| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef __LINUX_BITMAP_H |
| #define __LINUX_BITMAP_H |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/align.h> |
| #include <linux/bitops.h> |
| #include <linux/errno.h> |
| #include <linux/find.h> |
| #include <linux/limits.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/bitmap-str.h> |
| |
| struct device; |
| |
| /* |
| * bitmaps provide bit arrays that consume one or more unsigned |
| * longs. The bitmap interface and available operations are listed |
| * here, in bitmap.h |
| * |
| * Function implementations generic to all architectures are in |
| * lib/bitmap.c. Functions implementations that are architecture |
| * specific are in various include/asm-<arch>/bitops.h headers |
| * and other arch/<arch> specific files. |
| * |
| * See lib/bitmap.c for more details. |
| */ |
| |
| /** |
| * DOC: bitmap overview |
| * |
| * The available bitmap operations and their rough meaning in the |
| * case that the bitmap is a single unsigned long are thus: |
| * |
| * The generated code is more efficient when nbits is known at |
| * compile-time and at most BITS_PER_LONG. |
| * |
| * :: |
| * |
| * bitmap_zero(dst, nbits) *dst = 0UL |
| * bitmap_fill(dst, nbits) *dst = ~0UL |
| * bitmap_copy(dst, src, nbits) *dst = *src |
| * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 |
| * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 |
| * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 |
| * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) |
| * bitmap_complement(dst, src, nbits) *dst = ~(*src) |
| * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? |
| * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? |
| * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? |
| * bitmap_empty(src, nbits) Are all bits zero in *src? |
| * bitmap_full(src, nbits) Are all bits set in *src? |
| * bitmap_weight(src, nbits) Hamming Weight: number set bits |
| * bitmap_weight_and(src1, src2, nbits) Hamming Weight of and'ed bitmap |
| * bitmap_weight_andnot(src1, src2, nbits) Hamming Weight of andnot'ed bitmap |
| * bitmap_set(dst, pos, nbits) Set specified bit area |
| * bitmap_clear(dst, pos, nbits) Clear specified bit area |
| * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area |
| * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above |
| * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n |
| * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n |
| * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest |
| * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) |
| * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) |
| * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) |
| * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap |
| * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz |
| * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf |
| * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf |
| * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf |
| * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf |
| * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region |
| * bitmap_release_region(bitmap, pos, order) Free specified bit region |
| * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region |
| * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst |
| * bitmap_from_arr64(dst, buf, nbits) Copy nbits from u64[] buf to dst |
| * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst |
| * bitmap_to_arr64(buf, src, nbits) Copy nbits from buf to u64[] dst |
| * bitmap_get_value8(map, start) Get 8bit value from map at start |
| * bitmap_set_value8(map, value, start) Set 8bit value to map at start |
| * |
| * Note, bitmap_zero() and bitmap_fill() operate over the region of |
| * unsigned longs, that is, bits behind bitmap till the unsigned long |
| * boundary will be zeroed or filled as well. Consider to use |
| * bitmap_clear() or bitmap_set() to make explicit zeroing or filling |
| * respectively. |
| */ |
| |
| /** |
| * DOC: bitmap bitops |
| * |
| * Also the following operations in asm/bitops.h apply to bitmaps.:: |
| * |
| * set_bit(bit, addr) *addr |= bit |
| * clear_bit(bit, addr) *addr &= ~bit |
| * change_bit(bit, addr) *addr ^= bit |
| * test_bit(bit, addr) Is bit set in *addr? |
| * test_and_set_bit(bit, addr) Set bit and return old value |
| * test_and_clear_bit(bit, addr) Clear bit and return old value |
| * test_and_change_bit(bit, addr) Change bit and return old value |
| * find_first_zero_bit(addr, nbits) Position first zero bit in *addr |
| * find_first_bit(addr, nbits) Position first set bit in *addr |
