blob: 0090162ee8c350568c91f1bcd951675ac3ae141c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/net/sunrpc/clnt.c
*
* This file contains the high-level RPC interface.
* It is modeled as a finite state machine to support both synchronous
* and asynchronous requests.
*
* - RPC header generation and argument serialization.
* - Credential refresh.
* - TCP connect handling.
* - Retry of operation when it is suspected the operation failed because
* of uid squashing on the server, or when the credentials were stale
* and need to be refreshed, or when a packet was damaged in transit.
* This may be have to be moved to the VFS layer.
*
* Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com>
* Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kallsyms.h>
#include <linux/mm.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/slab.h>
#include <linux/rcupdate.h>
#include <linux/utsname.h>
#include <linux/workqueue.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/un.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/addr.h>
#include <linux/sunrpc/rpc_pipe_fs.h>
#include <linux/sunrpc/metrics.h>
#include <linux/sunrpc/bc_xprt.h>
#include <trace/events/sunrpc.h>
#include "sunrpc.h"
#include "sysfs.h"
#include "netns.h"
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY RPCDBG_CALL
#endif
static DECLARE_WAIT_QUEUE_HEAD(destroy_wait);
static void call_start(struct rpc_task *task);
static void call_reserve(struct rpc_task *task);
static void call_reserveresult(struct rpc_task *task);
static void call_allocate(struct rpc_task *task);
static void call_encode(struct rpc_task *task);
static void call_decode(struct rpc_task *task);
static void call_bind(struct rpc_task *task);
static void call_bind_status(struct rpc_task *task);
static void call_transmit(struct rpc_task *task);
static void call_status(struct rpc_task *task);
static void call_transmit_status(struct rpc_task *task);
static void call_refresh(struct rpc_task *task);
static void call_refreshresult(struct rpc_task *task);
static void call_connect(struct rpc_task *task);
static void call_connect_status(struct rpc_task *task);
static int rpc_encode_header(struct rpc_task *task,
struct xdr_stream *xdr);
static int rpc_decode_header(struct rpc_task *task,
struct xdr_stream *xdr);
static int rpc_ping(struct rpc_clnt *clnt);
static int rpc_ping_noreply(struct rpc_clnt *clnt);
static void rpc_check_timeout(struct rpc_task *task);
static void rpc_register_client(struct rpc_clnt *clnt)
{
struct net *net = rpc_net_ns(clnt);
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
spin_lock(&sn->rpc_client_lock);
list_add(&clnt->cl_clients, &sn->all_clients);
spin_unlock(&sn->rpc_client_lock);
}
static void rpc_unregister_client(struct rpc_clnt *clnt)
{
struct net *net = rpc_net_ns(clnt);
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
spin_lock(&sn->rpc_client_lock);
list_del(&clnt->cl_clients);
spin_unlock(&sn->rpc_client_lock);
}
static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
{
rpc_remove_client_dir(clnt);
}
static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
{
struct net *net = rpc_net_ns(clnt);
struct super_block *pipefs_sb;
pipefs_sb = rpc_get_sb_net(net);
if (pipefs_sb) {
if (pipefs_sb == clnt->pipefs_sb)
__rpc_clnt_remove_pipedir(clnt);
rpc_put_sb_net(net);
}
}
static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb,
struct rpc_clnt *clnt)
{
static uint32_t clntid;
const char *dir_name = clnt->cl_program->pipe_dir_name;
char name[15];
struct dentry *dir, *dentry;
dir = rpc_d_lookup_sb(sb, dir_name);
if (dir == NULL) {
pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name);
return dir;
}
for (;;) {
snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++);
name[sizeof(name) - 1] = '\0';
dentry = rpc_create_client_dir(dir, name, clnt);
if (!IS_ERR(dentry))
break;
if (dentry == ERR_PTR(-EEXIST))
continue;
printk(KERN_INFO "RPC: Couldn't create pipefs entry"
" %s/%s, error %ld\n",
dir_name, name, PTR_ERR(dentry));
break;
}
dput(dir);
return dentry;
}
static int
rpc_setup_pipedir(struct super_block *pipefs_sb, struct rpc_clnt *clnt)
{
struct dentry *dentry;
clnt->pipefs_sb = pipefs_sb;
if (clnt->cl_program->pipe_dir_name != NULL) {
dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
}
return 0;
}
static int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event)
{
if (clnt->cl_program->pipe_dir_name == NULL)
return 1;
switch (event) {
case RPC_PIPEFS_MOUNT:
if (clnt->cl_pipedir_objects.pdh_dentry != NULL)
return 1;
if (refcount_read(&clnt->cl_count) == 0)
return 1;
break;
case RPC_PIPEFS_UMOUNT:
if (clnt->cl_pipedir_objects.pdh_dentry == NULL)
return 1;
break;
}
return 0;
}
static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event,
struct super_block *sb)
{
struct dentry *dentry;
switch (event) {
case RPC_PIPEFS_MOUNT:
dentry = rpc_setup_pipedir_sb(sb, clnt);
if (!dentry)
return -ENOENT;
if (IS_ERR(dentry))
return PTR_ERR(dentry);
break;
case RPC_PIPEFS_UMOUNT:
__rpc_clnt_remove_pipedir(clnt);
break;
default:
printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event);
return -ENOTSUPP;
}
return 0;
}
static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event,
struct super_block *sb)
{
int error = 0;
for (;; clnt = clnt->cl_parent) {
if (!rpc_clnt_skip_event(clnt, event))
error = __rpc_clnt_handle_event(clnt, event, sb);
if (error || clnt == clnt->cl_parent)
break;
}
return error;
}
static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event)
{
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
struct rpc_clnt *clnt;
spin_lock(&sn->rpc_client_lock);
list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
if (rpc_clnt_skip_event(clnt, event))
continue;
spin_unlock(&sn->rpc_client_lock);
return clnt;
}
spin_unlock(&sn->rpc_client_lock);
return NULL;
}
static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event,
void *ptr)
{
struct super_block *sb = ptr;
struct rpc_clnt *clnt;
int error = 0;
while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) {
error = __rpc_pipefs_event(clnt, event, sb);
if (error)
break;
}
return error;
}
static struct notifier_block rpc_clients_block = {
.notifier_call = rpc_pipefs_event,
.priority = SUNRPC_PIPEFS_RPC_PRIO,
};
int rpc_clients_notifier_register(void)
{
return rpc_pipefs_notifier_register(&rpc_clients_block);
}
void rpc_clients_notifier_unregister(void)
{
return rpc_pipefs_notifier_unregister(&rpc_clients_block);
}
static struct rpc_xprt *rpc_clnt_set_transport(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
const struct rpc_timeout *timeout)
{
struct rpc_xprt *old;
spin_lock(&clnt->cl_lock);
old = rcu_dereference_protected(clnt->cl_xprt,
lockdep_is_held(&clnt->cl_lock));
if (!xprt_bound(xprt))
clnt->cl_autobind = 1;
clnt->cl_timeout = timeout;
rcu_assign_pointer(clnt->cl_xprt, xprt);
spin_unlock(&clnt->cl_lock);
return old;
}
static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename)
{
ssize_t copied;
copied = strscpy(clnt->cl_nodename,
nodename, sizeof(clnt->cl_nodename));
clnt->cl_nodelen = copied < 0
? sizeof(clnt->cl_nodename) - 1
: copied;
}
static int rpc_client_register(struct rpc_clnt *clnt,
rpc_authflavor_t pseudoflavor,
const char *client_name)
{
struct rpc_auth_create_args auth_args = {
.pseudoflavor = pseudoflavor,
.target_name = client_name,
};
struct rpc_auth *auth;
struct net *net = rpc_net_ns(clnt);
struct super_block *pipefs_sb;
int err;
rpc_clnt_debugfs_register(clnt);
pipefs_sb = rpc_get_sb_net(net);
if (pipefs_sb) {
err = rpc_setup_pipedir(pipefs_sb, clnt);
if (err)
goto out;
}
rpc_register_client(clnt);
if (pipefs_sb)
rpc_put_sb_net(net);
auth = rpcauth_create(&auth_args, clnt);
if (IS_ERR(auth)) {
dprintk("RPC: Couldn't create auth handle (flavor %u)\n",
pseudoflavor);
err = PTR_ERR(auth);
goto err_auth;
}
return 0;
err_auth:
pipefs_sb = rpc_get_sb_net(net);
rpc_unregister_client(clnt);
__rpc_clnt_remove_pipedir(clnt);
out:
if (pipefs_sb)
rpc_put_sb_net(net);
rpc_sysfs_client_destroy(clnt);
rpc_clnt_debugfs_unregister(clnt);
return err;
}
static DEFINE_IDA(rpc_clids);
void rpc_cleanup_clids(void)
{
ida_destroy(&rpc_clids);
}
static int rpc_alloc_clid(struct rpc_clnt *clnt)
{
int clid;
clid = ida_alloc(&rpc_clids, GFP_KERNEL);
if (clid < 0)
return clid;
clnt->cl_clid = clid;
return 0;
}
static void rpc_free_clid(struct rpc_clnt *clnt)
{
ida_free(&rpc_clids, clnt->cl_clid);
}
static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args,
struct rpc_xprt_switch *xps,
struct rpc_xprt *xprt,
struct rpc_clnt *parent)
{
const struct rpc_program *program = args->program;
const struct rpc_version *version;
struct rpc_clnt *clnt = NULL;
const struct rpc_timeout *timeout;
const char *nodename = args->nodename;
int err;
err = rpciod_up();
if (err)
goto out_no_rpciod;
err = -EINVAL;
if (args->version >= program->nrvers)
goto out_err;
version = program->version[args->version];
if (version == NULL)
goto out_err;
err = -ENOMEM;
clnt = kzalloc(sizeof(*clnt), GFP_KERNEL);
if (!clnt)
goto out_err;
clnt->cl_parent = parent ? : clnt;
clnt->cl_xprtsec = args->xprtsec;
err = rpc_alloc_clid(clnt);
if (err)
goto out_no_clid;
clnt->cl_cred = get_cred(args->cred);
clnt->cl_procinfo = version->procs;
clnt->cl_maxproc = version->nrprocs;
clnt->cl_prog = args->prognumber ? : program->number;
clnt->cl_vers = version->number;
clnt->cl_stats = args->stats ? : program->stats;
clnt->cl_metrics = rpc_alloc_iostats(clnt);
rpc_init_pipe_dir_head(&clnt->cl_pipedir_objects);
err = -ENOMEM;
if (clnt->cl_metrics == NULL)
goto out_no_stats;
clnt->cl_program = program;
INIT_LIST_HEAD(&clnt->cl_tasks);
spin_lock_init(&clnt->cl_lock);
timeout = xprt->timeout;
if (args->timeout != NULL) {
memcpy(&clnt->cl_timeout_default, args->timeout,
sizeof(clnt->cl_timeout_default));
timeout = &clnt->cl_timeout_default;
}
rpc_clnt_set_transport(clnt, xprt, timeout);
xprt->main = true;
xprt_iter_init(&clnt->cl_xpi, xps);
xprt_switch_put(xps);
clnt->cl_rtt = &clnt->cl_rtt_default;
rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval);
refcount_set(&clnt->cl_count, 1);
if (nodename == NULL)
nodename = utsname()->nodename;
/* save the nodename */
rpc_clnt_set_nodename(clnt, nodename);
rpc_sysfs_client_setup(clnt, xps, rpc_net_ns(clnt));
err = rpc_client_register(clnt, args->authflavor, args->client_name);
if (err)
goto out_no_path;
if (parent)
refcount_inc(&parent->cl_count);
trace_rpc_clnt_new(clnt, xprt, args);
return clnt;
out_no_path:
rpc_free_iostats(clnt->cl_metrics);
out_no_stats:
put_cred(clnt->cl_cred);
rpc_free_clid(clnt);
out_no_clid:
kfree(clnt);
out_err:
rpciod_down();
out_no_rpciod:
xprt_switch_put(xps);
xprt_put(xprt);
trace_rpc_clnt_new_err(program->name, args->servername, err);
return ERR_PTR(err);
}
static struct rpc_clnt *rpc_create_xprt(struct rpc_create_args *args,
struct rpc_xprt *xprt)
{
struct rpc_clnt *clnt = NULL;
struct rpc_xprt_switch *xps;
if (args->bc_xprt && args->bc_xprt->xpt_bc_xps) {
WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC));
xps = args->bc_xprt->xpt_bc_xps;
xprt_switch_get(xps);
} else {
xps = xprt_switch_alloc(xprt, GFP_KERNEL);
if (xps == NULL) {
xprt_put(xprt);
return ERR_PTR(-ENOMEM);
}
if (xprt->bc_xprt) {
xprt_switch_get(xps);
xprt->bc_xprt->xpt_bc_xps = xps;
}
}
clnt = rpc_new_client(args, xps, xprt, NULL);
if (IS_ERR(clnt))
return clnt;
if (!(args->flags & RPC_CLNT_CREATE_NOPING)) {
int err = rpc_ping(clnt);
if (err != 0) {
rpc_shutdown_client(clnt);
return ERR_PTR(err);
}
} else if (args->flags & RPC_CLNT_CREATE_CONNECTED) {
int err = rpc_ping_noreply(clnt);
if (err != 0) {
rpc_shutdown_client(clnt);
return ERR_PTR(err);
}
}
clnt->cl_softrtry = 1;
if (args->flags & (RPC_CLNT_CREATE_HARDRTRY|RPC_CLNT_CREATE_SOFTERR)) {
clnt->cl_softrtry = 0;
if (args->flags & RPC_CLNT_CREATE_SOFTERR)
clnt->cl_softerr = 1;
}
if (args->flags & RPC_CLNT_CREATE_AUTOBIND)
clnt->cl_autobind = 1;
if (args->flags & RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT)
clnt->cl_noretranstimeo = 1;
if (args->flags & RPC_CLNT_CREATE_DISCRTRY)
clnt->cl_discrtry = 1;
if (!(args->flags & RPC_CLNT_CREATE_QUIET))
clnt->cl_chatty = 1;
return clnt;
}
/**
* rpc_create - create an RPC client and transport with one call
* @args: rpc_clnt create argument structure
*
* Creates and initializes an RPC transport and an RPC client.
