blob: 1484eaedf45292d53b349000b274fd25e435c369 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (C) 2012-2014, 2018-2024 Intel Corporation
* Copyright (C) 2013-2015 Intel Mobile Communications GmbH
* Copyright (C) 2015-2017 Intel Deutschland GmbH
*/
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include "iwl-trans.h"
#include "mvm.h"
#include "fw-api.h"
#include "time-sync.h"
static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
int queue, struct ieee80211_sta *sta)
{
struct iwl_mvm_sta *mvmsta;
struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
struct iwl_mvm_key_pn *ptk_pn;
int res;
u8 tid, keyidx;
u8 pn[IEEE80211_CCMP_PN_LEN];
u8 *extiv;
/* do PN checking */
/* multicast and non-data only arrives on default queue */
if (!ieee80211_is_data(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1))
return 0;
/* do not check PN for open AP */
if (!(stats->flag & RX_FLAG_DECRYPTED))
return 0;
/*
* avoid checking for default queue - we don't want to replicate
* all the logic that's necessary for checking the PN on fragmented
* frames, leave that to mac80211
*/
if (queue == 0)
return 0;
/* if we are here - this for sure is either CCMP or GCMP */
if (IS_ERR_OR_NULL(sta)) {
IWL_DEBUG_DROP(mvm,
"expected hw-decrypted unicast frame for station\n");
return -1;
}
mvmsta = iwl_mvm_sta_from_mac80211(sta);
extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
keyidx = extiv[3] >> 6;
ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
if (!ptk_pn)
return -1;
if (ieee80211_is_data_qos(hdr->frame_control))
tid = ieee80211_get_tid(hdr);
else
tid = 0;
/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
if (tid >= IWL_MAX_TID_COUNT)
return -1;
/* load pn */
pn[0] = extiv[7];
pn[1] = extiv[6];
pn[2] = extiv[5];
pn[3] = extiv[4];
pn[4] = extiv[1];
pn[5] = extiv[0];
res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
if (res < 0)
return -1;
if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
return -1;
memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
stats->flag |= RX_FLAG_PN_VALIDATED;
return 0;
}
/* iwl_mvm_create_skb Adds the rxb to a new skb */
static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
struct iwl_rx_cmd_buffer *rxb)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
unsigned int headlen, fraglen, pad_len = 0;
unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
len -= 2;
pad_len = 2;
}
/*
* For non monitor interface strip the bytes the RADA might not have
* removed (it might be disabled, e.g. for mgmt frames). As a monitor
* interface cannot exist with other interfaces, this removal is safe
* and sufficient, in monitor mode there's no decryption being done.
*/
if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
len -= mic_crc_len;
/* If frame is small enough to fit in skb->head, pull it completely.
* If not, only pull ieee80211_hdr (including crypto if present, and
* an additional 8 bytes for SNAP/ethertype, see below) so that
* splice() or TCP coalesce are more efficient.
*
* Since, in addition, ieee80211_data_to_8023() always pull in at
* least 8 bytes (possibly more for mesh) we can do the same here
* to save the cost of doing it later. That still doesn't pull in
* the actual IP header since the typical case has a SNAP header.
* If the latter changes (there are efforts in the standards group
* to do so) we should revisit this and ieee80211_data_to_8023().
*/
headlen = (len <= skb_tailroom(skb)) ? len :
hdrlen + crypt_len + 8;
/* The firmware may align the packet to DWORD.
* The padding is inserted after the IV.
* After copying the header + IV skip the padding if
* present before copying packet data.
*/
hdrlen += crypt_len;
if (unlikely(headlen < hdrlen))
return -EINVAL;
/* Since data doesn't move data while putting data on skb and that is
* the only way we use, data + len is the next place that hdr would be put
*/
skb_set_mac_header(skb, skb->len);
skb_put_data(skb, hdr, hdrlen);
skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
/*
* If we did CHECKSUM_COMPLETE, the hardware only does it right for
* certain cases and starts the checksum after the SNAP. Check if
* this is the case - it's easier to just bail out to CHECKSUM_NONE
* in the cases the hardware didn't handle, since it's rare to see
* such packets, even though the hardware did calculate the checksum
* in this case, just starting after the MAC header instead.
*
* Starting from Bz hardware, it calculates starting directly after
* the MAC header, so that matches mac80211's expectation.
*/
if (skb->ip_summed == CHECKSUM_COMPLETE) {
struct {
u8 hdr[6];
__be16 type;
} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
!ether_addr_equal(shdr->hdr, rfc1042_header) ||
(shdr->type != htons(ETH_P_IP) &&
shdr->type != htons(ETH_P_ARP) &&
shdr->type != htons(ETH_P_IPV6) &&
shdr->type != htons(ETH_P_8021Q) &&
shdr->type != htons(ETH_P_PAE) &&
shdr->type != htons(ETH_P_TDLS))))
skb->ip_summed = CHECKSUM_NONE;
else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
/* mac80211 assumes full CSUM including SNAP header */
skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
}
fraglen = len - headlen;
if (fraglen) {
int offset = (u8 *)hdr + headlen + pad_len -
(u8 *)rxb_addr(rxb) + rxb_offset(rxb);
skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
fraglen, rxb->truesize);
}
return 0;
}
/* put a TLV on the skb and return data pointer
*
* Also pad to 4 the len and zero out all data part
*/
static void *
iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
{
struct ieee80211_radiotap_tlv *tlv;
tlv = skb_put(skb, sizeof(*tlv));
tlv->type = cpu_to_le16(type);
tlv->len = cpu_to_le16(len);
return skb_put_zero(skb, ALIGN(len, 4));
}
static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
struct sk_buff *skb)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_vendor_content *radiotap;
const u16 vendor_data_len = sizeof(mvm->cur_aid);
if (!mvm->cur_aid)
return;
radiotap = iwl_mvm_radiotap_put_tlv(skb,
IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
sizeof(*radiotap) + vendor_data_len);
/* Intel OUI */
radiotap->oui[0] = 0xf6;
radiotap->oui[1] = 0x54;
radiotap->oui[2] = 0x25;
/* radiotap sniffer config sub-namespace */
radiotap->oui_subtype = 1;
radiotap->vendor_type = 0;
/* fill the data now */
memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
}
/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
struct napi_struct *napi,
struct sk_buff *skb, int queue,
struct ieee80211_sta *sta,
struct ieee80211_link_sta *link_sta)
{
if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
kfree_skb(skb);
return;
}
if (sta && sta->valid_links && link_sta) {
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
rx_status->link_valid = 1;
rx_status->link_id = link_sta->link_id;
}
ieee80211_rx_napi(mvm->hw, sta, skb, napi);
}
static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
struct ieee80211_rx_status *rx_status,
u32 rate_n_flags, int energy_a,
int energy_b)
{
int max_energy;
u32 rate_flags = rate_n_flags;
energy_a = energy_a ? -energy_a : S8_MIN;
energy_b = energy_b ? -energy_b : S8_MIN;
max_energy = max(energy_a, energy_b);
IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
energy_a, energy_b, max_energy);
rx_status->signal = max_energy;
rx_status->chains =
(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
rx_status->chain_signal[0] = energy_a;
rx_status->chain_signal[1] = energy_b;
}
static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
struct ieee80211_hdr *hdr,
struct iwl_rx_mpdu_desc *desc,
u32 status,
struct ieee80211_rx_status *stats)
{
struct wireless_dev *wdev;
struct iwl_mvm_sta *mvmsta;
struct iwl_mvm_vif *mvmvif;
u8 keyid;
struct ieee80211_key_conf *key;
u32 len = le16_to_cpu(desc->mpdu_len);
const u8 *frame = (void *)hdr;
if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
return 0;
/*
* For non-beacon, we don't really care. But beacons may
* be filtered out, and we thus need the firmware's replay
* detection, otherwise beacons the firmware previously
* filtered could be replayed, or something like that, and
* it can filter a lot - though usually only if nothing has
* changed.
