| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2020 Google LLC |
| */ |
| #define _GNU_SOURCE |
| |
| #include <errno.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <sys/mman.h> |
| #include <time.h> |
| #include <stdbool.h> |
| |
| #include "../kselftest.h" |
| |
| #define EXPECT_SUCCESS 0 |
| #define EXPECT_FAILURE 1 |
| #define NON_OVERLAPPING 0 |
| #define OVERLAPPING 1 |
| #define NS_PER_SEC 1000000000ULL |
| #define VALIDATION_DEFAULT_THRESHOLD 4 /* 4MB */ |
| #define VALIDATION_NO_THRESHOLD 0 /* Verify the entire region */ |
| |
| #ifndef MIN |
| #define MIN(X, Y) ((X) < (Y) ? (X) : (Y)) |
| #define MAX(X, Y) ((X) > (Y) ? (X) : (Y)) |
| #endif |
| #define SIZE_MB(m) ((size_t)m * (1024 * 1024)) |
| #define SIZE_KB(k) ((size_t)k * 1024) |
| |
| struct config { |
| unsigned long long src_alignment; |
| unsigned long long dest_alignment; |
| unsigned long long region_size; |
| int overlapping; |
| int dest_preamble_size; |
| }; |
| |
| struct test { |
| const char *name; |
| struct config config; |
| int expect_failure; |
| }; |
| |
| enum { |
| _1KB = 1ULL << 10, /* 1KB -> not page aligned */ |
| _4KB = 4ULL << 10, |
| _8KB = 8ULL << 10, |
| _1MB = 1ULL << 20, |
| _2MB = 2ULL << 20, |
| _4MB = 4ULL << 20, |
| _5MB = 5ULL << 20, |
| _1GB = 1ULL << 30, |
| _2GB = 2ULL << 30, |
| PMD = _2MB, |
| PUD = _1GB, |
| }; |
| |
| #define PTE page_size |
| |
| #define MAKE_TEST(source_align, destination_align, size, \ |
| overlaps, should_fail, test_name) \ |
| (struct test){ \ |
| .name = test_name, \ |
| .config = { \ |
| .src_alignment = source_align, \ |
| .dest_alignment = destination_align, \ |
| .region_size = size, \ |
| .overlapping = overlaps, \ |
| }, \ |
| .expect_failure = should_fail \ |
| } |
| |
| /* compute square root using binary search */ |
| static unsigned long get_sqrt(unsigned long val) |
| { |
| unsigned long low = 1; |
| |
| /* assuming rand_size is less than 1TB */ |
| unsigned long high = (1UL << 20); |
| |
| while (low <= high) { |
| unsigned long mid = low + (high - low) / 2; |
| unsigned long temp = mid * mid; |
| |
| if (temp == val) |
| return mid; |
| if (temp < val) |
| low = mid + 1; |
| high = mid - 1; |
| } |
| return low; |
| } |
| |
| /* |
| * Returns false if the requested remap region overlaps with an |
| * existing mapping (e.g text, stack) else returns true. |
| */ |
| static bool is_remap_region_valid(void *addr, unsigned long long size) |
| { |
| void *remap_addr = NULL; |
| bool ret = true; |
| |
| /* Use MAP_FIXED_NOREPLACE flag to ensure region is not mapped */ |
| remap_addr = mmap(addr, size, PROT_READ | PROT_WRITE, |
| MAP_FIXED_NOREPLACE | MAP_ANONYMOUS | MAP_SHARED, |
| -1, 0); |
| |
| if (remap_addr == MAP_FAILED) { |
| if (errno == EEXIST) |
| ret = false; |
| } else { |
| munmap(remap_addr, size); |
| } |
| |
| return ret; |
| } |
| |
| /* Returns mmap_min_addr sysctl tunable from procfs */ |
| static unsigned long long get_mmap_min_addr(void) |
| { |
| FILE *fp; |
| int n_matched; |
| static unsigned long long addr; |
| |
| if (addr) |
| return addr; |
| |
| fp = fopen("/proc/sys/vm/mmap_min_addr", "r"); |
| if (fp == NULL) { |
| ksft_print_msg("Failed to open /proc/sys/vm/mmap_min_addr: %s\n", |
| strerror(errno)); |
| exit(KSFT_SKIP); |
| } |
| |
| n_matched = fscanf(fp, "%llu", &addr); |
| if (n_matched != 1) { |