*
* It can ping the server in order to determine if it is up, and to see if
* it supports this program and version. RPC_CLNT_CREATE_NOPING disables
* this behavior so asynchronous tasks can also use rpc_create.
*/
struct rpc_clnt *rpc_create(struct rpc_create_args *args)
{
struct rpc_xprt *xprt;
struct xprt_create xprtargs = {
.net = args->net,
.ident = args->protocol,
.srcaddr = args->saddress,
.dstaddr = args->address,
.addrlen = args->addrsize,
.servername = args->servername,
.bc_xprt = args->bc_xprt,
.xprtsec = args->xprtsec,
.connect_timeout = args->connect_timeout,
.reconnect_timeout = args->reconnect_timeout,
};
char servername[RPC_MAXNETNAMELEN];
struct rpc_clnt *clnt;
int i;
if (args->bc_xprt) {
WARN_ON_ONCE(!(args->protocol & XPRT_TRANSPORT_BC));
xprt = args->bc_xprt->xpt_bc_xprt;
if (xprt) {
xprt_get(xprt);
return rpc_create_xprt(args, xprt);
}
}
if (args->flags & RPC_CLNT_CREATE_INFINITE_SLOTS)
xprtargs.flags |= XPRT_CREATE_INFINITE_SLOTS;
if (args->flags & RPC_CLNT_CREATE_NO_IDLE_TIMEOUT)
xprtargs.flags |= XPRT_CREATE_NO_IDLE_TIMEOUT;
/*
* If the caller chooses not to specify a hostname, whip
* up a string representation of the passed-in address.
*/
if (xprtargs.servername == NULL) {
struct sockaddr_un *sun =
(struct sockaddr_un *)args->address;
struct sockaddr_in *sin =
(struct sockaddr_in *)args->address;
struct sockaddr_in6 *sin6 =
(struct sockaddr_in6 *)args->address;
servername[0] = '\0';
switch (args->address->sa_family) {
case AF_LOCAL:
if (sun->sun_path[0])
snprintf(servername, sizeof(servername), "%s",
sun->sun_path);
else
snprintf(servername, sizeof(servername), "@%s",
sun->sun_path+1);
break;
case AF_INET:
snprintf(servername, sizeof(servername), "%pI4",
&sin->sin_addr.s_addr);
break;
case AF_INET6:
snprintf(servername, sizeof(servername), "%pI6",
&sin6->sin6_addr);
break;
default:
/* caller wants default server name, but
* address family isn't recognized. */
return ERR_PTR(-EINVAL);
}
xprtargs.servername = servername;
}
xprt = xprt_create_transport(&xprtargs);
if (IS_ERR(xprt))
return (struct rpc_clnt *)xprt;
/*
* By default, kernel RPC client connects from a reserved port.
* CAP_NET_BIND_SERVICE will not be set for unprivileged requesters,
* but it is always enabled for rpciod, which handles the connect
* operation.
*/
xprt->resvport = 1;
if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT)
xprt->resvport = 0;
xprt->reuseport = 0;
if (args->flags & RPC_CLNT_CREATE_REUSEPORT)
xprt->reuseport = 1;
clnt = rpc_create_xprt(args, xprt);
if (IS_ERR(clnt) || args->nconnect <= 1)
return clnt;
for (i = 0; i < args->nconnect - 1; i++) {
if (rpc_clnt_add_xprt(clnt, &xprtargs, NULL, NULL) < 0)
break;
}
return clnt;
}
EXPORT_SYMBOL_GPL(rpc_create);
/*
* This function clones the RPC client structure. It allows us to share the
* same transport while varying parameters such as the authentication
* flavour.
*/
static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args,
struct rpc_clnt *clnt)
{
struct rpc_xprt_switch *xps;
struct rpc_xprt *xprt;
struct rpc_clnt *new;
int err;
err = -ENOMEM;
rcu_read_lock();
xprt = xprt_get(rcu_dereference(clnt->cl_xprt));
xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch));
rcu_read_unlock();
if (xprt == NULL || xps == NULL) {
xprt_put(xprt);
xprt_switch_put(xps);
goto out_err;
}
args->servername = xprt->servername;
args->nodename = clnt->cl_nodename;
new = rpc_new_client(args, xps, xprt, clnt);
if (IS_ERR(new))
return new;
/* Turn off autobind on clones */
new->cl_autobind = 0;
new->cl_softrtry = clnt->cl_softrtry;
new->cl_softerr = clnt->cl_softerr;
new->cl_noretranstimeo = clnt->cl_noretranstimeo;
new->cl_discrtry = clnt->cl_discrtry;
new->cl_chatty = clnt->cl_chatty;
new->cl_principal = clnt->cl_principal;
new->cl_max_connect = clnt->cl_max_connect;
return new;
out_err:
trace_rpc_clnt_clone_err(clnt, err);
return ERR_PTR(err);
}
/**
* rpc_clone_client - Clone an RPC client structure
*
* @clnt: RPC client whose parameters are copied
*
* Returns a fresh RPC client or an ERR_PTR.
*/
struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt)
{
struct rpc_create_args args = {
.program = clnt->cl_program,
.prognumber = clnt->cl_prog,
.version = clnt->cl_vers,
.authflavor = clnt->cl_auth->au_flavor,
.cred = clnt->cl_cred,
.stats = clnt->cl_stats,
};
return __rpc_clone_client(&args, clnt);
}
EXPORT_SYMBOL_GPL(rpc_clone_client);
/**
* rpc_clone_client_set_auth - Clone an RPC client structure and set its auth
*
* @clnt: RPC client whose parameters are copied
* @flavor: security flavor for new client
*
* Returns a fresh RPC client or an ERR_PTR.
*/
struct rpc_clnt *
rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
{
struct rpc_create_args args = {
.program = clnt->cl_program,
.prognumber = clnt->cl_prog,
.version = clnt->cl_vers,
.authflavor = flavor,
.cred = clnt->cl_cred,
.stats = clnt->cl_stats,
};
return __rpc_clone_client(&args, clnt);
}
EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth);
/**
* rpc_switch_client_transport: switch the RPC transport on the fly
* @clnt: pointer to a struct rpc_clnt
* @args: pointer to the new transport arguments
* @timeout: pointer to the new timeout parameters
*
* This function allows the caller to switch the RPC transport for the
* rpc_clnt structure 'clnt' to allow it to connect to a mirrored NFS
* server, for instance. It assumes that the caller has ensured that
* there are no active RPC tasks by using some form of locking.
*
* Returns zero if "clnt" is now using the new xprt. Otherwise a
* negative errno is returned, and "clnt" continues to use the old
* xprt.
*/
int rpc_switch_client_transport(struct rpc_clnt *clnt,
struct xprt_create *args,
const struct rpc_timeout *timeout)
{
const struct rpc_timeout *old_timeo;
rpc_authflavor_t pseudoflavor;
struct rpc_xprt_switch *xps, *oldxps;
struct rpc_xprt *xprt, *old;
struct rpc_clnt *parent;
int err;
args->xprtsec = clnt->cl_xprtsec;
xprt = xprt_create_transport(args);
if (IS_ERR(xprt))
return PTR_ERR(xprt);
xps = xprt_switch_alloc(xprt, GFP_KERNEL);
if (xps == NULL) {
xprt_put(xprt);
return -ENOMEM;
}
pseudoflavor = clnt->cl_auth->au_flavor;
old_timeo = clnt->cl_timeout;
old = rpc_clnt_set_transport(clnt, xprt, timeout);
oldxps = xprt_iter_xchg_switch(&clnt->cl_xpi, xps);
rpc_unregister_client(clnt);
__rpc_clnt_remove_pipedir(clnt);
rpc_sysfs_client_destroy(clnt);
rpc_clnt_debugfs_unregister(clnt);
/*
* A new transport was created. "clnt" therefore
* becomes the root of a new cl_parent tree. clnt's
* children, if it has any, still point to the old xprt.
*/
parent = clnt->cl_parent;
clnt->cl_parent = clnt;
/*
* The old rpc_auth cache cannot be re-used. GSS
* contexts in particular are between a single
* client and server.
*/
err = rpc_client_register(clnt, pseudoflavor, NULL);
if (err)
goto out_revert;
synchronize_rcu();
if (parent != clnt)
rpc_release_client(parent);
xprt_switch_put(oldxps);
xprt_put(old);
trace_rpc_clnt_replace_xprt(clnt);
return 0;
out_revert:
xps = xprt_iter_xchg_switch(&clnt->cl_xpi, oldxps);
rpc_clnt_set_transport(clnt, old, old_timeo);
clnt->cl_parent = parent;
rpc_client_register(clnt, pseudoflavor, NULL);
xprt_switch_put(xps);
xprt_put(xprt);
trace_rpc_clnt_replace_xprt_err(clnt);
return err;
}
EXPORT_SYMBOL_GPL(rpc_switch_client_transport);
static struct rpc_xprt_switch *rpc_clnt_xprt_switch_get(struct rpc_clnt *clnt)
{
struct rpc_xprt_switch *xps;
rcu_read_lock();
xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch));
rcu_read_unlock();
return xps;
}
static
int _rpc_clnt_xprt_iter_init(struct rpc_clnt *clnt, struct rpc_xprt_iter *xpi,
void func(struct rpc_xprt_iter *xpi, struct rpc_xprt_switch *xps))
{
struct rpc_xprt_switch *xps;
xps = rpc_clnt_xprt_switch_get(clnt);
if (xps == NULL)
return -EAGAIN;
func(xpi, xps);
xprt_switch_put(xps);
return 0;
}
static
int rpc_clnt_xprt_iter_init(struct rpc_clnt *clnt, struct rpc_xprt_iter *xpi)
{
return _rpc_clnt_xprt_iter_init(clnt, xpi, xprt_iter_init_listall);
}
static
int rpc_clnt_xprt_iter_offline_init(struct rpc_clnt *clnt,
struct rpc_xprt_iter *xpi)
{
return _rpc_clnt_xprt_iter_init(clnt, xpi, xprt_iter_init_listoffline);
}
/**
* rpc_clnt_iterate_for_each_xprt - Apply a function to all transports
* @clnt: pointer to client
* @fn: function to apply
* @data: void pointer to function data
*
* Iterates through the list of RPC transports currently attached to the
* client and applies the function fn(clnt, xprt, data).
