EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
/**
* alloc_netdev_mqs - allocate network device
* @sizeof_priv: size of private data to allocate space for
* @name: device name format string
* @name_assign_type: origin of device name
* @setup: callback to initialize device
* @txqs: the number of TX subqueues to allocate
* @rxqs: the number of RX subqueues to allocate
*
* Allocates a struct net_device with private data area for driver use
* and performs basic initialization. Also allocates subqueue structs
* for each queue on the device.
*/
struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
unsigned char name_assign_type,
void (*setup)(struct net_device *),
unsigned int txqs, unsigned int rxqs)
{
struct net_device *dev;
BUG_ON(strlen(name) >= sizeof(dev->name));
if (txqs < 1) {
pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
return NULL;
}
if (rxqs < 1) {
pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
return NULL;
}
dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
if (!dev)
return NULL;
dev->priv_len = sizeof_priv;
ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
#ifdef CONFIG_PCPU_DEV_REFCNT
dev->pcpu_refcnt = alloc_percpu(int);
if (!dev->pcpu_refcnt)
goto free_dev;
__dev_hold(dev);
#else
refcount_set(&dev->dev_refcnt, 1);
#endif
if (dev_addr_init(dev))
goto free_pcpu;
dev_mc_init(dev);
dev_uc_init(dev);
dev_net_set(dev, &init_net);
dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
dev->xdp_zc_max_segs = 1;
dev->gso_max_segs = GSO_MAX_SEGS;
dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
dev->tso_max_segs = TSO_MAX_SEGS;
dev->upper_level = 1;
dev->lower_level = 1;
#ifdef CONFIG_LOCKDEP
dev->nested_level = 0;
INIT_LIST_HEAD(&dev->unlink_list);
#endif
INIT_LIST_HEAD(&dev->napi_list);
INIT_LIST_HEAD(&dev->unreg_list);
INIT_LIST_HEAD(&dev->close_list);
INIT_LIST_HEAD(&dev->link_watch_list);
INIT_LIST_HEAD(&dev->adj_list.upper);
INIT_LIST_HEAD(&dev->adj_list.lower);
INIT_LIST_HEAD(&dev->ptype_all);
INIT_LIST_HEAD(&dev->ptype_specific);
INIT_LIST_HEAD(&dev->net_notifier_list);
#ifdef CONFIG_NET_SCHED
hash_init(dev->qdisc_hash);
#endif
dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
setup(dev);
if (!dev->tx_queue_len) {
dev->priv_flags |= IFF_NO_QUEUE;
dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
}
dev->num_tx_queues = txqs;
dev->real_num_tx_queues = txqs;
if (netif_alloc_netdev_queues(dev))
goto free_all;
dev->num_rx_queues = rxqs;
dev->real_num_rx_queues = rxqs;
if (netif_alloc_rx_queues(dev))
goto free_all;
dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
if (!dev->ethtool)
goto free_all;
strscpy(dev->name, name);
dev->name_assign_type = name_assign_type;
dev->group = INIT_NETDEV_GROUP;
if (!dev->ethtool_ops)
dev->ethtool_ops = &default_ethtool_ops;
nf_hook_netdev_init(dev);
return dev;
free_all:
free_netdev(dev);
return NULL;
free_pcpu:
#ifdef CONFIG_PCPU_DEV_REFCNT
free_percpu(dev->pcpu_refcnt);
free_dev:
#endif
kvfree(dev);
return NULL;
}
EXPORT_SYMBOL(alloc_netdev_mqs);
/**
* free_netdev - free network device
* @dev: device
*
* This function does the last stage of destroying an allocated device
* interface. The reference to the device object is released. If this
* is the last reference then it will be freed.Must be called in process
* context.
*/
void free_netdev(struct net_device *dev)
{
struct napi_struct *p, *n;
might_sleep();
/* When called immediately after register_netdevice() failed the unwind
* handling may still be dismantling the device. Handle that case by
* deferring the free.
