| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */ |
| |
| #include <linux/etherdevice.h> |
| #include <net/ip6_checksum.h> |
| #include <net/page_pool/helpers.h> |
| #include <net/inet_ecn.h> |
| #include <linux/iopoll.h> |
| #include <linux/sctp.h> |
| #include <linux/pci.h> |
| #include <net/tcp.h> |
| #include <net/ip.h> |
| |
| #include "wx_type.h" |
| #include "wx_lib.h" |
| #include "wx_hw.h" |
| |
| /* Lookup table mapping the HW PTYPE to the bit field for decoding */ |
| static struct wx_dec_ptype wx_ptype_lookup[256] = { |
| /* L2: mac */ |
| [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), |
| [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2), |
| [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), |
| [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), |
| [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), |
| [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2), |
| [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), |
| |
| /* L2: ethertype filter */ |
| [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE), |
| |
| /* L3: ip non-tunnel */ |
| [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3), |
| [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3), |
| [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4), |
| [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4), |
| [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4), |
| [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3), |
| [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3), |
| [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3), |
| [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4), |
| [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4), |
| |
| /* L2: fcoe */ |
| [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), |
| [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3), |
| |
| /* IPv4 --> IPv4/IPv6 */ |
| [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3), |
| [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3), |
| [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4), |
| [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4), |
| [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4), |
| [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3), |
| [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3), |
| [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4), |
| [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4), |
| [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4), |
| |
| /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */ |
| [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3), |
| [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3), |
| [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3), |
| [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4), |
| [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4), |
| [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4), |
| [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3), |
| [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3), |
| [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4), |
| [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4), |
| [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4), |
| |
| /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */ |
| [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3), |
| [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3), |
| [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3), |
| [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4), |
| [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4), |
| [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4), |
| [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3), |
| [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3), |
| [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4), |
| [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4), |
| [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4), |
| |
| /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */ |
| [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3), |
| [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3), |
| [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3), |
| [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4), |
| [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4), |
| [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4), |
| [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3), |
| [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3), |
| [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4), |
| [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4), |
| [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4), |
| |
| /* IPv6 --> IPv4/IPv6 */ |
| [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3), |
| [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3), |
| [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4), |
| [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4), |
| [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4), |
| [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3), |
| [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3), |
| [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4), |
| [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4), |
| [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4), |
| |
| /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */ |
| [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3), |
| [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3), |
| [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3), |
| [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4), |
| [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4), |
| [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4), |
| [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3), |
| [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3), |
| [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4), |
| [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4), |
| [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4), |
| |
| /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */ |
| [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3), |
| [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3), |
| [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3), |
| [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4), |
| [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4), |
| [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4), |
| [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3), |
| [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3), |
| [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4), |
| [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4), |
| [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4), |
| |
| /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */ |
| [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3), |
| [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3), |
| [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3), |
| [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4), |
| [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4), |
| [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4), |
| [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3), |
| [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3), |
| [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4), |
| [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4), |
| [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4), |
| }; |
| |
| static struct wx_dec_ptype wx_decode_ptype(const u8 ptype) |
| { |
| return wx_ptype_lookup[ptype]; |
| } |
| |
| /* wx_test_staterr - tests bits in Rx descriptor status and error fields */ |
| static __le32 wx_test_staterr(union wx_rx_desc *rx_desc, |
| const u32 stat_err_bits) |
| { |
| return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); |
| } |
| |
| static void wx_dma_sync_frag(struct wx_ring *rx_ring, |
| struct wx_rx_buffer *rx_buffer) |
| { |
| struct sk_buff *skb = rx_buffer->skb; |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; |
| |
| dma_sync_single_range_for_cpu(rx_ring->dev, |
| WX_CB(skb)->dma, |
| skb_frag_off(frag), |
| skb_frag_size(frag), |
| DMA_FROM_DEVICE); |
| |
| /* If the page was released, just unmap it. */ |
| if (unlikely(WX_CB(skb)->page_released)) |
| page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); |
| } |
| |
| static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring, |
| union wx_rx_desc *rx_desc, |
| struct sk_buff **skb, |
| int *rx_buffer_pgcnt) |
| { |
| struct wx_rx_buffer *rx_buffer; |
| unsigned int size; |
| |
| rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; |
| size = le16_to_cpu(rx_desc->wb.upper.length); |
| |
| #if (PAGE_SIZE < 8192) |
| *rx_buffer_pgcnt = page_count(rx_buffer->page); |
| #else |
| *rx_buffer_pgcnt = 0; |
| #endif |
| |
| prefetchw(rx_buffer->page); |
| *skb = rx_buffer->skb; |
| |
| /* Delay unmapping of the first packet. It carries the header |
| * information, HW may still access the header after the writeback. |
| * Only unmap it when EOP is reached |
| */ |
| if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) { |
| if (!*skb) |
| goto skip_sync; |
| } else { |
| if (*skb) |
| wx_dma_sync_frag(rx_ring, rx_buffer); |
| } |
| |
| /* we are reusing so sync this buffer for CPU use */ |
| dma_sync_single_range_for_cpu(rx_ring->dev, |
| rx_buffer->dma, |
| rx_buffer->page_offset, |
| size, |
| DMA_FROM_DEVICE); |
| skip_sync: |
| return rx_buffer; |
| } |
| |
| static void wx_put_rx_buffer(struct wx_ring *rx_ring, |
| struct wx_rx_buffer *rx_buffer, |
| struct sk_buff *skb, |
| int rx_buffer_pgcnt) |
| { |
| if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma) |
| /* the page has been released from the ring */ |
| WX_CB(skb)->page_released = true; |
| |
| /* clear contents of rx_buffer */ |