*/
if (!ieee80211_is_beacon(hdr->frame_control))
return 0;
if (!sta)
return -1;
mvmsta = iwl_mvm_sta_from_mac80211(sta);
mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
/* key mismatch - will also report !MIC_OK but we shouldn't count it */
if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
goto report;
/* good cases */
if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
!(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
stats->flag |= RX_FLAG_DECRYPTED;
return 0;
}
/*
* both keys will have the same cipher and MIC length, use
* whichever one is available
*/
key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
if (!key) {
key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
if (!key)
goto report;
}
if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
goto report;
/* get the real key ID */
keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
/* and if that's the other key, look it up */
if (keyid != key->keyidx) {
/*
* shouldn't happen since firmware checked, but be safe
* in case the MIC length is wrong too, for example
*/
if (keyid != 6 && keyid != 7)
return -1;
key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
if (!key)
goto report;
}
/* Report status to mac80211 */
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
ieee80211_key_mic_failure(key);
else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
ieee80211_key_replay(key);
report:
wdev = ieee80211_vif_to_wdev(mvmsta->vif);
if (wdev->netdev)
cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len);
return -1;
}
static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
struct ieee80211_hdr *hdr,
struct ieee80211_rx_status *stats, u16 phy_info,
struct iwl_rx_mpdu_desc *desc,
u32 pkt_flags, int queue, u8 *crypt_len)
{
u32 status = le32_to_cpu(desc->status);
/*
* Drop UNKNOWN frames in aggregation, unless in monitor mode
* (where we don't have the keys).
* We limit this to aggregation because in TKIP this is a valid
* scenario, since we may not have the (correct) TTAK (phase 1
* key) in the firmware.
*/
if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
return -1;
}
if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
!ieee80211_has_protected(hdr->frame_control)))
return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
if (!ieee80211_has_protected(hdr->frame_control) ||
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
IWL_RX_MPDU_STATUS_SEC_NONE)
return 0;
/* TODO: handle packets encrypted with unknown alg */
switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
case IWL_RX_MPDU_STATUS_SEC_CCM:
case IWL_RX_MPDU_STATUS_SEC_GCM:
BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
/* alg is CCM: check MIC only */
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
IWL_DEBUG_DROP(mvm,
"Dropping packet, bad MIC (CCM/GCM)\n");
return -1;
}
stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
*crypt_len = IEEE80211_CCMP_HDR_LEN;
return 0;
case IWL_RX_MPDU_STATUS_SEC_TKIP:
/* Don't drop the frame and decrypt it in SW */
if (!fw_has_api(&mvm->fw->ucode_capa,
IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
!(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
return 0;
if (mvm->trans->trans_cfg->gen2 &&
!(status & RX_MPDU_RES_STATUS_MIC_OK))
stats->flag |= RX_FLAG_MMIC_ERROR;
*crypt_len = IEEE80211_TKIP_IV_LEN;
fallthrough;
case IWL_RX_MPDU_STATUS_SEC_WEP:
if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
return -1;
stats->flag |= RX_FLAG_DECRYPTED;
if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
IWL_RX_MPDU_STATUS_SEC_WEP)
*crypt_len = IEEE80211_WEP_IV_LEN;
if (pkt_flags & FH_RSCSR_RADA_EN) {
stats->flag |= RX_FLAG_ICV_STRIPPED;
if (mvm->trans->trans_cfg->gen2)
stats->flag |= RX_FLAG_MMIC_STRIPPED;
}
return 0;
case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
return -1;
stats->flag |= RX_FLAG_DECRYPTED;
return 0;
case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
break;
default:
/*
* Sometimes we can get frames that were not decrypted
* because the firmware didn't have the keys yet. This can
* happen after connection where we can get multicast frames
* before the GTK is installed.
* Silently drop those frames.
* Also drop un-decrypted frames in monitor mode.
*/
if (!is_multicast_ether_addr(hdr->addr1) &&
!mvm->monitor_on && net_ratelimit())
IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
}
return 0;
}
static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct sk_buff *skb,
struct iwl_rx_packet *pkt)
{
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = csum_unfold(~(__force __sum16)hwsum);
}
} else {
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct iwl_mvm_vif *mvmvif;
u16 flags = le16_to_cpu(desc->l3l4_flags);
u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
IWL_RX_L3_PROTO_POS);
mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
if (mvmvif->features & NETIF_F_RXCSUM &&
flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
(flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
l3_prot == IWL_RX_L3_TYPE_IPV6 ||
l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
/*
* returns true if a packet is a duplicate or invalid tid and should be dropped.
