| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com |
| * Copyright (c) 2016 Facebook |
| * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io |
| */ |
| #include <uapi/linux/btf.h> |
| #include <linux/bpf-cgroup.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/bpf.h> |
| #include <linux/btf.h> |
| #include <linux/bpf_verifier.h> |
| #include <linux/filter.h> |
| #include <net/netlink.h> |
| #include <linux/file.h> |
| #include <linux/vmalloc.h> |
| #include <linux/stringify.h> |
| #include <linux/bsearch.h> |
| #include <linux/sort.h> |
| #include <linux/perf_event.h> |
| #include <linux/ctype.h> |
| #include <linux/error-injection.h> |
| #include <linux/bpf_lsm.h> |
| #include <linux/btf_ids.h> |
| #include <linux/poison.h> |
| #include <linux/module.h> |
| #include <linux/cpumask.h> |
| #include <linux/bpf_mem_alloc.h> |
| #include <net/xdp.h> |
| |
| #include "disasm.h" |
| |
| static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { |
| #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ |
| [_id] = & _name ## _verifier_ops, |
| #define BPF_MAP_TYPE(_id, _ops) |
| #define BPF_LINK_TYPE(_id, _name) |
| #include <linux/bpf_types.h> |
| #undef BPF_PROG_TYPE |
| #undef BPF_MAP_TYPE |
| #undef BPF_LINK_TYPE |
| }; |
| |
| struct bpf_mem_alloc bpf_global_percpu_ma; |
| static bool bpf_global_percpu_ma_set; |
| |
| /* bpf_check() is a static code analyzer that walks eBPF program |
| * instruction by instruction and updates register/stack state. |
| * All paths of conditional branches are analyzed until 'bpf_exit' insn. |
| * |
| * The first pass is depth-first-search to check that the program is a DAG. |
| * It rejects the following programs: |
| * - larger than BPF_MAXINSNS insns |
| * - if loop is present (detected via back-edge) |
| * - unreachable insns exist (shouldn't be a forest. program = one function) |
| * - out of bounds or malformed jumps |
| * The second pass is all possible path descent from the 1st insn. |
| * Since it's analyzing all paths through the program, the length of the |
| * analysis is limited to 64k insn, which may be hit even if total number of |
| * insn is less then 4K, but there are too many branches that change stack/regs. |
| * Number of 'branches to be analyzed' is limited to 1k |
| * |
| * On entry to each instruction, each register has a type, and the instruction |
| * changes the types of the registers depending on instruction semantics. |
| * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is |
| * copied to R1. |
| * |
| * All registers are 64-bit. |
| * R0 - return register |
| * R1-R5 argument passing registers |
| * R6-R9 callee saved registers |
| * R10 - frame pointer read-only |
| * |
| * At the start of BPF program the register R1 contains a pointer to bpf_context |
| * and has type PTR_TO_CTX. |
| * |
| * Verifier tracks arithmetic operations on pointers in case: |
| * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), |
| * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), |
| * 1st insn copies R10 (which has FRAME_PTR) type into R1 |
| * and 2nd arithmetic instruction is pattern matched to recognize |
| * that it wants to construct a pointer to some element within stack. |
| * So after 2nd insn, the register R1 has type PTR_TO_STACK |
| * (and -20 constant is saved for further stack bounds checking). |
| * Meaning that this reg is a pointer to stack plus known immediate constant. |
| * |
| * Most of the time the registers have SCALAR_VALUE type, which |
| * means the register has some value, but it's not a valid pointer. |
| * (like pointer plus pointer becomes SCALAR_VALUE type) |
| * |
| * When verifier sees load or store instructions the type of base register |
| * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are |
| * four pointer types recognized by check_mem_access() function. |
| * |
| * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' |
| * and the range of [ptr, ptr + map's value_size) is accessible. |
| * |
| * registers used to pass values to function calls are checked against |
| * function argument constraints. |
| * |
| * ARG_PTR_TO_MAP_KEY is one of such argument constraints. |
| * It means that the register type passed to this function must be |
| * PTR_TO_STACK and it will be used inside the function as |
| * 'pointer to map element key' |
| * |
| * For example the argument constraints for bpf_map_lookup_elem(): |
| * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, |
| * .arg1_type = ARG_CONST_MAP_PTR, |
| * .arg2_type = ARG_PTR_TO_MAP_KEY, |
| * |
| * ret_type says that this function returns 'pointer to map elem value or null' |
| * function expects 1st argument to be a const pointer to 'struct bpf_map' and |
| * 2nd argument should be a pointer to stack, which will be used inside |
| * the helper function as a pointer to map element key. |
| * |
| * On the kernel side the helper function looks like: |
| * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) |
| * { |
| * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; |
| * void *key = (void *) (unsigned long) r2; |
| * void *value; |
| * |
| * here kernel can access 'key' and 'map' pointers safely, knowing that |
| * [key, key + map->key_size) bytes are valid and were initialized on |
| * the stack of eBPF program. |
| * } |
| * |
| * Corresponding eBPF program may look like: |
| * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR |
| * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK |
| * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP |
| * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), |
| * here verifier looks at prototype of map_lookup_elem() and sees: |
| * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, |
| * Now verifier knows that this map has key of R1->map_ptr->key_size bytes |
| * |
| * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, |
| * Now verifier checks that [R2, R2 + map's key_size) are within stack limits |
| * and were initialized prior to this call. |
| * If it's ok, then verifier allows this BPF_CALL insn and looks at |
| * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets |
| * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function |
| * returns either pointer to map value or NULL. |
| * |
| * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' |
| * insn, the register holding that pointer in the true branch changes state to |
| * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false |
| * branch. See check_cond_jmp_op(). |
| * |
| * After the call R0 is set to return type of the function and registers R1-R5 |
| * are set to NOT_INIT to indicate that they are no longer readable. |
| * |
| * The following reference types represent a potential reference to a kernel |