*/
if (dev->reg_state == NETREG_UNREGISTERING) {
ASSERT_RTNL();
dev->needs_free_netdev = true;
return;
}
kfree(dev->ethtool);
netif_free_tx_queues(dev);
netif_free_rx_queues(dev);
kfree(rcu_dereference_protected(dev->ingress_queue, 1));
/* Flush device addresses */
dev_addr_flush(dev);
list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
netif_napi_del(p);
ref_tracker_dir_exit(&dev->refcnt_tracker);
#ifdef CONFIG_PCPU_DEV_REFCNT
free_percpu(dev->pcpu_refcnt);
dev->pcpu_refcnt = NULL;
#endif
free_percpu(dev->core_stats);
dev->core_stats = NULL;
free_percpu(dev->xdp_bulkq);
dev->xdp_bulkq = NULL;
netdev_free_phy_link_topology(dev);
/* Compatibility with error handling in drivers */
if (dev->reg_state == NETREG_UNINITIALIZED ||
dev->reg_state == NETREG_DUMMY) {
kvfree(dev);
return;
}
BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
/* will free via device release */
put_device(&dev->dev);
}
EXPORT_SYMBOL(free_netdev);
/**
* alloc_netdev_dummy - Allocate and initialize a dummy net device.
* @sizeof_priv: size of private data to allocate space for
*
* Return: the allocated net_device on success, NULL otherwise
*/
struct net_device *alloc_netdev_dummy(int sizeof_priv)
{
return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
init_dummy_netdev_core);
}
EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
/**
* synchronize_net - Synchronize with packet receive processing
*
* Wait for packets currently being received to be done.
* Does not block later packets from starting.
*/
void synchronize_net(void)
{
might_sleep();
if (rtnl_is_locked())
synchronize_rcu_expedited();
else
synchronize_rcu();
}
EXPORT_SYMBOL(synchronize_net);
static void netdev_rss_contexts_free(struct net_device *dev)
{
struct ethtool_rxfh_context *ctx;
unsigned long context;
mutex_lock(&dev->ethtool->rss_lock);
xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
struct ethtool_rxfh_param rxfh;
rxfh.indir = ethtool_rxfh_context_indir(ctx);
rxfh.key = ethtool_rxfh_context_key(ctx);
rxfh.hfunc = ctx->hfunc;
rxfh.input_xfrm = ctx->input_xfrm;
rxfh.rss_context = context;
rxfh.rss_delete = true;
xa_erase(&dev->ethtool->rss_ctx, context);
if (dev->ethtool_ops->create_rxfh_context)
dev->ethtool_ops->remove_rxfh_context(dev, ctx,
context, NULL);
else
dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
kfree(ctx);
}
xa_destroy(&dev->ethtool->rss_ctx);
mutex_unlock(&dev->ethtool->rss_lock);
}
/**
* unregister_netdevice_queue - remove device from the kernel
* @dev: device
* @head: list
*
* This function shuts down a device interface and removes it
* from the kernel tables.
* If head not NULL, device is queued to be unregistered later.
*
* Callers must hold the rtnl semaphore. You may want
* unregister_netdev() instead of this.
*/
void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
{
ASSERT_RTNL();
if (head) {
list_move_tail(&dev->unreg_list, head);
} else {
LIST_HEAD(single);
list_add(&dev->unreg_list, &single);
unregister_netdevice_many(&single);
}
}
EXPORT_SYMBOL(unregister_netdevice_queue);
void unregister_netdevice_many_notify(struct list_head *head,
u32 portid, const struct nlmsghdr *nlh)
{
struct net_device *dev, *tmp;
LIST_HEAD(close_head);
int cnt = 0;
BUG_ON(dev_boot_phase);
ASSERT_RTNL();
if (list_empty(head))
return;
list_for_each_entry_safe(dev, tmp, head, unreg_list) {
/* Some devices call without registering
* for initialization unwind. Remove those
* devices and proceed with the remaining.