* Updates AMSDU PN tracking info
*/
static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
struct ieee80211_rx_status *rx_status,
struct ieee80211_hdr *hdr,
struct iwl_rx_mpdu_desc *desc)
{
struct iwl_mvm_sta *mvm_sta;
struct iwl_mvm_rxq_dup_data *dup_data;
u8 tid, sub_frame_idx;
if (WARN_ON(IS_ERR_OR_NULL(sta)))
return false;
mvm_sta = iwl_mvm_sta_from_mac80211(sta);
if (WARN_ON_ONCE(!mvm_sta->dup_data))
return false;
dup_data = &mvm_sta->dup_data[queue];
/*
* Drop duplicate 802.11 retransmissions
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
*/
if (ieee80211_is_ctl(hdr->frame_control) ||
ieee80211_is_any_nullfunc(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1))
return false;
if (ieee80211_is_data_qos(hdr->frame_control)) {
/* frame has qos control */
tid = ieee80211_get_tid(hdr);
if (tid >= IWL_MAX_TID_COUNT)
return true;
} else {
tid = IWL_MAX_TID_COUNT;
}
/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
sub_frame_idx = desc->amsdu_info &
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
dup_data->last_seq[tid] == hdr->seq_ctrl &&
dup_data->last_sub_frame[tid] >= sub_frame_idx))
return true;
/* Allow same PN as the first subframe for following sub frames */
if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
sub_frame_idx > dup_data->last_sub_frame[tid] &&
desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
dup_data->last_seq[tid] = hdr->seq_ctrl;
dup_data->last_sub_frame[tid] = sub_frame_idx;
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
return false;
}
static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct napi_struct *napi,
struct iwl_mvm_baid_data *baid_data,
struct iwl_mvm_reorder_buffer *reorder_buf,
u16 nssn)
{
struct iwl_mvm_reorder_buf_entry *entries =
&baid_data->entries[reorder_buf->queue *
baid_data->entries_per_queue];
u16 ssn = reorder_buf->head_sn;
lockdep_assert_held(&reorder_buf->lock);
while (ieee80211_sn_less(ssn, nssn)) {
int index = ssn % reorder_buf->buf_size;
struct sk_buff_head *skb_list = &entries[index].frames;
struct sk_buff *skb;
ssn = ieee80211_sn_inc(ssn);
/*
* Empty the list. Will have more than one frame for A-MSDU.
* Empty list is valid as well since nssn indicates frames were
* received.
*/
while ((skb = __skb_dequeue(skb_list))) {
iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
reorder_buf->queue,
sta, NULL /* FIXME */);
reorder_buf->num_stored--;
}
}
reorder_buf->head_sn = nssn;
}
static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
struct iwl_mvm_delba_data *data)
{
struct iwl_mvm_baid_data *ba_data;
struct ieee80211_sta *sta;
struct iwl_mvm_reorder_buffer *reorder_buf;
u8 baid = data->baid;
u32 sta_id;
if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
return;
rcu_read_lock();
ba_data = rcu_dereference(mvm->baid_map[baid]);
if (WARN_ON_ONCE(!ba_data))
goto out;
/* pick any STA ID to find the pointer */
sta_id = ffs(ba_data->sta_mask) - 1;
sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
goto out;
reorder_buf = &ba_data->reorder_buf[queue];
/* release all frames that are in the reorder buffer to the stack */
spin_lock_bh(&reorder_buf->lock);
iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
ieee80211_sn_add(reorder_buf->head_sn,
reorder_buf->buf_size));
spin_unlock_bh(&reorder_buf->lock);
out:
rcu_read_unlock();
}
static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
struct napi_struct *napi,
u8 baid, u16 nssn, int queue)
{
struct ieee80211_sta *sta;
struct iwl_mvm_reorder_buffer *reorder_buf;
struct iwl_mvm_baid_data *ba_data;
u32 sta_id;
IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
baid, nssn);
if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
baid >= ARRAY_SIZE(mvm->baid_map)))
return;
rcu_read_lock();
ba_data = rcu_dereference(mvm->baid_map[baid]);
if (WARN(!ba_data, "BAID %d not found in map\n", baid))
goto out;
/* pick any STA ID to find the pointer */
sta_id = ffs(ba_data->sta_mask) - 1;
sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
goto out;
reorder_buf = &ba_data->reorder_buf[queue];
spin_lock_bh(&reorder_buf->lock);
iwl_mvm_release_frames(mvm, sta, napi, ba_data,
reorder_buf, nssn);
spin_unlock_bh(&reorder_buf->lock);
out:
rcu_read_unlock();
}
void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
struct iwl_rx_cmd_buffer *rxb, int queue)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_rxq_sync_notification *notif;
struct iwl_mvm_internal_rxq_notif *internal_notif;
u32 len = iwl_rx_packet_payload_len(pkt);
notif = (void *)pkt->data;
internal_notif = (void *)notif->payload;
if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
"invalid notification size %d (%d)",
len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
return;
len -= sizeof(*notif) + sizeof(*internal_notif);
if (WARN_ONCE(internal_notif->sync &&
mvm->queue_sync_cookie != internal_notif->cookie,
"Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n",
internal_notif->cookie, mvm->queue_sync_cookie, queue))
return;
switch (internal_notif->type) {
case IWL_MVM_RXQ_EMPTY:
WARN_ONCE(len, "invalid empty notification size %d", len);
break;
case IWL_MVM_RXQ_NOTIF_DEL_BA:
if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
"invalid delba notification size %d (%d)",
len, (int)sizeof(struct iwl_mvm_delba_data)))
break;
iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
break;
default:
WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
}
if (internal_notif->sync) {
WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
"queue sync: queue %d responded a second time!\n",
queue);
if (READ_ONCE(mvm->queue_sync_state) == 0)
wake_up(&mvm->rx_sync_waitq);
}
}
/*
* Returns true if the MPDU was buffered\dropped, false if it should be passed
* to upper layer.
*/
static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
struct napi_struct *napi,
int queue,
struct ieee80211_sta *sta,
struct sk_buff *skb,
struct iwl_rx_mpdu_desc *desc)
{
struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
struct iwl_mvm_baid_data *baid_data;
struct iwl_mvm_reorder_buffer *buffer;
u32 reorder = le32_to_cpu(desc->reorder_data);
bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
bool last_subframe =
desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
u8 tid = ieee80211_get_tid(hdr);
u8 sub_frame_idx = desc->amsdu_info &
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
struct iwl_mvm_reorder_buf_entry *entries;
u32 sta_mask;
int index;
u16 nssn, sn;
u8 baid;
baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
IWL_RX_MPDU_REORDER_BAID_SHIFT;
if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
return false;
/*
* This also covers the case of receiving a Block Ack Request
* outside a BA session; we'll pass it to mac80211 and that
* then sends a delBA action frame.
* This also covers pure monitor mode, in which case we won't
* have any BA sessions.
*/
if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
return false;
/* no sta yet */
if (WARN_ONCE(IS_ERR_OR_NULL(sta),
"Got valid BAID without a valid station assigned\n"))
return false;
/* not a data packet or a bar */
if (!ieee80211_is_back_req(hdr->frame_control) &&
(!ieee80211_is_data_qos(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1)))
return false;
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
return false;
baid_data = rcu_dereference(mvm->baid_map[baid]);
if (!baid_data) {
IWL_DEBUG_RX(mvm,
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
baid, reorder);
return false;
}
rcu_read_lock();
sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
rcu_read_unlock();
if (IWL_FW_CHECK(mvm,
tid != baid_data->tid ||
!(sta_mask & baid_data->sta_mask),
"baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
baid, baid_data->sta_mask, baid_data->tid,
sta_mask, tid))
return false;
nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
IWL_RX_MPDU_REORDER_SN_SHIFT;
buffer = &baid_data->reorder_buf[queue];
entries = &baid_data->entries[queue * baid_data->entries_per_queue];
spin_lock_bh(&buffer->lock);
if (!buffer->valid) {
if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
spin_unlock_bh(&buffer->lock);
return false;
}
buffer->valid = true;
}
/* drop any duplicated packets */
if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
goto drop;
/* drop any oudated packets */
if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
goto drop;
/* release immediately if allowed by nssn and no stored frames */
if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
if (!amsdu || last_subframe)
buffer->head_sn = nssn;
/* No need to update AMSDU last SN - we are moving the head */
spin_unlock_bh(&buffer->lock);
return false;
}
/*
* release immediately if there are no stored frames, and the sn is
* equal to the head.