| ksft_print_msg("Failed to read /proc/sys/vm/mmap_min_addr: %s\n", |
| strerror(errno)); |
| fclose(fp); |
| exit(KSFT_SKIP); |
| } |
| |
| fclose(fp); |
| return addr; |
| } |
| |
| /* |
| * Using /proc/self/maps, assert that the specified address range is contained |
| * within a single mapping. |
| */ |
| static bool is_range_mapped(FILE *maps_fp, unsigned long start, |
| unsigned long end) |
| { |
| char *line = NULL; |
| size_t len = 0; |
| bool success = false; |
| unsigned long first_val, second_val; |
| |
| rewind(maps_fp); |
| |
| while (getline(&line, &len, maps_fp) != -1) { |
| if (sscanf(line, "%lx-%lx", &first_val, &second_val) != 2) { |
| ksft_exit_fail_msg("cannot parse /proc/self/maps\n"); |
| break; |
| } |
| |
| if (first_val <= start && second_val >= end) { |
| success = true; |
| break; |
| } |
| } |
| |
| return success; |
| } |
| |
| /* |
| * Returns the start address of the mapping on success, else returns |
| * NULL on failure. |
| */ |
| static void *get_source_mapping(struct config c) |
| { |
| unsigned long long addr = 0ULL; |
| void *src_addr = NULL; |
| unsigned long long mmap_min_addr; |
| |
| mmap_min_addr = get_mmap_min_addr(); |
| /* |
| * For some tests, we need to not have any mappings below the |
| * source mapping. Add some headroom to mmap_min_addr for this. |
| */ |
| mmap_min_addr += 10 * _4MB; |
| |
| retry: |
| addr += c.src_alignment; |
| if (addr < mmap_min_addr) |
| goto retry; |
| |
| src_addr = mmap((void *) addr, c.region_size, PROT_READ | PROT_WRITE, |
| MAP_FIXED_NOREPLACE | MAP_ANONYMOUS | MAP_SHARED, |
| -1, 0); |
| if (src_addr == MAP_FAILED) { |
| if (errno == EPERM || errno == EEXIST) |
| goto retry; |
| goto error; |
| } |
| /* |
| * Check that the address is aligned to the specified alignment. |
| * Addresses which have alignments that are multiples of that |
| * specified are not considered valid. For instance, 1GB address is |
| * 2MB-aligned, however it will not be considered valid for a |
| * requested alignment of 2MB. This is done to reduce coincidental |
| * alignment in the tests. |
| */ |
| if (((unsigned long long) src_addr & (c.src_alignment - 1)) || |
| !((unsigned long long) src_addr & c.src_alignment)) { |
| munmap(src_addr, c.region_size); |
| goto retry; |
| } |
| |
| if (!src_addr) |
| goto error; |
| |
| return src_addr; |
| error: |
| ksft_print_msg("Failed to map source region: %s\n", |
| strerror(errno)); |
| return NULL; |
| } |
| |
| /* |
| * This test validates that merge is called when expanding a mapping. |
| * Mapping containing three pages is created, middle page is unmapped |
| * and then the mapping containing the first page is expanded so that |
| * it fills the created hole. The two parts should merge creating |
| * single mapping with three pages. |
| */ |
| static void mremap_expand_merge(FILE *maps_fp, unsigned long page_size) |
| { |
| char *test_name = "mremap expand merge"; |
| bool success = false; |
| char *remap, *start; |
| |
| start = mmap(NULL, 3 * page_size, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| |
| if (start == MAP_FAILED) { |
| ksft_print_msg("mmap failed: %s\n", strerror(errno)); |
| goto out; |
| } |
| |
| munmap(start + page_size, page_size); |
| remap = mremap(start, page_size, 2 * page_size, 0); |
| if (remap == MAP_FAILED) { |