| * resource which, after first being allocated, must be checked and freed by |
| * the BPF program: |
| * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET |
| * |
| * When the verifier sees a helper call return a reference type, it allocates a |
| * pointer id for the reference and stores it in the current function state. |
| * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into |
| * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type |
| * passes through a NULL-check conditional. For the branch wherein the state is |
| * changed to CONST_IMM, the verifier releases the reference. |
| * |
| * For each helper function that allocates a reference, such as |
| * bpf_sk_lookup_tcp(), there is a corresponding release function, such as |
| * bpf_sk_release(). When a reference type passes into the release function, |
| * the verifier also releases the reference. If any unchecked or unreleased |
| * reference remains at the end of the program, the verifier rejects it. |
| */ |
| |
| /* verifier_state + insn_idx are pushed to stack when branch is encountered */ |
| struct bpf_verifier_stack_elem { |
| /* verifer state is 'st' |
| * before processing instruction 'insn_idx' |
| * and after processing instruction 'prev_insn_idx' |
| */ |
| struct bpf_verifier_state st; |
| int insn_idx; |
| int prev_insn_idx; |
| struct bpf_verifier_stack_elem *next; |
| /* length of verifier log at the time this state was pushed on stack */ |
| u32 log_pos; |
| }; |
| |
| #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 |
| #define BPF_COMPLEXITY_LIMIT_STATES 64 |
| |
| #define BPF_MAP_KEY_POISON (1ULL << 63) |
| #define BPF_MAP_KEY_SEEN (1ULL << 62) |
| |
| #define BPF_MAP_PTR_UNPRIV 1UL |
| #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ |
| POISON_POINTER_DELTA)) |
| #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) |
| |
| #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 |
| |
| static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); |
| static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); |
| static void invalidate_non_owning_refs(struct bpf_verifier_env *env); |
| static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); |
| static int ref_set_non_owning(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg); |
| static void specialize_kfunc(struct bpf_verifier_env *env, |
| u32 func_id, u16 offset, unsigned long *addr); |
| static bool is_trusted_reg(const struct bpf_reg_state *reg); |
| |
| static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) |
| { |
| return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; |
| } |
| |
| static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) |
| { |
| return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; |
| } |
| |
| static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, |
| const struct bpf_map *map, bool unpriv) |
| { |
| BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); |
| unpriv |= bpf_map_ptr_unpriv(aux); |
| aux->map_ptr_state = (unsigned long)map | |
| (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); |
| } |
| |
| static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) |
| { |
| return aux->map_key_state & BPF_MAP_KEY_POISON; |
| } |
| |
| static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) |
| { |
| return !(aux->map_key_state & BPF_MAP_KEY_SEEN); |
| } |
| |
| static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) |
| { |
| return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); |
| } |
| |
| static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) |
| { |
| bool poisoned = bpf_map_key_poisoned(aux); |
| |
| aux->map_key_state = state | BPF_MAP_KEY_SEEN | |
| (poisoned ? BPF_MAP_KEY_POISON : 0ULL); |
| } |
| |
| static bool bpf_helper_call(const struct bpf_insn *insn) |
| { |
| return insn->code == (BPF_JMP | BPF_CALL) && |
| insn->src_reg == 0; |
| } |
| |
| static bool bpf_pseudo_call(const struct bpf_insn *insn) |
| { |
| return insn->code == (BPF_JMP | BPF_CALL) && |
| insn->src_reg == BPF_PSEUDO_CALL; |
| } |
| |
| static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) |
| { |
| return insn->code == (BPF_JMP | BPF_CALL) && |
| insn->src_reg == BPF_PSEUDO_KFUNC_CALL; |
| } |
| |
| struct bpf_call_arg_meta { |
| struct bpf_map *map_ptr; |
| bool raw_mode; |
| bool pkt_access; |
| u8 release_regno; |
| int regno; |
| int access_size; |
| int mem_size; |
| u64 msize_max_value; |
| int ref_obj_id; |
| int dynptr_id; |
| int map_uid; |
| int func_id; |
| struct btf *btf; |
| u32 btf_id; |
| struct btf *ret_btf; |
| u32 ret_btf_id; |
| u32 subprogno; |
| struct btf_field *kptr_field; |
| }; |
| |
| struct bpf_kfunc_call_arg_meta { |
| /* In parameters */ |
| struct btf *btf; |
| u32 func_id; |
| u32 kfunc_flags; |
| const struct btf_type *func_proto; |
| const char *func_name; |
| /* Out parameters */ |
| u32 ref_obj_id; |
| u8 release_regno; |
| bool r0_rdonly; |
| u32 ret_btf_id; |
| u64 r0_size; |
| u32 subprogno; |
| struct { |
| u64 value; |
| bool found; |
| } arg_constant; |
| |
| /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, |
| * generally to pass info about user-defined local kptr types to later |
| * verification logic |
| * bpf_obj_drop/bpf_percpu_obj_drop |
| * Record the local kptr type to be drop'd |
| * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) |
| * Record the local kptr type to be refcount_incr'd and use |
| * arg_owning_ref to determine whether refcount_acquire should be |
| * fallible |
| */ |
| struct btf *arg_btf; |
| u32 arg_btf_id; |
| bool arg_owning_ref; |
| |
| struct { |
| struct btf_field *field; |
| } arg_list_head; |
| struct { |
| struct btf_field *field; |
| } arg_rbtree_root; |
| struct { |
| enum bpf_dynptr_type type; |
| u32 id; |
| u32 ref_obj_id; |
| } initialized_dynptr; |
| struct { |
| u8 spi; |
| u8 frameno; |
| } iter; |
| u64 mem_size; |
| }; |
| |
| struct btf *btf_vmlinux; |
| |
| static const char *btf_type_name(const struct btf *btf, u32 id) |
| { |
| return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); |
| } |
| |
| static DEFINE_MUTEX(bpf_verifier_lock); |
| static DEFINE_MUTEX(bpf_percpu_ma_lock); |
| |
| __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) |
| { |
| struct bpf_verifier_env *env = private_data; |
| va_list args; |
| |
| if (!bpf_verifier_log_needed(&env->log)) |
| return; |
| |
| va_start(args, fmt); |
| bpf_verifier_vlog(&env->log, fmt, args); |
| va_end(args); |
| } |
| |
| static void verbose_invalid_scalar(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, |
| struct bpf_retval_range range, const char *ctx, |
| const char *reg_name) |
| { |
| bool unknown = true; |
| |
| verbose(env, "%s the register %s has", ctx, reg_name); |