* This can happen due to reorder timer, where NSSN is behind head_sn.
* When we released everything, and we got the next frame in the
* sequence, according to the NSSN we can't release immediately,
* while technically there is no hole and we can move forward.
*/
if (!buffer->num_stored && sn == buffer->head_sn) {
if (!amsdu || last_subframe)
buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
/* No need to update AMSDU last SN - we are moving the head */
spin_unlock_bh(&buffer->lock);
return false;
}
/* put in reorder buffer */
index = sn % buffer->buf_size;
__skb_queue_tail(&entries[index].frames, skb);
buffer->num_stored++;
if (amsdu) {
buffer->last_amsdu = sn;
buffer->last_sub_index = sub_frame_idx;
}
/*
* We cannot trust NSSN for AMSDU sub-frames that are not the last.
* The reason is that NSSN advances on the first sub-frame, and may
* cause the reorder buffer to advance before all the sub-frames arrive.
* Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
* SN 1. NSSN for first sub frame will be 3 with the result of driver
* releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
* already ahead and it will be dropped.
* If the last sub-frame is not on this queue - we will get frame
* release notification with up to date NSSN.
*/
if (!amsdu || last_subframe)
iwl_mvm_release_frames(mvm, sta, napi, baid_data,
buffer, nssn);
spin_unlock_bh(&buffer->lock);
return true;
drop:
kfree_skb(skb);
spin_unlock_bh(&buffer->lock);
return true;
}
static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
u32 reorder_data, u8 baid)
{
unsigned long now = jiffies;
unsigned long timeout;
struct iwl_mvm_baid_data *data;
rcu_read_lock();
data = rcu_dereference(mvm->baid_map[baid]);
if (!data) {
IWL_DEBUG_RX(mvm,
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
baid, reorder_data);
goto out;
}
if (!data->timeout)
goto out;
timeout = data->timeout;
/*
* Do not update last rx all the time to avoid cache bouncing
* between the rx queues.
* Update it every timeout. Worst case is the session will
* expire after ~ 2 * timeout, which doesn't matter that much.
*/
if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
/* Update is atomic */
data->last_rx = now;
out:
rcu_read_unlock();
}
static void iwl_mvm_flip_address(u8 *addr)
{
int i;
u8 mac_addr[ETH_ALEN];
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = addr[ETH_ALEN - i - 1];
ether_addr_copy(addr, mac_addr);
}
struct iwl_mvm_rx_phy_data {
enum iwl_rx_phy_info_type info_type;
__le32 d0, d1, d2, d3, eht_d4, d5;
__le16 d4;
bool with_data;
bool first_subframe;
__le32 rx_vec[4];
u32 rate_n_flags;
u32 gp2_on_air_rise;
u16 phy_info;
u8 energy_a, energy_b;
u8 channel;
};
static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
struct iwl_mvm_rx_phy_data *phy_data,
struct ieee80211_radiotap_he_mu *he_mu)
{
u32 phy_data2 = le32_to_cpu(phy_data->d2);
u32 phy_data3 = le32_to_cpu(phy_data->d3);
u16 phy_data4 = le16_to_cpu(phy_data->d4);
u32 rate_n_flags = phy_data->rate_n_flags;
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
he_mu->flags1 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
he_mu->flags1 |=
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
phy_data4),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
phy_data2);
he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
phy_data3);
he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
phy_data2);
he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
phy_data3);
}
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
(rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
he_mu->flags1 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
he_mu->flags2 |=
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
phy_data4),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
phy_data2);
he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
phy_data3);
he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
phy_data2);
he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
phy_data3);
}
}
static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
struct ieee80211_radiotap_he *he,
struct ieee80211_radiotap_he_mu *he_mu,
struct ieee80211_rx_status *rx_status)
{
/*
* Unfortunately, we have to leave the mac80211 data
* incorrect for the case that we receive an HE-MU
* transmission and *don't* have the HE phy data (due
* to the bits being used for TSF). This shouldn't
* happen though as management frames where we need
* the TSF/timers are not be transmitted in HE-MU.
*/
u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
u32 rate_n_flags = phy_data->rate_n_flags;
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
u8 offs = 0;
rx_status->bw = RATE_INFO_BW_HE_RU;
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
switch (ru) {
case 0 ... 36:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
offs = ru;
break;
case 37 ... 52:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
offs = ru - 37;
break;
case 53 ... 60:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
offs = ru - 53;
break;
case 61 ... 64:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
offs = ru - 61;
break;
case 65 ... 66:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
offs = ru - 65;
break;
case 67:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
break;
case 68:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
break;
}
he->data2 |= le16_encode_bits(offs,
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
he->data2 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
#define CHECK_BW(bw) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
CHECK_BW(20);
CHECK_BW(40);
CHECK_BW(80);
CHECK_BW(160);
if (he_mu)
he_mu->flags2 |=
le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
rate_n_flags),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
he->data6 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
rate_n_flags),
IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
}
static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
struct iwl_mvm_rx_phy_data *phy_data,
struct ieee80211_radiotap_he *he,
struct ieee80211_radiotap_he_mu *he_mu,
struct ieee80211_rx_status *rx_status,
int queue)
{
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_NONE:
case IWL_RX_PHY_INFO_TYPE_CCK:
case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
case IWL_RX_PHY_INFO_TYPE_HT:
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
case IWL_RX_PHY_INFO_TYPE_EHT_MU:
case IWL_RX_PHY_INFO_TYPE_EHT_TB:
case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
return;
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
fallthrough;
case IWL_RX_PHY_INFO_TYPE_HE_SU:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_TB:
/* HE common */
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_UPLINK),
IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
}
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
IEEE80211_RADIOTAP_HE_DATA6_TXOP);
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_DOPPLER),
IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
break;
}
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_SU:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
break;
default:
/* nothing here */
break;
}
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
he_mu->flags1 |=
le16_encode_bits(le16_get_bits(phy_data->d4,
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
he_mu->flags1 |=
le16_encode_bits(le16_get_bits(phy_data->d4,
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
he_mu->flags2 |=
le16_encode_bits(le16_get_bits(phy_data->d4,
IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
fallthrough;
case IWL_RX_PHY_INFO_TYPE_HE_MU:
he_mu->flags2 |=
le16_encode_bits(le32_get_bits(phy_data->d1,
IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
he_mu->flags2 |=
le16_encode_bits(le32_get_bits(phy_data->d1,
IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
fallthrough;
case IWL_RX_PHY_INFO_TYPE_HE_TB:
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
break;
case IWL_RX_PHY_INFO_TYPE_HE_SU:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
break;
default:
/* nothing */
break;
}
}
#define LE32_DEC_ENC(value, dec_bits, enc_bits) \
le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