*/
if (dev->reg_state == NETREG_UNINITIALIZED) {
pr_debug("unregister_netdevice: device %s/%p never was registered\n",
dev->name, dev);
WARN_ON(1);
list_del(&dev->unreg_list);
continue;
}
dev->dismantle = true;
BUG_ON(dev->reg_state != NETREG_REGISTERED);
}
/* If device is running, close it first. */
list_for_each_entry(dev, head, unreg_list)
list_add_tail(&dev->close_list, &close_head);
dev_close_many(&close_head, true);
list_for_each_entry(dev, head, unreg_list) {
/* And unlink it from device chain. */
unlist_netdevice(dev);
WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
}
flush_all_backlogs();
synchronize_net();
list_for_each_entry(dev, head, unreg_list) {
struct sk_buff *skb = NULL;
/* Shutdown queueing discipline. */
dev_shutdown(dev);
dev_tcx_uninstall(dev);
dev_xdp_uninstall(dev);
bpf_dev_bound_netdev_unregister(dev);
dev_dmabuf_uninstall(dev);
netdev_offload_xstats_disable_all(dev);
/* Notify protocols, that we are about to destroy
* this device. They should clean all the things.
*/
call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
if (!dev->rtnl_link_ops ||
dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
GFP_KERNEL, NULL, 0,
portid, nlh);
/*
* Flush the unicast and multicast chains
*/
dev_uc_flush(dev);
dev_mc_flush(dev);
netdev_name_node_alt_flush(dev);
netdev_name_node_free(dev->name_node);
netdev_rss_contexts_free(dev);
call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
if (dev->netdev_ops->ndo_uninit)
dev->netdev_ops->ndo_uninit(dev);
mutex_destroy(&dev->ethtool->rss_lock);
if (skb)
rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
/* Notifier chain MUST detach us all upper devices. */
WARN_ON(netdev_has_any_upper_dev(dev));
WARN_ON(netdev_has_any_lower_dev(dev));
/* Remove entries from kobject tree */
netdev_unregister_kobject(dev);
#ifdef CONFIG_XPS
/* Remove XPS queueing entries */
netif_reset_xps_queues_gt(dev, 0);
#endif
}
synchronize_net();
list_for_each_entry(dev, head, unreg_list) {
netdev_put(dev, &dev->dev_registered_tracker);
net_set_todo(dev);
cnt++;
}
atomic_add(cnt, &dev_unreg_count);
list_del(head);
}
/**
* unregister_netdevice_many - unregister many devices
* @head: list of devices
*
* Note: As most callers use a stack allocated list_head,
* we force a list_del() to make sure stack won't be corrupted later.
*/
void unregister_netdevice_many(struct list_head *head)
{
unregister_netdevice_many_notify(head, 0, NULL);
}
EXPORT_SYMBOL(unregister_netdevice_many);
/**
* unregister_netdev - remove device from the kernel
* @dev: device
*
* This function shuts down a device interface and removes it
* from the kernel tables.
*
* This is just a wrapper for unregister_netdevice that takes
* the rtnl semaphore. In general you want to use this and not
* unregister_netdevice.
*/
void unregister_netdev(struct net_device *dev)
{
rtnl_lock();
unregister_netdevice(dev);
rtnl_unlock();
}
EXPORT_SYMBOL(unregister_netdev);
/**
* __dev_change_net_namespace - move device to different nethost namespace
* @dev: device
* @net: network namespace
* @pat: If not NULL name pattern to try if the current device name
* is already taken in the destination network namespace.
* @new_ifindex: If not zero, specifies device index in the target
* namespace.
*
* This function shuts down a device interface and moves it
* to a new network namespace. On success 0 is returned, on
* a failure a netagive errno code is returned.
*
* Callers must hold the rtnl semaphore.
*/
int __dev_change_net_namespace(struct net_device *dev, struct net *net,
const char *pat, int new_ifindex)
{
struct netdev_name_node *name_node;
struct net *net_old = dev_net(dev);
char new_name[IFNAMSIZ] = {};
int err, new_nsid;
ASSERT_RTNL();
/* Don't allow namespace local devices to be moved. */
err = -EINVAL;
if (dev->netns_local)
goto out;
/* Ensure the device has been registered */
if (dev->reg_state != NETREG_REGISTERED)
goto out;
/* Get out if there is nothing todo */
err = 0;
if (net_eq(net_old, net))
goto out;
/* Pick the destination device name, and ensure
* we can use it in the destination network namespace.