| rx_buffer->page = NULL; |
| rx_buffer->skb = NULL; |
| } |
| |
| static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring, |
| struct wx_rx_buffer *rx_buffer, |
| union wx_rx_desc *rx_desc) |
| { |
| unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); |
| #if (PAGE_SIZE < 8192) |
| unsigned int truesize = WX_RX_BUFSZ; |
| #else |
| unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); |
| #endif |
| struct sk_buff *skb = rx_buffer->skb; |
| |
| if (!skb) { |
| void *page_addr = page_address(rx_buffer->page) + |
| rx_buffer->page_offset; |
| |
| /* prefetch first cache line of first page */ |
| prefetch(page_addr); |
| #if L1_CACHE_BYTES < 128 |
| prefetch(page_addr + L1_CACHE_BYTES); |
| #endif |
| |
| /* allocate a skb to store the frags */ |
| skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| /* we will be copying header into skb->data in |
| * pskb_may_pull so it is in our interest to prefetch |
| * it now to avoid a possible cache miss |
| */ |
| prefetchw(skb->data); |
| |
| if (size <= WX_RXBUFFER_256) { |
| memcpy(__skb_put(skb, size), page_addr, |
| ALIGN(size, sizeof(long))); |
| page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true); |
| return skb; |
| } |
| |
| skb_mark_for_recycle(skb); |
| |
| if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) |
| WX_CB(skb)->dma = rx_buffer->dma; |
| |
| skb_add_rx_frag(skb, 0, rx_buffer->page, |
| rx_buffer->page_offset, |
| size, truesize); |
| goto out; |
| |
| } else { |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, |
| rx_buffer->page_offset, size, truesize); |
| } |
| |
| out: |
| #if (PAGE_SIZE < 8192) |
| /* flip page offset to other buffer */ |
| rx_buffer->page_offset ^= truesize; |
| #else |
| /* move offset up to the next cache line */ |
| rx_buffer->page_offset += truesize; |
| #endif |
| |
| return skb; |
| } |
| |
| static bool wx_alloc_mapped_page(struct wx_ring *rx_ring, |
| struct wx_rx_buffer *bi) |
| { |
| struct page *page = bi->page; |
| dma_addr_t dma; |
| |
| /* since we are recycling buffers we should seldom need to alloc */ |
| if (likely(page)) |
| return true; |
| |
| page = page_pool_dev_alloc_pages(rx_ring->page_pool); |
| WARN_ON(!page); |
| dma = page_pool_get_dma_addr(page); |
| |
| bi->page_dma = dma; |
| bi->page = page; |
| bi->page_offset = 0; |
| |
| return true; |
| } |
| |
| /** |
| * wx_alloc_rx_buffers - Replace used receive buffers |
| * @rx_ring: ring to place buffers on |
| * @cleaned_count: number of buffers to replace |
| **/ |
| void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count) |
| { |
| u16 i = rx_ring->next_to_use; |
| union wx_rx_desc *rx_desc; |
| struct wx_rx_buffer *bi; |
| |
| /* nothing to do */ |
| if (!cleaned_count) |
| return; |
| |
| rx_desc = WX_RX_DESC(rx_ring, i); |
| bi = &rx_ring->rx_buffer_info[i]; |
| i -= rx_ring->count; |
| |
| do { |
| if (!wx_alloc_mapped_page(rx_ring, bi)) |
| break; |
| |
| /* sync the buffer for use by the device */ |
| dma_sync_single_range_for_device(rx_ring->dev, bi->dma, |
| bi->page_offset, |
| WX_RX_BUFSZ, |
| DMA_FROM_DEVICE); |
| |
| rx_desc->read.pkt_addr = |
| cpu_to_le64(bi->page_dma + bi->page_offset); |
| |
| rx_desc++; |
| bi++; |
| i++; |
| if (unlikely(!i)) { |
| rx_desc = WX_RX_DESC(rx_ring, 0); |
| bi = rx_ring->rx_buffer_info; |
| i -= rx_ring->count; |
| } |
| |
| /* clear the status bits for the next_to_use descriptor */ |
| rx_desc->wb.upper.status_error = 0; |
| |
| cleaned_count--; |
| } while (cleaned_count); |
| |
| i += rx_ring->count; |
| |
| if (rx_ring->next_to_use != i) { |
| rx_ring->next_to_use = i; |
| /* update next to alloc since we have filled the ring */ |
| rx_ring->next_to_alloc = i; |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| writel(i, rx_ring->tail); |
| } |
| } |
| |
| u16 wx_desc_unused(struct wx_ring *ring) |
| { |
| u16 ntc = ring->next_to_clean; |
| u16 ntu = ring->next_to_use; |
| |
| return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1; |
| } |
| |
| /** |
| * wx_is_non_eop - process handling of non-EOP buffers |
| * @rx_ring: Rx ring being processed |
| * @rx_desc: Rx descriptor for current buffer |
| * @skb: Current socket buffer containing buffer in progress |
| * |
| * This function updates next to clean. If the buffer is an EOP buffer |
| * this function exits returning false, otherwise it will place the |
| * sk_buff in the next buffer to be chained and return true indicating |
| * that this is in fact a non-EOP buffer. |
| **/ |
| static bool wx_is_non_eop(struct wx_ring *rx_ring, |
| union wx_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| u32 ntc = rx_ring->next_to_clean + 1; |
| |
| /* fetch, update, and store next to clean */ |
| ntc = (ntc < rx_ring->count) ? ntc : 0; |
| rx_ring->next_to_clean = ntc; |
| |
| prefetch(WX_RX_DESC(rx_ring, ntc)); |
| |
| /* if we are the last buffer then there is nothing else to do */ |
| if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))) |
| return false; |
| |
| rx_ring->rx_buffer_info[ntc].skb = skb; |
| rx_ring->rx_stats.non_eop_descs++; |
| |
| return true; |
| } |
| |
| static void wx_pull_tail(struct sk_buff *skb) |
| { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; |
| unsigned int pull_len; |
| unsigned char *va; |
| |
| /* it is valid to use page_address instead of kmap since we are |
| * working with pages allocated out of the lomem pool per |
| * alloc_page(GFP_ATOMIC) |
| */ |
| va = skb_frag_address(frag); |
| |
| /* we need the header to contain the greater of either ETH_HLEN or |
| * 60 bytes if the skb->len is less than 60 for skb_pad. |
| */ |
| pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256); |
| |
| /* align pull length to size of long to optimize memcpy performance */ |
| skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); |
| |
| /* update all of the pointers */ |
| skb_frag_size_sub(frag, pull_len); |
| skb_frag_off_add(frag, pull_len); |
| skb->data_len -= pull_len; |
| skb->tail += pull_len; |
| } |
| |
| /** |
| * wx_cleanup_headers - Correct corrupted or empty headers |
| * @rx_ring: rx descriptor ring packet is being transacted on |
| * @rx_desc: pointer to the EOP Rx descriptor |
| * @skb: pointer to current skb being fixed |
| * |
| * Check for corrupted packet headers caused by senders on the local L2 |
| * embedded NIC switch not setting up their Tx Descriptors right. These |
| * should be very rare. |
| * |
| * Also address the case where we are pulling data in on pages only |
| * and as such no data is present in the skb header. |
| * |
| * In addition if skb is not at least 60 bytes we need to pad it so that |
| * it is large enough to qualify as a valid Ethernet frame. |
| * |
| * Returns true if an error was encountered and skb was freed. |
| **/ |
| static bool wx_cleanup_headers(struct wx_ring *rx_ring, |
| union wx_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| struct net_device *netdev = rx_ring->netdev; |
| |
| /* verify that the packet does not have any known errors */ |
| if (!netdev || |
| unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) && |
| !(netdev->features & NETIF_F_RXALL))) { |
| dev_kfree_skb_any(skb); |
| return true; |
| } |
| |
| /* place header in linear portion of buffer */ |
| if (!skb_headlen(skb)) |
| wx_pull_tail(skb); |
| |
| /* if eth_skb_pad returns an error the skb was freed */ |
| if (eth_skb_pad(skb)) |
| return true; |
| |
| return false; |
| } |
| |
| static void wx_rx_hash(struct wx_ring *ring, |
| union wx_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| u16 rss_type; |
| |
| if (!(ring->netdev->features & NETIF_F_RXHASH)) |
| return; |
| |
| rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & |
| WX_RXD_RSSTYPE_MASK; |
| |
| if (!rss_type) |
| return; |
| |
| skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), |
| (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? |
| PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); |
| } |
| |
| /** |
| * wx_rx_checksum - indicate in skb if hw indicated a good cksum |
| * @ring: structure containing ring specific data |
| * @rx_desc: current Rx descriptor being processed |
| * @skb: skb currently being received and modified |
| **/ |
| static void wx_rx_checksum(struct wx_ring *ring, |
| union wx_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc)); |
| |
| skb_checksum_none_assert(skb); |
| /* Rx csum disabled */ |
| if (!(ring->netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| /* if IPv4 header checksum error */ |
| if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) && |
| wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) || |
| (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) && |
| wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) { |
| ring->rx_stats.csum_err++; |
| return; |
| } |
| |
| /* L4 checksum offload flag must set for the below code to work */ |
| if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS)) |
| return; |
| |
| /* Hardware can't guarantee csum if IPv6 Dest Header found */ |
| if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc)) |
| return; |
| |
| /* if L4 checksum error */ |
| if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) { |
| ring->rx_stats.csum_err++; |
| return; |
| } |
| |
| /* It must be a TCP or UDP or SCTP packet with a valid checksum */ |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| /* If there is an outer header present that might contain a checksum |
| * we need to bump the checksum level by 1 to reflect the fact that |
| * we are indicating we validated the inner checksum. |
| */ |
| if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG) |
| __skb_incr_checksum_unnecessary(skb); |
| ring->rx_stats.csum_good_cnt++; |
| } |
| |
| static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| u16 ethertype; |
| u8 idx = 0; |
| |
| if ((ring->netdev->features & |
| (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) && |
| wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) { |
| idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & |
| 0x1c0) >> 6; |