#define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
typeof(enc_bits) _enc_bits = enc_bits; \
typeof(usig) _usig = usig; \
(_usig)->mask |= cpu_to_le32(_enc_bits); \
(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
} while (0)
#define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
eht->data[(rt_data)] |= \
(cpu_to_le32 \
(IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
LE32_DEC_ENC(data ## fw_data, \
IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
#define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
#define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1
#define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2
#define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2
#define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2
#define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3
#define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3
#define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3
#define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4
#define IWL_RX_RU_DATA_A1 2
#define IWL_RX_RU_DATA_A2 2
#define IWL_RX_RU_DATA_B1 2
#define IWL_RX_RU_DATA_B2 4
#define IWL_RX_RU_DATA_C1 3
#define IWL_RX_RU_DATA_C2 3
#define IWL_RX_RU_DATA_D1 4
#define IWL_RX_RU_DATA_D2 4
#define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \
_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \
rt_ru, \
IWL_RX_RU_DATA_ ## fw_ru, \
fw_ru)
static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
struct iwl_mvm_rx_phy_data *phy_data,
struct ieee80211_rx_status *rx_status,
struct ieee80211_radiotap_eht *eht,
struct ieee80211_radiotap_eht_usig *usig)
{
if (phy_data->with_data) {
__le32 data1 = phy_data->d1;
__le32 data2 = phy_data->d2;
__le32 data3 = phy_data->d3;
__le32 data4 = phy_data->eht_d4;
__le32 data5 = phy_data->d5;
u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
IWL_MVM_ENC_USIG_VALUE_MASK
(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
eht->user_info[0] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
eht->data[7] |= LE32_DEC_ENC
(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
/*
* Hardware labels the content channels/RU allocation values
* as follows:
* Content Channel 1 Content Channel 2
* 20 MHz: A1
* 40 MHz: A1 B1
* 80 MHz: A1 C1 B1 D1
* 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2
* 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4
*
* However firmware can only give us A1-D2, so the higher
* frequencies are missing.
*/
switch (phy_bw) {
case RATE_MCS_CHAN_WIDTH_320:
/* additional values are missing in RX metadata */
case RATE_MCS_CHAN_WIDTH_160:
/* content channel 1 */
IWL_MVM_ENC_EHT_RU(1_2_1, A2);
IWL_MVM_ENC_EHT_RU(1_2_2, C2);
/* content channel 2 */
IWL_MVM_ENC_EHT_RU(2_2_1, B2);
IWL_MVM_ENC_EHT_RU(2_2_2, D2);
fallthrough;
case RATE_MCS_CHAN_WIDTH_80:
/* content channel 1 */
IWL_MVM_ENC_EHT_RU(1_1_2, C1);
/* content channel 2 */
IWL_MVM_ENC_EHT_RU(2_1_2, D1);
fallthrough;
case RATE_MCS_CHAN_WIDTH_40:
/* content channel 2 */
IWL_MVM_ENC_EHT_RU(2_1_1, B1);
fallthrough;
case RATE_MCS_CHAN_WIDTH_20:
IWL_MVM_ENC_EHT_RU(1_1_1, A1);
break;
}
} else {
__le32 usig_a1 = phy_data->rx_vec[0];
__le32 usig_a2 = phy_data->rx_vec[1];
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
IWL_RX_USIG_A1_DISREGARD,
IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
IWL_RX_USIG_A1_VALIDATE,
IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_PPDU_TYPE,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_SIG_MCS,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
IWL_MVM_ENC_USIG_VALUE_MASK
(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_CRC_OK,
IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
}
}
static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
struct iwl_mvm_rx_phy_data *phy_data,
struct ieee80211_rx_status *rx_status,
struct ieee80211_radiotap_eht *eht,
struct ieee80211_radiotap_eht_usig *usig)
{
if (phy_data->with_data) {
__le32 data5 = phy_data->d5;
IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
} else {
__le32 usig_a1 = phy_data->rx_vec[0];
__le32 usig_a2 = phy_data->rx_vec[1];
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
IWL_RX_USIG_A1_DISREGARD,
IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_PPDU_TYPE,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
IWL_RX_USIG_A2_EHT_CRC_OK,
IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
}
}
static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
struct ieee80211_rx_status *rx_status,
struct ieee80211_radiotap_eht *eht)
{
u32 ru = le32_get_bits(eht->data[8],
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
enum nl80211_eht_ru_alloc nl_ru;
/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
* in an EHT variant User Info field
*/
switch (ru) {
case 0 ... 36:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
break;
case 37 ... 52:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
break;
case 53 ... 60:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
break;
case 61 ... 64:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
break;
case 65 ... 66:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
break;
case 67:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
break;
case 68:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
break;
case 69:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
break;
case 70 ... 81:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
break;
case 82 ... 89:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
break;
case 90 ... 93:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
break;
case 94 ... 95:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
break;
case 96 ... 99:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
break;
case 100 ... 103:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
break;
case 104:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
break;
case 105 ... 106:
nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
break;
default:
return;
}
rx_status->bw = RATE_INFO_BW_EHT_RU;
rx_status->eht.ru = nl_ru;
}
static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
struct iwl_mvm_rx_phy_data *phy_data,
struct ieee80211_rx_status *rx_status,
struct ieee80211_radiotap_eht *eht,
struct ieee80211_radiotap_eht_usig *usig)
{
__le32 data0 = phy_data->d0;
__le32 data1 = phy_data->d1;
__le32 usig_a1 = phy_data->rx_vec[0];
u8 info_type = phy_data->info_type;
/* Not in EHT range */
if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
return;
usig->common |= cpu_to_le32
(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
if (phy_data->with_data) {
usig->common |= LE32_DEC_ENC(data0,
IWL_RX_PHY_DATA0_EHT_UPLINK,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
usig->common |= LE32_DEC_ENC(data0,
IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
} else {
usig->common |= LE32_DEC_ENC(usig_a1,
IWL_RX_USIG_A1_UL_FLAG,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
usig->common |= LE32_DEC_ENC(usig_a1,
IWL_RX_USIG_A1_BSS_COLOR,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
}
if (fw_has_capa(&mvm->fw->ucode_capa,
IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
usig->common |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
usig->common |=
LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
}
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
eht->data[0] |= LE32_DEC_ENC(data0,
IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
/* All RU allocating size/index is in TB format */
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
* which is on only in case of monitor mode so no need to check monitor
* mode
*/
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
eht->data[1] |=
le32_encode_bits(mvm->monitor_p80,
IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
if (phy_data->with_data)
usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
else
usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
/*
* TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
* IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
*/
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
}
static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
struct iwl_mvm_rx_phy_data *phy_data,
int queue)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_eht *eht;