| ksft_print_msg("mremap failed: %s\n", strerror(errno)); |
| munmap(start, page_size); |
| munmap(start + 2 * page_size, page_size); |
| goto out; |
| } |
| |
| success = is_range_mapped(maps_fp, (unsigned long)start, |
| (unsigned long)(start + 3 * page_size)); |
| munmap(start, 3 * page_size); |
| |
| out: |
| if (success) |
| ksft_test_result_pass("%s\n", test_name); |
| else |
| ksft_test_result_fail("%s\n", test_name); |
| } |
| |
| /* |
| * Similar to mremap_expand_merge() except instead of removing the middle page, |
| * we remove the last then attempt to remap offset from the second page. This |
| * should result in the mapping being restored to its former state. |
| */ |
| static void mremap_expand_merge_offset(FILE *maps_fp, unsigned long page_size) |
| { |
| |
| char *test_name = "mremap expand merge offset"; |
| bool success = false; |
| char *remap, *start; |
| |
| start = mmap(NULL, 3 * page_size, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| |
| if (start == MAP_FAILED) { |
| ksft_print_msg("mmap failed: %s\n", strerror(errno)); |
| goto out; |
| } |
| |
| /* Unmap final page to ensure we have space to expand. */ |
| munmap(start + 2 * page_size, page_size); |
| remap = mremap(start + page_size, page_size, 2 * page_size, 0); |
| if (remap == MAP_FAILED) { |
| ksft_print_msg("mremap failed: %s\n", strerror(errno)); |
| munmap(start, 2 * page_size); |
| goto out; |
| } |
| |
| success = is_range_mapped(maps_fp, (unsigned long)start, |
| (unsigned long)(start + 3 * page_size)); |
| munmap(start, 3 * page_size); |
| |
| out: |
| if (success) |
| ksft_test_result_pass("%s\n", test_name); |
| else |
| ksft_test_result_fail("%s\n", test_name); |
| } |
| |
| /* |
| * Verify that an mremap within a range does not cause corruption |
| * of unrelated part of range. |
| * |
| * Consider the following range which is 2MB aligned and is |
| * a part of a larger 20MB range which is not shown. Each |
| * character is 256KB below making the source and destination |
| * 2MB each. The lower case letters are moved (s to d) and the |
| * upper case letters are not moved. The below test verifies |
| * that the upper case S letters are not corrupted by the |
| * adjacent mremap. |
| * |
| * |DDDDddddSSSSssss| |
| */ |
| static void mremap_move_within_range(unsigned int pattern_seed, char *rand_addr) |
| { |
| char *test_name = "mremap mremap move within range"; |
| void *src, *dest; |
| int i, success = 1; |
| |
| size_t size = SIZE_MB(20); |
| void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (ptr == MAP_FAILED) { |
| perror("mmap"); |
| success = 0; |
| goto out; |
| } |
| memset(ptr, 0, size); |
| |
| src = ptr + SIZE_MB(6); |
| src = (void *)((unsigned long)src & ~(SIZE_MB(2) - 1)); |
| |
| /* Set byte pattern for source block. */ |
| memcpy(src, rand_addr, SIZE_MB(2)); |
| |
| dest = src - SIZE_MB(2); |
| |
| void *new_ptr = mremap(src + SIZE_MB(1), SIZE_MB(1), SIZE_MB(1), |
| MREMAP_MAYMOVE | MREMAP_FIXED, dest + SIZE_MB(1)); |
| if (new_ptr == MAP_FAILED) { |
| perror("mremap"); |
| success = 0; |
| goto out; |
| } |
| |
| /* Verify byte pattern after remapping */ |
| srand(pattern_seed); |
| for (i = 0; i < SIZE_MB(1); i++) { |
| char c = (char) rand(); |
| |
| if (((char *)src)[i] != c) { |
| ksft_print_msg("Data at src at %d got corrupted due to unrelated mremap\n", |