| ethertype = ring->q_vector->wx->tpid[idx]; |
| __vlan_hwaccel_put_tag(skb, htons(ethertype), |
| le16_to_cpu(rx_desc->wb.upper.vlan)); |
| } |
| } |
| |
| /** |
| * wx_process_skb_fields - Populate skb header fields from Rx descriptor |
| * @rx_ring: rx descriptor ring packet is being transacted on |
| * @rx_desc: pointer to the EOP Rx descriptor |
| * @skb: pointer to current skb being populated |
| * |
| * This function checks the ring, descriptor, and packet information in |
| * order to populate the hash, checksum, protocol, and |
| * other fields within the skb. |
| **/ |
| static void wx_process_skb_fields(struct wx_ring *rx_ring, |
| union wx_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| wx_rx_hash(rx_ring, rx_desc, skb); |
| wx_rx_checksum(rx_ring, rx_desc, skb); |
| wx_rx_vlan(rx_ring, rx_desc, skb); |
| skb_record_rx_queue(skb, rx_ring->queue_index); |
| skb->protocol = eth_type_trans(skb, rx_ring->netdev); |
| } |
| |
| /** |
| * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf |
| * @q_vector: structure containing interrupt and ring information |
| * @rx_ring: rx descriptor ring to transact packets on |
| * @budget: Total limit on number of packets to process |
| * |
| * This function provides a "bounce buffer" approach to Rx interrupt |
| * processing. The advantage to this is that on systems that have |
| * expensive overhead for IOMMU access this provides a means of avoiding |
| * it by maintaining the mapping of the page to the system. |
| * |
| * Returns amount of work completed. |
| **/ |
| static int wx_clean_rx_irq(struct wx_q_vector *q_vector, |
| struct wx_ring *rx_ring, |
| int budget) |
| { |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| u16 cleaned_count = wx_desc_unused(rx_ring); |
| |
| do { |
| struct wx_rx_buffer *rx_buffer; |
| union wx_rx_desc *rx_desc; |
| struct sk_buff *skb; |
| int rx_buffer_pgcnt; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= WX_RX_BUFFER_WRITE) { |
| wx_alloc_rx_buffers(rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD)) |
| break; |
| |
| /* This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we know the |
| * descriptor has been written back |
| */ |
| dma_rmb(); |
| |
| rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt); |
| |
| /* retrieve a buffer from the ring */ |
| skb = wx_build_skb(rx_ring, rx_buffer, rx_desc); |
| |
| /* exit if we failed to retrieve a buffer */ |
| if (!skb) { |
| rx_ring->rx_stats.alloc_rx_buff_failed++; |
| break; |
| } |
| |
| wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt); |
| cleaned_count++; |
| |
| /* place incomplete frames back on ring for completion */ |
| if (wx_is_non_eop(rx_ring, rx_desc, skb)) |
| continue; |
| |
| /* verify the packet layout is correct */ |
| if (wx_cleanup_headers(rx_ring, rx_desc, skb)) |
| continue; |
| |
| /* probably a little skewed due to removing CRC */ |
| total_rx_bytes += skb->len; |
| |
| /* populate checksum, timestamp, VLAN, and protocol */ |
| wx_process_skb_fields(rx_ring, rx_desc, skb); |
| napi_gro_receive(&q_vector->napi, skb); |
| |
| /* update budget accounting */ |
| total_rx_packets++; |
| } while (likely(total_rx_packets < budget)); |
| |
| u64_stats_update_begin(&rx_ring->syncp); |
| rx_ring->stats.packets += total_rx_packets; |
| rx_ring->stats.bytes += total_rx_bytes; |
| u64_stats_update_end(&rx_ring->syncp); |
| q_vector->rx.total_packets += total_rx_packets; |
| q_vector->rx.total_bytes += total_rx_bytes; |
| |
| return total_rx_packets; |
| } |
| |
| static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring) |
| { |
| return netdev_get_tx_queue(ring->netdev, ring->queue_index); |
| } |
| |
| /** |
| * wx_clean_tx_irq - Reclaim resources after transmit completes |
| * @q_vector: structure containing interrupt and ring information |
| * @tx_ring: tx ring to clean |
| * @napi_budget: Used to determine if we are in netpoll |
| **/ |
| static bool wx_clean_tx_irq(struct wx_q_vector *q_vector, |
| struct wx_ring *tx_ring, int napi_budget) |
| { |
| unsigned int budget = q_vector->wx->tx_work_limit; |
| unsigned int total_bytes = 0, total_packets = 0; |
| unsigned int i = tx_ring->next_to_clean; |
| struct wx_tx_buffer *tx_buffer; |
| union wx_tx_desc *tx_desc; |
| |
| if (!netif_carrier_ok(tx_ring->netdev)) |
| return true; |
| |
| tx_buffer = &tx_ring->tx_buffer_info[i]; |
| tx_desc = WX_TX_DESC(tx_ring, i); |
| i -= tx_ring->count; |
| |
| do { |
| union wx_tx_desc *eop_desc = tx_buffer->next_to_watch; |
| |
| /* if next_to_watch is not set then there is no work pending */ |
| if (!eop_desc) |
| break; |
| |
| /* prevent any other reads prior to eop_desc */ |
| smp_rmb(); |
| |
| /* if DD is not set pending work has not been completed */ |
| if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD))) |
| break; |
| |
| /* clear next_to_watch to prevent false hangs */ |
| tx_buffer->next_to_watch = NULL; |
| |
| /* update the statistics for this packet */ |
| total_bytes += tx_buffer->bytecount; |
| total_packets += tx_buffer->gso_segs; |
| |
| /* free the skb */ |
| napi_consume_skb(tx_buffer->skb, napi_budget); |
| |
| /* unmap skb header data */ |
| dma_unmap_single(tx_ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| |
| /* clear tx_buffer data */ |
| dma_unmap_len_set(tx_buffer, len, 0); |
| |
| /* unmap remaining buffers */ |
| while (tx_desc != eop_desc) { |
| tx_buffer++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buffer = tx_ring->tx_buffer_info; |
| tx_desc = WX_TX_DESC(tx_ring, 0); |
| } |
| |
| /* unmap any remaining paged data */ |
| if (dma_unmap_len(tx_buffer, len)) { |
| dma_unmap_page(tx_ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_buffer, len, 0); |
| } |
| } |
| |
| /* move us one more past the eop_desc for start of next pkt */ |
| tx_buffer++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buffer = tx_ring->tx_buffer_info; |
| tx_desc = WX_TX_DESC(tx_ring, 0); |
| } |
| |
| /* issue prefetch for next Tx descriptor */ |
| prefetch(tx_desc); |
| |
| /* update budget accounting */ |
| budget--; |
| } while (likely(budget)); |
| |
| i += tx_ring->count; |
| tx_ring->next_to_clean = i; |
| u64_stats_update_begin(&tx_ring->syncp); |
| tx_ring->stats.bytes += total_bytes; |
| tx_ring->stats.packets += total_packets; |
| u64_stats_update_end(&tx_ring->syncp); |
| q_vector->tx.total_bytes += total_bytes; |
| q_vector->tx.total_packets += total_packets; |
| |
| netdev_tx_completed_queue(wx_txring_txq(tx_ring), |
| total_packets, total_bytes); |
| |
| #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) |
| if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && |
| (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| |
| if (__netif_subqueue_stopped(tx_ring->netdev, |
| tx_ring->queue_index) && |
| netif_running(tx_ring->netdev)) { |
| netif_wake_subqueue(tx_ring->netdev, |
| tx_ring->queue_index); |
| ++tx_ring->tx_stats.restart_queue; |
| } |
| } |
| |
| return !!budget; |
| } |
| |
| /** |
| * wx_poll - NAPI polling RX/TX cleanup routine |
| * @napi: napi struct with our devices info in it |
| * @budget: amount of work driver is allowed to do this pass, in packets |
| * |
| * This function will clean all queues associated with a q_vector. |
| **/ |
| static int wx_poll(struct napi_struct *napi, int budget) |
| { |
| struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi); |
| int per_ring_budget, work_done = 0; |
| struct wx *wx = q_vector->wx; |
| bool clean_complete = true; |
| struct wx_ring *ring; |
| |
| wx_for_each_ring(ring, q_vector->tx) { |
| if (!wx_clean_tx_irq(q_vector, ring, budget)) |
| clean_complete = false; |
| } |
| |
| /* Exit if we are called by netpoll */ |
| if (budget <= 0) |
| return budget; |
| |
| /* attempt to distribute budget to each queue fairly, but don't allow |
| * the budget to go below 1 because we'll exit polling |
| */ |
| if (q_vector->rx.count > 1) |
| per_ring_budget = max(budget / q_vector->rx.count, 1); |
| else |
| per_ring_budget = budget; |
| |
| wx_for_each_ring(ring, q_vector->rx) { |
| int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget); |
| |
| work_done += cleaned; |
| if (cleaned >= per_ring_budget) |
| clean_complete = false; |
| } |
| |
| /* If all work not completed, return budget and keep polling */ |
| if (!clean_complete) |
| return budget; |
| |
| /* all work done, exit the polling mode */ |
| if (likely(napi_complete_done(napi, work_done))) { |
| if (netif_running(wx->netdev)) |
| wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx)); |
| } |
| |
| return min(work_done, budget - 1); |
| } |
| |
| static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size) |
| { |
| if (likely(wx_desc_unused(tx_ring) >= size)) |
| return 0; |
| |
| netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); |
| |
| /* For the next check */ |
| smp_mb(); |
| |
| /* We need to check again in a case another CPU has just |
| * made room available. |
| */ |
| if (likely(wx_desc_unused(tx_ring) < size)) |
| return -EBUSY; |
| |
| /* A reprieve! - use start_queue because it doesn't call schedule */ |
| netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); |
| ++tx_ring->tx_stats.restart_queue; |
| |
| return 0; |
| } |
| |
| static u32 wx_tx_cmd_type(u32 tx_flags) |
| { |
| /* set type for advanced descriptor with frame checksum insertion */ |
| u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS; |
| |
| /* set HW vlan bit if vlan is present */ |
| cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE); |
| /* set segmentation enable bits for TSO/FSO */ |
| cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE); |
| /* set timestamp bit if present */ |
| cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP); |
| cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC); |
| |
| return cmd_type; |
| } |
| |
| static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc, |
| u32 tx_flags, unsigned int paylen) |
| { |
| u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT; |
| |
| /* enable L4 checksum for TSO and TX checksum offload */ |
| olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS); |
| /* enable IPv4 checksum for TSO */ |
| olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS); |
| /* enable outer IPv4 checksum for TSO */ |
| olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4, |
| WX_TXD_EIPCS); |
| /* Check Context must be set if Tx switch is enabled, which it |
| * always is for case where virtual functions are running |
| */ |
| olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC); |
| olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC, |
| WX_TXD_IPSEC); |
| tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); |
| } |
| |
| static void wx_tx_map(struct wx_ring *tx_ring, |
| struct wx_tx_buffer *first, |
| const u8 hdr_len) |
| { |
| struct sk_buff *skb = first->skb; |
| struct wx_tx_buffer *tx_buffer; |
| u32 tx_flags = first->tx_flags; |
| u16 i = tx_ring->next_to_use; |
| unsigned int data_len, size; |
| union wx_tx_desc *tx_desc; |
| skb_frag_t *frag; |
| dma_addr_t dma; |
| u32 cmd_type; |
| |
| cmd_type = wx_tx_cmd_type(tx_flags); |
| tx_desc = WX_TX_DESC(tx_ring, i); |
| wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); |
| |
| size = skb_headlen(skb); |
| data_len = skb->data_len; |
| dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
| |
| tx_buffer = first; |
| |
| for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
| if (dma_mapping_error(tx_ring->dev, dma)) |
| goto dma_error; |
| |
| /* record length, and DMA address */ |
| dma_unmap_len_set(tx_buffer, len, size); |
| dma_unmap_addr_set(tx_buffer, dma, dma); |
| |
| tx_desc->read.buffer_addr = cpu_to_le64(dma); |
| |
| while (unlikely(size > WX_MAX_DATA_PER_TXD)) { |
| tx_desc->read.cmd_type_len = |
| cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD); |
| |
| i++; |
| tx_desc++; |
| if (i == tx_ring->count) { |
| tx_desc = WX_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| tx_desc->read.olinfo_status = 0; |
| |
| dma += WX_MAX_DATA_PER_TXD; |
| size -= WX_MAX_DATA_PER_TXD; |
| |
| tx_desc->read.buffer_addr = cpu_to_le64(dma); |
| } |
| |
| if (likely(!data_len)) |
| break; |
| |
| tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); |
| |
| i++; |
| tx_desc++; |
| if (i == tx_ring->count) { |
| tx_desc = WX_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| tx_desc->read.olinfo_status = 0; |
| |
| size = skb_frag_size(frag); |
| |
| data_len -= size; |
| |
| dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, |
| DMA_TO_DEVICE); |
| |
| tx_buffer = &tx_ring->tx_buffer_info[i]; |
| } |
| |
| /* write last descriptor with RS and EOP bits */ |
| cmd_type |= size | WX_TXD_EOP | WX_TXD_RS; |
| tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); |
| |
| netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Force memory writes to complete before letting h/w know there |
| * are new descriptors to fetch. (Only applicable for weak-ordered |
| * memory model archs, such as IA-64). |
| * |
| * We also need this memory barrier to make certain all of the |
| * status bits have been updated before next_to_watch is written. |
| */ |
| wmb(); |
| |
| /* set next_to_watch value indicating a packet is present */ |
| first->next_to_watch = tx_desc; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| |
| tx_ring->next_to_use = i; |
| |
| wx_maybe_stop_tx(tx_ring, DESC_NEEDED); |
| |
| if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more()) |
| writel(i, tx_ring->tail); |
| |
| return; |
| dma_error: |
| dev_err(tx_ring->dev, "TX DMA map failed\n"); |
| |
| /* clear dma mappings for failed tx_buffer_info map */ |
| for (;;) { |
| tx_buffer = &tx_ring->tx_buffer_info[i]; |
| if (dma_unmap_len(tx_buffer, len)) |
| dma_unmap_page(tx_ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_buffer, len, 0); |
| if (tx_buffer == first) |
| break; |
| if (i == 0) |
| i += tx_ring->count; |
| i--; |
| } |
| |
| dev_kfree_skb_any(first->skb); |
| first->skb = NULL; |
| |
| tx_ring->next_to_use = i; |
| } |
| |
| static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens, |
| u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx) |
| { |
| struct wx_tx_context_desc *context_desc; |
| u16 i = tx_ring->next_to_use; |
| |
| context_desc = WX_TX_CTXTDESC(tx_ring, i); |
| i++; |
| tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| |
| /* set bits to identify this as an advanced context descriptor */ |
| type_tucmd |= WX_TXD_DTYP_CTXT; |
| context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); |
| context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof); |
| context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); |
| context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); |
| } |
| |
| static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr) |
| { |
| struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset); |
| |
| *nexthdr = hdr->nexthdr; |
| offset += sizeof(struct ipv6hdr); |
| while (ipv6_ext_hdr(*nexthdr)) { |
| struct ipv6_opt_hdr _hdr, *hp; |
| |
| if (*nexthdr == NEXTHDR_NONE) |
| return; |
| hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr); |
| if (!hp) |
| return; |
| if (*nexthdr == NEXTHDR_FRAGMENT) |
| break; |
| *nexthdr = hp->nexthdr; |
| } |
| } |
| |
| union network_header { |
| struct iphdr *ipv4; |
| struct ipv6hdr *ipv6; |
| void *raw; |
| }; |
| |
| static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first) |
| { |
| u8 tun_prot = 0, l4_prot = 0, ptype = 0; |
| struct sk_buff *skb = first->skb; |
| |
| if (skb->encapsulation) { |
| union network_header hdr; |
| |
| switch (first->protocol) { |
| case htons(ETH_P_IP): |
| tun_prot = ip_hdr(skb)->protocol; |
| ptype = WX_PTYPE_TUN_IPV4; |
| break; |
| case htons(ETH_P_IPV6): |
| wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot); |
| ptype = WX_PTYPE_TUN_IPV6; |
| break; |
| default: |
| return ptype; |
| } |
| |
| if (tun_prot == IPPROTO_IPIP) { |
| hdr.raw = (void *)inner_ip_hdr(skb); |
| ptype |= WX_PTYPE_PKT_IPIP; |
| } else if (tun_prot == IPPROTO_UDP) { |
| hdr.raw = (void *)inner_ip_hdr(skb); |
| if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || |
| skb->inner_protocol != htons(ETH_P_TEB)) { |
| ptype |= WX_PTYPE_PKT_IG; |
| } else { |
| if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto |
| == htons(ETH_P_8021Q)) |
| ptype |= WX_PTYPE_PKT_IGMV; |
| else |
| ptype |= WX_PTYPE_PKT_IGM; |
| } |
| |
| } else if (tun_prot == IPPROTO_GRE) { |
| hdr.raw = (void *)inner_ip_hdr(skb); |
| if (skb->inner_protocol == htons(ETH_P_IP) || |
| skb->inner_protocol == htons(ETH_P_IPV6)) { |
| ptype |= WX_PTYPE_PKT_IG; |
| } else { |
| if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto |
| == htons(ETH_P_8021Q)) |
| ptype |= WX_PTYPE_PKT_IGMV; |
| else |
| ptype |= WX_PTYPE_PKT_IGM; |
| } |
| } else { |
| return ptype; |
| } |
| |
| switch (hdr.ipv4->version) { |
| case IPVERSION: |
| l4_prot = hdr.ipv4->protocol; |
| break; |
| case 6: |
| wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot); |
| ptype |= WX_PTYPE_PKT_IPV6; |
| break; |
| default: |
| return ptype; |
| } |
| } else { |
| switch (first->protocol) { |
| case htons(ETH_P_IP): |
| l4_prot = ip_hdr(skb)->protocol; |
| ptype = WX_PTYPE_PKT_IP; |
| break; |
| case htons(ETH_P_IPV6): |
| wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot); |
| ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6; |
| break; |
| default: |
| return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC; |
| } |
| } |
| switch (l4_prot) { |
| case IPPROTO_TCP: |
| ptype |= WX_PTYPE_TYP_TCP; |
| break; |
| case IPPROTO_UDP: |
| ptype |= WX_PTYPE_TYP_UDP; |
| break; |
| case IPPROTO_SCTP: |
| ptype |= WX_PTYPE_TYP_SCTP; |
| break; |
| default: |
| ptype |= WX_PTYPE_TYP_IP; |
| break; |
| } |
| |
| return ptype; |
| } |
| |
| static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first, |
| u8 *hdr_len, u8 ptype) |
| { |
| u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; |
| struct net_device *netdev = tx_ring->netdev; |
| u32 l4len, tunhdr_eiplen_tunlen = 0; |
| struct sk_buff *skb = first->skb; |
| bool enc = skb->encapsulation; |
| struct ipv6hdr *ipv6h; |
| struct tcphdr *tcph; |
| struct iphdr *iph; |
| u8 tun_prot = 0; |
| int err; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| err = skb_cow_head(skb, 0); |
| if (err < 0) |
| return err; |
| |
| /* indicates the inner headers in the skbuff are valid. */ |
| iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb); |
| if (iph->version == 4) { |
| tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); |
| iph->tot_len = 0; |
| iph->check = 0; |
| tcph->check = ~csum_tcpudp_magic(iph->saddr, |
| iph->daddr, 0, |
| IPPROTO_TCP, 0); |
| first->tx_flags |= WX_TX_FLAGS_TSO | |
| WX_TX_FLAGS_CSUM | |
| WX_TX_FLAGS_IPV4 | |
| WX_TX_FLAGS_CC; |
| } else if (iph->version == 6 && skb_is_gso_v6(skb)) { |
| ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); |
| tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb); |
| ipv6h->payload_len = 0; |
| tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, |
| &ipv6h->daddr, 0, |
| IPPROTO_TCP, 0); |
| first->tx_flags |= WX_TX_FLAGS_TSO | |
| WX_TX_FLAGS_CSUM | |
| WX_TX_FLAGS_CC; |
| } |
| |
| /* compute header lengths */ |
| l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb); |
| *hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) : |
| skb_transport_offset(skb); |
| *hdr_len += l4len; |
| |
| /* update gso size and bytecount with header size */ |
| first->gso_segs = skb_shinfo(skb)->gso_segs; |
| first->bytecount += (first->gso_segs - 1) * *hdr_len; |
| |
| /* mss_l4len_id: use 0 as index for TSO */ |
| mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT; |
| mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT; |
| |
| /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ |
| if (enc) { |
| switch (first->protocol) { |
| case htons(ETH_P_IP): |
| tun_prot = ip_hdr(skb)->protocol; |
| first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4; |
| break; |
| case htons(ETH_P_IPV6): |