*
* On error, the iteration stops, and the function returns the error value.
*/
int rpc_clnt_iterate_for_each_xprt(struct rpc_clnt *clnt,
int (*fn)(struct rpc_clnt *, struct rpc_xprt *, void *),
void *data)
{
struct rpc_xprt_iter xpi;
int ret;
ret = rpc_clnt_xprt_iter_init(clnt, &xpi);
if (ret)
return ret;
for (;;) {
struct rpc_xprt *xprt = xprt_iter_get_next(&xpi);
if (!xprt)
break;
ret = fn(clnt, xprt, data);
xprt_put(xprt);
if (ret < 0)
break;
}
xprt_iter_destroy(&xpi);
return ret;
}
EXPORT_SYMBOL_GPL(rpc_clnt_iterate_for_each_xprt);
/*
* Kill all tasks for the given client.
* XXX: kill their descendants as well?
*/
void rpc_killall_tasks(struct rpc_clnt *clnt)
{
struct rpc_task *rovr;
if (list_empty(&clnt->cl_tasks))
return;
/*
* Spin lock all_tasks to prevent changes...
*/
trace_rpc_clnt_killall(clnt);
spin_lock(&clnt->cl_lock);
list_for_each_entry(rovr, &clnt->cl_tasks, tk_task)
rpc_signal_task(rovr);
spin_unlock(&clnt->cl_lock);
}
EXPORT_SYMBOL_GPL(rpc_killall_tasks);
/**
* rpc_cancel_tasks - try to cancel a set of RPC tasks
* @clnt: Pointer to RPC client
* @error: RPC task error value to set
* @fnmatch: Pointer to selector function
* @data: User data
*
* Uses @fnmatch to define a set of RPC tasks that are to be cancelled.
* The argument @error must be a negative error value.
*/
unsigned long rpc_cancel_tasks(struct rpc_clnt *clnt, int error,
bool (*fnmatch)(const struct rpc_task *,
const void *),
const void *data)
{
struct rpc_task *task;
unsigned long count = 0;
if (list_empty(&clnt->cl_tasks))
return 0;
/*
* Spin lock all_tasks to prevent changes...
*/
spin_lock(&clnt->cl_lock);
list_for_each_entry(task, &clnt->cl_tasks, tk_task) {
if (!RPC_IS_ACTIVATED(task))
continue;
if (!fnmatch(task, data))
continue;
rpc_task_try_cancel(task, error);
count++;
}
spin_unlock(&clnt->cl_lock);
return count;
}
EXPORT_SYMBOL_GPL(rpc_cancel_tasks);
static int rpc_clnt_disconnect_xprt(struct rpc_clnt *clnt,
struct rpc_xprt *xprt, void *dummy)
{
if (xprt_connected(xprt))
xprt_force_disconnect(xprt);
return 0;
}
void rpc_clnt_disconnect(struct rpc_clnt *clnt)
{
rpc_clnt_iterate_for_each_xprt(clnt, rpc_clnt_disconnect_xprt, NULL);
}
EXPORT_SYMBOL_GPL(rpc_clnt_disconnect);
/*
* Properly shut down an RPC client, terminating all outstanding
* requests.
*/
void rpc_shutdown_client(struct rpc_clnt *clnt)
{
might_sleep();
trace_rpc_clnt_shutdown(clnt);
while (!list_empty(&clnt->cl_tasks)) {
rpc_killall_tasks(clnt);
wait_event_timeout(destroy_wait,
list_empty(&clnt->cl_tasks), 1*HZ);
}
rpc_release_client(clnt);
}
EXPORT_SYMBOL_GPL(rpc_shutdown_client);
/*
* Free an RPC client
*/
static void rpc_free_client_work(struct work_struct *work)
{
struct rpc_clnt *clnt = container_of(work, struct rpc_clnt, cl_work);
trace_rpc_clnt_free(clnt);
/* These might block on processes that might allocate memory,
* so they cannot be called in rpciod, so they are handled separately
* here.
*/
rpc_sysfs_client_destroy(clnt);
rpc_clnt_debugfs_unregister(clnt);
rpc_free_clid(clnt);
rpc_clnt_remove_pipedir(clnt);
xprt_put(rcu_dereference_raw(clnt->cl_xprt));
kfree(clnt);
rpciod_down();
}
static struct rpc_clnt *
rpc_free_client(struct rpc_clnt *clnt)
{
struct rpc_clnt *parent = NULL;
trace_rpc_clnt_release(clnt);
if (clnt->cl_parent != clnt)
parent = clnt->cl_parent;
rpc_unregister_client(clnt);
rpc_free_iostats(clnt->cl_metrics);
clnt->cl_metrics = NULL;
xprt_iter_destroy(&clnt->cl_xpi);
put_cred(clnt->cl_cred);
INIT_WORK(&clnt->cl_work, rpc_free_client_work);
schedule_work(&clnt->cl_work);
return parent;
}
/*
* Free an RPC client
*/
static struct rpc_clnt *
rpc_free_auth(struct rpc_clnt *clnt)
{
/*
* Note: RPCSEC_GSS may need to send NULL RPC calls in order to
* release remaining GSS contexts. This mechanism ensures
* that it can do so safely.
*/
if (clnt->cl_auth != NULL) {
rpcauth_release(clnt->cl_auth);
clnt->cl_auth = NULL;
}
if (refcount_dec_and_test(&clnt->cl_count))
return rpc_free_client(clnt);
return NULL;
}
/*
* Release reference to the RPC client
*/
void
rpc_release_client(struct rpc_clnt *clnt)
{
do {
if (list_empty(&clnt->cl_tasks))
wake_up(&destroy_wait);
if (refcount_dec_not_one(&clnt->cl_count))
break;
clnt = rpc_free_auth(clnt);
} while (clnt != NULL);
}
EXPORT_SYMBOL_GPL(rpc_release_client);
/**
* rpc_bind_new_program - bind a new RPC program to an existing client
* @old: old rpc_client
* @program: rpc program to set
* @vers: rpc program version
*
* Clones the rpc client and sets up a new RPC program. This is mainly
* of use for enabling different RPC programs to share the same transport.
* The Sun NFSv2/v3 ACL protocol can do this.
*/
struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old,
const struct rpc_program *program,
u32 vers)
{
struct rpc_create_args args = {
.program = program,
.prognumber = program->number,
.version = vers,
.authflavor = old->cl_auth->au_flavor,
.cred = old->cl_cred,
.stats = old->cl_stats,
.timeout = old->cl_timeout,
};
struct rpc_clnt *clnt;
int err;
clnt = __rpc_clone_client(&args, old);
if (IS_ERR(clnt))
goto out;
err = rpc_ping(clnt);
if (err != 0) {
rpc_shutdown_client(clnt);
clnt = ERR_PTR(err);
}
out:
return clnt;
}
EXPORT_SYMBOL_GPL(rpc_bind_new_program);
struct rpc_xprt *
rpc_task_get_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt)
{
struct rpc_xprt_switch *xps;
if (!xprt)
return NULL;
rcu_read_lock();
xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch);
atomic_long_inc(&xps->xps_queuelen);
rcu_read_unlock();
atomic_long_inc(&xprt->queuelen);
return xprt;
}
static void
rpc_task_release_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt)
{
struct rpc_xprt_switch *xps;
atomic_long_dec(&xprt->queuelen);
rcu_read_lock();
xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch);
atomic_long_dec(&xps->xps_queuelen);
rcu_read_unlock();
xprt_put(xprt);
}
void rpc_task_release_transport(struct rpc_task *task)
{
struct rpc_xprt *xprt = task->tk_xprt;
if (xprt) {
task->tk_xprt = NULL;
if (task->tk_client)
rpc_task_release_xprt(task->tk_client, xprt);
else
xprt_put(xprt);
}
}
EXPORT_SYMBOL_GPL(rpc_task_release_transport);
void rpc_task_release_client(struct rpc_task *task)
{
struct rpc_clnt *clnt = task->tk_client;
rpc_task_release_transport(task);
if (clnt != NULL) {
/* Remove from client task list */
spin_lock(&clnt->cl_lock);
list_del(&task->tk_task);
spin_unlock(&clnt->cl_lock);
task->tk_client = NULL;
rpc_release_client(clnt);
}
}
static struct rpc_xprt *
rpc_task_get_first_xprt(struct rpc_clnt *clnt)
{
struct rpc_xprt *xprt;
rcu_read_lock();
xprt = xprt_get(rcu_dereference(clnt->cl_xprt));
rcu_read_unlock();
return rpc_task_get_xprt(clnt, xprt);
}
static struct rpc_xprt *
rpc_task_get_next_xprt(struct rpc_clnt *clnt)
{
return rpc_task_get_xprt(clnt, xprt_iter_get_next(&clnt->cl_xpi));
}
static
void rpc_task_set_transport(struct rpc_task *task, struct rpc_clnt *clnt)
{
if (task->tk_xprt) {
if (!(test_bit(XPRT_OFFLINE, &task->tk_xprt->state) &&
(task->tk_flags & RPC_TASK_MOVEABLE)))
return;
xprt_release(task);
xprt_put(task->tk_xprt);
}
if (task->tk_flags & RPC_TASK_NO_ROUND_ROBIN)
task->tk_xprt = rpc_task_get_first_xprt(clnt);
else
task->tk_xprt = rpc_task_get_next_xprt(clnt);
}
static
void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt)
{
rpc_task_set_transport(task, clnt);
task->tk_client = clnt;
refcount_inc(&clnt->cl_count);
if (clnt->cl_softrtry)
task->tk_flags |= RPC_TASK_SOFT;
if (clnt->cl_softerr)
task->tk_flags |= RPC_TASK_TIMEOUT;
if (clnt->cl_noretranstimeo)
task->tk_flags |= RPC_TASK_NO_RETRANS_TIMEOUT;
/* Add to the client's list of all tasks */
spin_lock(&clnt->cl_lock);
list_add_tail(&task->tk_task, &clnt->cl_tasks);
spin_unlock(&clnt->cl_lock);
}
static void
rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg)
{
if (msg != NULL) {
task->tk_msg.rpc_proc = msg->rpc_proc;
task->tk_msg.rpc_argp = msg->rpc_argp;
task->tk_msg.rpc_resp = msg->rpc_resp;
task->tk_msg.rpc_cred = msg->rpc_cred;
if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
get_cred(task->tk_msg.rpc_cred);
}
}
/*
* Default callback for async RPC calls
*/
static void
rpc_default_callback(struct rpc_task *task, void *data)
{
}
static const struct rpc_call_ops rpc_default_ops = {
.rpc_call_done = rpc_default_callback,
};
/**
* rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
* @task_setup_data: pointer to task initialisation data
*/
struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data)
{
struct rpc_task *task;
task = rpc_new_task(task_setup_data);
if (IS_ERR(task))
return task;
if (!RPC_IS_ASYNC(task))
task->tk_flags |= RPC_TASK_CRED_NOREF;
rpc_task_set_client(task, task_setup_data->rpc_client);
rpc_task_set_rpc_message(task, task_setup_data->rpc_message);
if (task->tk_action == NULL)
rpc_call_start(task);
atomic_inc(&task->tk_count);
rpc_execute(task);
return task;
}
EXPORT_SYMBOL_GPL(rpc_run_task);
/**
* rpc_call_sync - Perform a synchronous RPC call
* @clnt: pointer to RPC client
* @msg: RPC call parameters
* @flags: RPC call flags
*/
int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags)
{
struct rpc_task *task;
struct rpc_task_setup task_setup_data = {
.rpc_client = clnt,
.rpc_message = msg,
.callback_ops = &rpc_default_ops,
.flags = flags,
};
int status;
WARN_ON_ONCE(flags & RPC_TASK_ASYNC);
if (flags & RPC_TASK_ASYNC) {
rpc_release_calldata(task_setup_data.callback_ops,
task_setup_data.callback_data);
return -EINVAL;
}
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = task->tk_status;
rpc_put_task(task);
return status;
}
EXPORT_SYMBOL_GPL(rpc_call_sync);
/**
* rpc_call_async - Perform an asynchronous RPC call