*/
err = -EEXIST;
if (netdev_name_in_use(net, dev->name)) {
/* We get here if we can't use the current device name */
if (!pat)
goto out;
err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
if (err < 0)
goto out;
}
/* Check that none of the altnames conflicts. */
err = -EEXIST;
netdev_for_each_altname(dev, name_node)
if (netdev_name_in_use(net, name_node->name))
goto out;
/* Check that new_ifindex isn't used yet. */
if (new_ifindex) {
err = dev_index_reserve(net, new_ifindex);
if (err < 0)
goto out;
} else {
/* If there is an ifindex conflict assign a new one */
err = dev_index_reserve(net, dev->ifindex);
if (err == -EBUSY)
err = dev_index_reserve(net, 0);
if (err < 0)
goto out;
new_ifindex = err;
}
/*
* And now a mini version of register_netdevice unregister_netdevice.
*/
/* If device is running close it first. */
dev_close(dev);
/* And unlink it from device chain */
unlist_netdevice(dev);
synchronize_net();
/* Shutdown queueing discipline. */
dev_shutdown(dev);
/* Notify protocols, that we are about to destroy
* this device. They should clean all the things.
*
* Note that dev->reg_state stays at NETREG_REGISTERED.
* This is wanted because this way 8021q and macvlan know
* the device is just moving and can keep their slaves up.
*/
call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
rcu_barrier();
new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
new_ifindex);
/*
* Flush the unicast and multicast chains
*/
dev_uc_flush(dev);
dev_mc_flush(dev);
/* Send a netdev-removed uevent to the old namespace */
kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
netdev_adjacent_del_links(dev);
/* Move per-net netdevice notifiers that are following the netdevice */
move_netdevice_notifiers_dev_net(dev, net);
/* Actually switch the network namespace */
dev_net_set(dev, net);
dev->ifindex = new_ifindex;
if (new_name[0]) {
/* Rename the netdev to prepared name */
write_seqlock_bh(&netdev_rename_lock);
strscpy(dev->name, new_name, IFNAMSIZ);
write_sequnlock_bh(&netdev_rename_lock);
}
/* Fixup kobjects */
dev_set_uevent_suppress(&dev->dev, 1);
err = device_rename(&dev->dev, dev->name);
dev_set_uevent_suppress(&dev->dev, 0);
WARN_ON(err);
/* Send a netdev-add uevent to the new namespace */
kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
netdev_adjacent_add_links(dev);
/* Adapt owner in case owning user namespace of target network
* namespace is different from the original one.
*/
err = netdev_change_owner(dev, net_old, net);
WARN_ON(err);
/* Add the device back in the hashes */
list_netdevice(dev);
/* Notify protocols, that a new device appeared. */
call_netdevice_notifiers(NETDEV_REGISTER, dev);
/*
* Prevent userspace races by waiting until the network
* device is fully setup before sending notifications.
*/
rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
synchronize_net();
err = 0;
out:
return err;
}
EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
static int dev_cpu_dead(unsigned int oldcpu)
{
struct sk_buff **list_skb;
struct sk_buff *skb;
unsigned int cpu;
struct softnet_data *sd, *oldsd, *remsd = NULL;
local_irq_disable();
cpu = smp_processor_id();
sd = &per_cpu(softnet_data, cpu);
oldsd = &per_cpu(softnet_data, oldcpu);
/* Find end of our completion_queue. */
list_skb = &sd->completion_queue;
while (*list_skb)
list_skb = &(*list_skb)->next;
/* Append completion queue from offline CPU. */
*list_skb = oldsd->completion_queue;
oldsd->completion_queue = NULL;
/* Append output queue from offline CPU. */
if (oldsd->output_queue) {
*sd->output_queue_tailp = oldsd->output_queue;
sd->output_queue_tailp = oldsd->output_queue_tailp;
oldsd->output_queue = NULL;
oldsd->output_queue_tailp = &oldsd->output_queue;
}
/* Append NAPI poll list from offline CPU, with one exception :
* process_backlog() must be called by cpu owning percpu backlog.