| i); |
| ksft_print_msg("Expected: %#x\t Got: %#x\n", c & 0xff, |
| ((char *) src)[i] & 0xff); |
| success = 0; |
| } |
| } |
| |
| out: |
| if (munmap(ptr, size) == -1) |
| perror("munmap"); |
| |
| if (success) |
| ksft_test_result_pass("%s\n", test_name); |
| else |
| ksft_test_result_fail("%s\n", test_name); |
| } |
| |
| /* Returns the time taken for the remap on success else returns -1. */ |
| static long long remap_region(struct config c, unsigned int threshold_mb, |
| char *rand_addr) |
| { |
| void *addr, *src_addr, *dest_addr, *dest_preamble_addr; |
| unsigned long long t, d; |
| struct timespec t_start = {0, 0}, t_end = {0, 0}; |
| long long start_ns, end_ns, align_mask, ret, offset; |
| unsigned long long threshold; |
| unsigned long num_chunks; |
| |
| if (threshold_mb == VALIDATION_NO_THRESHOLD) |
| threshold = c.region_size; |
| else |
| threshold = MIN(threshold_mb * _1MB, c.region_size); |
| |
| src_addr = get_source_mapping(c); |
| if (!src_addr) { |
| ret = -1; |
| goto out; |
| } |
| |
| /* Set byte pattern for source block. */ |
| memcpy(src_addr, rand_addr, threshold); |
| |
| /* Mask to zero out lower bits of address for alignment */ |
| align_mask = ~(c.dest_alignment - 1); |
| /* Offset of destination address from the end of the source region */ |
| offset = (c.overlapping) ? -c.dest_alignment : c.dest_alignment; |
| addr = (void *) (((unsigned long long) src_addr + c.region_size |
| + offset) & align_mask); |
| |
| /* Remap after the destination block preamble. */ |
| addr += c.dest_preamble_size; |
| |
| /* See comment in get_source_mapping() */ |
| if (!((unsigned long long) addr & c.dest_alignment)) |
| addr = (void *) ((unsigned long long) addr | c.dest_alignment); |
| |
| /* Don't destroy existing mappings unless expected to overlap */ |
| while (!is_remap_region_valid(addr, c.region_size) && !c.overlapping) { |
| /* Check for unsigned overflow */ |
| if (addr + c.dest_alignment < addr) { |
| ksft_print_msg("Couldn't find a valid region to remap to\n"); |
| ret = -1; |
| goto clean_up_src; |
| } |
| addr += c.dest_alignment; |
| } |
| |
| if (c.dest_preamble_size) { |
| dest_preamble_addr = mmap((void *) addr - c.dest_preamble_size, c.dest_preamble_size, |
| PROT_READ | PROT_WRITE, |
| MAP_FIXED_NOREPLACE | MAP_ANONYMOUS | MAP_SHARED, |
| -1, 0); |
| if (dest_preamble_addr == MAP_FAILED) { |
| ksft_print_msg("Failed to map dest preamble region: %s\n", |
| strerror(errno)); |
| ret = -1; |
| goto clean_up_src; |
| } |
| |
| /* Set byte pattern for the dest preamble block. */ |
| memcpy(dest_preamble_addr, rand_addr, c.dest_preamble_size); |
| } |
| |
| clock_gettime(CLOCK_MONOTONIC, &t_start); |
| dest_addr = mremap(src_addr, c.region_size, c.region_size, |
| MREMAP_MAYMOVE|MREMAP_FIXED, (char *) addr); |
| clock_gettime(CLOCK_MONOTONIC, &t_end); |
| |
| if (dest_addr == MAP_FAILED) { |
| ksft_print_msg("mremap failed: %s\n", strerror(errno)); |
| ret = -1; |
| goto clean_up_dest_preamble; |
| } |
| |
| /* |
| * Verify byte pattern after remapping. Employ an algorithm with a |
| * square root time complexity in threshold: divide the range into |
| * chunks, if memcmp() returns non-zero, only then perform an |
| * iteration in that chunk to find the mismatch index. |
| */ |
| num_chunks = get_sqrt(threshold); |