| if (reg->smin_value > S64_MIN) { |
| verbose(env, " smin=%lld", reg->smin_value); |
| unknown = false; |
| } |
| if (reg->smax_value < S64_MAX) { |
| verbose(env, " smax=%lld", reg->smax_value); |
| unknown = false; |
| } |
| if (unknown) |
| verbose(env, " unknown scalar value"); |
| verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); |
| } |
| |
| static bool type_may_be_null(u32 type) |
| { |
| return type & PTR_MAYBE_NULL; |
| } |
| |
| static bool reg_not_null(const struct bpf_reg_state *reg) |
| { |
| enum bpf_reg_type type; |
| |
| type = reg->type; |
| if (type_may_be_null(type)) |
| return false; |
| |
| type = base_type(type); |
| return type == PTR_TO_SOCKET || |
| type == PTR_TO_TCP_SOCK || |
| type == PTR_TO_MAP_VALUE || |
| type == PTR_TO_MAP_KEY || |
| type == PTR_TO_SOCK_COMMON || |
| (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || |
| type == PTR_TO_MEM; |
| } |
| |
| static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) |
| { |
| struct btf_record *rec = NULL; |
| struct btf_struct_meta *meta; |
| |
| if (reg->type == PTR_TO_MAP_VALUE) { |
| rec = reg->map_ptr->record; |
| } else if (type_is_ptr_alloc_obj(reg->type)) { |
| meta = btf_find_struct_meta(reg->btf, reg->btf_id); |
| if (meta) |
| rec = meta->record; |
| } |
| return rec; |
| } |
| |
| static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) |
| { |
| struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; |
| |
| return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; |
| } |
| |
| static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) |
| { |
| struct bpf_func_info *info; |
| |
| if (!env->prog->aux->func_info) |
| return ""; |
| |
| info = &env->prog->aux->func_info[subprog]; |
| return btf_type_name(env->prog->aux->btf, info->type_id); |
| } |
| |
| static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) |
| { |
| struct bpf_subprog_info *info = subprog_info(env, subprog); |
| |
| info->is_cb = true; |
| info->is_async_cb = true; |
| info->is_exception_cb = true; |
| } |
| |
| static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) |
| { |
| return subprog_info(env, subprog)->is_exception_cb; |
| } |
| |
| static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) |
| { |
| return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); |
| } |
| |
| static bool type_is_rdonly_mem(u32 type) |
| { |
| return type & MEM_RDONLY; |
| } |
| |
| static bool is_acquire_function(enum bpf_func_id func_id, |
| const struct bpf_map *map) |
| { |
| enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; |
| |
| if (func_id == BPF_FUNC_sk_lookup_tcp || |
| func_id == BPF_FUNC_sk_lookup_udp || |
| func_id == BPF_FUNC_skc_lookup_tcp || |
| func_id == BPF_FUNC_ringbuf_reserve || |
| func_id == BPF_FUNC_kptr_xchg) |
| return true; |
| |
| if (func_id == BPF_FUNC_map_lookup_elem && |
| (map_type == BPF_MAP_TYPE_SOCKMAP || |
| map_type == BPF_MAP_TYPE_SOCKHASH)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool is_ptr_cast_function(enum bpf_func_id func_id) |
| { |
| return func_id == BPF_FUNC_tcp_sock || |
| func_id == BPF_FUNC_sk_fullsock || |
| func_id == BPF_FUNC_skc_to_tcp_sock || |
| func_id == BPF_FUNC_skc_to_tcp6_sock || |
| func_id == BPF_FUNC_skc_to_udp6_sock || |
| func_id == BPF_FUNC_skc_to_mptcp_sock || |
| func_id == BPF_FUNC_skc_to_tcp_timewait_sock || |
| func_id == BPF_FUNC_skc_to_tcp_request_sock; |
| } |
| |
| static bool is_dynptr_ref_function(enum bpf_func_id func_id) |
| { |
| return func_id == BPF_FUNC_dynptr_data; |
| } |
| |
| static bool is_sync_callback_calling_kfunc(u32 btf_id); |
| static bool is_bpf_throw_kfunc(struct bpf_insn *insn); |
| |
| static bool is_sync_callback_calling_function(enum bpf_func_id func_id) |
| { |
| return func_id == BPF_FUNC_for_each_map_elem || |
| func_id == BPF_FUNC_find_vma || |
| func_id == BPF_FUNC_loop || |
| func_id == BPF_FUNC_user_ringbuf_drain; |
| } |
| |
| static bool is_async_callback_calling_function(enum bpf_func_id func_id) |
| { |
| return func_id == BPF_FUNC_timer_set_callback; |
| } |
| |
| static bool is_callback_calling_function(enum bpf_func_id func_id) |
| { |
| return is_sync_callback_calling_function(func_id) || |
| is_async_callback_calling_function(func_id); |
| } |
| |
| static bool is_sync_callback_calling_insn(struct bpf_insn *insn) |
| { |
| return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || |
| (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); |
| } |
| |
| static bool is_storage_get_function(enum bpf_func_id func_id) |
| { |
| return func_id == BPF_FUNC_sk_storage_get || |
| func_id == BPF_FUNC_inode_storage_get || |
| func_id == BPF_FUNC_task_storage_get || |
| func_id == BPF_FUNC_cgrp_storage_get; |
| } |
| |
| static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, |
| const struct bpf_map *map) |
| { |
| int ref_obj_uses = 0; |
| |
| if (is_ptr_cast_function(func_id)) |
| ref_obj_uses++; |
| if (is_acquire_function(func_id, map)) |
| ref_obj_uses++; |
| if (is_dynptr_ref_function(func_id)) |
| ref_obj_uses++; |
| |
| return ref_obj_uses > 1; |
| } |
| |
| static bool is_cmpxchg_insn(const struct bpf_insn *insn) |
| { |
| return BPF_CLASS(insn->code) == BPF_STX && |
| BPF_MODE(insn->code) == BPF_ATOMIC && |
| insn->imm == BPF_CMPXCHG; |
| } |
| |
| static int __get_spi(s32 off) |
| { |
| return (-off - 1) / BPF_REG_SIZE; |
| } |
| |
| static struct bpf_func_state *func(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg) |
| { |
| struct bpf_verifier_state *cur = env->cur_state; |
| |
| return cur->frame[reg->frameno]; |
| } |
| |
| static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) |
| { |
| int allocated_slots = state->allocated_stack / BPF_REG_SIZE; |
| |
| /* We need to check that slots between [spi - nr_slots + 1, spi] are |
| * within [0, allocated_stack). |
| * |
| * Please note that the spi grows downwards. For example, a dynptr |
| * takes the size of two stack slots; the first slot will be at |
| * spi and the second slot will be at spi - 1. |
| */ |
| return spi - nr_slots + 1 >= 0 && spi < allocated_slots; |
| } |
| |
| static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, |
| const char *obj_kind, int nr_slots) |
| { |
| int off, spi; |
| |
| if (!tnum_is_const(reg->var_off)) { |
| verbose(env, "%s has to be at a constant offset\n", obj_kind); |
| return -EINVAL; |
| } |
| |
| off = reg->off + reg->var_off.value; |
| if (off % BPF_REG_SIZE) { |
| verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); |
| return -EINVAL; |
| } |
| |
| spi = __get_spi(off); |
| if (spi + 1 < nr_slots) { |
| verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); |
| return -EINVAL; |
| } |
| |
| if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) |
| return -ERANGE; |