struct ieee80211_radiotap_eht_usig *usig;
size_t eht_len = sizeof(*eht);
u32 rate_n_flags = phy_data->rate_n_flags;
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
/* EHT and HE have the same valus for LTF */
u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
u16 phy_info = phy_data->phy_info;
u32 bw;
/* u32 for 1 user_info */
if (phy_data->with_data)
eht_len += sizeof(u32);
eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
sizeof(*usig));
rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
usig->common |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
/* specific handling for 320MHz */
bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
le32_to_cpu(phy_data->d0));
usig->common |= cpu_to_le32
(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
/* report the AMPDU-EOF bit on single frames */
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
/* update aggregation data for monitor sake on default queue */
if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
(phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
#define CHECK_TYPE(F) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
(RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
CHECK_TYPE(SU);
CHECK_TYPE(EXT_SU);
CHECK_TYPE(MU);
CHECK_TYPE(TRIG);
switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
case 0:
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
} else {
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
}
break;
case 1:
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
break;
case 2:
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
if (he_type == RATE_MCS_HE_TYPE_TRIG)
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
else
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
break;
case 3:
if (he_type != RATE_MCS_HE_TYPE_TRIG) {
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
}
break;
default:
/* nothing here */
break;
}
if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
eht->data[0] |= cpu_to_le32
(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
ltf) |
FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
rx_status->eht.gi));
}
if (!phy_data->with_data) {
eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
eht->data[7] |=
le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
if (rate_n_flags & RATE_MCS_BF_MSK)
eht->data[7] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
} else {
eht->user_info[0] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
if (rate_n_flags & RATE_MCS_BF_MSK)
eht->user_info[0] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
if (rate_n_flags & RATE_MCS_LDPC_MSK)
eht->user_info[0] |=
cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
eht->user_info[0] |= cpu_to_le32
(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
rate_n_flags)) |
FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
}
}
static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
struct iwl_mvm_rx_phy_data *phy_data,
int queue)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_he *he = NULL;
struct ieee80211_radiotap_he_mu *he_mu = NULL;
u32 rate_n_flags = phy_data->rate_n_flags;
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
u8 ltf;
static const struct ieee80211_radiotap_he known = {
.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
};
static const struct ieee80211_radiotap_he_mu mu_known = {
.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
};
u16 phy_info = phy_data->phy_info;
he = skb_put_data(skb, &known, sizeof(known));
rx_status->flag |= RX_FLAG_RADIOTAP_HE;
if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
}
/* report the AMPDU-EOF bit on single frames */
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
queue);
/* update aggregation data for monitor sake on default queue */
if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
(phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
rate_n_flags & RATE_MCS_HE_106T_MSK) {
rx_status->bw = RATE_INFO_BW_HE_RU;
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
}
/* actually data is filled in mac80211 */
if (he_type == RATE_MCS_HE_TYPE_SU ||
he_type == RATE_MCS_HE_TYPE_EXT_SU)
he->data1 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
#define CHECK_TYPE(F) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
(RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
CHECK_TYPE(SU);
CHECK_TYPE(EXT_SU);
CHECK_TYPE(MU);
CHECK_TYPE(TRIG);
he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
if (rate_n_flags & RATE_MCS_BF_MSK)
he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
RATE_MCS_HE_GI_LTF_POS) {
case 0:
if (he_type == RATE_MCS_HE_TYPE_TRIG)
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
else
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
if (he_type == RATE_MCS_HE_TYPE_MU)
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
else
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
break;
case 1:
if (he_type == RATE_MCS_HE_TYPE_TRIG)
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
else
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
break;
case 2:
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
} else {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
}
break;
case 3:
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
break;
case 4:
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
break;
default:
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
}
he->data5 |= le16_encode_bits(ltf,
IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
}
static void iwl_mvm_decode_lsig(struct sk_buff *skb,
struct iwl_mvm_rx_phy_data *phy_data)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_lsig *lsig;
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HT:
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_SU:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_TB:
case IWL_RX_PHY_INFO_TYPE_EHT_MU:
case IWL_RX_PHY_INFO_TYPE_EHT_TB:
case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
lsig = skb_put(skb, sizeof(*lsig));
lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
break;
default:
break;
}
}
static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
{
switch (phy_band) {
case PHY_BAND_24:
return NL80211_BAND_2GHZ;
case PHY_BAND_5:
return NL80211_BAND_5GHZ;
case PHY_BAND_6:
return NL80211_BAND_6GHZ;
default:
WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
return NL80211_BAND_5GHZ;
}
}
struct iwl_rx_sta_csa {
bool all_sta_unblocked;
struct ieee80211_vif *vif;
};
static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
{
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct iwl_rx_sta_csa *rx_sta_csa = data;
if (mvmsta->vif != rx_sta_csa->vif)
return;
if (mvmsta->disable_tx)
rx_sta_csa->all_sta_unblocked = false;
}
/*
* Note: requires also rx_status->band to be prefilled, as well
* as phy_data (apart from phy_data->info_type)
*/
static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
struct sk_buff *skb,
struct iwl_mvm_rx_phy_data *phy_data,
int queue)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
u32 rate_n_flags = phy_data->rate_n_flags;
u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
bool is_sgi;
phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
phy_data->info_type =
le32_get_bits(phy_data->d1,
IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
case RATE_MCS_CHAN_WIDTH_20:
break;
case RATE_MCS_CHAN_WIDTH_40:
rx_status->bw = RATE_INFO_BW_40;
break;
case RATE_MCS_CHAN_WIDTH_80:
rx_status->bw = RATE_INFO_BW_80;
break;
case RATE_MCS_CHAN_WIDTH_160:
rx_status->bw = RATE_INFO_BW_160;
break;
case RATE_MCS_CHAN_WIDTH_320:
rx_status->bw = RATE_INFO_BW_320;
break;
}
/* must be before L-SIG data */
if (format == RATE_MCS_HE_MSK)
iwl_mvm_rx_he(mvm, skb, phy_data, queue);
iwl_mvm_decode_lsig(skb, phy_data);
rx_status->device_timestamp = phy_data->gp2_on_air_rise;
rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
rx_status->band);
iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
phy_data->energy_a, phy_data->energy_b);
/* using TLV format and must be after all fixed len fields */
if (format == RATE_MCS_EHT_MSK)
iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
if (unlikely(mvm->monitor_on))
iwl_mvm_add_rtap_sniffer_config(mvm, skb);
is_sgi = format == RATE_MCS_HE_MSK ?