* @clnt: pointer to RPC client
* @msg: RPC call parameters
* @flags: RPC call flags
* @tk_ops: RPC call ops
* @data: user call data
*/
int
rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags,
const struct rpc_call_ops *tk_ops, void *data)
{
struct rpc_task *task;
struct rpc_task_setup task_setup_data = {
.rpc_client = clnt,
.rpc_message = msg,
.callback_ops = tk_ops,
.callback_data = data,
.flags = flags|RPC_TASK_ASYNC,
};
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
rpc_put_task(task);
return 0;
}
EXPORT_SYMBOL_GPL(rpc_call_async);
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
static void call_bc_encode(struct rpc_task *task);
/**
* rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run
* rpc_execute against it
* @req: RPC request
* @timeout: timeout values to use for this task
*/
struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req,
struct rpc_timeout *timeout)
{
struct rpc_task *task;
struct rpc_task_setup task_setup_data = {
.callback_ops = &rpc_default_ops,
.flags = RPC_TASK_SOFTCONN |
RPC_TASK_NO_RETRANS_TIMEOUT,
};
dprintk("RPC: rpc_run_bc_task req= %p\n", req);
/*
* Create an rpc_task to send the data
*/
task = rpc_new_task(&task_setup_data);
if (IS_ERR(task)) {
xprt_free_bc_request(req);
return task;
}
xprt_init_bc_request(req, task, timeout);
task->tk_action = call_bc_encode;
atomic_inc(&task->tk_count);
WARN_ON_ONCE(atomic_read(&task->tk_count) != 2);
rpc_execute(task);
dprintk("RPC: rpc_run_bc_task: task= %p\n", task);
return task;
}
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
/**
* rpc_prepare_reply_pages - Prepare to receive a reply data payload into pages
* @req: RPC request to prepare
* @pages: vector of struct page pointers
* @base: offset in first page where receive should start, in bytes
* @len: expected size of the upper layer data payload, in bytes
* @hdrsize: expected size of upper layer reply header, in XDR words
*
*/
void rpc_prepare_reply_pages(struct rpc_rqst *req, struct page **pages,
unsigned int base, unsigned int len,
unsigned int hdrsize)
{
hdrsize += RPC_REPHDRSIZE + req->rq_cred->cr_auth->au_ralign;
xdr_inline_pages(&req->rq_rcv_buf, hdrsize << 2, pages, base, len);
trace_rpc_xdr_reply_pages(req->rq_task, &req->rq_rcv_buf);
}
EXPORT_SYMBOL_GPL(rpc_prepare_reply_pages);
void
rpc_call_start(struct rpc_task *task)
{
task->tk_action = call_start;
}
EXPORT_SYMBOL_GPL(rpc_call_start);
/**
* rpc_peeraddr - extract remote peer address from clnt's xprt
* @clnt: RPC client structure
* @buf: target buffer
* @bufsize: length of target buffer
*
* Returns the number of bytes that are actually in the stored address.
*/
size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize)
{
size_t bytes;
struct rpc_xprt *xprt;
rcu_read_lock();
xprt = rcu_dereference(clnt->cl_xprt);
bytes = xprt->addrlen;
if (bytes > bufsize)
bytes = bufsize;
memcpy(buf, &xprt->addr, bytes);
rcu_read_unlock();
return bytes;
}
EXPORT_SYMBOL_GPL(rpc_peeraddr);
/**
* rpc_peeraddr2str - return remote peer address in printable format
* @clnt: RPC client structure
* @format: address format
*
* NB: the lifetime of the memory referenced by the returned pointer is
* the same as the rpc_xprt itself. As long as the caller uses this
* pointer, it must hold the RCU read lock.
*/
const char *rpc_peeraddr2str(struct rpc_clnt *clnt,
enum rpc_display_format_t format)
{
struct rpc_xprt *xprt;
xprt = rcu_dereference(clnt->cl_xprt);
if (xprt->address_strings[format] != NULL)
return xprt->address_strings[format];
else
return "unprintable";
}
EXPORT_SYMBOL_GPL(rpc_peeraddr2str);
static const struct sockaddr_in rpc_inaddr_loopback = {
.sin_family = AF_INET,
.sin_addr.s_addr = htonl(INADDR_ANY),
};
static const struct sockaddr_in6 rpc_in6addr_loopback = {
.sin6_family = AF_INET6,
.sin6_addr = IN6ADDR_ANY_INIT,
};
/*
* Try a getsockname() on a connected datagram socket. Using a
* connected datagram socket prevents leaving a socket in TIME_WAIT.
* This conserves the ephemeral port number space.
*
* Returns zero and fills in "buf" if successful; otherwise, a
* negative errno is returned.
*/
static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen,
struct sockaddr *buf)
{
struct socket *sock;
int err;
err = __sock_create(net, sap->sa_family,
SOCK_DGRAM, IPPROTO_UDP, &sock, 1);
if (err < 0) {
dprintk("RPC: can't create UDP socket (%d)\n", err);
goto out;
}
switch (sap->sa_family) {
case AF_INET:
err = kernel_bind(sock,
(struct sockaddr *)&rpc_inaddr_loopback,
sizeof(rpc_inaddr_loopback));
break;
case AF_INET6:
err = kernel_bind(sock,
(struct sockaddr *)&rpc_in6addr_loopback,
sizeof(rpc_in6addr_loopback));
break;
default:
err = -EAFNOSUPPORT;
goto out_release;
}
if (err < 0) {
dprintk("RPC: can't bind UDP socket (%d)\n", err);
goto out_release;
}
err = kernel_connect(sock, sap, salen, 0);
if (err < 0) {
dprintk("RPC: can't connect UDP socket (%d)\n", err);
goto out_release;
}
err = kernel_getsockname(sock, buf);
if (err < 0) {
dprintk("RPC: getsockname failed (%d)\n", err);
goto out_release;
}
err = 0;
if (buf->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf;
sin6->sin6_scope_id = 0;
}
dprintk("RPC: %s succeeded\n", __func__);
out_release:
sock_release(sock);
out:
return err;
}
/*
* Scraping a connected socket failed, so we don't have a useable
* local address. Fallback: generate an address that will prevent
* the server from calling us back.
*
* Returns zero and fills in "buf" if successful; otherwise, a
* negative errno is returned.
*/
static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen)
{
switch (family) {
case AF_INET:
if (buflen < sizeof(rpc_inaddr_loopback))
return -EINVAL;
memcpy(buf, &rpc_inaddr_loopback,
sizeof(rpc_inaddr_loopback));
break;
case AF_INET6:
if (buflen < sizeof(rpc_in6addr_loopback))
return -EINVAL;
memcpy(buf, &rpc_in6addr_loopback,
sizeof(rpc_in6addr_loopback));
break;
default:
dprintk("RPC: %s: address family not supported\n",
__func__);
return -EAFNOSUPPORT;
}
dprintk("RPC: %s: succeeded\n", __func__);
return 0;
}
/**
* rpc_localaddr - discover local endpoint address for an RPC client
* @clnt: RPC client structure
* @buf: target buffer
* @buflen: size of target buffer, in bytes
*
* Returns zero and fills in "buf" and "buflen" if successful;
* otherwise, a negative errno is returned.
*
* This works even if the underlying transport is not currently connected,
* or if the upper layer never previously provided a source address.
*
* The result of this function call is transient: multiple calls in
* succession may give different results, depending on how local
* networking configuration changes over time.
*/
int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen)
{
struct sockaddr_storage address;
struct sockaddr *sap = (struct sockaddr *)&address;
struct rpc_xprt *xprt;
struct net *net;
size_t salen;
int err;
rcu_read_lock();
xprt = rcu_dereference(clnt->cl_xprt);
salen = xprt->addrlen;
memcpy(sap, &xprt->addr, salen);
net = get_net(xprt->xprt_net);
rcu_read_unlock();
rpc_set_port(sap, 0);
err = rpc_sockname(net, sap, salen, buf);
put_net(net);
if (err != 0)
/* Couldn't discover local address, return ANYADDR */
return rpc_anyaddr(sap->sa_family, buf, buflen);
return 0;
}
EXPORT_SYMBOL_GPL(rpc_localaddr);
void
rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize)
{
struct rpc_xprt *xprt;
rcu_read_lock();
xprt = rcu_dereference(clnt->cl_xprt);
if (xprt->ops->set_buffer_size)
xprt->ops->set_buffer_size(xprt, sndsize, rcvsize);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(rpc_setbufsize);
/**
* rpc_net_ns - Get the network namespace for this RPC client
* @clnt: RPC client to query
*
*/
struct net *rpc_net_ns(struct rpc_clnt *clnt)
{
struct net *ret;
rcu_read_lock();
ret = rcu_dereference(clnt->cl_xprt)->xprt_net;
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(rpc_net_ns);
/**
* rpc_max_payload - Get maximum payload size for a transport, in bytes
* @clnt: RPC client to query
*
* For stream transports, this is one RPC record fragment (see RFC
* 1831), as we don't support multi-record requests yet. For datagram
* transports, this is the size of an IP packet minus the IP, UDP, and
* RPC header sizes.
*/
size_t rpc_max_payload(struct rpc_clnt *clnt)
{
size_t ret;
rcu_read_lock();
ret = rcu_dereference(clnt->cl_xprt)->max_payload;
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(rpc_max_payload);
/**
* rpc_max_bc_payload - Get maximum backchannel payload size, in bytes
* @clnt: RPC client to query
*/
size_t rpc_max_bc_payload(struct rpc_clnt *clnt)
{
struct rpc_xprt *xprt;
size_t ret;
rcu_read_lock();
xprt = rcu_dereference(clnt->cl_xprt);
ret = xprt->ops->bc_maxpayload(xprt);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(rpc_max_bc_payload);
unsigned int rpc_num_bc_slots(struct rpc_clnt *clnt)
{
struct rpc_xprt *xprt;
unsigned int ret;
rcu_read_lock();
xprt = rcu_dereference(clnt->cl_xprt);
ret = xprt->ops->bc_num_slots(xprt);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(rpc_num_bc_slots);
/**
* rpc_force_rebind - force transport to check that remote port is unchanged
* @clnt: client to rebind
*
*/
void rpc_force_rebind(struct rpc_clnt *clnt)
{
if (clnt->cl_autobind) {
rcu_read_lock();
xprt_clear_bound(rcu_dereference(clnt->cl_xprt));
rcu_read_unlock();
}
}
EXPORT_SYMBOL_GPL(rpc_force_rebind);
static int
__rpc_restart_call(struct rpc_task *task, void (*action)(struct rpc_task *))
{
task->tk_status = 0;
task->tk_rpc_status = 0;
task->tk_action = action;
return 1;
}
/*
* Restart an (async) RPC call. Usually called from within the
* exit handler.