| tun_prot = ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| break; |
| } |
| switch (tun_prot) { |
| case IPPROTO_UDP: |
| tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; |
| tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << |
| WX_TXD_OUTER_IPLEN_SHIFT) | |
| (((skb_inner_mac_header(skb) - |
| skb_transport_header(skb)) >> 1) << |
| WX_TXD_TUNNEL_LEN_SHIFT); |
| break; |
| case IPPROTO_GRE: |
| tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; |
| tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << |
| WX_TXD_OUTER_IPLEN_SHIFT) | |
| (((skb_inner_mac_header(skb) - |
| skb_transport_header(skb)) >> 1) << |
| WX_TXD_TUNNEL_LEN_SHIFT); |
| break; |
| case IPPROTO_IPIP: |
| tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - |
| (char *)ip_hdr(skb)) >> 2) << |
| WX_TXD_OUTER_IPLEN_SHIFT; |
| break; |
| default: |
| break; |
| } |
| vlan_macip_lens = skb_inner_network_header_len(skb) >> 1; |
| } else { |
| vlan_macip_lens = skb_network_header_len(skb) >> 1; |
| } |
| |
| vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT; |
| vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; |
| |
| type_tucmd = ptype << 24; |
| if (skb->vlan_proto == htons(ETH_P_8021AD) && |
| netdev->features & NETIF_F_HW_VLAN_STAG_TX) |
| type_tucmd |= WX_SET_FLAG(first->tx_flags, |
| WX_TX_FLAGS_HW_VLAN, |
| 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); |
| wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, |
| type_tucmd, mss_l4len_idx); |
| |
| return 1; |
| } |
| |
| static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first, |
| u8 ptype) |
| { |
| u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0; |
| struct net_device *netdev = tx_ring->netdev; |
| u32 mss_l4len_idx = 0, type_tucmd; |
| struct sk_buff *skb = first->skb; |
| u8 tun_prot = 0; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) { |
| if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) && |
| !(first->tx_flags & WX_TX_FLAGS_CC)) |
| return; |
| vlan_macip_lens = skb_network_offset(skb) << |
| WX_TXD_MACLEN_SHIFT; |
| } else { |
| u8 l4_prot = 0; |
| union { |
| struct iphdr *ipv4; |
| struct ipv6hdr *ipv6; |
| u8 *raw; |
| } network_hdr; |
| union { |
| struct tcphdr *tcphdr; |
| u8 *raw; |
| } transport_hdr; |
| |
| if (skb->encapsulation) { |
| network_hdr.raw = skb_inner_network_header(skb); |
| transport_hdr.raw = skb_inner_transport_header(skb); |
| vlan_macip_lens = skb_network_offset(skb) << |
| WX_TXD_MACLEN_SHIFT; |
| switch (first->protocol) { |
| case htons(ETH_P_IP): |
| tun_prot = ip_hdr(skb)->protocol; |
| break; |
| case htons(ETH_P_IPV6): |
| tun_prot = ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| return; |
| } |
| switch (tun_prot) { |
| case IPPROTO_UDP: |
| tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP; |
| tunhdr_eiplen_tunlen |= |
| ((skb_network_header_len(skb) >> 2) << |
| WX_TXD_OUTER_IPLEN_SHIFT) | |
| (((skb_inner_mac_header(skb) - |
| skb_transport_header(skb)) >> 1) << |
| WX_TXD_TUNNEL_LEN_SHIFT); |
| break; |
| case IPPROTO_GRE: |
| tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE; |
| tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) << |
| WX_TXD_OUTER_IPLEN_SHIFT) | |
| (((skb_inner_mac_header(skb) - |
| skb_transport_header(skb)) >> 1) << |
| WX_TXD_TUNNEL_LEN_SHIFT); |
| break; |
| case IPPROTO_IPIP: |
| tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) - |
| (char *)ip_hdr(skb)) >> 2) << |
| WX_TXD_OUTER_IPLEN_SHIFT; |
| break; |
| default: |
| break; |
| } |
| |
| } else { |
| network_hdr.raw = skb_network_header(skb); |
| transport_hdr.raw = skb_transport_header(skb); |
| vlan_macip_lens = skb_network_offset(skb) << |
| WX_TXD_MACLEN_SHIFT; |
| } |
| |
| switch (network_hdr.ipv4->version) { |
| case IPVERSION: |
| vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; |
| l4_prot = network_hdr.ipv4->protocol; |
| break; |
| case 6: |
| vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1; |
| l4_prot = network_hdr.ipv6->nexthdr; |
| break; |
| default: |
| break; |
| } |
| |
| switch (l4_prot) { |
| case IPPROTO_TCP: |
| mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) << |
| WX_TXD_L4LEN_SHIFT; |
| break; |
| case IPPROTO_SCTP: |
| mss_l4len_idx = sizeof(struct sctphdr) << |
| WX_TXD_L4LEN_SHIFT; |
| break; |
| case IPPROTO_UDP: |
| mss_l4len_idx = sizeof(struct udphdr) << |
| WX_TXD_L4LEN_SHIFT; |
| break; |
| default: |
| break; |
| } |
| |
| /* update TX checksum flag */ |
| first->tx_flags |= WX_TX_FLAGS_CSUM; |
| } |
| first->tx_flags |= WX_TX_FLAGS_CC; |
| /* vlan_macip_lens: MACLEN, VLAN tag */ |
| vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK; |
| |
| type_tucmd = ptype << 24; |
| if (skb->vlan_proto == htons(ETH_P_8021AD) && |
| netdev->features & NETIF_F_HW_VLAN_STAG_TX) |
| type_tucmd |= WX_SET_FLAG(first->tx_flags, |
| WX_TX_FLAGS_HW_VLAN, |
| 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT); |
| wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen, |
| type_tucmd, mss_l4len_idx); |
| } |
| |
| static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb, |
| struct wx_ring *tx_ring) |
| { |
| u16 count = TXD_USE_COUNT(skb_headlen(skb)); |
| struct wx_tx_buffer *first; |
| u8 hdr_len = 0, ptype; |
| unsigned short f; |
| u32 tx_flags = 0; |
| int tso; |
| |
| /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD, |
| * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD, |
| * + 2 desc gap to keep tail from touching head, |
| * + 1 desc for context descriptor, |
| * otherwise try next time |
| */ |
| for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) |
| count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)-> |
| frags[f])); |
| |
| if (wx_maybe_stop_tx(tx_ring, count + 3)) { |
| tx_ring->tx_stats.tx_busy++; |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* record the location of the first descriptor for this packet */ |
| first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; |
| first->skb = skb; |
| first->bytecount = skb->len; |
| first->gso_segs = 1; |
| |
| /* if we have a HW VLAN tag being added default to the HW one */ |
| if (skb_vlan_tag_present(skb)) { |
| tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT; |
| tx_flags |= WX_TX_FLAGS_HW_VLAN; |
| } |
| |
| /* record initial flags and protocol */ |
| first->tx_flags = tx_flags; |
| first->protocol = vlan_get_protocol(skb); |
| |
| ptype = wx_encode_tx_desc_ptype(first); |
| |
| tso = wx_tso(tx_ring, first, &hdr_len, ptype); |
| if (tso < 0) |
| goto out_drop; |
| else if (!tso) |
| wx_tx_csum(tx_ring, first, ptype); |
| wx_tx_map(tx_ring, first, hdr_len); |
| |
| return NETDEV_TX_OK; |
| out_drop: |
| dev_kfree_skb_any(first->skb); |
| first->skb = NULL; |
| |
| return NETDEV_TX_OK; |
| } |
| |
| netdev_tx_t wx_xmit_frame(struct sk_buff *skb, |
| struct net_device *netdev) |
| { |
| unsigned int r_idx = skb->queue_mapping; |
| struct wx *wx = netdev_priv(netdev); |
| struct wx_ring *tx_ring; |
| |
| if (!netif_carrier_ok(netdev)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* The minimum packet size for olinfo paylen is 17 so pad the skb |
| * in order to meet this minimum size requirement. |
| */ |
| if (skb_put_padto(skb, 17)) |
| return NETDEV_TX_OK; |
| |
| if (r_idx >= wx->num_tx_queues) |
| r_idx = r_idx % wx->num_tx_queues; |
| tx_ring = wx->tx_ring[r_idx]; |
| |
| return wx_xmit_frame_ring(skb, tx_ring); |
| } |
| EXPORT_SYMBOL(wx_xmit_frame); |
| |
| void wx_napi_enable_all(struct wx *wx) |
| { |
| struct wx_q_vector *q_vector; |
| int q_idx; |
| |
| for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { |
| q_vector = wx->q_vector[q_idx]; |
| napi_enable(&q_vector->napi); |
| } |
| } |
| EXPORT_SYMBOL(wx_napi_enable_all); |
| |
| void wx_napi_disable_all(struct wx *wx) |
| { |
| struct wx_q_vector *q_vector; |
| int q_idx; |
| |
| for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) { |
| q_vector = wx->q_vector[q_idx]; |
| napi_disable(&q_vector->napi); |
| } |
| } |
| EXPORT_SYMBOL(wx_napi_disable_all); |
| |
| /** |
| * wx_set_rss_queues: Allocate queues for RSS |
| * @wx: board private structure to initialize |
| * |
| * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try |
| * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. |
| * |
| **/ |
| static void wx_set_rss_queues(struct wx *wx) |
| { |
| struct wx_ring_feature *f; |
| |
| /* set mask for 16 queue limit of RSS */ |
| f = &wx->ring_feature[RING_F_RSS]; |
| f->indices = f->limit; |
| |
| wx->num_rx_queues = f->limit; |
| wx->num_tx_queues = f->limit; |
| } |
| |
| static void wx_set_num_queues(struct wx *wx) |
| { |
| /* Start with base case */ |
| wx->num_rx_queues = 1; |
| wx->num_tx_queues = 1; |
| wx->queues_per_pool = 1; |
| |
| wx_set_rss_queues(wx); |
| } |
| |
| /** |
| * wx_acquire_msix_vectors - acquire MSI-X vectors |
| * @wx: board private structure |
| * |
| * Attempts to acquire a suitable range of MSI-X vector interrupts. Will |
| * return a negative error code if unable to acquire MSI-X vectors for any |
| * reason. |
| */ |
| static int wx_acquire_msix_vectors(struct wx *wx) |
| { |
| struct irq_affinity affd = {0, }; |
| int nvecs, i; |
| |
| /* We start by asking for one vector per queue pair */ |
| nvecs = max(wx->num_rx_queues, wx->num_tx_queues); |
| nvecs = min_t(int, nvecs, num_online_cpus()); |
| nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors); |
| |
| wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry), |
| GFP_KERNEL); |
| if (!wx->msix_q_entries) |
| return -ENOMEM; |
| |
| /* One for non-queue interrupts */ |
| nvecs += 1; |
| |
| wx->msix_entry = kcalloc(1, sizeof(struct msix_entry), |
| GFP_KERNEL); |
| if (!wx->msix_entry) { |
| kfree(wx->msix_q_entries); |
| wx->msix_q_entries = NULL; |
| return -ENOMEM; |
| } |
| |
| nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs, |
| nvecs, |
| PCI_IRQ_MSIX | PCI_IRQ_AFFINITY, |
| &affd); |
| if (nvecs < 0) { |
| wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs); |
| kfree(wx->msix_q_entries); |
| wx->msix_q_entries = NULL; |
| kfree(wx->msix_entry); |