| return spi; |
| } |
| |
| static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); |
| } |
| |
| static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) |
| { |
| return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); |
| } |
| |
| static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) |
| { |
| switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { |
| case DYNPTR_TYPE_LOCAL: |
| return BPF_DYNPTR_TYPE_LOCAL; |
| case DYNPTR_TYPE_RINGBUF: |
| return BPF_DYNPTR_TYPE_RINGBUF; |
| case DYNPTR_TYPE_SKB: |
| return BPF_DYNPTR_TYPE_SKB; |
| case DYNPTR_TYPE_XDP: |
| return BPF_DYNPTR_TYPE_XDP; |
| default: |
| return BPF_DYNPTR_TYPE_INVALID; |
| } |
| } |
| |
| static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) |
| { |
| switch (type) { |
| case BPF_DYNPTR_TYPE_LOCAL: |
| return DYNPTR_TYPE_LOCAL; |
| case BPF_DYNPTR_TYPE_RINGBUF: |
| return DYNPTR_TYPE_RINGBUF; |
| case BPF_DYNPTR_TYPE_SKB: |
| return DYNPTR_TYPE_SKB; |
| case BPF_DYNPTR_TYPE_XDP: |
| return DYNPTR_TYPE_XDP; |
| default: |
| return 0; |
| } |
| } |
| |
| static bool dynptr_type_refcounted(enum bpf_dynptr_type type) |
| { |
| return type == BPF_DYNPTR_TYPE_RINGBUF; |
| } |
| |
| static void __mark_dynptr_reg(struct bpf_reg_state *reg, |
| enum bpf_dynptr_type type, |
| bool first_slot, int dynptr_id); |
| |
| static void __mark_reg_not_init(const struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg); |
| |
| static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, |
| struct bpf_reg_state *sreg1, |
| struct bpf_reg_state *sreg2, |
| enum bpf_dynptr_type type) |
| { |
| int id = ++env->id_gen; |
| |
| __mark_dynptr_reg(sreg1, type, true, id); |
| __mark_dynptr_reg(sreg2, type, false, id); |
| } |
| |
| static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, |
| enum bpf_dynptr_type type) |
| { |
| __mark_dynptr_reg(reg, type, true, ++env->id_gen); |
| } |
| |
| static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, |
| struct bpf_func_state *state, int spi); |
| |
| static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, |
| enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| enum bpf_dynptr_type type; |
| int spi, i, err; |
| |
| spi = dynptr_get_spi(env, reg); |
| if (spi < 0) |
| return spi; |
| |
| /* We cannot assume both spi and spi - 1 belong to the same dynptr, |
| * hence we need to call destroy_if_dynptr_stack_slot twice for both, |
| * to ensure that for the following example: |
| * [d1][d1][d2][d2] |
| * spi 3 2 1 0 |
| * So marking spi = 2 should lead to destruction of both d1 and d2. In |
| * case they do belong to same dynptr, second call won't see slot_type |
| * as STACK_DYNPTR and will simply skip destruction. |
| */ |
| err = destroy_if_dynptr_stack_slot(env, state, spi); |
| if (err) |
| return err; |
| err = destroy_if_dynptr_stack_slot(env, state, spi - 1); |
| if (err) |
| return err; |
| |
| for (i = 0; i < BPF_REG_SIZE; i++) { |
| state->stack[spi].slot_type[i] = STACK_DYNPTR; |
| state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; |
| } |
| |
| type = arg_to_dynptr_type(arg_type); |
| if (type == BPF_DYNPTR_TYPE_INVALID) |
| return -EINVAL; |
| |
| mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, |
| &state->stack[spi - 1].spilled_ptr, type); |
| |
| if (dynptr_type_refcounted(type)) { |
| /* The id is used to track proper releasing */ |
| int id; |
| |
| if (clone_ref_obj_id) |
| id = clone_ref_obj_id; |
| else |
| id = acquire_reference_state(env, insn_idx); |
| |
| if (id < 0) |
| return id; |
| |
| state->stack[spi].spilled_ptr.ref_obj_id = id; |
| state->stack[spi - 1].spilled_ptr.ref_obj_id = id; |
| } |
| |
| state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| |
| return 0; |
| } |
| |
| static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) |
| { |
| int i; |
| |
| for (i = 0; i < BPF_REG_SIZE; i++) { |
| state->stack[spi].slot_type[i] = STACK_INVALID; |
| state->stack[spi - 1].slot_type[i] = STACK_INVALID; |
| } |
| |
| __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); |
| __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); |
| |
| /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? |
| * |
| * While we don't allow reading STACK_INVALID, it is still possible to |
| * do <8 byte writes marking some but not all slots as STACK_MISC. Then, |
| * helpers or insns can do partial read of that part without failing, |
| * but check_stack_range_initialized, check_stack_read_var_off, and |
| * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of |
| * the slot conservatively. Hence we need to prevent those liveness |
| * marking walks. |
| * |
| * This was not a problem before because STACK_INVALID is only set by |
| * default (where the default reg state has its reg->parent as NULL), or |
| * in clean_live_states after REG_LIVE_DONE (at which point |
| * mark_reg_read won't walk reg->parent chain), but not randomly during |
| * verifier state exploration (like we did above). Hence, for our case |
| * parentage chain will still be live (i.e. reg->parent may be |
| * non-NULL), while earlier reg->parent was NULL, so we need |
| * REG_LIVE_WRITTEN to screen off read marker propagation when it is |
| * done later on reads or by mark_dynptr_read as well to unnecessary |
| * mark registers in verifier state. |
| */ |
| state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| } |
| |
| static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int spi, ref_obj_id, i; |
| |
| spi = dynptr_get_spi(env, reg); |
| if (spi < 0) |
| return spi; |
| |
| if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { |
| invalidate_dynptr(env, state, spi); |
| return 0; |
| } |
| |
| ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; |
| |
| /* If the dynptr has a ref_obj_id, then we need to invalidate |
| * two things: |
| * |
| * 1) Any dynptrs with a matching ref_obj_id (clones) |
| * 2) Any slices derived from this dynptr. |
| */ |
| |
| /* Invalidate any slices associated with this dynptr */ |
| WARN_ON_ONCE(release_reference(env, ref_obj_id)); |
| |
| /* Invalidate any dynptr clones */ |
| for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { |
| if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) |
| continue; |
| |
| /* it should always be the case that if the ref obj id |
| * matches then the stack slot also belongs to a |
| * dynptr |
| */ |
| if (state->stack[i].slot_type[0] != STACK_DYNPTR) { |
| verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); |
| return -EFAULT; |
| } |
| if (state->stack[i].spilled_ptr.dynptr.first_slot) |
| invalidate_dynptr(env, state, i); |
| } |
| |
| return 0; |
| } |
| |
| static void __mark_reg_unknown(const struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg); |