| for (unsigned long i = 0; i < num_chunks; ++i) { |
| size_t chunk_size = threshold / num_chunks; |
| unsigned long shift = i * chunk_size; |
| |
| if (!memcmp(dest_addr + shift, rand_addr + shift, chunk_size)) |
| continue; |
| |
| /* brute force iteration only over mismatch segment */ |
| for (t = shift; t < shift + chunk_size; ++t) { |
| if (((char *) dest_addr)[t] != rand_addr[t]) { |
| ksft_print_msg("Data after remap doesn't match at offset %llu\n", |
| t); |
| ksft_print_msg("Expected: %#x\t Got: %#x\n", rand_addr[t] & 0xff, |
| ((char *) dest_addr)[t] & 0xff); |
| ret = -1; |
| goto clean_up_dest; |
| } |
| } |
| } |
| |
| /* |
| * if threshold is not divisible by num_chunks, then check the |
| * last chunk |
| */ |
| for (t = num_chunks * (threshold / num_chunks); t < threshold; ++t) { |
| if (((char *) dest_addr)[t] != rand_addr[t]) { |
| ksft_print_msg("Data after remap doesn't match at offset %llu\n", |
| t); |
| ksft_print_msg("Expected: %#x\t Got: %#x\n", rand_addr[t] & 0xff, |
| ((char *) dest_addr)[t] & 0xff); |
| ret = -1; |
| goto clean_up_dest; |
| } |
| } |
| |
| /* Verify the dest preamble byte pattern after remapping */ |
| if (!c.dest_preamble_size) |
| goto no_preamble; |
| |
| num_chunks = get_sqrt(c.dest_preamble_size); |
| |
| for (unsigned long i = 0; i < num_chunks; ++i) { |
| size_t chunk_size = c.dest_preamble_size / num_chunks; |
| unsigned long shift = i * chunk_size; |
| |
| if (!memcmp(dest_preamble_addr + shift, rand_addr + shift, |
| chunk_size)) |
| continue; |
| |
| /* brute force iteration only over mismatched segment */ |
| for (d = shift; d < shift + chunk_size; ++d) { |
| if (((char *) dest_preamble_addr)[d] != rand_addr[d]) { |
| ksft_print_msg("Preamble data after remap doesn't match at offset %llu\n", |
| d); |
| ksft_print_msg("Expected: %#x\t Got: %#x\n", rand_addr[d] & 0xff, |
| ((char *) dest_preamble_addr)[d] & 0xff); |
| ret = -1; |
| goto clean_up_dest; |
| } |
| } |
| } |
| |
| for (d = num_chunks * (c.dest_preamble_size / num_chunks); d < c.dest_preamble_size; ++d) { |
| if (((char *) dest_preamble_addr)[d] != rand_addr[d]) { |
| ksft_print_msg("Preamble data after remap doesn't match at offset %llu\n", |
| d); |
| ksft_print_msg("Expected: %#x\t Got: %#x\n", rand_addr[d] & 0xff, |
| ((char *) dest_preamble_addr)[d] & 0xff); |
| ret = -1; |
| goto clean_up_dest; |
| } |
| } |
| |
| no_preamble: |
| start_ns = t_start.tv_sec * NS_PER_SEC + t_start.tv_nsec; |
| end_ns = t_end.tv_sec * NS_PER_SEC + t_end.tv_nsec; |
| ret = end_ns - start_ns; |
| |
| /* |
| * Since the destination address is specified using MREMAP_FIXED, subsequent |
| * mremap will unmap any previous mapping at the address range specified by |
| * dest_addr and region_size. This significantly affects the remap time of |
| * subsequent tests. So we clean up mappings after each test. |
| */ |
| clean_up_dest: |
| munmap(dest_addr, c.region_size); |
| clean_up_dest_preamble: |
| if (c.dest_preamble_size && dest_preamble_addr) |
| munmap(dest_preamble_addr, c.dest_preamble_size); |
| clean_up_src: |
| munmap(src_addr, c.region_size); |
| out: |
| return ret; |
| } |
| |
| /* |
| * Verify that an mremap aligning down does not destroy |
| * the beginning of the mapping just because the aligned |
| * down address landed on a mapping that maybe does not exist. |
| */ |