| wx->msix_entry = NULL; |
| return nvecs; |
| } |
| |
| wx->msix_entry->entry = 0; |
| wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0); |
| nvecs -= 1; |
| for (i = 0; i < nvecs; i++) { |
| wx->msix_q_entries[i].entry = i; |
| wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i + 1); |
| } |
| |
| wx->num_q_vectors = nvecs; |
| |
| return 0; |
| } |
| |
| /** |
| * wx_set_interrupt_capability - set MSI-X or MSI if supported |
| * @wx: board private structure to initialize |
| * |
| * Attempt to configure the interrupts using the best available |
| * capabilities of the hardware and the kernel. |
| **/ |
| static int wx_set_interrupt_capability(struct wx *wx) |
| { |
| struct pci_dev *pdev = wx->pdev; |
| int nvecs, ret; |
| |
| /* We will try to get MSI-X interrupts first */ |
| ret = wx_acquire_msix_vectors(wx); |
| if (ret == 0 || (ret == -ENOMEM)) |
| return ret; |
| |
| /* Disable RSS */ |
| dev_warn(&wx->pdev->dev, "Disabling RSS support\n"); |
| wx->ring_feature[RING_F_RSS].limit = 1; |
| |
| wx_set_num_queues(wx); |
| |
| /* minmum one for queue, one for misc*/ |
| nvecs = 1; |
| nvecs = pci_alloc_irq_vectors(pdev, nvecs, |
| nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY); |
| if (nvecs == 1) { |
| if (pdev->msi_enabled) |
| wx_err(wx, "Fallback to MSI.\n"); |
| else |
| wx_err(wx, "Fallback to LEGACY.\n"); |
| } else { |
| wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs); |
| return nvecs; |
| } |
| |
| pdev->irq = pci_irq_vector(pdev, 0); |
| |
| return 0; |
| } |
| |
| /** |
| * wx_cache_ring_rss - Descriptor ring to register mapping for RSS |
| * @wx: board private structure to initialize |
| * |
| * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV. |
| * |
| **/ |
| static void wx_cache_ring_rss(struct wx *wx) |
| { |
| u16 i; |
| |
| for (i = 0; i < wx->num_rx_queues; i++) |
| wx->rx_ring[i]->reg_idx = i; |
| |
| for (i = 0; i < wx->num_tx_queues; i++) |
| wx->tx_ring[i]->reg_idx = i; |
| } |
| |
| static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head) |
| { |
| ring->next = head->ring; |
| head->ring = ring; |
| head->count++; |
| } |
| |
| /** |
| * wx_alloc_q_vector - Allocate memory for a single interrupt vector |
| * @wx: board private structure to initialize |
| * @v_count: q_vectors allocated on wx, used for ring interleaving |
| * @v_idx: index of vector in wx struct |
| * @txr_count: total number of Tx rings to allocate |
| * @txr_idx: index of first Tx ring to allocate |
| * @rxr_count: total number of Rx rings to allocate |
| * @rxr_idx: index of first Rx ring to allocate |
| * |
| * We allocate one q_vector. If allocation fails we return -ENOMEM. |
| **/ |
| static int wx_alloc_q_vector(struct wx *wx, |
| unsigned int v_count, unsigned int v_idx, |
| unsigned int txr_count, unsigned int txr_idx, |
| unsigned int rxr_count, unsigned int rxr_idx) |
| { |
| struct wx_q_vector *q_vector; |
| int ring_count, default_itr; |
| struct wx_ring *ring; |
| |
| /* note this will allocate space for the ring structure as well! */ |
| ring_count = txr_count + rxr_count; |
| |
| q_vector = kzalloc(struct_size(q_vector, ring, ring_count), |
| GFP_KERNEL); |
| if (!q_vector) |
| return -ENOMEM; |
| |
| /* initialize NAPI */ |
| netif_napi_add(wx->netdev, &q_vector->napi, |
| wx_poll); |
| |
| /* tie q_vector and wx together */ |
| wx->q_vector[v_idx] = q_vector; |
| q_vector->wx = wx; |
| q_vector->v_idx = v_idx; |
| if (cpu_online(v_idx)) |
| q_vector->numa_node = cpu_to_node(v_idx); |
| |
| /* initialize pointer to rings */ |
| ring = q_vector->ring; |
| |
| if (wx->mac.type == wx_mac_sp) |
| default_itr = WX_12K_ITR; |
| else |
| default_itr = WX_7K_ITR; |
| /* initialize ITR */ |
| if (txr_count && !rxr_count) |
| /* tx only vector */ |
| q_vector->itr = wx->tx_itr_setting ? |
| default_itr : wx->tx_itr_setting; |
| else |
| /* rx or rx/tx vector */ |
| q_vector->itr = wx->rx_itr_setting ? |
| default_itr : wx->rx_itr_setting; |
| |
| while (txr_count) { |
| /* assign generic ring traits */ |
| ring->dev = &wx->pdev->dev; |
| ring->netdev = wx->netdev; |
| |
| /* configure backlink on ring */ |
| ring->q_vector = q_vector; |
| |
| /* update q_vector Tx values */ |
| wx_add_ring(ring, &q_vector->tx); |
| |
| /* apply Tx specific ring traits */ |
| ring->count = wx->tx_ring_count; |
| |
| ring->queue_index = txr_idx; |
| |
| /* assign ring to wx */ |
| wx->tx_ring[txr_idx] = ring; |
| |
| /* update count and index */ |
| txr_count--; |
| txr_idx += v_count; |
| |
| /* push pointer to next ring */ |
| ring++; |
| } |
| |
| while (rxr_count) { |
| /* assign generic ring traits */ |
| ring->dev = &wx->pdev->dev; |
| ring->netdev = wx->netdev; |
| |
| /* configure backlink on ring */ |
| ring->q_vector = q_vector; |
| |
| /* update q_vector Rx values */ |
| wx_add_ring(ring, &q_vector->rx); |
| |
| /* apply Rx specific ring traits */ |
| ring->count = wx->rx_ring_count; |
| ring->queue_index = rxr_idx; |
| |
| /* assign ring to wx */ |
| wx->rx_ring[rxr_idx] = ring; |
| |
| /* update count and index */ |
| rxr_count--; |
| rxr_idx += v_count; |
| |
| /* push pointer to next ring */ |
| ring++; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * wx_free_q_vector - Free memory allocated for specific interrupt vector |
| * @wx: board private structure to initialize |
| * @v_idx: Index of vector to be freed |
| * |
| * This function frees the memory allocated to the q_vector. In addition if |
| * NAPI is enabled it will delete any references to the NAPI struct prior |
| * to freeing the q_vector. |
| **/ |
| static void wx_free_q_vector(struct wx *wx, int v_idx) |
| { |
| struct wx_q_vector *q_vector = wx->q_vector[v_idx]; |
| struct wx_ring *ring; |
| |
| wx_for_each_ring(ring, q_vector->tx) |
| wx->tx_ring[ring->queue_index] = NULL; |
| |
| wx_for_each_ring(ring, q_vector->rx) |
| wx->rx_ring[ring->queue_index] = NULL; |
| |
| wx->q_vector[v_idx] = NULL; |
| netif_napi_del(&q_vector->napi); |
| kfree_rcu(q_vector, rcu); |
| } |
| |
| /** |
| * wx_alloc_q_vectors - Allocate memory for interrupt vectors |
| * @wx: board private structure to initialize |
| * |
| * We allocate one q_vector per queue interrupt. If allocation fails we |
| * return -ENOMEM. |
| **/ |
| static int wx_alloc_q_vectors(struct wx *wx) |
| { |
| unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; |
| unsigned int rxr_remaining = wx->num_rx_queues; |
| unsigned int txr_remaining = wx->num_tx_queues; |
| unsigned int q_vectors = wx->num_q_vectors; |
| int rqpv, tqpv; |
| int err; |
| |
| for (; v_idx < q_vectors; v_idx++) { |
| rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); |
| tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); |
| err = wx_alloc_q_vector(wx, q_vectors, v_idx, |
| tqpv, txr_idx, |
| rqpv, rxr_idx); |
| |
| if (err) |
| goto err_out; |
| |
| /* update counts and index */ |
| rxr_remaining -= rqpv; |
| txr_remaining -= tqpv; |
| rxr_idx++; |
| txr_idx++; |
| } |
| |
| return 0; |
| |
| err_out: |
| wx->num_tx_queues = 0; |
| wx->num_rx_queues = 0; |
| wx->num_q_vectors = 0; |
| |
| while (v_idx--) |
| wx_free_q_vector(wx, v_idx); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * wx_free_q_vectors - Free memory allocated for interrupt vectors |
| * @wx: board private structure to initialize |
| * |
| * This function frees the memory allocated to the q_vectors. In addition if |
| * NAPI is enabled it will delete any references to the NAPI struct prior |
| * to freeing the q_vector. |
| **/ |
| static void wx_free_q_vectors(struct wx *wx) |
| { |
| int v_idx = wx->num_q_vectors; |
| |
| wx->num_tx_queues = 0; |
| wx->num_rx_queues = 0; |
| wx->num_q_vectors = 0; |
| |
| while (v_idx--) |
| wx_free_q_vector(wx, v_idx); |
| } |
| |
| void wx_reset_interrupt_capability(struct wx *wx) |
| { |
| struct pci_dev *pdev = wx->pdev; |
| |
| if (!pdev->msi_enabled && !pdev->msix_enabled) |
| return; |
| |
| if (pdev->msix_enabled) { |
| kfree(wx->msix_q_entries); |
| wx->msix_q_entries = NULL; |
| kfree(wx->msix_entry); |
| wx->msix_entry = NULL; |
| } |
| pci_free_irq_vectors(wx->pdev); |
| } |
| EXPORT_SYMBOL(wx_reset_interrupt_capability); |
| |
| /** |
| * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings |
| * @wx: board private structure to clear interrupt scheme on |
| * |
| * We go through and clear interrupt specific resources and reset the structure |
| * to pre-load conditions |
| **/ |
| void wx_clear_interrupt_scheme(struct wx *wx) |
| { |
| wx_free_q_vectors(wx); |
| wx_reset_interrupt_capability(wx); |
| } |
| EXPORT_SYMBOL(wx_clear_interrupt_scheme); |
| |
| int wx_init_interrupt_scheme(struct wx *wx) |
| { |
| int ret; |
| |
| /* Number of supported queues */ |
| wx_set_num_queues(wx); |
| |
| /* Set interrupt mode */ |
| ret = wx_set_interrupt_capability(wx); |
| if (ret) { |
| wx_err(wx, "Allocate irq vectors for failed.\n"); |
| return ret; |
| } |
| |
| /* Allocate memory for queues */ |
| ret = wx_alloc_q_vectors(wx); |
| if (ret) { |
| wx_err(wx, "Unable to allocate memory for queue vectors.\n"); |
| wx_reset_interrupt_capability(wx); |
| return ret; |
| } |
| |
| wx_cache_ring_rss(wx); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wx_init_interrupt_scheme); |
| |
| irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data) |
| { |
| struct wx_q_vector *q_vector = data; |
| |
| /* EIAM disabled interrupts (on this vector) for us */ |
| if (q_vector->rx.ring || q_vector->tx.ring) |
| napi_schedule_irqoff(&q_vector->napi); |
| |
| return IRQ_HANDLED; |
| } |
| EXPORT_SYMBOL(wx_msix_clean_rings); |
| |
| void wx_free_irq(struct wx *wx) |
| { |
| struct pci_dev *pdev = wx->pdev; |
| int vector; |
| |
| if (!(pdev->msix_enabled)) { |
| free_irq(pdev->irq, wx); |
| return; |
| } |
| |
| for (vector = 0; vector < wx->num_q_vectors; vector++) { |
| struct wx_q_vector *q_vector = wx->q_vector[vector]; |
| struct msix_entry *entry = &wx->msix_q_entries[vector]; |
| |
| /* free only the irqs that were actually requested */ |
| if (!q_vector->rx.ring && !q_vector->tx.ring) |