| * find_next_zero_bit(addr, nbits, bit) |
| * Position next zero bit in *addr >= bit |
| * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit |
| * find_next_and_bit(addr1, addr2, nbits, bit) |
| * Same as find_next_bit, but in |
| * (*addr1 & *addr2) |
| * |
| */ |
| |
| /** |
| * DOC: declare bitmap |
| * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used |
| * to declare an array named 'name' of just enough unsigned longs to |
| * contain all bit positions from 0 to 'bits' - 1. |
| */ |
| |
| /* |
| * Allocation and deallocation of bitmap. |
| * Provided in lib/bitmap.c to avoid circular dependency. |
| */ |
| unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); |
| unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); |
| unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node); |
| unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node); |
| void bitmap_free(const unsigned long *bitmap); |
| |
| /* Managed variants of the above. */ |
| unsigned long *devm_bitmap_alloc(struct device *dev, |
| unsigned int nbits, gfp_t flags); |
| unsigned long *devm_bitmap_zalloc(struct device *dev, |
| unsigned int nbits, gfp_t flags); |
| |
| /* |
| * lib/bitmap.c provides these functions: |
| */ |
| |
| bool __bitmap_equal(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int nbits); |
| bool __pure __bitmap_or_equal(const unsigned long *src1, |
| const unsigned long *src2, |
| const unsigned long *src3, |
| unsigned int nbits); |
| void __bitmap_complement(unsigned long *dst, const unsigned long *src, |
| unsigned int nbits); |
| void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, |
| unsigned int shift, unsigned int nbits); |
| void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, |
| unsigned int shift, unsigned int nbits); |
| void bitmap_cut(unsigned long *dst, const unsigned long *src, |
| unsigned int first, unsigned int cut, unsigned int nbits); |
| bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int nbits); |
| void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int nbits); |
| void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int nbits); |
| bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int nbits); |
| void __bitmap_replace(unsigned long *dst, |
| const unsigned long *old, const unsigned long *new, |
| const unsigned long *mask, unsigned int nbits); |
| bool __bitmap_intersects(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int nbits); |
| bool __bitmap_subset(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int nbits); |
| unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); |
| unsigned int __bitmap_weight_and(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int nbits); |
| unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1, |
| const unsigned long *bitmap2, unsigned int nbits); |
| void __bitmap_set(unsigned long *map, unsigned int start, int len); |
| void __bitmap_clear(unsigned long *map, unsigned int start, int len); |
| |
| unsigned long bitmap_find_next_zero_area_off(unsigned long *map, |
| unsigned long size, |
| unsigned long start, |
| unsigned int nr, |
| unsigned long align_mask, |
| unsigned long align_offset); |
| |
| /** |
| * bitmap_find_next_zero_area - find a contiguous aligned zero area |
| * @map: The address to base the search on |
| * @size: The bitmap size in bits |
| * @start: The bitnumber to start searching at |
| * @nr: The number of zeroed bits we're looking for |
| * @align_mask: Alignment mask for zero area |
| * |
| * The @align_mask should be one less than a power of 2; the effect is that |
| * the bit offset of all zero areas this function finds is multiples of that |
| * power of 2. A @align_mask of 0 means no alignment is required. |
| */ |
| static inline unsigned long |
| bitmap_find_next_zero_area(unsigned long *map, |
| unsigned long size, |
| unsigned long start, |
| unsigned int nr, |
| unsigned long align_mask) |
| { |
| return bitmap_find_next_zero_area_off(map, size, start, nr, |
| align_mask, 0); |
| } |
| |
| void bitmap_remap(unsigned long *dst, const unsigned long *src, |
| const unsigned long *old, const unsigned long *new, unsigned int nbits); |
| int bitmap_bitremap(int oldbit, |
| const unsigned long *old, const unsigned long *new, int bits); |
| void bitmap_onto(unsigned long *dst, const unsigned long *orig, |
| const unsigned long *relmap, unsigned int bits); |
| void bitmap_fold(unsigned long *dst, const unsigned long *orig, |
| unsigned int sz, unsigned int nbits); |
| |
| #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) |
| #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) |