*/
int
rpc_restart_call(struct rpc_task *task)
{
return __rpc_restart_call(task, call_start);
}
EXPORT_SYMBOL_GPL(rpc_restart_call);
/*
* Restart an (async) RPC call from the call_prepare state.
* Usually called from within the exit handler.
*/
int
rpc_restart_call_prepare(struct rpc_task *task)
{
if (task->tk_ops->rpc_call_prepare != NULL)
return __rpc_restart_call(task, rpc_prepare_task);
return rpc_restart_call(task);
}
EXPORT_SYMBOL_GPL(rpc_restart_call_prepare);
const char
*rpc_proc_name(const struct rpc_task *task)
{
const struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
if (proc) {
if (proc->p_name)
return proc->p_name;
else
return "NULL";
} else
return "no proc";
}
static void
__rpc_call_rpcerror(struct rpc_task *task, int tk_status, int rpc_status)
{
trace_rpc_call_rpcerror(task, tk_status, rpc_status);
rpc_task_set_rpc_status(task, rpc_status);
rpc_exit(task, tk_status);
}
static void
rpc_call_rpcerror(struct rpc_task *task, int status)
{
__rpc_call_rpcerror(task, status, status);
}
/*
* 0. Initial state
*
* Other FSM states can be visited zero or more times, but
* this state is visited exactly once for each RPC.
*/
static void
call_start(struct rpc_task *task)
{
struct rpc_clnt *clnt = task->tk_client;
int idx = task->tk_msg.rpc_proc->p_statidx;
trace_rpc_request(task);
if (task->tk_client->cl_shutdown) {
rpc_call_rpcerror(task, -EIO);
return;
}
/* Increment call count (version might not be valid for ping) */
if (clnt->cl_program->version[clnt->cl_vers])
clnt->cl_program->version[clnt->cl_vers]->counts[idx]++;
clnt->cl_stats->rpccnt++;
task->tk_action = call_reserve;
rpc_task_set_transport(task, clnt);
}
/*
* 1. Reserve an RPC call slot
*/
static void
call_reserve(struct rpc_task *task)
{
task->tk_status = 0;
task->tk_action = call_reserveresult;
xprt_reserve(task);
}
static void call_retry_reserve(struct rpc_task *task);
/*
* 1b. Grok the result of xprt_reserve()
*/
static void
call_reserveresult(struct rpc_task *task)
{
int status = task->tk_status;
/*
* After a call to xprt_reserve(), we must have either
* a request slot or else an error status.
*/
task->tk_status = 0;
if (status >= 0) {
if (task->tk_rqstp) {
task->tk_action = call_refresh;
return;
}
rpc_call_rpcerror(task, -EIO);
return;
}
switch (status) {
case -ENOMEM:
rpc_delay(task, HZ >> 2);
fallthrough;
case -EAGAIN: /* woken up; retry */
task->tk_action = call_retry_reserve;
return;
default:
rpc_call_rpcerror(task, status);
}
}
/*
* 1c. Retry reserving an RPC call slot
*/
static void
call_retry_reserve(struct rpc_task *task)
{
task->tk_status = 0;
task->tk_action = call_reserveresult;
xprt_retry_reserve(task);
}
/*
* 2. Bind and/or refresh the credentials
*/
static void
call_refresh(struct rpc_task *task)
{
task->tk_action = call_refreshresult;
task->tk_status = 0;
task->tk_client->cl_stats->rpcauthrefresh++;
rpcauth_refreshcred(task);
}
/*
* 2a. Process the results of a credential refresh
*/
static void
call_refreshresult(struct rpc_task *task)
{
int status = task->tk_status;
task->tk_status = 0;
task->tk_action = call_refresh;
switch (status) {
case 0:
if (rpcauth_uptodatecred(task)) {
task->tk_action = call_allocate;
return;
}
/* Use rate-limiting and a max number of retries if refresh
* had status 0 but failed to update the cred.
*/
fallthrough;
case -ETIMEDOUT:
rpc_delay(task, 3*HZ);
fallthrough;
case -EAGAIN:
status = -EACCES;
fallthrough;
case -EKEYEXPIRED:
if (!task->tk_cred_retry)
break;
task->tk_cred_retry--;
trace_rpc_retry_refresh_status(task);
return;
case -ENOMEM:
rpc_delay(task, HZ >> 4);
return;
}
trace_rpc_refresh_status(task);
rpc_call_rpcerror(task, status);
}
/*
* 2b. Allocate the buffer. For details, see sched.c:rpc_malloc.
* (Note: buffer memory is freed in xprt_release).
*/
static void
call_allocate(struct rpc_task *task)
{
const struct rpc_auth *auth = task->tk_rqstp->rq_cred->cr_auth;
struct rpc_rqst *req = task->tk_rqstp;
struct rpc_xprt *xprt = req->rq_xprt;
const struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
int status;
task->tk_status = 0;
task->tk_action = call_encode;
if (req->rq_buffer)
return;
/*
* Calculate the size (in quads) of the RPC call
* and reply headers, and convert both values
* to byte sizes.
*/
req->rq_callsize = RPC_CALLHDRSIZE + (auth->au_cslack << 1) +
proc->p_arglen;
req->rq_callsize <<= 2;
/*
* Note: the reply buffer must at minimum allocate enough space
* for the 'struct accepted_reply' from RFC5531.
*/
req->rq_rcvsize = RPC_REPHDRSIZE + auth->au_rslack + \
max_t(size_t, proc->p_replen, 2);
req->rq_rcvsize <<= 2;
status = xprt->ops->buf_alloc(task);
trace_rpc_buf_alloc(task, status);
if (status == 0)
return;
if (status != -ENOMEM) {
rpc_call_rpcerror(task, status);
return;
}
if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) {
task->tk_action = call_allocate;
rpc_delay(task, HZ>>4);
return;
}
rpc_call_rpcerror(task, -ERESTARTSYS);
}
static int
rpc_task_need_encode(struct rpc_task *task)
{
return test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate) == 0 &&
(!(task->tk_flags & RPC_TASK_SENT) ||
!(task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) ||
xprt_request_need_retransmit(task));
}
static void
rpc_xdr_encode(struct rpc_task *task)
{
struct rpc_rqst *req = task->tk_rqstp;
struct xdr_stream xdr;
xdr_buf_init(&req->rq_snd_buf,
req->rq_buffer,
req->rq_callsize);
xdr_buf_init(&req->rq_rcv_buf,
req->rq_rbuffer,
req->rq_rcvsize);
req->rq_reply_bytes_recvd = 0;
req->rq_snd_buf.head[0].iov_len = 0;
xdr_init_encode(&xdr, &req->rq_snd_buf,
req->rq_snd_buf.head[0].iov_base, req);
if (rpc_encode_header(task, &xdr))
return;
task->tk_status = rpcauth_wrap_req(task, &xdr);
}
/*
* 3. Encode arguments of an RPC call
*/
static void
call_encode(struct rpc_task *task)
{
if (!rpc_task_need_encode(task))
goto out;
/* Dequeue task from the receive queue while we're encoding */
xprt_request_dequeue_xprt(task);
/* Encode here so that rpcsec_gss can use correct sequence number. */
rpc_xdr_encode(task);
/* Add task to reply queue before transmission to avoid races */
if (task->tk_status == 0 && rpc_reply_expected(task))
task->tk_status = xprt_request_enqueue_receive(task);
/* Did the encode result in an error condition? */
if (task->tk_status != 0) {
/* Was the error nonfatal? */
switch (task->tk_status) {
case -EAGAIN:
case -ENOMEM:
rpc_delay(task, HZ >> 4);
break;
case -EKEYEXPIRED:
if (!task->tk_cred_retry) {
rpc_call_rpcerror(task, task->tk_status);
} else {
task->tk_action = call_refresh;
task->tk_cred_retry--;
trace_rpc_retry_refresh_status(task);
}
break;
default:
rpc_call_rpcerror(task, task->tk_status);
}
return;
}
xprt_request_enqueue_transmit(task);
out:
task->tk_action = call_transmit;
/* Check that the connection is OK */
if (!xprt_bound(task->tk_xprt))
task->tk_action = call_bind;
else if (!xprt_connected(task->tk_xprt))
task->tk_action = call_connect;
}
/*
* Helpers to check if the task was already transmitted, and
* to take action when that is the case.