| static void mremap_move_1mb_from_start(unsigned int pattern_seed, |
| char *rand_addr) |
| { |
| char *test_name = "mremap move 1mb from start at 1MB+256KB aligned src"; |
| void *src = NULL, *dest = NULL; |
| int i, success = 1; |
| |
| /* Config to reuse get_source_mapping() to do an aligned mmap. */ |
| struct config c = { |
| .src_alignment = SIZE_MB(1) + SIZE_KB(256), |
| .region_size = SIZE_MB(6) |
| }; |
| |
| src = get_source_mapping(c); |
| if (!src) { |
| success = 0; |
| goto out; |
| } |
| |
| c.src_alignment = SIZE_MB(1) + SIZE_KB(256); |
| dest = get_source_mapping(c); |
| if (!dest) { |
| success = 0; |
| goto out; |
| } |
| |
| /* Set byte pattern for source block. */ |
| memcpy(src, rand_addr, SIZE_MB(2)); |
| |
| /* |
| * Unmap the beginning of dest so that the aligned address |
| * falls on no mapping. |
| */ |
| munmap(dest, SIZE_MB(1)); |
| |
| void *new_ptr = mremap(src + SIZE_MB(1), SIZE_MB(1), SIZE_MB(1), |
| MREMAP_MAYMOVE | MREMAP_FIXED, dest + SIZE_MB(1)); |
| if (new_ptr == MAP_FAILED) { |
| perror("mremap"); |
| success = 0; |
| goto out; |
| } |
| |
| /* Verify byte pattern after remapping */ |
| srand(pattern_seed); |
| for (i = 0; i < SIZE_MB(1); i++) { |
| char c = (char) rand(); |
| |
| if (((char *)src)[i] != c) { |
| ksft_print_msg("Data at src at %d got corrupted due to unrelated mremap\n", |
| i); |
| ksft_print_msg("Expected: %#x\t Got: %#x\n", c & 0xff, |
| ((char *) src)[i] & 0xff); |
| success = 0; |
| } |
| } |
| |
| out: |
| if (src && munmap(src, c.region_size) == -1) |
| perror("munmap src"); |
| |
| if (dest && munmap(dest, c.region_size) == -1) |
| perror("munmap dest"); |
| |
| if (success) |
| ksft_test_result_pass("%s\n", test_name); |
| else |
| ksft_test_result_fail("%s\n", test_name); |
| } |
| |
| static void run_mremap_test_case(struct test test_case, int *failures, |
| unsigned int threshold_mb, |
| unsigned int pattern_seed, char *rand_addr) |
| { |
| long long remap_time = remap_region(test_case.config, threshold_mb, |
| rand_addr); |
| |
| if (remap_time < 0) { |
| if (test_case.expect_failure) |
| ksft_test_result_xfail("%s\n\tExpected mremap failure\n", |
| test_case.name); |
| else { |
| ksft_test_result_fail("%s\n", test_case.name); |
| *failures += 1; |
| } |
| } else { |
| /* |
| * Comparing mremap time is only applicable if entire region |
| * was faulted in. |
| */ |
| if (threshold_mb == VALIDATION_NO_THRESHOLD || |
| test_case.config.region_size <= threshold_mb * _1MB) |
| ksft_test_result_pass("%s\n\tmremap time: %12lldns\n", |
| test_case.name, remap_time); |
| else |
| ksft_test_result_pass("%s\n", test_case.name); |
| } |
| } |
| |
| static void usage(const char *cmd) |
| { |
| fprintf(stderr, |
| "Usage: %s [[-t <threshold_mb>] [-p <pattern_seed>]]\n" |
| "-t\t only validate threshold_mb of the remapped region\n" |
| " \t if 0 is supplied no threshold is used; all tests\n" |
| " \t are run and remapped regions validated fully.\n" |
| " \t The default threshold used is 4MB.\n" |
| "-p\t provide a seed to generate the random pattern for\n" |
| " \t validating the remapped region.\n", cmd); |
| } |
| |
| static int parse_args(int argc, char **argv, unsigned int *threshold_mb, |
| unsigned int *pattern_seed) |
| { |
| const char *optstr = "t:p:"; |
| int opt; |
| |
| while ((opt = getopt(argc, argv, optstr)) != -1) { |