| |
| static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| if (!env->allow_ptr_leaks) |
| __mark_reg_not_init(env, reg); |
| else |
| __mark_reg_unknown(env, reg); |
| } |
| |
| static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, |
| struct bpf_func_state *state, int spi) |
| { |
| struct bpf_func_state *fstate; |
| struct bpf_reg_state *dreg; |
| int i, dynptr_id; |
| |
| /* We always ensure that STACK_DYNPTR is never set partially, |
| * hence just checking for slot_type[0] is enough. This is |
| * different for STACK_SPILL, where it may be only set for |
| * 1 byte, so code has to use is_spilled_reg. |
| */ |
| if (state->stack[spi].slot_type[0] != STACK_DYNPTR) |
| return 0; |
| |
| /* Reposition spi to first slot */ |
| if (!state->stack[spi].spilled_ptr.dynptr.first_slot) |
| spi = spi + 1; |
| |
| if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { |
| verbose(env, "cannot overwrite referenced dynptr\n"); |
| return -EINVAL; |
| } |
| |
| mark_stack_slot_scratched(env, spi); |
| mark_stack_slot_scratched(env, spi - 1); |
| |
| /* Writing partially to one dynptr stack slot destroys both. */ |
| for (i = 0; i < BPF_REG_SIZE; i++) { |
| state->stack[spi].slot_type[i] = STACK_INVALID; |
| state->stack[spi - 1].slot_type[i] = STACK_INVALID; |
| } |
| |
| dynptr_id = state->stack[spi].spilled_ptr.id; |
| /* Invalidate any slices associated with this dynptr */ |
| bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ |
| /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ |
| if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) |
| continue; |
| if (dreg->dynptr_id == dynptr_id) |
| mark_reg_invalid(env, dreg); |
| })); |
| |
| /* Do not release reference state, we are destroying dynptr on stack, |
| * not using some helper to release it. Just reset register. |
| */ |
| __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); |
| __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); |
| |
| /* Same reason as unmark_stack_slots_dynptr above */ |
| state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| |
| return 0; |
| } |
| |
| static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| int spi; |
| |
| if (reg->type == CONST_PTR_TO_DYNPTR) |
| return false; |
| |
| spi = dynptr_get_spi(env, reg); |
| |
| /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an |
| * error because this just means the stack state hasn't been updated yet. |
| * We will do check_mem_access to check and update stack bounds later. |
| */ |
| if (spi < 0 && spi != -ERANGE) |
| return false; |
| |
| /* We don't need to check if the stack slots are marked by previous |
| * dynptr initializations because we allow overwriting existing unreferenced |
| * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls |
| * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are |
| * touching are completely destructed before we reinitialize them for a new |
| * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early |
| * instead of delaying it until the end where the user will get "Unreleased |
| * reference" error. |
| */ |
| return true; |
| } |
| |
| static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int i, spi; |
| |
| /* This already represents first slot of initialized bpf_dynptr. |
| * |
| * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to |
| * check_func_arg_reg_off's logic, so we don't need to check its |
| * offset and alignment. |
| */ |
| if (reg->type == CONST_PTR_TO_DYNPTR) |
| return true; |
| |
| spi = dynptr_get_spi(env, reg); |
| if (spi < 0) |
| return false; |
| if (!state->stack[spi].spilled_ptr.dynptr.first_slot) |
| return false; |
| |
| for (i = 0; i < BPF_REG_SIZE; i++) { |
| if (state->stack[spi].slot_type[i] != STACK_DYNPTR || |
| state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, |
| enum bpf_arg_type arg_type) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| enum bpf_dynptr_type dynptr_type; |
| int spi; |
| |
| /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ |
| if (arg_type == ARG_PTR_TO_DYNPTR) |
| return true; |
| |
| dynptr_type = arg_to_dynptr_type(arg_type); |
| if (reg->type == CONST_PTR_TO_DYNPTR) { |
| return reg->dynptr.type == dynptr_type; |
| } else { |
| spi = dynptr_get_spi(env, reg); |
| if (spi < 0) |
| return false; |
| return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; |
| } |
| } |
| |
| static void __mark_reg_known_zero(struct bpf_reg_state *reg); |
| |
| static bool in_rcu_cs(struct bpf_verifier_env *env); |
| |
| static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); |
| |
| static int mark_stack_slots_iter(struct bpf_verifier_env *env, |
| struct bpf_kfunc_call_arg_meta *meta, |
| struct bpf_reg_state *reg, int insn_idx, |
| struct btf *btf, u32 btf_id, int nr_slots) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int spi, i, j, id; |
| |
| spi = iter_get_spi(env, reg, nr_slots); |
| if (spi < 0) |
| return spi; |
| |
| id = acquire_reference_state(env, insn_idx); |
| if (id < 0) |
| return id; |
| |
| for (i = 0; i < nr_slots; i++) { |
| struct bpf_stack_state *slot = &state->stack[spi - i]; |
| struct bpf_reg_state *st = &slot->spilled_ptr; |
| |
| __mark_reg_known_zero(st); |
| st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ |
| if (is_kfunc_rcu_protected(meta)) { |
| if (in_rcu_cs(env)) |
| st->type |= MEM_RCU; |
| else |
| st->type |= PTR_UNTRUSTED; |
| } |
| st->live |= REG_LIVE_WRITTEN; |
| st->ref_obj_id = i == 0 ? id : 0; |
| st->iter.btf = btf; |
| st->iter.btf_id = btf_id; |
| st->iter.state = BPF_ITER_STATE_ACTIVE; |
| st->iter.depth = 0; |
| |
| for (j = 0; j < BPF_REG_SIZE; j++) |
| slot->slot_type[j] = STACK_ITER; |
| |
| mark_stack_slot_scratched(env, spi - i); |
| } |
| |
| return 0; |
| } |
| |
| static int unmark_stack_slots_iter(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, int nr_slots) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int spi, i, j; |
| |
| spi = iter_get_spi(env, reg, nr_slots); |
| if (spi < 0) |
| return spi; |
| |
| for (i = 0; i < nr_slots; i++) { |
| struct bpf_stack_state *slot = &state->stack[spi - i]; |
| struct bpf_reg_state *st = &slot->spilled_ptr; |
| |
| if (i == 0) |
| WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); |
| |
| __mark_reg_not_init(env, st); |
| |
| /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ |
| st->live |= REG_LIVE_WRITTEN; |
| |
| for (j = 0; j < BPF_REG_SIZE; j++) |
| slot->slot_type[j] = STACK_INVALID; |
| |
| mark_stack_slot_scratched(env, spi - i); |
| } |
| |
| return 0; |
| } |
| |
| static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, int nr_slots) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int spi, i, j; |
| |
| /* For -ERANGE (i.e. spi not falling into allocated stack slots), we |