*/
static bool
rpc_task_transmitted(struct rpc_task *task)
{
return !test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate);
}
static void
rpc_task_handle_transmitted(struct rpc_task *task)
{
xprt_end_transmit(task);
task->tk_action = call_transmit_status;
}
/*
* 4. Get the server port number if not yet set
*/
static void
call_bind(struct rpc_task *task)
{
struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
if (rpc_task_transmitted(task)) {
rpc_task_handle_transmitted(task);
return;
}
if (xprt_bound(xprt)) {
task->tk_action = call_connect;
return;
}
task->tk_action = call_bind_status;
if (!xprt_prepare_transmit(task))
return;
xprt->ops->rpcbind(task);
}
/*
* 4a. Sort out bind result
*/
static void
call_bind_status(struct rpc_task *task)
{
struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
int status = -EIO;
if (rpc_task_transmitted(task)) {
rpc_task_handle_transmitted(task);
return;
}
if (task->tk_status >= 0)
goto out_next;
if (xprt_bound(xprt)) {
task->tk_status = 0;
goto out_next;
}
switch (task->tk_status) {
case -ENOMEM:
rpc_delay(task, HZ >> 2);
goto retry_timeout;
case -EACCES:
trace_rpcb_prog_unavail_err(task);
/* fail immediately if this is an RPC ping */
if (task->tk_msg.rpc_proc->p_proc == 0) {
status = -EOPNOTSUPP;
break;
}
rpc_delay(task, 3*HZ);
goto retry_timeout;
case -ENOBUFS:
rpc_delay(task, HZ >> 2);
goto retry_timeout;
case -EAGAIN:
goto retry_timeout;
case -ETIMEDOUT:
trace_rpcb_timeout_err(task);
goto retry_timeout;
case -EPFNOSUPPORT:
/* server doesn't support any rpcbind version we know of */
trace_rpcb_bind_version_err(task);
break;
case -EPROTONOSUPPORT:
trace_rpcb_bind_version_err(task);
goto retry_timeout;
case -ECONNREFUSED: /* connection problems */
case -ECONNRESET:
case -ECONNABORTED:
case -ENOTCONN:
case -EHOSTDOWN:
case -ENETDOWN:
case -EHOSTUNREACH:
case -ENETUNREACH:
case -EPIPE:
trace_rpcb_unreachable_err(task);
if (!RPC_IS_SOFTCONN(task)) {
rpc_delay(task, 5*HZ);
goto retry_timeout;
}
status = task->tk_status;
break;
default:
trace_rpcb_unrecognized_err(task);
}
rpc_call_rpcerror(task, status);
return;
out_next:
task->tk_action = call_connect;
return;
retry_timeout:
task->tk_status = 0;
task->tk_action = call_bind;
rpc_check_timeout(task);
}
/*
* 4b. Connect to the RPC server
*/
static void
call_connect(struct rpc_task *task)
{
struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
if (rpc_task_transmitted(task)) {
rpc_task_handle_transmitted(task);
return;
}
if (xprt_connected(xprt)) {
task->tk_action = call_transmit;
return;
}
task->tk_action = call_connect_status;
if (task->tk_status < 0)
return;
if (task->tk_flags & RPC_TASK_NOCONNECT) {
rpc_call_rpcerror(task, -ENOTCONN);
return;
}
if (!xprt_prepare_transmit(task))
return;
xprt_connect(task);
}
/*
* 4c. Sort out connect result
*/
static void
call_connect_status(struct rpc_task *task)
{
struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
struct rpc_clnt *clnt = task->tk_client;
int status = task->tk_status;
if (rpc_task_transmitted(task)) {
rpc_task_handle_transmitted(task);
return;
}
trace_rpc_connect_status(task);
if (task->tk_status == 0) {
clnt->cl_stats->netreconn++;
goto out_next;
}
if (xprt_connected(xprt)) {
task->tk_status = 0;
goto out_next;
}
task->tk_status = 0;
switch (status) {
case -ECONNREFUSED:
case -ECONNRESET:
/* A positive refusal suggests a rebind is needed. */
if (RPC_IS_SOFTCONN(task))
break;
if (clnt->cl_autobind) {
rpc_force_rebind(clnt);
goto out_retry;
}
fallthrough;
case -ECONNABORTED:
case -ENETDOWN:
case -ENETUNREACH:
case -EHOSTUNREACH:
case -EPIPE:
case -EPROTO:
xprt_conditional_disconnect(task->tk_rqstp->rq_xprt,
task->tk_rqstp->rq_connect_cookie);
if (RPC_IS_SOFTCONN(task))
break;
/* retry with existing socket, after a delay */
rpc_delay(task, 3*HZ);
fallthrough;
case -EADDRINUSE:
case -ENOTCONN:
case -EAGAIN:
case -ETIMEDOUT:
if (!(task->tk_flags & RPC_TASK_NO_ROUND_ROBIN) &&
(task->tk_flags & RPC_TASK_MOVEABLE) &&
test_bit(XPRT_REMOVE, &xprt->state)) {
struct rpc_xprt *saved = task->tk_xprt;
struct rpc_xprt_switch *xps;
xps = rpc_clnt_xprt_switch_get(clnt);
if (xps->xps_nxprts > 1) {
long value;
xprt_release(task);
value = atomic_long_dec_return(&xprt->queuelen);
if (value == 0)
rpc_xprt_switch_remove_xprt(xps, saved,
true);
xprt_put(saved);
task->tk_xprt = NULL;
task->tk_action = call_start;
}
xprt_switch_put(xps);
if (!task->tk_xprt)
goto out;
}
goto out_retry;
case -ENOBUFS:
rpc_delay(task, HZ >> 2);
goto out_retry;
}
rpc_call_rpcerror(task, status);
return;
out_next:
task->tk_action = call_transmit;
return;
out_retry:
/* Check for timeouts before looping back to call_bind */
task->tk_action = call_bind;
out:
rpc_check_timeout(task);
}
/*
* 5. Transmit the RPC request, and wait for reply
*/
static void
call_transmit(struct rpc_task *task)
{
if (rpc_task_transmitted(task)) {
rpc_task_handle_transmitted(task);
return;
}
task->tk_action = call_transmit_status;
if (!xprt_prepare_transmit(task))
return;
task->tk_status = 0;
if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) {
if (!xprt_connected(task->tk_xprt)) {
task->tk_status = -ENOTCONN;
return;
}
xprt_transmit(task);
}
xprt_end_transmit(task);
}
/*
* 5a. Handle cleanup after a transmission
*/
static void
call_transmit_status(struct rpc_task *task)
{
task->tk_action = call_status;
/*
* Common case: success. Force the compiler to put this
* test first.
*/
if (rpc_task_transmitted(task)) {
task->tk_status = 0;
xprt_request_wait_receive(task);
return;
}
switch (task->tk_status) {
default:
break;
case -EBADMSG:
task->tk_status = 0;
task->tk_action = call_encode;
break;
/*
* Special cases: if we've been waiting on the
* socket's write_space() callback, or if the
* socket just returned a connection error,
* then hold onto the transport lock.
*/
case -ENOMEM:
case -ENOBUFS:
rpc_delay(task, HZ>>2);
fallthrough;
case -EBADSLT:
case -EAGAIN:
task->tk_action = call_transmit;
task->tk_status = 0;
break;
case -EHOSTDOWN:
case -ENETDOWN:
case -EHOSTUNREACH:
case -ENETUNREACH:
case -EPERM:
break;
case -ECONNREFUSED:
if (RPC_IS_SOFTCONN(task)) {
if (!task->tk_msg.rpc_proc->p_proc)
trace_xprt_ping(task->tk_xprt,
task->tk_status);
rpc_call_rpcerror(task, task->tk_status);
return;
}
fallthrough;
case -ECONNRESET:
case -ECONNABORTED:
case -EADDRINUSE:
case -ENOTCONN:
case -EPIPE:
task->tk_action = call_bind;
task->tk_status = 0;
break;
}
rpc_check_timeout(task);
}
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
static void call_bc_transmit(struct rpc_task *task);
static void call_bc_transmit_status(struct rpc_task *task);
static void
call_bc_encode(struct rpc_task *task)
{
xprt_request_enqueue_transmit(task);
task->tk_action = call_bc_transmit;
}
/*
* 5b. Send the backchannel RPC reply. On error, drop the reply. In
* addition, disconnect on connectivity errors.
*/
static void
call_bc_transmit(struct rpc_task *task)
{
task->tk_action = call_bc_transmit_status;
if (test_bit(RPC_TASK_NEED_XMIT, &task->tk_runstate)) {
if (!xprt_prepare_transmit(task))
return;
task->tk_status = 0;
xprt_transmit(task);
}
xprt_end_transmit(task);
}
static void
call_bc_transmit_status(struct rpc_task *task)
{
struct rpc_rqst *req = task->tk_rqstp;
if (rpc_task_transmitted(task))
task->tk_status = 0;
switch (task->tk_status) {
case 0:
/* Success */
case -ENETDOWN:
case -EHOSTDOWN:
case -EHOSTUNREACH:
case -ENETUNREACH:
case -ECONNRESET:
case -ECONNREFUSED:
case -EADDRINUSE:
case -ENOTCONN:
case -EPIPE:
break;
case -ENOMEM:
case -ENOBUFS:
rpc_delay(task, HZ>>2);
fallthrough;
case -EBADSLT:
case -EAGAIN:
task->tk_status = 0;
task->tk_action = call_bc_transmit;
return;
case -ETIMEDOUT:
/*
* Problem reaching the server. Disconnect and let the
* forechannel reestablish the connection. The server will
* have to retransmit the backchannel request and we'll
* reprocess it. Since these ops are idempotent, there's no
* need to cache our reply at this time.
*/
printk(KERN_NOTICE "RPC: Could not send backchannel reply "
"error: %d\n", task->tk_status);
xprt_conditional_disconnect(req->rq_xprt,
req->rq_connect_cookie);
break;
default:
/*
* We were unable to reply and will have to drop the
* request. The server should reconnect and retransmit.
*/
printk(KERN_NOTICE "RPC: Could not send backchannel reply "
"error: %d\n", task->tk_status);
break;
}
task->tk_action = rpc_exit_task;
}
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
/*
* 6. Sort out the RPC call status
*/
static void
call_status(struct rpc_task *task)
{
struct rpc_clnt *clnt = task->tk_client;
int status;
if (!task->tk_msg.rpc_proc->p_proc)
trace_xprt_ping(task->tk_xprt, task->tk_status);
status = task->tk_status;
if (status >= 0) {
task->tk_action = call_decode;
return;
}
trace_rpc_call_status(task);
task->tk_status = 0;
switch(status) {
case -EHOSTDOWN:
case -ENETDOWN:
case -EHOSTUNREACH:
case -ENETUNREACH:
case -EPERM:
if (RPC_IS_SOFTCONN(task))
goto out_exit;
/*
* Delay any retries for 3 seconds, then handle as if it
* were a timeout.
*/
rpc_delay(task, 3*HZ);
fallthrough;
case -ETIMEDOUT:
break;
case -ECONNREFUSED:
case -ECONNRESET:
case -ECONNABORTED:
case -ENOTCONN:
rpc_force_rebind(clnt);
break;
case -EADDRINUSE:
rpc_delay(task, 3*HZ);
fallthrough;
case -EPIPE:
case -EAGAIN:
break;
case -ENFILE:
case -ENOBUFS:
case -ENOMEM:
rpc_delay(task, HZ>>2);
break;
case -EIO:
/* shutdown or soft timeout */
goto out_exit;
default:
if (clnt->cl_chatty)
printk("%s: RPC call returned error %d\n",
clnt->cl_program->name, -status);
goto out_exit;
}
task->tk_action = call_encode;
rpc_check_timeout(task);
return;
out_exit:
rpc_call_rpcerror(task, status);
}
static bool
rpc_check_connected(const struct rpc_rqst *req)
{
/* No allocated request or transport? return true */
if (!req || !req->rq_xprt)
return true;
return xprt_connected(req->rq_xprt);
}
static void
rpc_check_timeout(struct rpc_task *task)
{
struct rpc_clnt *clnt = task->tk_client;
if (RPC_SIGNALLED(task))
return;
if (xprt_adjust_timeout(task->tk_rqstp) == 0)
return;
trace_rpc_timeout_status(task);
task->tk_timeouts++;
if (RPC_IS_SOFTCONN(task) && !rpc_check_connected(task->tk_rqstp)) {
rpc_call_rpcerror(task, -ETIMEDOUT);
return;
}
if (RPC_IS_SOFT(task)) {
/*
* Once a "no retrans timeout" soft tasks (a.k.a NFSv4) has
* been sent, it should time out only if the transport
* connection gets terminally broken.
*/
if ((task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT) &&
rpc_check_connected(task->tk_rqstp))
return;
if (clnt->cl_chatty) {
pr_notice_ratelimited(
"%s: server %s not responding, timed out\n",
clnt->cl_program->name,
task->tk_xprt->servername);
}
if (task->tk_flags & RPC_TASK_TIMEOUT)
rpc_call_rpcerror(task, -ETIMEDOUT);
else
__rpc_call_rpcerror(task, -EIO, -ETIMEDOUT);
return;
}
if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) {
task->tk_flags |= RPC_CALL_MAJORSEEN;
if (clnt->cl_chatty) {
pr_notice_ratelimited(
"%s: server %s not responding, still trying\n",
clnt->cl_program->name,
task->tk_xprt->servername);
}
}
rpc_force_rebind(clnt);
/*
* Did our request time out due to an RPCSEC_GSS out-of-sequence
* event? RFC2203 requires the server to drop all such requests.
*/
rpcauth_invalcred(task);
}
/*
* 7. Decode the RPC reply
*/
static void
call_decode(struct rpc_task *task)
{
struct rpc_clnt *clnt = task->tk_client;
struct rpc_rqst *req = task->tk_rqstp;
struct xdr_stream xdr;
int err;
if (!task->tk_msg.rpc_proc->p_decode) {
task->tk_action = rpc_exit_task;
return;
}
if (task->tk_flags & RPC_CALL_MAJORSEEN) {
if (clnt->cl_chatty) {
pr_notice_ratelimited("%s: server %s OK\n",
clnt->cl_program->name,
task->tk_xprt->servername);
}
task->tk_flags &= ~RPC_CALL_MAJORSEEN;
}
/*
* Did we ever call xprt_complete_rqst()? If not, we should assume
* the message is incomplete.
*/
err = -EAGAIN;
if (!req->rq_reply_bytes_recvd)
goto out;
/* Ensure that we see all writes made by xprt_complete_rqst()
* before it changed req->rq_reply_bytes_recvd.