* We properly handle process_queue & input_pkt_queue later.
*/
while (!list_empty(&oldsd->poll_list)) {
struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
struct napi_struct,
poll_list);
list_del_init(&napi->poll_list);
if (napi->poll == process_backlog)
napi->state &= NAPIF_STATE_THREADED;
else
____napi_schedule(sd, napi);
}
raise_softirq_irqoff(NET_TX_SOFTIRQ);
local_irq_enable();
if (!use_backlog_threads()) {
#ifdef CONFIG_RPS
remsd = oldsd->rps_ipi_list;
oldsd->rps_ipi_list = NULL;
#endif
/* send out pending IPI's on offline CPU */
net_rps_send_ipi(remsd);
}
/* Process offline CPU's input_pkt_queue */
while ((skb = __skb_dequeue(&oldsd->process_queue))) {
netif_rx(skb);
rps_input_queue_head_incr(oldsd);
}
while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
netif_rx(skb);
rps_input_queue_head_incr(oldsd);
}
return 0;
}
/**
* netdev_increment_features - increment feature set by one
* @all: current feature set
* @one: new feature set
* @mask: mask feature set
*
* Computes a new feature set after adding a device with feature set
* @one to the master device with current feature set @all. Will not
* enable anything that is off in @mask. Returns the new feature set.
*/
netdev_features_t netdev_increment_features(netdev_features_t all,
netdev_features_t one, netdev_features_t mask)
{
if (mask & NETIF_F_HW_CSUM)
mask |= NETIF_F_CSUM_MASK;
mask |= NETIF_F_VLAN_CHALLENGED;
all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
all &= one | ~NETIF_F_ALL_FOR_ALL;
/* If one device supports hw checksumming, set for all. */
if (all & NETIF_F_HW_CSUM)
all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
return all;
}
EXPORT_SYMBOL(netdev_increment_features);
static struct hlist_head * __net_init netdev_create_hash(void)
{
int i;
struct hlist_head *hash;
hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
if (hash != NULL)
for (i = 0; i < NETDEV_HASHENTRIES; i++)
INIT_HLIST_HEAD(&hash[i]);
return hash;
}
/* Initialize per network namespace state */
static int __net_init netdev_init(struct net *net)
{
BUILD_BUG_ON(GRO_HASH_BUCKETS >
8 * sizeof_field(struct napi_struct, gro_bitmask));
INIT_LIST_HEAD(&net->dev_base_head);
net->dev_name_head = netdev_create_hash();
if (net->dev_name_head == NULL)
goto err_name;
net->dev_index_head = netdev_create_hash();
if (net->dev_index_head == NULL)
goto err_idx;
xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
return 0;
err_idx:
kfree(net->dev_name_head);
err_name:
return -ENOMEM;
}
/**
* netdev_drivername - network driver for the device
* @dev: network device
*
* Determine network driver for device.
*/
const char *netdev_drivername(const struct net_device *dev)
{
const struct device_driver *driver;
const struct device *parent;
const char *empty = "";
parent = dev->dev.parent;
if (!parent)
return empty;
driver = parent->driver;
if (driver && driver->name)
return driver->name;
return empty;
}
static void __netdev_printk(const char *level, const struct net_device *dev,
struct va_format *vaf)
{
if (dev && dev->dev.parent) {
dev_printk_emit(level[1] - '0',
dev->dev.parent,
"%s %s %s%s: %pV",
dev_driver_string(dev->dev.parent),
dev_name(dev->dev.parent),
netdev_name(dev), netdev_reg_state(dev),
vaf);
} else if (dev) {
printk("%s%s%s: %pV",
level, netdev_name(dev), netdev_reg_state(dev), vaf);
} else {
printk("%s(NULL net_device): %pV", level, vaf);
}
}
void netdev_printk(const char *level, const struct net_device *dev,
const char *format, ...)