iwl_he_is_sgi(rate_n_flags) :
rate_n_flags & RATE_MCS_SGI_MSK;
if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
if (rate_n_flags & RATE_MCS_LDPC_MSK)
rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
switch (format) {
case RATE_MCS_VHT_MSK:
rx_status->encoding = RX_ENC_VHT;
break;
case RATE_MCS_HE_MSK:
rx_status->encoding = RX_ENC_HE;
rx_status->he_dcm =
!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
break;
case RATE_MCS_EHT_MSK:
rx_status->encoding = RX_ENC_EHT;
break;
}
switch (format) {
case RATE_MCS_HT_MSK:
rx_status->encoding = RX_ENC_HT;
rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
break;
case RATE_MCS_VHT_MSK:
case RATE_MCS_HE_MSK:
case RATE_MCS_EHT_MSK:
rx_status->nss =
u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
break;
default: {
int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
rx_status->band);
rx_status->rate_idx = rate;
if ((rate < 0 || rate > 0xFF)) {
rx_status->rate_idx = 0;
if (net_ratelimit())
IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
rate_n_flags, rx_status->band);
}
break;
}
}
}
void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
struct iwl_rx_cmd_buffer *rxb, int queue)
{
struct ieee80211_rx_status *rx_status;
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
struct ieee80211_hdr *hdr;
u32 len;
u32 pkt_len = iwl_rx_packet_payload_len(pkt);
struct ieee80211_sta *sta = NULL;
struct ieee80211_link_sta *link_sta = NULL;
struct sk_buff *skb;
u8 crypt_len = 0;
size_t desc_size;
struct iwl_mvm_rx_phy_data phy_data = {};
u32 format;
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
return;
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
desc_size = sizeof(*desc);
else
desc_size = IWL_RX_DESC_SIZE_V1;
if (unlikely(pkt_len < desc_size)) {
IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
return;
}
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
phy_data.channel = desc->v3.channel;
phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
phy_data.energy_a = desc->v3.energy_a;
phy_data.energy_b = desc->v3.energy_b;
phy_data.d0 = desc->v3.phy_data0;
phy_data.d1 = desc->v3.phy_data1;
phy_data.d2 = desc->v3.phy_data2;
phy_data.d3 = desc->v3.phy_data3;
phy_data.eht_d4 = desc->phy_eht_data4;
phy_data.d5 = desc->v3.phy_data5;
} else {
phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
phy_data.channel = desc->v1.channel;
phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
phy_data.energy_a = desc->v1.energy_a;
phy_data.energy_b = desc->v1.energy_b;
phy_data.d0 = desc->v1.phy_data0;
phy_data.d1 = desc->v1.phy_data1;
phy_data.d2 = desc->v1.phy_data2;
phy_data.d3 = desc->v1.phy_data3;
}
if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
REPLY_RX_MPDU_CMD, 0) < 4) {
phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
phy_data.rate_n_flags);
}
format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
len = le16_to_cpu(desc->mpdu_len);
if (unlikely(len + desc_size > pkt_len)) {
IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
return;
}
phy_data.with_data = true;
phy_data.phy_info = le16_to_cpu(desc->phy_info);
phy_data.d4 = desc->phy_data4;
hdr = (void *)(pkt->data + desc_size);
/* Dont use dev_alloc_skb(), we'll have enough headroom once
* ieee80211_hdr pulled.
*/
skb = alloc_skb(128, GFP_ATOMIC);
if (!skb) {
IWL_ERR(mvm, "alloc_skb failed\n");
return;
}
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
/*
* If the device inserted padding it means that (it thought)
* the 802.11 header wasn't a multiple of 4 bytes long. In
* this case, reserve two bytes at the start of the SKB to
* align the payload properly in case we end up copying it.
*/
skb_reserve(skb, 2);
}
rx_status = IEEE80211_SKB_RXCB(skb);
/*
* Keep packets with CRC errors (and with overrun) for monitor mode
* (otherwise the firmware discards them) but mark them as bad.
*/
if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
le32_to_cpu(desc->status));
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
}
/* set the preamble flag if appropriate */
if (format == RATE_MCS_CCK_MSK &&
phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
u64 tsf_on_air_rise;
if (mvm->trans->trans_cfg->device_family >=
IWL_DEVICE_FAMILY_AX210)
tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
else
tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
rx_status->mactime = tsf_on_air_rise;
/* TSF as indicated by the firmware is at INA time */
rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
}
if (iwl_mvm_is_band_in_rx_supported(mvm)) {
u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
} else {
rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
NL80211_BAND_2GHZ;
}
/* update aggregation data for monitor sake on default queue */
if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
bool toggle_bit;
toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
/*
* Toggle is switched whenever new aggregation starts. Make
* sure ampdu_reference is never 0 so we can later use it to
* see if the frame was really part of an A-MPDU or not.
*/
if (toggle_bit != mvm->ampdu_toggle) {
mvm->ampdu_ref++;
if (mvm->ampdu_ref == 0)
mvm->ampdu_ref++;
mvm->ampdu_toggle = toggle_bit;
phy_data.first_subframe = true;
}
rx_status->ampdu_reference = mvm->ampdu_ref;
}
rcu_read_lock();
if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
if (IS_ERR(sta))
sta = NULL;
link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
}
} else if (!is_multicast_ether_addr(hdr->addr2)) {
/*
* This is fine since we prevent two stations with the same
* address from being added.
*/
sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
}
if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
le32_to_cpu(pkt->len_n_flags), queue,
&crypt_len)) {
kfree_skb(skb);
goto out;
}
iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
if (sta) {
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct ieee80211_vif *tx_blocked_vif =
rcu_dereference(mvm->csa_tx_blocked_vif);
u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
IWL_RX_MPDU_REORDER_BAID_MASK) >>
IWL_RX_MPDU_REORDER_BAID_SHIFT);
struct iwl_fw_dbg_trigger_tlv *trig;
struct ieee80211_vif *vif = mvmsta->vif;
if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
!is_multicast_ether_addr(hdr->addr1) &&
ieee80211_is_data(hdr->frame_control) &&
time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
schedule_delayed_work(&mvm->tcm.work, 0);
/*
* We have tx blocked stations (with CS bit). If we heard
* frames from a blocked station on a new channel we can
* TX to it again.