*/
smp_rmb();
req->rq_rcv_buf.len = req->rq_private_buf.len;
trace_rpc_xdr_recvfrom(task, &req->rq_rcv_buf);
/* Check that the softirq receive buffer is valid */
WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf,
sizeof(req->rq_rcv_buf)) != 0);
xdr_init_decode(&xdr, &req->rq_rcv_buf,
req->rq_rcv_buf.head[0].iov_base, req);
err = rpc_decode_header(task, &xdr);
out:
switch (err) {
case 0:
task->tk_action = rpc_exit_task;
task->tk_status = rpcauth_unwrap_resp(task, &xdr);
xdr_finish_decode(&xdr);
return;
case -EAGAIN:
task->tk_status = 0;
if (task->tk_client->cl_discrtry)
xprt_conditional_disconnect(req->rq_xprt,
req->rq_connect_cookie);
task->tk_action = call_encode;
rpc_check_timeout(task);
break;
case -EKEYREJECTED:
task->tk_action = call_reserve;
rpc_check_timeout(task);
rpcauth_invalcred(task);
/* Ensure we obtain a new XID if we retry! */
xprt_release(task);
}
}
static int
rpc_encode_header(struct rpc_task *task, struct xdr_stream *xdr)
{
struct rpc_clnt *clnt = task->tk_client;
struct rpc_rqst *req = task->tk_rqstp;
__be32 *p;
int error;
error = -EMSGSIZE;
p = xdr_reserve_space(xdr, RPC_CALLHDRSIZE << 2);
if (!p)
goto out_fail;
*p++ = req->rq_xid;
*p++ = rpc_call;
*p++ = cpu_to_be32(RPC_VERSION);
*p++ = cpu_to_be32(clnt->cl_prog);
*p++ = cpu_to_be32(clnt->cl_vers);
*p = cpu_to_be32(task->tk_msg.rpc_proc->p_proc);
error = rpcauth_marshcred(task, xdr);
if (error < 0)
goto out_fail;
return 0;
out_fail:
trace_rpc_bad_callhdr(task);
rpc_call_rpcerror(task, error);
return error;
}
static noinline int
rpc_decode_header(struct rpc_task *task, struct xdr_stream *xdr)
{
struct rpc_clnt *clnt = task->tk_client;
int error;
__be32 *p;
/* RFC-1014 says that the representation of XDR data must be a
* multiple of four bytes
* - if it isn't pointer subtraction in the NFS client may give
* undefined results
*/
if (task->tk_rqstp->rq_rcv_buf.len & 3)
goto out_unparsable;
p = xdr_inline_decode(xdr, 3 * sizeof(*p));
if (!p)
goto out_unparsable;
p++; /* skip XID */
if (*p++ != rpc_reply)
goto out_unparsable;
if (*p++ != rpc_msg_accepted)
goto out_msg_denied;
error = rpcauth_checkverf(task, xdr);
if (error) {
struct rpc_cred *cred = task->tk_rqstp->rq_cred;
if (!test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
rpcauth_invalcred(task);
if (!task->tk_cred_retry)
goto out_err;
task->tk_cred_retry--;
trace_rpc__stale_creds(task);
return -EKEYREJECTED;
}
goto out_verifier;
}
p = xdr_inline_decode(xdr, sizeof(*p));
if (!p)
goto out_unparsable;
switch (*p) {
case rpc_success:
return 0;
case rpc_prog_unavail:
trace_rpc__prog_unavail(task);
error = -EPFNOSUPPORT;
goto out_err;
case rpc_prog_mismatch:
trace_rpc__prog_mismatch(task);
error = -EPROTONOSUPPORT;
goto out_err;
case rpc_proc_unavail:
trace_rpc__proc_unavail(task);
error = -EOPNOTSUPP;
goto out_err;
case rpc_garbage_args:
case rpc_system_err:
trace_rpc__garbage_args(task);
error = -EIO;
break;
default:
goto out_unparsable;
}
out_garbage:
clnt->cl_stats->rpcgarbage++;
if (task->tk_garb_retry) {
task->tk_garb_retry--;
task->tk_action = call_encode;
return -EAGAIN;
}
out_err:
rpc_call_rpcerror(task, error);
return error;
out_unparsable:
trace_rpc__unparsable(task);
error = -EIO;
goto out_garbage;
out_verifier:
trace_rpc_bad_verifier(task);
switch (error) {
case -EPROTONOSUPPORT:
goto out_err;
case -EACCES:
/* Re-encode with a fresh cred */
fallthrough;
default:
goto out_garbage;
}
out_msg_denied:
error = -EACCES;
p = xdr_inline_decode(xdr, sizeof(*p));
if (!p)
goto out_unparsable;
switch (*p++) {
case rpc_auth_error:
break;
case rpc_mismatch:
trace_rpc__mismatch(task);
error = -EPROTONOSUPPORT;
goto out_err;
default:
goto out_unparsable;
}
p = xdr_inline_decode(xdr, sizeof(*p));
if (!p)
goto out_unparsable;
switch (*p++) {
case rpc_autherr_rejectedcred:
case rpc_autherr_rejectedverf:
case rpcsec_gsserr_credproblem:
case rpcsec_gsserr_ctxproblem:
rpcauth_invalcred(task);
if (!task->tk_cred_retry)
break;
task->tk_cred_retry--;
trace_rpc__stale_creds(task);
return -EKEYREJECTED;
case rpc_autherr_badcred:
case rpc_autherr_badverf:
/* possibly garbled cred/verf? */
if (!task->tk_garb_retry)
break;
task->tk_garb_retry--;
trace_rpc__bad_creds(task);
task->tk_action = call_encode;
return -EAGAIN;
case rpc_autherr_tooweak:
trace_rpc__auth_tooweak(task);
pr_warn("RPC: server %s requires stronger authentication.\n",
task->tk_xprt->servername);
break;
default:
goto out_unparsable;
}
goto out_err;
}
static void rpcproc_encode_null(struct rpc_rqst *rqstp, struct xdr_stream *xdr,
const void *obj)
{
}
static int rpcproc_decode_null(struct rpc_rqst *rqstp, struct xdr_stream *xdr,
void *obj)
{
return 0;
}
static const struct rpc_procinfo rpcproc_null = {
.p_encode = rpcproc_encode_null,
.p_decode = rpcproc_decode_null,
};
static const struct rpc_procinfo rpcproc_null_noreply = {
.p_encode = rpcproc_encode_null,
};
static void
rpc_null_call_prepare(struct rpc_task *task, void *data)
{
task->tk_flags &= ~RPC_TASK_NO_RETRANS_TIMEOUT;
rpc_call_start(task);
}
static const struct rpc_call_ops rpc_null_ops = {
.rpc_call_prepare = rpc_null_call_prepare,
.rpc_call_done = rpc_default_callback,
};
static
struct rpc_task *rpc_call_null_helper(struct rpc_clnt *clnt,
struct rpc_xprt *xprt, struct rpc_cred *cred, int flags,
const struct rpc_call_ops *ops, void *data)
{
struct rpc_message msg = {
.rpc_proc = &rpcproc_null,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clnt,
.rpc_xprt = xprt,
.rpc_message = &msg,
.rpc_op_cred = cred,
.callback_ops = ops ?: &rpc_null_ops,
.callback_data = data,
.flags = flags | RPC_TASK_SOFT | RPC_TASK_SOFTCONN |
RPC_TASK_NULLCREDS,
};
return rpc_run_task(&task_setup_data);
}
struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags)
{
return rpc_call_null_helper(clnt, NULL, cred, flags, NULL, NULL);
}
EXPORT_SYMBOL_GPL(rpc_call_null);
static int rpc_ping(struct rpc_clnt *clnt)
{
struct rpc_task *task;
int status;
if (clnt->cl_auth->au_ops->ping)
return clnt->cl_auth->au_ops->ping(clnt);
task = rpc_call_null_helper(clnt, NULL, NULL, 0, NULL, NULL);
if (IS_ERR(task))
return PTR_ERR(task);
status = task->tk_status;
rpc_put_task(task);
return status;
}
static int rpc_ping_noreply(struct rpc_clnt *clnt)
{
struct rpc_message msg = {
.rpc_proc = &rpcproc_null_noreply,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clnt,
.rpc_message = &msg,
.callback_ops = &rpc_null_ops,
.flags = RPC_TASK_SOFT | RPC_TASK_SOFTCONN | RPC_TASK_NULLCREDS,
};
struct rpc_task *task;
int status;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = task->tk_status;
rpc_put_task(task);
return status;
}
struct rpc_cb_add_xprt_calldata {
struct rpc_xprt_switch *xps;
struct rpc_xprt *xprt;
};
static void rpc_cb_add_xprt_done(struct rpc_task *task, void *calldata)
{
struct rpc_cb_add_xprt_calldata *data = calldata;
if (task->tk_status == 0)
rpc_xprt_switch_add_xprt(data->xps, data->xprt);
}
static void rpc_cb_add_xprt_release(void *calldata)
{
struct rpc_cb_add_xprt_calldata *data = calldata;
xprt_put(data->xprt);
xprt_switch_put(data->xps);
kfree(data);
}
static const struct rpc_call_ops rpc_cb_add_xprt_call_ops = {
.rpc_call_prepare = rpc_null_call_prepare,
.rpc_call_done = rpc_cb_add_xprt_done,
.rpc_release = rpc_cb_add_xprt_release,
};
/**
* rpc_clnt_test_and_add_xprt - Test and add a new transport to a rpc_clnt
* @clnt: pointer to struct rpc_clnt
* @xps: pointer to struct rpc_xprt_switch,
* @xprt: pointer struct rpc_xprt
* @in_max_connect: pointer to the max_connect value for the passed in xprt transport
*/
int rpc_clnt_test_and_add_xprt(struct rpc_clnt *clnt,
struct rpc_xprt_switch *xps, struct rpc_xprt *xprt,
void *in_max_connect)
{
struct rpc_cb_add_xprt_calldata *data;
struct rpc_task *task;
int max_connect = clnt->cl_max_connect;
if (in_max_connect)
max_connect = *(int *)in_max_connect;
if (xps->xps_nunique_destaddr_xprts + 1 > max_connect) {
rcu_read_lock();
pr_warn("SUNRPC: reached max allowed number (%d) did not add "
"transport to server: %s\n", max_connect,
rpc_peeraddr2str(clnt, RPC_DISPLAY_ADDR));
rcu_read_unlock();
return -EINVAL;
}
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->xps = xprt_switch_get(xps);
data->xprt = xprt_get(xprt);
if (rpc_xprt_switch_has_addr(data->xps, (struct sockaddr *)&xprt->addr)) {
rpc_cb_add_xprt_release(data);
goto success;
}
task = rpc_call_null_helper(clnt, xprt, NULL, RPC_TASK_ASYNC,
&rpc_cb_add_xprt_call_ops, data);
if (IS_ERR(task))
return PTR_ERR(task);
data->xps->xps_nunique_destaddr_xprts++;
rpc_put_task(task);
success:
return 1;
}
EXPORT_SYMBOL_GPL(rpc_clnt_test_and_add_xprt);
static int rpc_clnt_add_xprt_helper(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
struct rpc_add_xprt_test *data)
{
struct rpc_task *task;
int status = -EADDRINUSE;
/* Test the connection */
task = rpc_call_null_helper(clnt, xprt, NULL, 0, NULL, NULL);
if (IS_ERR(task))
return PTR_ERR(task);
status = task->tk_status;
rpc_put_task(task);
if (status < 0)
return status;
/* rpc_xprt_switch and rpc_xprt are deferrenced by add_xprt_test() */
data->add_xprt_test(clnt, xprt, data->data);
return 0;
}
/**
* rpc_clnt_setup_test_and_add_xprt()
*
* This is an rpc_clnt_add_xprt setup() function which returns 1 so:
* 1) caller of the test function must dereference the rpc_xprt_switch
* and the rpc_xprt.
* 2) test function must call rpc_xprt_switch_add_xprt, usually in
* the rpc_call_done routine.