| |
| static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) |
| { |
| unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); |
| |
| if (small_const_nbits(nbits)) |
| *dst = 0; |
| else |
| memset(dst, 0, len); |
| } |
| |
| static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) |
| { |
| unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); |
| |
| if (small_const_nbits(nbits)) |
| *dst = ~0UL; |
| else |
| memset(dst, 0xff, len); |
| } |
| |
| static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, |
| unsigned int nbits) |
| { |
| unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); |
| |
| if (small_const_nbits(nbits)) |
| *dst = *src; |
| else |
| memcpy(dst, src, len); |
| } |
| |
| /* |
| * Copy bitmap and clear tail bits in last word. |
| */ |
| static inline void bitmap_copy_clear_tail(unsigned long *dst, |
| const unsigned long *src, unsigned int nbits) |
| { |
| bitmap_copy(dst, src, nbits); |
| if (nbits % BITS_PER_LONG) |
| dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); |
| } |
| |
| /* |
| * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64 |
| * machines the order of hi and lo parts of numbers match the bitmap structure. |
| * In both cases conversion is not needed when copying data from/to arrays of |
| * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead |
| * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit |
| * architectures are not using bitmap_copy_clear_tail(). |
| */ |
| #if BITS_PER_LONG == 64 |
| void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, |
| unsigned int nbits); |
| void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, |
| unsigned int nbits); |
| #else |
| #define bitmap_from_arr32(bitmap, buf, nbits) \ |
| bitmap_copy_clear_tail((unsigned long *) (bitmap), \ |
| (const unsigned long *) (buf), (nbits)) |
| #define bitmap_to_arr32(buf, bitmap, nbits) \ |
| bitmap_copy_clear_tail((unsigned long *) (buf), \ |
| (const unsigned long *) (bitmap), (nbits)) |
| #endif |
| |
| /* |
| * On 64-bit systems bitmaps are represented as u64 arrays internally. So, |
| * the conversion is not needed when copying data from/to arrays of u64. |
| */ |
| #if BITS_PER_LONG == 32 |
| void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits); |
| void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits); |
| #else |
| #define bitmap_from_arr64(bitmap, buf, nbits) \ |
| bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits)) |
| #define bitmap_to_arr64(buf, bitmap, nbits) \ |
| bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits)) |
| #endif |
| |
| static inline bool bitmap_and(unsigned long *dst, const unsigned long *src1, |
| const unsigned long *src2, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; |
| return __bitmap_and(dst, src1, src2, nbits); |
| } |
| |
| static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, |
| const unsigned long *src2, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| *dst = *src1 | *src2; |
| else |
| __bitmap_or(dst, src1, src2, nbits); |
| } |
| |
| static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, |
| const unsigned long *src2, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| *dst = *src1 ^ *src2; |
| else |
| __bitmap_xor(dst, src1, src2, nbits); |
| } |
| |
| static inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1, |
| const unsigned long *src2, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; |
| return __bitmap_andnot(dst, src1, src2, nbits); |
| } |
| |
| static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, |
| unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| *dst = ~(*src); |
| else |
| __bitmap_complement(dst, src, nbits); |
| } |
| |
| #ifdef __LITTLE_ENDIAN |
| #define BITMAP_MEM_ALIGNMENT 8 |
| #else |
| #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) |
| #endif |
| #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) |
| |
| static inline bool bitmap_equal(const unsigned long *src1, |
| const unsigned long *src2, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); |
| if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && |
| IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) |
| return !memcmp(src1, src2, nbits / 8); |
| return __bitmap_equal(src1, src2, nbits); |
| } |
| |
| /** |
| * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third |
| * @src1: Pointer to bitmap 1 |
| * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 |
| * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 |
| * @nbits: number of bits in each of these bitmaps |
| * |
| * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise |
| */ |
| static inline bool bitmap_or_equal(const unsigned long *src1, |
| const unsigned long *src2, |
| const unsigned long *src3, |
| unsigned int nbits) |
| { |
| if (!small_const_nbits(nbits)) |
| return __bitmap_or_equal(src1, src2, src3, nbits); |
| |
| return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); |
| } |
| |
| static inline bool bitmap_intersects(const unsigned long *src1, |
| const unsigned long *src2, |
| unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; |
| else |
| return __bitmap_intersects(src1, src2, nbits); |
| } |
| |
| static inline bool bitmap_subset(const unsigned long *src1, |
| const unsigned long *src2, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); |
| else |
| return __bitmap_subset(src1, src2, nbits); |
| } |
| |
| static inline bool bitmap_empty(const unsigned long *src, unsigned nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); |
| |
| return find_first_bit(src, nbits) == nbits; |
| } |
| |
| static inline bool bitmap_full(const unsigned long *src, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); |
| |
| return find_first_zero_bit(src, nbits) == nbits; |
| } |
| |
| static __always_inline |
| unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); |
| return __bitmap_weight(src, nbits); |
| } |
| |
| static __always_inline |
| unsigned long bitmap_weight_and(const unsigned long *src1, |
| const unsigned long *src2, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)); |
| return __bitmap_weight_and(src1, src2, nbits); |
| } |
| |
| static __always_inline |
| unsigned long bitmap_weight_andnot(const unsigned long *src1, |
| const unsigned long *src2, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)); |
| return __bitmap_weight_andnot(src1, src2, nbits); |
| } |
| |
| static __always_inline void bitmap_set(unsigned long *map, unsigned int start, |
| unsigned int nbits) |
| { |
| if (__builtin_constant_p(nbits) && nbits == 1) |
| __set_bit(start, map); |
| else if (small_const_nbits(start + nbits)) |
| *map |= GENMASK(start + nbits - 1, start); |
| else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && |
| IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && |
| __builtin_constant_p(nbits & BITMAP_MEM_MASK) && |
| IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) |
| memset((char *)map + start / 8, 0xff, nbits / 8); |
| else |
| __bitmap_set(map, start, nbits); |
| } |
| |
| static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, |
| unsigned int nbits) |
| { |
| if (__builtin_constant_p(nbits) && nbits == 1) |
| __clear_bit(start, map); |
| else if (small_const_nbits(start + nbits)) |
| *map &= ~GENMASK(start + nbits - 1, start); |
| else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && |
| IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && |
| __builtin_constant_p(nbits & BITMAP_MEM_MASK) && |
| IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) |
| memset((char *)map + start / 8, 0, nbits / 8); |
| else |
| __bitmap_clear(map, start, nbits); |
| } |
| |
| static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, |
| unsigned int shift, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; |
| else |
| __bitmap_shift_right(dst, src, shift, nbits); |
| } |
| |
| static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, |
| unsigned int shift, unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); |
| else |
| __bitmap_shift_left(dst, src, shift, nbits); |
| } |
| |
| static inline void bitmap_replace(unsigned long *dst, |
| const unsigned long *old, |
| const unsigned long *new, |
| const unsigned long *mask, |
| unsigned int nbits) |
| { |
| if (small_const_nbits(nbits)) |
| *dst = (*old & ~(*mask)) | (*new & *mask); |
| else |
| __bitmap_replace(dst, old, new, mask, nbits); |
| } |
| |
| static inline void bitmap_next_set_region(unsigned long *bitmap, |
| unsigned int *rs, unsigned int *re, |
| unsigned int end) |
| { |
| *rs = find_next_bit(bitmap, end, *rs); |
| *re = find_next_zero_bit(bitmap, end, *rs + 1); |
| } |
| |
| /** |
| * bitmap_release_region - release allocated bitmap region |
| * @bitmap: array of unsigned longs corresponding to the bitmap |
| * @pos: beginning of bit region to release |
| * @order: region size (log base 2 of number of bits) to release |
| * |
| * This is the complement to __bitmap_find_free_region() and releases |
| * the found region (by clearing it in the bitmap). |
| */ |
| static inline void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) |
| { |
| bitmap_clear(bitmap, pos, BIT(order)); |
| } |
| |
| /** |
| * bitmap_allocate_region - allocate bitmap region |