*/
if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
struct iwl_mvm_vif *mvmvif =
iwl_mvm_vif_from_mac80211(tx_blocked_vif);
struct iwl_rx_sta_csa rx_sta_csa = {
.all_sta_unblocked = true,
.vif = tx_blocked_vif,
};
if (mvmvif->csa_target_freq == rx_status->freq)
iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
false);
ieee80211_iterate_stations_atomic(mvm->hw,
iwl_mvm_rx_get_sta_block_tx,
&rx_sta_csa);
if (rx_sta_csa.all_sta_unblocked) {
RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
/* Unblock BCAST / MCAST station */
iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
}
}
rs_update_last_rssi(mvm, mvmsta, rx_status);
trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
ieee80211_vif_to_wdev(vif),
FW_DBG_TRIGGER_RSSI);
if (trig && ieee80211_is_beacon(hdr->frame_control)) {
struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
s32 rssi;
rssi_trig = (void *)trig->data;
rssi = le32_to_cpu(rssi_trig->rssi);
if (rx_status->signal < rssi)
iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
NULL);
}
if (ieee80211_is_data(hdr->frame_control))
iwl_mvm_rx_csum(mvm, sta, skb, pkt);
if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
le16_to_cpu(hdr->seq_ctrl));
kfree_skb(skb);
goto out;
}
/*
* Our hardware de-aggregates AMSDUs but copies the mac header
* as it to the de-aggregated MPDUs. We need to turn off the
* AMSDU bit in the QoS control ourselves.
* In addition, HW reverses addr3 and addr4 - reverse it back.
*/
if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
!WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
u8 *qc = ieee80211_get_qos_ctl(hdr);
*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
if (mvm->trans->trans_cfg->device_family ==
IWL_DEVICE_FAMILY_9000) {
iwl_mvm_flip_address(hdr->addr3);
if (ieee80211_has_a4(hdr->frame_control))
iwl_mvm_flip_address(hdr->addr4);
}
}
if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
u32 reorder_data = le32_to_cpu(desc->reorder_data);
iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
}
}
/* management stuff on default queue */
if (!queue) {
if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control)) &&
mvm->sched_scan_pass_all ==
SCHED_SCAN_PASS_ALL_ENABLED))
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control)))
rx_status->boottime_ns = ktime_get_boottime_ns();
}
if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
kfree_skb(skb);
goto out;
}
if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
(desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
!(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
rx_status->flag |= RX_FLAG_AMSDU_MORE;
iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
link_sta);
}
out:
rcu_read_unlock();
}
void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
struct iwl_rx_cmd_buffer *rxb, int queue)
{
struct ieee80211_rx_status *rx_status;
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
u32 rssi;
u32 info_type;
struct ieee80211_sta *sta = NULL;
struct sk_buff *skb;
struct iwl_mvm_rx_phy_data phy_data;
u32 format;
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
return;
if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
return;
rssi = le32_to_cpu(desc->rssi);
info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
phy_data.d0 = desc->phy_info[0];
phy_data.d1 = desc->phy_info[1];
phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
phy_data.rate_n_flags = le32_to_cpu(desc->rate);
phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
phy_data.with_data = false;
phy_data.rx_vec[0] = desc->rx_vec[0];
phy_data.rx_vec[1] = desc->rx_vec[1];
if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
RX_NO_DATA_NOTIF, 0) < 2) {
IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
phy_data.rate_n_flags);
phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
phy_data.rate_n_flags);
}
format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
RX_NO_DATA_NOTIF, 0) >= 3) {
if (unlikely(iwl_rx_packet_payload_len(pkt) <
sizeof(struct iwl_rx_no_data_ver_3)))
/* invalid len for ver 3 */
return;
phy_data.rx_vec[2] = desc->rx_vec[2];
phy_data.rx_vec[3] = desc->rx_vec[3];
} else {
if (format == RATE_MCS_EHT_MSK)
/* no support for EHT before version 3 API */
return;
}
/* Dont use dev_alloc_skb(), we'll have enough headroom once
* ieee80211_hdr pulled.
*/
skb = alloc_skb(128, GFP_ATOMIC);
if (!skb) {
IWL_ERR(mvm, "alloc_skb failed\n");
return;
}
rx_status = IEEE80211_SKB_RXCB(skb);
/* 0-length PSDU */
rx_status->flag |= RX_FLAG_NO_PSDU;
switch (info_type) {
case RX_NO_DATA_INFO_TYPE_NDP:
rx_status->zero_length_psdu_type =
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
break;
case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
rx_status->zero_length_psdu_type =
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
break;
default:
rx_status->zero_length_psdu_type =
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
break;
}
rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
NL80211_BAND_2GHZ;
iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
/* no more radio tap info should be put after this point.
*
* We mark it as mac header, for upper layers to know where
* all radio tap header ends.
*/
skb_reset_mac_header(skb);
/*
* Override the nss from the rx_vec since the rate_n_flags has
* only 2 bits for the nss which gives a max of 4 ss but there
* may be up to 8 spatial streams.
*/
switch (format) {
case RATE_MCS_VHT_MSK:
rx_status->nss =
le32_get_bits(desc->rx_vec[0],
RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
break;
case RATE_MCS_HE_MSK:
rx_status->nss =
le32_get_bits(desc->rx_vec[0],
RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
break;
case RATE_MCS_EHT_MSK:
rx_status->nss =
le32_get_bits(desc->rx_vec[2],
RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
}
rcu_read_lock();
ieee80211_rx_napi(mvm->hw, sta, skb, napi);
rcu_read_unlock();
}
void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
struct iwl_rx_cmd_buffer *rxb, int queue)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_frame_release *release = (void *)pkt->data;
if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
return;
iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
le16_to_cpu(release->nssn),
queue);
}
void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
struct iwl_rx_cmd_buffer *rxb, int queue)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_bar_frame_release *release = (void *)pkt->data;
unsigned int baid = le32_get_bits(release->ba_info,
IWL_BAR_FRAME_RELEASE_BAID_MASK);
unsigned int nssn = le32_get_bits(release->ba_info,
IWL_BAR_FRAME_RELEASE_NSSN_MASK);
unsigned int sta_id = le32_get_bits(release->sta_tid,
IWL_BAR_FRAME_RELEASE_STA_MASK);
unsigned int tid = le32_get_bits(release->sta_tid,
IWL_BAR_FRAME_RELEASE_TID_MASK);
struct iwl_mvm_baid_data *baid_data;
if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
return;
if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
baid >= ARRAY_SIZE(mvm->baid_map)))
return;
rcu_read_lock();
baid_data = rcu_dereference(mvm->baid_map[baid]);
if (!baid_data) {
IWL_DEBUG_RX(mvm,
"Got valid BAID %d but not allocated, invalid BAR release!\n",
baid);
goto out;
}
if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
!(baid_data->sta_mask & BIT(sta_id)),
"baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
baid, baid_data->sta_mask, baid_data->tid, sta_id,
tid))
goto out;
IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
nssn);
iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
out:
rcu_read_unlock();
}