| switch (opt) { |
| case 't': |
| *threshold_mb = atoi(optarg); |
| break; |
| case 'p': |
| *pattern_seed = atoi(optarg); |
| break; |
| default: |
| usage(argv[0]); |
| return -1; |
| } |
| } |
| |
| if (optind < argc) { |
| usage(argv[0]); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| #define MAX_TEST 15 |
| #define MAX_PERF_TEST 3 |
| int main(int argc, char **argv) |
| { |
| int failures = 0; |
| int i, run_perf_tests; |
| unsigned int threshold_mb = VALIDATION_DEFAULT_THRESHOLD; |
| |
| /* hard-coded test configs */ |
| size_t max_test_variable_region_size = _2GB; |
| size_t max_test_constant_region_size = _2MB; |
| size_t dest_preamble_size = 10 * _4MB; |
| |
| unsigned int pattern_seed; |
| char *rand_addr; |
| size_t rand_size; |
| int num_expand_tests = 2; |
| int num_misc_tests = 2; |
| struct test test_cases[MAX_TEST] = {}; |
| struct test perf_test_cases[MAX_PERF_TEST]; |
| int page_size; |
| time_t t; |
| FILE *maps_fp; |
| |
| pattern_seed = (unsigned int) time(&t); |
| |
| if (parse_args(argc, argv, &threshold_mb, &pattern_seed) < 0) |
| exit(EXIT_FAILURE); |
| |
| ksft_print_msg("Test configs:\n\tthreshold_mb=%u\n\tpattern_seed=%u\n\n", |
| threshold_mb, pattern_seed); |
| |
| /* |
| * set preallocated random array according to test configs; see the |
| * functions for the logic of setting the size |
| */ |
| if (!threshold_mb) |
| rand_size = MAX(max_test_variable_region_size, |
| max_test_constant_region_size); |
| else |
| rand_size = MAX(MIN(threshold_mb * _1MB, |
| max_test_variable_region_size), |
| max_test_constant_region_size); |
| rand_size = MAX(dest_preamble_size, rand_size); |
| |
| rand_addr = (char *)mmap(NULL, rand_size, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (rand_addr == MAP_FAILED) { |
| perror("mmap"); |
| ksft_exit_fail_msg("cannot mmap rand_addr\n"); |
| } |
| |
| /* fill stream of random bytes */ |
| srand(pattern_seed); |
| for (unsigned long i = 0; i < rand_size; ++i) |
| rand_addr[i] = (char) rand(); |
| |
| page_size = sysconf(_SC_PAGESIZE); |
| |
| /* Expected mremap failures */ |
| test_cases[0] = MAKE_TEST(page_size, page_size, page_size, |
| OVERLAPPING, EXPECT_FAILURE, |
| "mremap - Source and Destination Regions Overlapping"); |
| |
| test_cases[1] = MAKE_TEST(page_size, page_size/4, page_size, |
| NON_OVERLAPPING, EXPECT_FAILURE, |
| "mremap - Destination Address Misaligned (1KB-aligned)"); |
| test_cases[2] = MAKE_TEST(page_size/4, page_size, page_size, |
| NON_OVERLAPPING, EXPECT_FAILURE, |
| "mremap - Source Address Misaligned (1KB-aligned)"); |
| |
| /* Src addr PTE aligned */ |
| test_cases[3] = MAKE_TEST(PTE, PTE, PTE * 2, |
| NON_OVERLAPPING, EXPECT_SUCCESS, |
| "8KB mremap - Source PTE-aligned, Destination PTE-aligned"); |
| |
| /* Src addr 1MB aligned */ |
| test_cases[4] = MAKE_TEST(_1MB, PTE, _2MB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "2MB mremap - Source 1MB-aligned, Destination PTE-aligned"); |
| test_cases[5] = MAKE_TEST(_1MB, _1MB, _2MB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "2MB mremap - Source 1MB-aligned, Destination 1MB-aligned"); |
| |
| /* Src addr PMD aligned */ |
| test_cases[6] = MAKE_TEST(PMD, PTE, _4MB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "4MB mremap - Source PMD-aligned, Destination PTE-aligned"); |