| * will do check_mem_access to check and update stack bounds later, so |
| * return true for that case. |
| */ |
| spi = iter_get_spi(env, reg, nr_slots); |
| if (spi == -ERANGE) |
| return true; |
| if (spi < 0) |
| return false; |
| |
| for (i = 0; i < nr_slots; i++) { |
| struct bpf_stack_state *slot = &state->stack[spi - i]; |
| |
| for (j = 0; j < BPF_REG_SIZE; j++) |
| if (slot->slot_type[j] == STACK_ITER) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, |
| struct btf *btf, u32 btf_id, int nr_slots) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int spi, i, j; |
| |
| spi = iter_get_spi(env, reg, nr_slots); |
| if (spi < 0) |
| return -EINVAL; |
| |
| for (i = 0; i < nr_slots; i++) { |
| struct bpf_stack_state *slot = &state->stack[spi - i]; |
| struct bpf_reg_state *st = &slot->spilled_ptr; |
| |
| if (st->type & PTR_UNTRUSTED) |
| return -EPROTO; |
| /* only main (first) slot has ref_obj_id set */ |
| if (i == 0 && !st->ref_obj_id) |
| return -EINVAL; |
| if (i != 0 && st->ref_obj_id) |
| return -EINVAL; |
| if (st->iter.btf != btf || st->iter.btf_id != btf_id) |
| return -EINVAL; |
| |
| for (j = 0; j < BPF_REG_SIZE; j++) |
| if (slot->slot_type[j] != STACK_ITER) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Check if given stack slot is "special": |
| * - spilled register state (STACK_SPILL); |
| * - dynptr state (STACK_DYNPTR); |
| * - iter state (STACK_ITER). |
| */ |
| static bool is_stack_slot_special(const struct bpf_stack_state *stack) |
| { |
| enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; |
| |
| switch (type) { |
| case STACK_SPILL: |
| case STACK_DYNPTR: |
| case STACK_ITER: |
| return true; |
| case STACK_INVALID: |
| case STACK_MISC: |
| case STACK_ZERO: |
| return false; |
| default: |
| WARN_ONCE(1, "unknown stack slot type %d\n", type); |
| return true; |
| } |
| } |
| |
| /* The reg state of a pointer or a bounded scalar was saved when |
| * it was spilled to the stack. |
| */ |
| static bool is_spilled_reg(const struct bpf_stack_state *stack) |
| { |
| return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; |
| } |
| |
| static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) |
| { |
| return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && |
| stack->spilled_ptr.type == SCALAR_VALUE; |
| } |
| |
| /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which |
| * case they are equivalent, or it's STACK_ZERO, in which case we preserve |
| * more precise STACK_ZERO. |
| * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take |
| * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. |
| */ |
| static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) |
| { |
| if (*stype == STACK_ZERO) |
| return; |
| if (env->allow_ptr_leaks && *stype == STACK_INVALID) |
| return; |
| *stype = STACK_MISC; |
| } |
| |
| static void scrub_spilled_slot(u8 *stype) |
| { |
| if (*stype != STACK_INVALID) |
| *stype = STACK_MISC; |
| } |
| |
| /* copy array src of length n * size bytes to dst. dst is reallocated if it's too |
| * small to hold src. This is different from krealloc since we don't want to preserve |
| * the contents of dst. |
| * |
| * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could |
| * not be allocated. |
| */ |
| static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) |
| { |
| size_t alloc_bytes; |
| void *orig = dst; |
| size_t bytes; |
| |
| if (ZERO_OR_NULL_PTR(src)) |
| goto out; |
| |
| if (unlikely(check_mul_overflow(n, size, &bytes))) |
| return NULL; |
| |
| alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); |
| dst = krealloc(orig, alloc_bytes, flags); |
| if (!dst) { |
| kfree(orig); |
| return NULL; |
| } |
| |
| memcpy(dst, src, bytes); |
| out: |
| return dst ? dst : ZERO_SIZE_PTR; |
| } |
| |
| /* resize an array from old_n items to new_n items. the array is reallocated if it's too |
| * small to hold new_n items. new items are zeroed out if the array grows. |
| * |
| * Contrary to krealloc_array, does not free arr if new_n is zero. |
| */ |
| static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) |
| { |
| size_t alloc_size; |
| void *new_arr; |
| |
| if (!new_n || old_n == new_n) |
| goto out; |
| |
| alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); |
| new_arr = krealloc(arr, alloc_size, GFP_KERNEL); |
| if (!new_arr) { |
| kfree(arr); |
| return NULL; |
| } |
| arr = new_arr; |
| |
| if (new_n > old_n) |
| memset(arr + old_n * size, 0, (new_n - old_n) * size); |
| |
| out: |
| return arr ? arr : ZERO_SIZE_PTR; |
| } |
| |
| static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) |
| { |
| dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, |
| sizeof(struct bpf_reference_state), GFP_KERNEL); |
| if (!dst->refs) |
| return -ENOMEM; |
| |
| dst->acquired_refs = src->acquired_refs; |
| return 0; |
| } |
| |
| static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) |
| { |
| size_t n = src->allocated_stack / BPF_REG_SIZE; |
| |
| dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), |
| GFP_KERNEL); |
| if (!dst->stack) |
| return -ENOMEM; |
| |
| dst->allocated_stack = src->allocated_stack; |
| return 0; |
| } |
| |
| static int resize_reference_state(struct bpf_func_state *state, size_t n) |
| { |
| state->refs = realloc_array(state->refs, state->acquired_refs, n, |
| sizeof(struct bpf_reference_state)); |
| if (!state->refs) |
| return -ENOMEM; |
| |
| state->acquired_refs = n; |
| return 0; |
| } |
| |
| /* Possibly update state->allocated_stack to be at least size bytes. Also |
| * possibly update the function's high-water mark in its bpf_subprog_info. |
| */ |
| static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) |
| { |
| size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; |
| |
| /* The stack size is always a multiple of BPF_REG_SIZE. */ |
| size = round_up(size, BPF_REG_SIZE); |
| n = size / BPF_REG_SIZE; |
| |
| if (old_n >= n) |
| return 0; |
| |
| state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); |
| if (!state->stack) |
| return -ENOMEM; |
| |
| state->allocated_stack = size; |
| |
| /* update known max for given subprogram */ |
| if (env->subprog_info[state->subprogno].stack_depth < size) |
| env->subprog_info[state->subprogno].stack_depth = size; |
| |
| return 0; |
| } |
| |
| /* Acquire a pointer id from the env and update the state->refs to include |
| * this new pointer reference. |
| * On success, returns a valid pointer id to associate with the register |
| * On failure, returns a negative errno. |
| */ |
| static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) |
| { |
| struct bpf_func_state *state = cur_func(env); |
| int new_ofs = state->acquired_refs; |
| int id, err; |
| |
| err = resize_reference_state(state, state->acquired_refs + 1); |