| continue; |
| |
| free_irq(entry->vector, q_vector); |
| } |
| |
| if (wx->mac.type == wx_mac_em) |
| free_irq(wx->msix_entry->vector, wx); |
| } |
| EXPORT_SYMBOL(wx_free_irq); |
| |
| /** |
| * wx_setup_isb_resources - allocate interrupt status resources |
| * @wx: board private structure |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| int wx_setup_isb_resources(struct wx *wx) |
| { |
| struct pci_dev *pdev = wx->pdev; |
| |
| wx->isb_mem = dma_alloc_coherent(&pdev->dev, |
| sizeof(u32) * 4, |
| &wx->isb_dma, |
| GFP_KERNEL); |
| if (!wx->isb_mem) { |
| wx_err(wx, "Alloc isb_mem failed\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wx_setup_isb_resources); |
| |
| /** |
| * wx_free_isb_resources - allocate all queues Rx resources |
| * @wx: board private structure |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| void wx_free_isb_resources(struct wx *wx) |
| { |
| struct pci_dev *pdev = wx->pdev; |
| |
| dma_free_coherent(&pdev->dev, sizeof(u32) * 4, |
| wx->isb_mem, wx->isb_dma); |
| wx->isb_mem = NULL; |
| } |
| EXPORT_SYMBOL(wx_free_isb_resources); |
| |
| u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx) |
| { |
| u32 cur_tag = 0; |
| |
| cur_tag = wx->isb_mem[WX_ISB_HEADER]; |
| wx->isb_tag[idx] = cur_tag; |
| |
| return (__force u32)cpu_to_le32(wx->isb_mem[idx]); |
| } |
| EXPORT_SYMBOL(wx_misc_isb); |
| |
| /** |
| * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors |
| * @wx: pointer to wx struct |
| * @direction: 0 for Rx, 1 for Tx, -1 for other causes |
| * @queue: queue to map the corresponding interrupt to |
| * @msix_vector: the vector to map to the corresponding queue |
| * |
| **/ |
| static void wx_set_ivar(struct wx *wx, s8 direction, |
| u16 queue, u16 msix_vector) |
| { |
| u32 ivar, index; |
| |
| if (direction == -1) { |
| /* other causes */ |
| msix_vector |= WX_PX_IVAR_ALLOC_VAL; |
| index = 0; |
| ivar = rd32(wx, WX_PX_MISC_IVAR); |
| ivar &= ~(0xFF << index); |
| ivar |= (msix_vector << index); |
| wr32(wx, WX_PX_MISC_IVAR, ivar); |
| } else { |
| /* tx or rx causes */ |
| msix_vector += 1; /* offset for queue vectors */ |
| msix_vector |= WX_PX_IVAR_ALLOC_VAL; |
| index = ((16 * (queue & 1)) + (8 * direction)); |
| ivar = rd32(wx, WX_PX_IVAR(queue >> 1)); |
| ivar &= ~(0xFF << index); |
| ivar |= (msix_vector << index); |
| wr32(wx, WX_PX_IVAR(queue >> 1), ivar); |
| } |
| } |
| |
| /** |
| * wx_write_eitr - write EITR register in hardware specific way |
| * @q_vector: structure containing interrupt and ring information |
| * |
| * This function is made to be called by ethtool and by the driver |
| * when it needs to update EITR registers at runtime. Hardware |
| * specific quirks/differences are taken care of here. |
| */ |
| void wx_write_eitr(struct wx_q_vector *q_vector) |
| { |
| struct wx *wx = q_vector->wx; |
| int v_idx = q_vector->v_idx; |
| u32 itr_reg; |
| |
| if (wx->mac.type == wx_mac_sp) |
| itr_reg = q_vector->itr & WX_SP_MAX_EITR; |
| else |
| itr_reg = q_vector->itr & WX_EM_MAX_EITR; |
| |
| itr_reg |= WX_PX_ITR_CNT_WDIS; |
| |
| wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg); |
| } |
| |
| /** |
| * wx_configure_vectors - Configure vectors for hardware |
| * @wx: board private structure |
| * |
| * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY |
| * interrupts. |
| **/ |
| void wx_configure_vectors(struct wx *wx) |
| { |
| struct pci_dev *pdev = wx->pdev; |
| u32 eitrsel = 0; |
| u16 v_idx; |
| |
| if (pdev->msix_enabled) { |
| /* Populate MSIX to EITR Select */ |
| wr32(wx, WX_PX_ITRSEL, eitrsel); |
| /* use EIAM to auto-mask when MSI-X interrupt is asserted |
| * this saves a register write for every interrupt |
| */ |
| wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL); |
| } else { |
| /* legacy interrupts, use EIAM to auto-mask when reading EICR, |
| * specifically only auto mask tx and rx interrupts. |
| */ |
| wr32(wx, WX_PX_GPIE, 0); |
| } |
| |
| /* Populate the IVAR table and set the ITR values to the |
| * corresponding register. |
| */ |
| for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) { |
| struct wx_q_vector *q_vector = wx->q_vector[v_idx]; |
| struct wx_ring *ring; |
| |
| wx_for_each_ring(ring, q_vector->rx) |
| wx_set_ivar(wx, 0, ring->reg_idx, v_idx); |
| |
| wx_for_each_ring(ring, q_vector->tx) |
| wx_set_ivar(wx, 1, ring->reg_idx, v_idx); |
| |
| wx_write_eitr(q_vector); |
| } |
| |
| wx_set_ivar(wx, -1, 0, 0); |
| if (pdev->msix_enabled) |
| wr32(wx, WX_PX_ITR(0), 1950); |
| } |
| EXPORT_SYMBOL(wx_configure_vectors); |
| |
| /** |
| * wx_clean_rx_ring - Free Rx Buffers per Queue |
| * @rx_ring: ring to free buffers from |
| **/ |
| static void wx_clean_rx_ring(struct wx_ring *rx_ring) |
| { |
| struct wx_rx_buffer *rx_buffer; |
| u16 i = rx_ring->next_to_clean; |
| |
| rx_buffer = &rx_ring->rx_buffer_info[i]; |
| |
| /* Free all the Rx ring sk_buffs */ |
| while (i != rx_ring->next_to_alloc) { |
| if (rx_buffer->skb) { |
| struct sk_buff *skb = rx_buffer->skb; |
| |
| if (WX_CB(skb)->page_released) |
| page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); |
| |
| dev_kfree_skb(skb); |
| } |
| |
| /* Invalidate cache lines that may have been written to by |
| * device so that we avoid corrupting memory. |
| */ |
| dma_sync_single_range_for_cpu(rx_ring->dev, |
| rx_buffer->dma, |
| rx_buffer->page_offset, |
| WX_RX_BUFSZ, |
| DMA_FROM_DEVICE); |
| |
| /* free resources associated with mapping */ |
| page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false); |
| |
| i++; |
| rx_buffer++; |
| if (i == rx_ring->count) { |
| i = 0; |
| rx_buffer = rx_ring->rx_buffer_info; |
| } |
| } |
| |
| rx_ring->next_to_alloc = 0; |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| } |
| |
| /** |
| * wx_clean_all_rx_rings - Free Rx Buffers for all queues |
| * @wx: board private structure |
| **/ |
| void wx_clean_all_rx_rings(struct wx *wx) |
| { |
| int i; |
| |
| for (i = 0; i < wx->num_rx_queues; i++) |
| wx_clean_rx_ring(wx->rx_ring[i]); |
| } |
| EXPORT_SYMBOL(wx_clean_all_rx_rings); |
| |
| /** |
| * wx_free_rx_resources - Free Rx Resources |
| * @rx_ring: ring to clean the resources from |
| * |
| * Free all receive software resources |
| **/ |
| static void wx_free_rx_resources(struct wx_ring *rx_ring) |
| { |
| wx_clean_rx_ring(rx_ring); |
| kvfree(rx_ring->rx_buffer_info); |
| rx_ring->rx_buffer_info = NULL; |
| |
| /* if not set, then don't free */ |
| if (!rx_ring->desc) |
| return; |
| |
| dma_free_coherent(rx_ring->dev, rx_ring->size, |
| rx_ring->desc, rx_ring->dma); |
| |
| rx_ring->desc = NULL; |
| |
| if (rx_ring->page_pool) { |
| page_pool_destroy(rx_ring->page_pool); |
| rx_ring->page_pool = NULL; |
| } |
| } |
| |
| /** |
| * wx_free_all_rx_resources - Free Rx Resources for All Queues |
| * @wx: pointer to hardware structure |
| * |
| * Free all receive software resources |
| **/ |
| static void wx_free_all_rx_resources(struct wx *wx) |
| { |
| int i; |
| |
| for (i = 0; i < wx->num_rx_queues; i++) |
| wx_free_rx_resources(wx->rx_ring[i]); |
| } |
| |
| /** |
| * wx_clean_tx_ring - Free Tx Buffers |
| * @tx_ring: ring to be cleaned |
| **/ |
| static void wx_clean_tx_ring(struct wx_ring *tx_ring) |
| { |
| struct wx_tx_buffer *tx_buffer; |
| u16 i = tx_ring->next_to_clean; |
| |
| tx_buffer = &tx_ring->tx_buffer_info[i]; |
| |
| while (i != tx_ring->next_to_use) { |
| union wx_tx_desc *eop_desc, *tx_desc; |
| |
| /* Free all the Tx ring sk_buffs */ |
| dev_kfree_skb_any(tx_buffer->skb); |
| |
| /* unmap skb header data */ |
| dma_unmap_single(tx_ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| |
| /* check for eop_desc to determine the end of the packet */ |
| eop_desc = tx_buffer->next_to_watch; |
| tx_desc = WX_TX_DESC(tx_ring, i); |
| |
| /* unmap remaining buffers */ |
| while (tx_desc != eop_desc) { |
| tx_buffer++; |
| tx_desc++; |
| i++; |
| if (unlikely(i == tx_ring->count)) { |
| i = 0; |
| tx_buffer = tx_ring->tx_buffer_info; |
| tx_desc = WX_TX_DESC(tx_ring, 0); |
| } |
| |
| /* unmap any remaining paged data */ |
| if (dma_unmap_len(tx_buffer, len)) |
| dma_unmap_page(tx_ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| } |
| |
| /* move us one more past the eop_desc for start of next pkt */ |
| tx_buffer++; |
| i++; |
| if (unlikely(i == tx_ring->count)) { |
| i = 0; |
| tx_buffer = tx_ring->tx_buffer_info; |
| } |
| } |
| |
| netdev_tx_reset_queue(wx_txring_txq(tx_ring)); |
| |
| /* reset next_to_use and next_to_clean */ |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| } |
| |
| /** |
| * wx_clean_all_tx_rings - Free Tx Buffers for all queues |
| * @wx: board private structure |
| **/ |
| void wx_clean_all_tx_rings(struct wx *wx) |
| { |
| int i; |
| |
| for (i = 0; i < wx->num_tx_queues; i++) |
| wx_clean_tx_ring(wx->tx_ring[i]); |
| } |
| EXPORT_SYMBOL(wx_clean_all_tx_rings); |
| |
| /** |
| * wx_free_tx_resources - Free Tx Resources per Queue |
| * @tx_ring: Tx descriptor ring for a specific queue |
| * |
| * Free all transmit software resources |
| **/ |
| static void wx_free_tx_resources(struct wx_ring *tx_ring) |
| { |
| wx_clean_tx_ring(tx_ring); |
| kvfree(tx_ring->tx_buffer_info); |
| tx_ring->tx_buffer_info = NULL; |
| |
| /* if not set, then don't free */ |
| if (!tx_ring->desc) |
| return; |
| |
| dma_free_coherent(tx_ring->dev, tx_ring->size, |
| tx_ring->desc, tx_ring->dma); |
| tx_ring->desc = NULL; |
| } |
| |
| /** |
| * wx_free_all_tx_resources - Free Tx Resources for All Queues |
| * @wx: pointer to hardware structure |
| * |
| * Free all transmit software resources |
| **/ |
| static void wx_free_all_tx_resources(struct wx *wx) |
| { |
| int i; |
| |
| for (i = 0; i < wx->num_tx_queues; i++) |
| wx_free_tx_resources(wx->tx_ring[i]); |
| } |
| |
| void wx_free_resources(struct wx *wx) |
| { |
| wx_free_isb_resources(wx); |
| wx_free_all_rx_resources(wx); |
| wx_free_all_tx_resources(wx); |
| } |
| EXPORT_SYMBOL(wx_free_resources); |
| |
| static int wx_alloc_page_pool(struct wx_ring *rx_ring) |
| { |
| int ret = 0; |
| |
| struct page_pool_params pp_params = { |