| test_cases[7] = MAKE_TEST(PMD, _1MB, _4MB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "4MB mremap - Source PMD-aligned, Destination 1MB-aligned"); |
| test_cases[8] = MAKE_TEST(PMD, PMD, _4MB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "4MB mremap - Source PMD-aligned, Destination PMD-aligned"); |
| |
| /* Src addr PUD aligned */ |
| test_cases[9] = MAKE_TEST(PUD, PTE, _2GB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "2GB mremap - Source PUD-aligned, Destination PTE-aligned"); |
| test_cases[10] = MAKE_TEST(PUD, _1MB, _2GB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "2GB mremap - Source PUD-aligned, Destination 1MB-aligned"); |
| test_cases[11] = MAKE_TEST(PUD, PMD, _2GB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "2GB mremap - Source PUD-aligned, Destination PMD-aligned"); |
| test_cases[12] = MAKE_TEST(PUD, PUD, _2GB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "2GB mremap - Source PUD-aligned, Destination PUD-aligned"); |
| |
| /* Src and Dest addr 1MB aligned. 5MB mremap. */ |
| test_cases[13] = MAKE_TEST(_1MB, _1MB, _5MB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "5MB mremap - Source 1MB-aligned, Destination 1MB-aligned"); |
| |
| /* Src and Dest addr 1MB aligned. 5MB mremap. */ |
| test_cases[14] = MAKE_TEST(_1MB, _1MB, _5MB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "5MB mremap - Source 1MB-aligned, Dest 1MB-aligned with 40MB Preamble"); |
| test_cases[14].config.dest_preamble_size = 10 * _4MB; |
| |
| perf_test_cases[0] = MAKE_TEST(page_size, page_size, _1GB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "1GB mremap - Source PTE-aligned, Destination PTE-aligned"); |
| /* |
| * mremap 1GB region - Page table level aligned time |
| * comparison. |
| */ |
| perf_test_cases[1] = MAKE_TEST(PMD, PMD, _1GB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "1GB mremap - Source PMD-aligned, Destination PMD-aligned"); |
| perf_test_cases[2] = MAKE_TEST(PUD, PUD, _1GB, NON_OVERLAPPING, EXPECT_SUCCESS, |
| "1GB mremap - Source PUD-aligned, Destination PUD-aligned"); |
| |
| run_perf_tests = (threshold_mb == VALIDATION_NO_THRESHOLD) || |
| (threshold_mb * _1MB >= _1GB); |
| |
| ksft_set_plan(ARRAY_SIZE(test_cases) + (run_perf_tests ? |
| ARRAY_SIZE(perf_test_cases) : 0) + num_expand_tests + num_misc_tests); |
| |
| for (i = 0; i < ARRAY_SIZE(test_cases); i++) |
| run_mremap_test_case(test_cases[i], &failures, threshold_mb, |
| pattern_seed, rand_addr); |
| |
| maps_fp = fopen("/proc/self/maps", "r"); |
| |
| if (maps_fp == NULL) { |
| munmap(rand_addr, rand_size); |
| ksft_exit_fail_msg("Failed to read /proc/self/maps: %s\n", strerror(errno)); |
| } |
| |
| mremap_expand_merge(maps_fp, page_size); |
| mremap_expand_merge_offset(maps_fp, page_size); |
| |
| fclose(maps_fp); |
| |
| mremap_move_within_range(pattern_seed, rand_addr); |
| mremap_move_1mb_from_start(pattern_seed, rand_addr); |
| |
| if (run_perf_tests) { |
| ksft_print_msg("\n%s\n", |
| "mremap HAVE_MOVE_PMD/PUD optimization time comparison for 1GB region:"); |
| for (i = 0; i < ARRAY_SIZE(perf_test_cases); i++) |
| run_mremap_test_case(perf_test_cases[i], &failures, |
| threshold_mb, pattern_seed, |
| rand_addr); |
| } |
| |
| munmap(rand_addr, rand_size); |
| |
| if (failures > 0) |
| ksft_exit_fail(); |
| else |
| ksft_exit_pass(); |
| } |