| if (err) |
| return err; |
| id = ++env->id_gen; |
| state->refs[new_ofs].id = id; |
| state->refs[new_ofs].insn_idx = insn_idx; |
| state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; |
| |
| return id; |
| } |
| |
| /* release function corresponding to acquire_reference_state(). Idempotent. */ |
| static int release_reference_state(struct bpf_func_state *state, int ptr_id) |
| { |
| int i, last_idx; |
| |
| last_idx = state->acquired_refs - 1; |
| for (i = 0; i < state->acquired_refs; i++) { |
| if (state->refs[i].id == ptr_id) { |
| /* Cannot release caller references in callbacks */ |
| if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) |
| return -EINVAL; |
| if (last_idx && i != last_idx) |
| memcpy(&state->refs[i], &state->refs[last_idx], |
| sizeof(*state->refs)); |
| memset(&state->refs[last_idx], 0, sizeof(*state->refs)); |
| state->acquired_refs--; |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static void free_func_state(struct bpf_func_state *state) |
| { |
| if (!state) |
| return; |
| kfree(state->refs); |
| kfree(state->stack); |
| kfree(state); |
| } |
| |
| static void clear_jmp_history(struct bpf_verifier_state *state) |
| { |
| kfree(state->jmp_history); |
| state->jmp_history = NULL; |
| state->jmp_history_cnt = 0; |
| } |
| |
| static void free_verifier_state(struct bpf_verifier_state *state, |
| bool free_self) |
| { |
| int i; |
| |
| for (i = 0; i <= state->curframe; i++) { |
| free_func_state(state->frame[i]); |
| state->frame[i] = NULL; |
| } |
| clear_jmp_history(state); |
| if (free_self) |
| kfree(state); |
| } |
| |
| /* copy verifier state from src to dst growing dst stack space |
| * when necessary to accommodate larger src stack |
| */ |
| static int copy_func_state(struct bpf_func_state *dst, |
| const struct bpf_func_state *src) |
| { |
| int err; |
| |
| memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); |
| err = copy_reference_state(dst, src); |
| if (err) |
| return err; |
| return copy_stack_state(dst, src); |
| } |
| |
| static int copy_verifier_state(struct bpf_verifier_state *dst_state, |
| const struct bpf_verifier_state *src) |
| { |
| struct bpf_func_state *dst; |
| int i, err; |
| |
| dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, |
| src->jmp_history_cnt, sizeof(*dst_state->jmp_history), |
| GFP_USER); |
| if (!dst_state->jmp_history) |
| return -ENOMEM; |
| dst_state->jmp_history_cnt = src->jmp_history_cnt; |
| |
| /* if dst has more stack frames then src frame, free them, this is also |
| * necessary in case of exceptional exits using bpf_throw. |
| */ |
| for (i = src->curframe + 1; i <= dst_state->curframe; i++) { |
| free_func_state(dst_state->frame[i]); |
| dst_state->frame[i] = NULL; |
| } |
| dst_state->speculative = src->speculative; |
| dst_state->active_rcu_lock = src->active_rcu_lock; |
| dst_state->curframe = src->curframe; |
| dst_state->active_lock.ptr = src->active_lock.ptr; |
| dst_state->active_lock.id = src->active_lock.id; |
| dst_state->branches = src->branches; |
| dst_state->parent = src->parent; |
| dst_state->first_insn_idx = src->first_insn_idx; |
| dst_state->last_insn_idx = src->last_insn_idx; |
| dst_state->dfs_depth = src->dfs_depth; |
| dst_state->callback_unroll_depth = src->callback_unroll_depth; |
| dst_state->used_as_loop_entry = src->used_as_loop_entry; |
| for (i = 0; i <= src->curframe; i++) { |
| dst = dst_state->frame[i]; |
| if (!dst) { |
| dst = kzalloc(sizeof(*dst), GFP_KERNEL); |
| if (!dst) |
| return -ENOMEM; |
| dst_state->frame[i] = dst; |
| } |
| err = copy_func_state(dst, src->frame[i]); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| static u32 state_htab_size(struct bpf_verifier_env *env) |
| { |
| return env->prog->len; |
| } |
| |
| static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) |
| { |
| struct bpf_verifier_state *cur = env->cur_state; |
| struct bpf_func_state *state = cur->frame[cur->curframe]; |
| |
| return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; |
| } |
| |
| static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) |
| { |
| int fr; |
| |
| if (a->curframe != b->curframe) |
| return false; |
| |
| for (fr = a->curframe; fr >= 0; fr--) |
| if (a->frame[fr]->callsite != b->frame[fr]->callsite) |
| return false; |
| |
| return true; |
| } |
| |
| /* Open coded iterators allow back-edges in the state graph in order to |
| * check unbounded loops that iterators. |
| * |
| * In is_state_visited() it is necessary to know if explored states are |
| * part of some loops in order to decide whether non-exact states |
| * comparison could be used: |
| * - non-exact states comparison establishes sub-state relation and uses |
| * read and precision marks to do so, these marks are propagated from |
| * children states and thus are not guaranteed to be final in a loop; |
| * - exact states comparison just checks if current and explored states |
| * are identical (and thus form a back-edge). |
| * |
| * Paper "A New Algorithm for Identifying Loops in Decompilation" |
| * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient |
| * algorithm for loop structure detection and gives an overview of |
| * relevant terminology. It also has helpful illustrations. |
| * |
| * [1] https://api.semanticscholar.org/CorpusID:15784067 |
| * |
| * We use a similar algorithm but because loop nested structure is |
| * irrelevant for verifier ours is significantly simpler and resembles |
| * strongly connected components algorithm from Sedgewick's textbook. |
| * |
| * Define topmost loop entry as a first node of the loop traversed in a |
| * depth first search starting from initial state. The goal of the loop |
| * tracking algorithm is to associate topmost loop entries with states |
| * derived from these entries. |
| * |
| * For each step in the DFS states traversal algorithm needs to identify |
| * the following situations: |
| * |
| * initial initial initial |
| * | | | |
| * V V V |
| * ... ... .---------> hdr |
| * | | | | |
| * V V | V |
| * cur .-> succ | .------... |
| * | | | | | | |
| * V | V | V V |
| * succ '-- cur | ... ... |
| * | | | |
| * | V V |
| * | succ <- cur |
| * | | |
| * | V |
| * | ... |
| * | | |
| * '----' |
| * |
| * (A) successor state of cur (B) successor state of cur or it's entry |
| * not yet traversed are in current DFS path, thus cur and succ |
| * are members of the same outermost loop |
| * |
| * initial initial |
| * | | |
| * V V |
| * ... ... |
| * | | |
| * V V |
| * .------... .------... |
| * | | | | |
| * V V V V |
| * .-> hdr ... ... ... |
| * | | | | | |
| * | V V V V |
| * | succ <- cur succ <- cur |
| * | | | |
| * | V V |
| * | ... ... |
| * | | | |
| * '----' exit |
| * |