| * @bitmap: array of unsigned longs corresponding to the bitmap |
| * @pos: beginning of bit region to allocate |
| * @order: region size (log base 2 of number of bits) to allocate |
| * |
| * Allocate (set bits in) a specified region of a bitmap. |
| * |
| * Returns: 0 on success, or %-EBUSY if specified region wasn't |
| * free (not all bits were zero). |
| */ |
| static inline int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) |
| { |
| unsigned int len = BIT(order); |
| |
| if (find_next_bit(bitmap, pos + len, pos) < pos + len) |
| return -EBUSY; |
| bitmap_set(bitmap, pos, len); |
| return 0; |
| } |
| |
| /** |
| * bitmap_find_free_region - find a contiguous aligned mem region |
| * @bitmap: array of unsigned longs corresponding to the bitmap |
| * @bits: number of bits in the bitmap |
| * @order: region size (log base 2 of number of bits) to find |
| * |
| * Find a region of free (zero) bits in a @bitmap of @bits bits and |
| * allocate them (set them to one). Only consider regions of length |
| * a power (@order) of two, aligned to that power of two, which |
| * makes the search algorithm much faster. |
| * |
| * Returns: the bit offset in bitmap of the allocated region, |
| * or -errno on failure. |
| */ |
| static inline int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) |
| { |
| unsigned int pos, end; /* scans bitmap by regions of size order */ |
| |
| for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) { |
| if (!bitmap_allocate_region(bitmap, pos, order)) |
| return pos; |
| } |
| return -ENOMEM; |
| } |
| |
| /** |
| * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. |
| * @n: u64 value |
| * |
| * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit |
| * integers in 32-bit environment, and 64-bit integers in 64-bit one. |
| * |
| * There are four combinations of endianness and length of the word in linux |
| * ABIs: LE64, BE64, LE32 and BE32. |
| * |
| * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in |
| * bitmaps and therefore don't require any special handling. |
| * |
| * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory |
| * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the |
| * other hand is represented as an array of 32-bit words and the position of |
| * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that |
| * word. For example, bit #42 is located at 10th position of 2nd word. |
| * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit |
| * values in memory as it usually does. But for BE we need to swap hi and lo |
| * words manually. |
| * |
| * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and |
| * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps |
| * hi and lo words, as is expected by bitmap. |
| */ |
| #if __BITS_PER_LONG == 64 |
| #define BITMAP_FROM_U64(n) (n) |
| #else |
| #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ |
| ((unsigned long) ((u64)(n) >> 32)) |
| #endif |
| |
| /** |
| * bitmap_from_u64 - Check and swap words within u64. |
| * @mask: source bitmap |
| * @dst: destination bitmap |
| * |
| * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` |
| * to read u64 mask, we will get the wrong word. |
| * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, |
| * but we expect the lower 32-bits of u64. |
| */ |
| static inline void bitmap_from_u64(unsigned long *dst, u64 mask) |
| { |
| bitmap_from_arr64(dst, &mask, 64); |
| } |
| |
| /** |
| * bitmap_get_value8 - get an 8-bit value within a memory region |
| * @map: address to the bitmap memory region |
| * @start: bit offset of the 8-bit value; must be a multiple of 8 |
| * |
| * Returns the 8-bit value located at the @start bit offset within the @src |
| * memory region. |
| */ |
| static inline unsigned long bitmap_get_value8(const unsigned long *map, |
| unsigned long start) |
| { |
| const size_t index = BIT_WORD(start); |
| const unsigned long offset = start % BITS_PER_LONG; |
| |
| return (map[index] >> offset) & 0xFF; |
| } |
| |
| /** |
| * bitmap_set_value8 - set an 8-bit value within a memory region |
| * @map: address to the bitmap memory region |
| * @value: the 8-bit value; values wider than 8 bits may clobber bitmap |
| * @start: bit offset of the 8-bit value; must be a multiple of 8 |
| */ |
| static inline void bitmap_set_value8(unsigned long *map, unsigned long value, |
| unsigned long start) |
| { |
| const size_t index = BIT_WORD(start); |
| const unsigned long offset = start % BITS_PER_LONG; |
| |
| map[index] &= ~(0xFFUL << offset); |
| map[index] |= value << offset; |
| } |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* __LINUX_BITMAP_H */ |