{
struct va_format vaf;
va_list args;
va_start(args, format);
vaf.fmt = format;
vaf.va = &args;
__netdev_printk(level, dev, &vaf);
va_end(args);
}
EXPORT_SYMBOL(netdev_printk);
#define define_netdev_printk_level(func, level) \
void func(const struct net_device *dev, const char *fmt, ...) \
{ \
struct va_format vaf; \
va_list args; \
\
va_start(args, fmt); \
\
vaf.fmt = fmt; \
vaf.va = &args; \
\
__netdev_printk(level, dev, &vaf); \
\
va_end(args); \
} \
EXPORT_SYMBOL(func);
define_netdev_printk_level(netdev_emerg, KERN_EMERG);
define_netdev_printk_level(netdev_alert, KERN_ALERT);
define_netdev_printk_level(netdev_crit, KERN_CRIT);
define_netdev_printk_level(netdev_err, KERN_ERR);
define_netdev_printk_level(netdev_warn, KERN_WARNING);
define_netdev_printk_level(netdev_notice, KERN_NOTICE);
define_netdev_printk_level(netdev_info, KERN_INFO);
static void __net_exit netdev_exit(struct net *net)
{
kfree(net->dev_name_head);
kfree(net->dev_index_head);
xa_destroy(&net->dev_by_index);
if (net != &init_net)
WARN_ON_ONCE(!list_empty(&net->dev_base_head));
}
static struct pernet_operations __net_initdata netdev_net_ops = {
.init = netdev_init,
.exit = netdev_exit,
};
static void __net_exit default_device_exit_net(struct net *net)
{
struct netdev_name_node *name_node, *tmp;
struct net_device *dev, *aux;
/*
* Push all migratable network devices back to the
* initial network namespace
*/
ASSERT_RTNL();
for_each_netdev_safe(net, dev, aux) {
int err;
char fb_name[IFNAMSIZ];
/* Ignore unmoveable devices (i.e. loopback) */
if (dev->netns_local)
continue;
/* Leave virtual devices for the generic cleanup */
if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
continue;
/* Push remaining network devices to init_net */
snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
if (netdev_name_in_use(&init_net, fb_name))
snprintf(fb_name, IFNAMSIZ, "dev%%d");
netdev_for_each_altname_safe(dev, name_node, tmp)
if (netdev_name_in_use(&init_net, name_node->name))
__netdev_name_node_alt_destroy(name_node);
err = dev_change_net_namespace(dev, &init_net, fb_name);
if (err) {
pr_emerg("%s: failed to move %s to init_net: %d\n",
__func__, dev->name, err);
BUG();
}
}
}
static void __net_exit default_device_exit_batch(struct list_head *net_list)
{
/* At exit all network devices most be removed from a network
* namespace. Do this in the reverse order of registration.
* Do this across as many network namespaces as possible to
* improve batching efficiency.
*/
struct net_device *dev;
struct net *net;
LIST_HEAD(dev_kill_list);
rtnl_lock();
list_for_each_entry(net, net_list, exit_list) {
default_device_exit_net(net);
cond_resched();
}
list_for_each_entry(net, net_list, exit_list) {
for_each_netdev_reverse(net, dev) {
if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
else
unregister_netdevice_queue(dev, &dev_kill_list);
}
}
unregister_netdevice_many(&dev_kill_list);
rtnl_unlock();
}
static struct pernet_operations __net_initdata default_device_ops = {
.exit_batch = default_device_exit_batch,
};
static void __init net_dev_struct_check(void)
{
/* TX read-mostly hotpath */
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
#ifdef CONFIG_XPS
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
#endif
#ifdef CONFIG_NETFILTER_EGRESS
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
#endif
#ifdef CONFIG_NET_XGRESS
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
#endif
CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
/* TXRX read-mostly hotpath */
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
/* RX read-mostly hotpath */
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
#ifdef CONFIG_NETPOLL
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
#endif
#ifdef CONFIG_NET_XGRESS
CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
#endif
CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
}
/*
* Initialize the DEV module. At boot time this walks the device list and
* unhooks any devices that fail to initialise (normally hardware not
* present) and leaves us with a valid list of present and active devices.