*
* Upon success (return of 1), the test function adds the new
* transport to the rpc_clnt xprt switch
*
* @clnt: struct rpc_clnt to get the new transport
* @xps: the rpc_xprt_switch to hold the new transport
* @xprt: the rpc_xprt to test
* @data: a struct rpc_add_xprt_test pointer that holds the test function
* and test function call data
*/
int rpc_clnt_setup_test_and_add_xprt(struct rpc_clnt *clnt,
struct rpc_xprt_switch *xps,
struct rpc_xprt *xprt,
void *data)
{
int status = -EADDRINUSE;
xprt = xprt_get(xprt);
xprt_switch_get(xps);
if (rpc_xprt_switch_has_addr(xps, (struct sockaddr *)&xprt->addr))
goto out_err;
status = rpc_clnt_add_xprt_helper(clnt, xprt, data);
if (status < 0)
goto out_err;
status = 1;
out_err:
xprt_put(xprt);
xprt_switch_put(xps);
if (status < 0)
pr_info("RPC: rpc_clnt_test_xprt failed: %d addr %s not "
"added\n", status,
xprt->address_strings[RPC_DISPLAY_ADDR]);
/* so that rpc_clnt_add_xprt does not call rpc_xprt_switch_add_xprt */
return status;
}
EXPORT_SYMBOL_GPL(rpc_clnt_setup_test_and_add_xprt);
/**
* rpc_clnt_add_xprt - Add a new transport to a rpc_clnt
* @clnt: pointer to struct rpc_clnt
* @xprtargs: pointer to struct xprt_create
* @setup: callback to test and/or set up the connection
* @data: pointer to setup function data
*
* Creates a new transport using the parameters set in args and
* adds it to clnt.
* If ping is set, then test that connectivity succeeds before
* adding the new transport.
*
*/
int rpc_clnt_add_xprt(struct rpc_clnt *clnt,
struct xprt_create *xprtargs,
int (*setup)(struct rpc_clnt *,
struct rpc_xprt_switch *,
struct rpc_xprt *,
void *),
void *data)
{
struct rpc_xprt_switch *xps;
struct rpc_xprt *xprt;
unsigned long connect_timeout;
unsigned long reconnect_timeout;
unsigned char resvport, reuseport;
int ret = 0, ident;
rcu_read_lock();
xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch));
xprt = xprt_iter_xprt(&clnt->cl_xpi);
if (xps == NULL || xprt == NULL) {
rcu_read_unlock();
xprt_switch_put(xps);
return -EAGAIN;
}
resvport = xprt->resvport;
reuseport = xprt->reuseport;
connect_timeout = xprt->connect_timeout;
reconnect_timeout = xprt->max_reconnect_timeout;
ident = xprt->xprt_class->ident;
rcu_read_unlock();
if (!xprtargs->ident)
xprtargs->ident = ident;
xprtargs->xprtsec = clnt->cl_xprtsec;
xprt = xprt_create_transport(xprtargs);
if (IS_ERR(xprt)) {
ret = PTR_ERR(xprt);
goto out_put_switch;
}
xprt->resvport = resvport;
xprt->reuseport = reuseport;
if (xprtargs->connect_timeout)
connect_timeout = xprtargs->connect_timeout;
if (xprtargs->reconnect_timeout)
reconnect_timeout = xprtargs->reconnect_timeout;
if (xprt->ops->set_connect_timeout != NULL)
xprt->ops->set_connect_timeout(xprt,
connect_timeout,
reconnect_timeout);
rpc_xprt_switch_set_roundrobin(xps);
if (setup) {
ret = setup(clnt, xps, xprt, data);
if (ret != 0)
goto out_put_xprt;
}
rpc_xprt_switch_add_xprt(xps, xprt);
out_put_xprt:
xprt_put(xprt);
out_put_switch:
xprt_switch_put(xps);
return ret;
}
EXPORT_SYMBOL_GPL(rpc_clnt_add_xprt);
static int rpc_xprt_probe_trunked(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
struct rpc_add_xprt_test *data)
{
struct rpc_xprt *main_xprt;
int status = 0;
xprt_get(xprt);
rcu_read_lock();
main_xprt = xprt_get(rcu_dereference(clnt->cl_xprt));
status = rpc_cmp_addr_port((struct sockaddr *)&xprt->addr,
(struct sockaddr *)&main_xprt->addr);
rcu_read_unlock();
xprt_put(main_xprt);
if (status || !test_bit(XPRT_OFFLINE, &xprt->state))
goto out;
status = rpc_clnt_add_xprt_helper(clnt, xprt, data);
out:
xprt_put(xprt);
return status;
}
/* rpc_clnt_probe_trunked_xprt -- probe offlined transport for session trunking
* @clnt rpc_clnt structure
*
* For each offlined transport found in the rpc_clnt structure call
* the function rpc_xprt_probe_trunked() which will determine if this
* transport still belongs to the trunking group.
*/
void rpc_clnt_probe_trunked_xprts(struct rpc_clnt *clnt,
struct rpc_add_xprt_test *data)
{
struct rpc_xprt_iter xpi;
int ret;
ret = rpc_clnt_xprt_iter_offline_init(clnt, &xpi);
if (ret)
return;
for (;;) {
struct rpc_xprt *xprt = xprt_iter_get_next(&xpi);
if (!xprt)
break;
ret = rpc_xprt_probe_trunked(clnt, xprt, data);
xprt_put(xprt);
if (ret < 0)
break;
xprt_iter_rewind(&xpi);
}
xprt_iter_destroy(&xpi);
}
EXPORT_SYMBOL_GPL(rpc_clnt_probe_trunked_xprts);
static int rpc_xprt_offline(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
void *data)
{
struct rpc_xprt *main_xprt;
struct rpc_xprt_switch *xps;
int err = 0;
xprt_get(xprt);
rcu_read_lock();
main_xprt = xprt_get(rcu_dereference(clnt->cl_xprt));
xps = xprt_switch_get(rcu_dereference(clnt->cl_xpi.xpi_xpswitch));
err = rpc_cmp_addr_port((struct sockaddr *)&xprt->addr,
(struct sockaddr *)&main_xprt->addr);
rcu_read_unlock();
xprt_put(main_xprt);
if (err)
goto out;
if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE)) {
err = -EINTR;
goto out;
}
xprt_set_offline_locked(xprt, xps);
xprt_release_write(xprt, NULL);
out:
xprt_put(xprt);
xprt_switch_put(xps);
return err;
}
/* rpc_clnt_manage_trunked_xprts -- offline trunked transports
* @clnt rpc_clnt structure
*
* For each active transport found in the rpc_clnt structure call
* the function rpc_xprt_offline() which will identify trunked transports
* and will mark them offline.
*/
void rpc_clnt_manage_trunked_xprts(struct rpc_clnt *clnt)
{
rpc_clnt_iterate_for_each_xprt(clnt, rpc_xprt_offline, NULL);
}
EXPORT_SYMBOL_GPL(rpc_clnt_manage_trunked_xprts);
struct connect_timeout_data {
unsigned long connect_timeout;
unsigned long reconnect_timeout;
};
static int
rpc_xprt_set_connect_timeout(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
void *data)
{
struct connect_timeout_data *timeo = data;
if (xprt->ops->set_connect_timeout)
xprt->ops->set_connect_timeout(xprt,
timeo->connect_timeout,
timeo->reconnect_timeout);
return 0;
}
void
rpc_set_connect_timeout(struct rpc_clnt *clnt,
unsigned long connect_timeout,
unsigned long reconnect_timeout)
{
struct connect_timeout_data timeout = {
.connect_timeout = connect_timeout,
.reconnect_timeout = reconnect_timeout,
};
rpc_clnt_iterate_for_each_xprt(clnt,
rpc_xprt_set_connect_timeout,
&timeout);
}
EXPORT_SYMBOL_GPL(rpc_set_connect_timeout);
void rpc_clnt_xprt_set_online(struct rpc_clnt *clnt, struct rpc_xprt *xprt)
{
struct rpc_xprt_switch *xps;
xps = rpc_clnt_xprt_switch_get(clnt);
xprt_set_online_locked(xprt, xps);
xprt_switch_put(xps);
}
void rpc_clnt_xprt_switch_add_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt)
{
struct rpc_xprt_switch *xps;
if (rpc_clnt_xprt_switch_has_addr(clnt,
(const struct sockaddr *)&xprt->addr)) {
return rpc_clnt_xprt_set_online(clnt, xprt);
}
xps = rpc_clnt_xprt_switch_get(clnt);
rpc_xprt_switch_add_xprt(xps, xprt);
xprt_switch_put(xps);
}
EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_add_xprt);
void rpc_clnt_xprt_switch_remove_xprt(struct rpc_clnt *clnt, struct rpc_xprt *xprt)
{
struct rpc_xprt_switch *xps;
rcu_read_lock();
xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch);
rpc_xprt_switch_remove_xprt(rcu_dereference(clnt->cl_xpi.xpi_xpswitch),
xprt, 0);
xps->xps_nunique_destaddr_xprts--;
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_remove_xprt);
bool rpc_clnt_xprt_switch_has_addr(struct rpc_clnt *clnt,
const struct sockaddr *sap)
{
struct rpc_xprt_switch *xps;
bool ret;
rcu_read_lock();
xps = rcu_dereference(clnt->cl_xpi.xpi_xpswitch);
ret = rpc_xprt_switch_has_addr(xps, sap);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(rpc_clnt_xprt_switch_has_addr);
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
static void rpc_show_header(void)
{
printk(KERN_INFO "-pid- flgs status -client- --rqstp- "
"-timeout ---ops--\n");
}
static void rpc_show_task(const struct rpc_clnt *clnt,
const struct rpc_task *task)
{
const char *rpc_waitq = "none";
if (RPC_IS_QUEUED(task))
rpc_waitq = rpc_qname(task->tk_waitqueue);
printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n",
task->tk_pid, task->tk_flags, task->tk_status,
clnt, task->tk_rqstp, rpc_task_timeout(task), task->tk_ops,
clnt->cl_program->name, clnt->cl_vers, rpc_proc_name(task),
task->tk_action, rpc_waitq);
}
void rpc_show_tasks(struct net *net)
{
struct rpc_clnt *clnt;
struct rpc_task *task;
int header = 0;
struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
spin_lock(&sn->rpc_client_lock);
list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
spin_lock(&clnt->cl_lock);
list_for_each_entry(task, &clnt->cl_tasks, tk_task) {
if (!header) {
rpc_show_header();
header++;
}
rpc_show_task(clnt, task);
}
spin_unlock(&clnt->cl_lock);
}
spin_unlock(&sn->rpc_client_lock);
}
#endif
#if IS_ENABLED(CONFIG_SUNRPC_SWAP)
static int
rpc_clnt_swap_activate_callback(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
void *dummy)
{
return xprt_enable_swap(xprt);
}
int
rpc_clnt_swap_activate(struct rpc_clnt *clnt)
{
while (clnt != clnt->cl_parent)
clnt = clnt->cl_parent;
if (atomic_inc_return(&clnt->cl_swapper) == 1)
return rpc_clnt_iterate_for_each_xprt(clnt,
rpc_clnt_swap_activate_callback, NULL);
return 0;
}
EXPORT_SYMBOL_GPL(rpc_clnt_swap_activate);
static int
rpc_clnt_swap_deactivate_callback(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
void *dummy)
{
xprt_disable_swap(xprt);
return 0;
}
void
rpc_clnt_swap_deactivate(struct rpc_clnt *clnt)
{
while (clnt != clnt->cl_parent)
clnt = clnt->cl_parent;
if (atomic_dec_if_positive(&clnt->cl_swapper) == 0)
rpc_clnt_iterate_for_each_xprt(clnt,
rpc_clnt_swap_deactivate_callback, NULL);
}
EXPORT_SYMBOL_GPL(rpc_clnt_swap_deactivate);
#endif /* CONFIG_SUNRPC_SWAP */