| .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, |
| .order = 0, |
| .pool_size = rx_ring->size, |
| .nid = dev_to_node(rx_ring->dev), |
| .dev = rx_ring->dev, |
| .dma_dir = DMA_FROM_DEVICE, |
| .offset = 0, |
| .max_len = PAGE_SIZE, |
| }; |
| |
| rx_ring->page_pool = page_pool_create(&pp_params); |
| if (IS_ERR(rx_ring->page_pool)) { |
| ret = PTR_ERR(rx_ring->page_pool); |
| rx_ring->page_pool = NULL; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * wx_setup_rx_resources - allocate Rx resources (Descriptors) |
| * @rx_ring: rx descriptor ring (for a specific queue) to setup |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int wx_setup_rx_resources(struct wx_ring *rx_ring) |
| { |
| struct device *dev = rx_ring->dev; |
| int orig_node = dev_to_node(dev); |
| int numa_node = NUMA_NO_NODE; |
| int size, ret; |
| |
| size = sizeof(struct wx_rx_buffer) * rx_ring->count; |
| |
| if (rx_ring->q_vector) |
| numa_node = rx_ring->q_vector->numa_node; |
| |
| rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); |
| if (!rx_ring->rx_buffer_info) |
| rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL); |
| if (!rx_ring->rx_buffer_info) |
| goto err; |
| |
| /* Round up to nearest 4K */ |
| rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc); |
| rx_ring->size = ALIGN(rx_ring->size, 4096); |
| |
| set_dev_node(dev, numa_node); |
| rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, |
| &rx_ring->dma, GFP_KERNEL); |
| if (!rx_ring->desc) { |
| set_dev_node(dev, orig_node); |
| rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, |
| &rx_ring->dma, GFP_KERNEL); |
| } |
| |
| if (!rx_ring->desc) |
| goto err; |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| |
| ret = wx_alloc_page_pool(rx_ring); |
| if (ret < 0) { |
| dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret); |
| goto err_desc; |
| } |
| |
| return 0; |
| |
| err_desc: |
| dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma); |
| err: |
| kvfree(rx_ring->rx_buffer_info); |
| rx_ring->rx_buffer_info = NULL; |
| dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); |
| return -ENOMEM; |
| } |
| |
| /** |
| * wx_setup_all_rx_resources - allocate all queues Rx resources |
| * @wx: pointer to hardware structure |
| * |
| * If this function returns with an error, then it's possible one or |
| * more of the rings is populated (while the rest are not). It is the |
| * callers duty to clean those orphaned rings. |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| static int wx_setup_all_rx_resources(struct wx *wx) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < wx->num_rx_queues; i++) { |
| err = wx_setup_rx_resources(wx->rx_ring[i]); |
| if (!err) |
| continue; |
| |
| wx_err(wx, "Allocation for Rx Queue %u failed\n", i); |
| goto err_setup_rx; |
| } |
| |
| return 0; |
| err_setup_rx: |
| /* rewind the index freeing the rings as we go */ |
| while (i--) |
| wx_free_rx_resources(wx->rx_ring[i]); |
| return err; |
| } |
| |
| /** |
| * wx_setup_tx_resources - allocate Tx resources (Descriptors) |
| * @tx_ring: tx descriptor ring (for a specific queue) to setup |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| static int wx_setup_tx_resources(struct wx_ring *tx_ring) |
| { |
| struct device *dev = tx_ring->dev; |
| int orig_node = dev_to_node(dev); |
| int numa_node = NUMA_NO_NODE; |
| int size; |
| |
| size = sizeof(struct wx_tx_buffer) * tx_ring->count; |
| |
| if (tx_ring->q_vector) |
| numa_node = tx_ring->q_vector->numa_node; |
| |
| tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node); |
| if (!tx_ring->tx_buffer_info) |
| tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL); |
| if (!tx_ring->tx_buffer_info) |
| goto err; |
| |
| /* round up to nearest 4K */ |
| tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc); |
| tx_ring->size = ALIGN(tx_ring->size, 4096); |
| |
| set_dev_node(dev, numa_node); |
| tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, |
| &tx_ring->dma, GFP_KERNEL); |
| if (!tx_ring->desc) { |
| set_dev_node(dev, orig_node); |
| tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, |
| &tx_ring->dma, GFP_KERNEL); |
| } |
| |
| if (!tx_ring->desc) |
| goto err; |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| |
| return 0; |
| |
| err: |
| kvfree(tx_ring->tx_buffer_info); |
| tx_ring->tx_buffer_info = NULL; |
| dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); |
| return -ENOMEM; |
| } |
| |
| /** |
| * wx_setup_all_tx_resources - allocate all queues Tx resources |
| * @wx: pointer to private structure |
| * |
| * If this function returns with an error, then it's possible one or |
| * more of the rings is populated (while the rest are not). It is the |
| * callers duty to clean those orphaned rings. |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| static int wx_setup_all_tx_resources(struct wx *wx) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < wx->num_tx_queues; i++) { |
| err = wx_setup_tx_resources(wx->tx_ring[i]); |
| if (!err) |
| continue; |
| |
| wx_err(wx, "Allocation for Tx Queue %u failed\n", i); |
| goto err_setup_tx; |
| } |
| |
| return 0; |
| err_setup_tx: |
| /* rewind the index freeing the rings as we go */ |
| while (i--) |
| wx_free_tx_resources(wx->tx_ring[i]); |
| return err; |
| } |
| |
| int wx_setup_resources(struct wx *wx) |
| { |
| int err; |
| |
| /* allocate transmit descriptors */ |
| err = wx_setup_all_tx_resources(wx); |
| if (err) |
| return err; |
| |
| /* allocate receive descriptors */ |
| err = wx_setup_all_rx_resources(wx); |
| if (err) |
| goto err_free_tx; |
| |
| err = wx_setup_isb_resources(wx); |
| if (err) |
| goto err_free_rx; |
| |
| return 0; |
| |
| err_free_rx: |
| wx_free_all_rx_resources(wx); |
| err_free_tx: |
| wx_free_all_tx_resources(wx); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(wx_setup_resources); |
| |
| /** |
| * wx_get_stats64 - Get System Network Statistics |
| * @netdev: network interface device structure |
| * @stats: storage space for 64bit statistics |
| */ |
| void wx_get_stats64(struct net_device *netdev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct wx *wx = netdev_priv(netdev); |
| struct wx_hw_stats *hwstats; |
| int i; |
| |
| wx_update_stats(wx); |
| |
| rcu_read_lock(); |
| for (i = 0; i < wx->num_rx_queues; i++) { |
| struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]); |
| u64 bytes, packets; |
| unsigned int start; |
| |
| if (ring) { |
| do { |
| start = u64_stats_fetch_begin(&ring->syncp); |
| packets = ring->stats.packets; |
| bytes = ring->stats.bytes; |
| } while (u64_stats_fetch_retry(&ring->syncp, start)); |
| stats->rx_packets += packets; |
| stats->rx_bytes += bytes; |
| } |
| } |
| |
| for (i = 0; i < wx->num_tx_queues; i++) { |
| struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]); |
| u64 bytes, packets; |
| unsigned int start; |
| |
| if (ring) { |
| do { |
| start = u64_stats_fetch_begin(&ring->syncp); |
| packets = ring->stats.packets; |
| bytes = ring->stats.bytes; |
| } while (u64_stats_fetch_retry(&ring->syncp, |
| start)); |
| stats->tx_packets += packets; |
| stats->tx_bytes += bytes; |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| hwstats = &wx->stats; |
| stats->rx_errors = hwstats->crcerrs + hwstats->rlec; |
| stats->multicast = hwstats->qmprc; |
| stats->rx_length_errors = hwstats->rlec; |
| stats->rx_crc_errors = hwstats->crcerrs; |
| } |
| EXPORT_SYMBOL(wx_get_stats64); |
| |
| int wx_set_features(struct net_device *netdev, netdev_features_t features) |
| { |
| netdev_features_t changed = netdev->features ^ features; |
| struct wx *wx = netdev_priv(netdev); |
| |
| if (features & NETIF_F_RXHASH) { |
| wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, |
| WX_RDB_RA_CTL_RSS_EN); |
| wx->rss_enabled = true; |
| } else { |
| wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0); |
| wx->rss_enabled = false; |
| } |
| |
| if (changed & |
| (NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_HW_VLAN_STAG_RX)) |
| wx_set_rx_mode(netdev); |
| |
| return 1; |
| } |
| EXPORT_SYMBOL(wx_set_features); |
| |
| void wx_set_ring(struct wx *wx, u32 new_tx_count, |
| u32 new_rx_count, struct wx_ring *temp_ring) |
| { |
| int i, err = 0; |
| |
| /* Setup new Tx resources and free the old Tx resources in that order. |
| * We can then assign the new resources to the rings via a memcpy. |
| * The advantage to this approach is that we are guaranteed to still |
| * have resources even in the case of an allocation failure. |
| */ |
| if (new_tx_count != wx->tx_ring_count) { |
| for (i = 0; i < wx->num_tx_queues; i++) { |
| memcpy(&temp_ring[i], wx->tx_ring[i], |
| sizeof(struct wx_ring)); |
| |
| temp_ring[i].count = new_tx_count; |
| err = wx_setup_tx_resources(&temp_ring[i]); |
| if (err) { |
| wx_err(wx, "setup new tx resources failed, keep using the old config\n"); |
| while (i) { |
| i--; |
| wx_free_tx_resources(&temp_ring[i]); |
| } |
| return; |
| } |
| } |
| |
| for (i = 0; i < wx->num_tx_queues; i++) { |
| wx_free_tx_resources(wx->tx_ring[i]); |
| |
| memcpy(wx->tx_ring[i], &temp_ring[i], |
| sizeof(struct wx_ring)); |
| } |
| |
| wx->tx_ring_count = new_tx_count; |
| } |
| |
| /* Repeat the process for the Rx rings if needed */ |
| if (new_rx_count != wx->rx_ring_count) { |
| for (i = 0; i < wx->num_rx_queues; i++) { |
| memcpy(&temp_ring[i], wx->rx_ring[i], |
| sizeof(struct wx_ring)); |
| |
| temp_ring[i].count = new_rx_count; |
| err = wx_setup_rx_resources(&temp_ring[i]); |
| if (err) { |
| wx_err(wx, "setup new rx resources failed, keep using the old config\n"); |
| while (i) { |
| i--; |
| wx_free_rx_resources(&temp_ring[i]); |
| } |
| return; |
| } |
| } |
| |
| for (i = 0; i < wx->num_rx_queues; i++) { |
| wx_free_rx_resources(wx->rx_ring[i]); |
| memcpy(wx->rx_ring[i], &temp_ring[i], |
| sizeof(struct wx_ring)); |
| } |
| |
| wx->rx_ring_count = new_rx_count; |
| } |
| } |
| EXPORT_SYMBOL(wx_set_ring); |
| |
| MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers."); |
| MODULE_LICENSE("GPL"); |