*
*/
/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
#define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
static int net_page_pool_create(int cpuid)
{
#if IS_ENABLED(CONFIG_PAGE_POOL)
struct page_pool_params page_pool_params = {
.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
.flags = PP_FLAG_SYSTEM_POOL,
.nid = cpu_to_mem(cpuid),
};
struct page_pool *pp_ptr;
pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
if (IS_ERR(pp_ptr))
return -ENOMEM;
per_cpu(system_page_pool, cpuid) = pp_ptr;
#endif
return 0;
}
static int backlog_napi_should_run(unsigned int cpu)
{
struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
struct napi_struct *napi = &sd->backlog;
return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
}
static void run_backlog_napi(unsigned int cpu)
{
struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
napi_threaded_poll_loop(&sd->backlog);
}
static void backlog_napi_setup(unsigned int cpu)
{
struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
struct napi_struct *napi = &sd->backlog;
napi->thread = this_cpu_read(backlog_napi);
set_bit(NAPI_STATE_THREADED, &napi->state);
}
static struct smp_hotplug_thread backlog_threads = {
.store = &backlog_napi,
.thread_should_run = backlog_napi_should_run,
.thread_fn = run_backlog_napi,
.thread_comm = "backlog_napi/%u",
.setup = backlog_napi_setup,
};
/*
* This is called single threaded during boot, so no need
* to take the rtnl semaphore.
*/
static int __init net_dev_init(void)
{
int i, rc = -ENOMEM;
BUG_ON(!dev_boot_phase);
net_dev_struct_check();
if (dev_proc_init())
goto out;
if (netdev_kobject_init())
goto out;
for (i = 0; i < PTYPE_HASH_SIZE; i++)
INIT_LIST_HEAD(&ptype_base[i]);
if (register_pernet_subsys(&netdev_net_ops))
goto out;
/*
* Initialise the packet receive queues.
*/
for_each_possible_cpu(i) {
struct work_struct *flush = per_cpu_ptr(&flush_works, i);
struct softnet_data *sd = &per_cpu(softnet_data, i);
INIT_WORK(flush, flush_backlog);
skb_queue_head_init(&sd->input_pkt_queue);
skb_queue_head_init(&sd->process_queue);
#ifdef CONFIG_XFRM_OFFLOAD
skb_queue_head_init(&sd->xfrm_backlog);
#endif
INIT_LIST_HEAD(&sd->poll_list);
sd->output_queue_tailp = &sd->output_queue;
#ifdef CONFIG_RPS
INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
sd->cpu = i;
#endif
INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
spin_lock_init(&sd->defer_lock);
init_gro_hash(&sd->backlog);
sd->backlog.poll = process_backlog;
sd->backlog.weight = weight_p;
INIT_LIST_HEAD(&sd->backlog.poll_list);
if (net_page_pool_create(i))
goto out;
}
if (use_backlog_threads())
smpboot_register_percpu_thread(&backlog_threads);
dev_boot_phase = 0;
/* The loopback device is special if any other network devices
* is present in a network namespace the loopback device must
* be present. Since we now dynamically allocate and free the
* loopback device ensure this invariant is maintained by
* keeping the loopback device as the first device on the
* list of network devices. Ensuring the loopback devices
* is the first device that appears and the last network device
* that disappears.
*/
if (register_pernet_device(&loopback_net_ops))
goto out;
if (register_pernet_device(&default_device_ops))
goto out;
open_softirq(NET_TX_SOFTIRQ, net_tx_action);
open_softirq(NET_RX_SOFTIRQ, net_rx_action);
rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
NULL, dev_cpu_dead);
WARN_ON(rc < 0);
rc = 0;
/* avoid static key IPIs to isolated CPUs */
if (housekeeping_enabled(HK_TYPE_MISC))
net_enable_timestamp();
out:
if (rc < 0) {
for_each_possible_cpu(i) {
struct page_pool *pp_ptr;
pp_ptr = per_cpu(system_page_pool, i);
if (!pp_ptr)
continue;
page_pool_destroy(pp_ptr);
per_cpu(system_page_pool, i) = NULL;
}
}
return rc;
}
subsys_initcall(net_dev_init);