| * (C) successor state of cur is a part of some loop but this loop |
| * does not include cur or successor state is not in a loop at all. |
| * |
| * Algorithm could be described as the following python code: |
| * |
| * traversed = set() # Set of traversed nodes |
| * entries = {} # Mapping from node to loop entry |
| * depths = {} # Depth level assigned to graph node |
| * path = set() # Current DFS path |
| * |
| * # Find outermost loop entry known for n |
| * def get_loop_entry(n): |
| * h = entries.get(n, None) |
| * while h in entries and entries[h] != h: |
| * h = entries[h] |
| * return h |
| * |
| * # Update n's loop entry if h's outermost entry comes |
| * # before n's outermost entry in current DFS path. |
| * def update_loop_entry(n, h): |
| * n1 = get_loop_entry(n) or n |
| * h1 = get_loop_entry(h) or h |
| * if h1 in path and depths[h1] <= depths[n1]: |
| * entries[n] = h1 |
| * |
| * def dfs(n, depth): |
| * traversed.add(n) |
| * path.add(n) |
| * depths[n] = depth |
| * for succ in G.successors(n): |
| * if succ not in traversed: |
| * # Case A: explore succ and update cur's loop entry |
| * # only if succ's entry is in current DFS path. |
| * dfs(succ, depth + 1) |
| * h = get_loop_entry(succ) |
| * update_loop_entry(n, h) |
| * else: |
| * # Case B or C depending on `h1 in path` check in update_loop_entry(). |
| * update_loop_entry(n, succ) |
| * path.remove(n) |
| * |
| * To adapt this algorithm for use with verifier: |
| * - use st->branch == 0 as a signal that DFS of succ had been finished |
| * and cur's loop entry has to be updated (case A), handle this in |
| * update_branch_counts(); |
| * - use st->branch > 0 as a signal that st is in the current DFS path; |
| * - handle cases B and C in is_state_visited(); |
| * - update topmost loop entry for intermediate states in get_loop_entry(). |
| */ |
| static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) |
| { |
| struct bpf_verifier_state *topmost = st->loop_entry, *old; |
| |
| while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) |
| topmost = topmost->loop_entry; |
| /* Update loop entries for intermediate states to avoid this |
| * traversal in future get_loop_entry() calls. |
| */ |
| while (st && st->loop_entry != topmost) { |
| old = st->loop_entry; |
| st->loop_entry = topmost; |
| st = old; |
| } |
| return topmost; |
| } |
| |
| static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) |
| { |
| struct bpf_verifier_state *cur1, *hdr1; |
| |
| cur1 = get_loop_entry(cur) ?: cur; |
| hdr1 = get_loop_entry(hdr) ?: hdr; |
| /* The head1->branches check decides between cases B and C in |
| * comment for get_loop_entry(). If hdr1->branches == 0 then |
| * head's topmost loop entry is not in current DFS path, |
| * hence 'cur' and 'hdr' are not in the same loop and there is |
| * no need to update cur->loop_entry. |
| */ |
| if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { |
| cur->loop_entry = hdr; |
| hdr->used_as_loop_entry = true; |
| } |
| } |
| |
| static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) |
| { |
| while (st) { |
| u32 br = --st->branches; |
| |
| /* br == 0 signals that DFS exploration for 'st' is finished, |
| * thus it is necessary to update parent's loop entry if it |
| * turned out that st is a part of some loop. |
| * This is a part of 'case A' in get_loop_entry() comment. |
| */ |
| if (br == 0 && st->parent && st->loop_entry) |
| update_loop_entry(st->parent, st->loop_entry); |
| |
| /* WARN_ON(br > 1) technically makes sense here, |
| * but see comment in push_stack(), hence: |
| */ |
| WARN_ONCE((int)br < 0, |
| "BUG update_branch_counts:branches_to_explore=%d\n", |
| br); |
| if (br) |
| break; |
| st = st->parent; |
| } |
| } |
| |
| static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, |
| int *insn_idx, bool pop_log) |
| { |
| struct bpf_verifier_state *cur = env->cur_state; |
| struct bpf_verifier_stack_elem *elem, *head = env->head; |
| int err; |
| |
| if (env->head == NULL) |
| return -ENOENT; |
| |
| if (cur) { |
| err = copy_verifier_state(cur, &head->st); |
| if (err) |
| return err; |
| } |
| if (pop_log) |
| bpf_vlog_reset(&env->log, head->log_pos); |
| if (insn_idx) |
| *insn_idx = head->insn_idx; |
| if (prev_insn_idx) |
| *prev_insn_idx = head->prev_insn_idx; |
| elem = head->next; |
| free_verifier_state(&head->st, false); |
| kfree(head); |
| env->head = elem; |
| env->stack_size--; |
| return 0; |
| } |
| |
| static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, |
| int insn_idx, int prev_insn_idx, |
| bool speculative) |
| { |
| struct bpf_verifier_state *cur = env->cur_state; |
| struct bpf_verifier_stack_elem *elem; |
| int err; |
| |
| elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); |
| if (!elem) |
| goto err; |
| |
| elem->insn_idx = insn_idx; |
| elem->prev_insn_idx = prev_insn_idx; |
| elem->next = env->head; |
| elem->log_pos = env->log.end_pos; |
| env->head = elem; |
| env->stack_size++; |
| err = copy_verifier_state(&elem->st, cur); |
| if (err) |
| goto err; |
| elem->st.speculative |= speculative; |
| if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { |
| verbose(env, "The sequence of %d jumps is too complex.\n", |
| env->stack_size); |
| goto err; |
| } |
| if (elem->st.parent) { |
| ++elem->st.parent->branches; |
| /* WARN_ON(branches > 2) technically makes sense here, |
| * but |
| * 1. speculative states will bump 'branches' for non-branch |
| * instructions |
| * 2. is_state_visited() heuristics may decide not to create |
| * a new state for a sequence of branches and all such current |
| * and cloned states will be pointing to a single parent state |
| * which might have large 'branches' count. |
| */ |
| } |
| return &elem->st; |
| err: |
| free_verifier_state(env->cur_state, true); |
| env->cur_state = NULL; |
| /* pop all elements and return */ |
| while (!pop_stack(env, NULL, NULL, false)); |
| return NULL; |
| } |
| |
| #define CALLER_SAVED_REGS 6 |
| static const int caller_saved[CALLER_SAVED_REGS] = { |
| BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 |
| }; |
| |
| /* This helper doesn't clear reg->id */ |
| static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) |
| { |
| reg->var_off = tnum_const(imm); |
| reg->smin_value = (s64)imm; |
| reg->smax_value = (s64)imm; |
| reg->umin_value = imm; |
| reg->umax_value = imm; |
| |
| reg->s32_min_value = (s32)imm; |
| reg->s32_max_value = (s32)imm; |
| reg->u32_min_value = (u32)imm; |
| reg->u32_max_value = (u32)imm; |
| } |
| |
| /* Mark the unknown part of a register (variable offset or scalar value) as |
| * known to have the value @imm. |
| */ |
| static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) |
| { |
| /* Clear off and union(map_ptr, range) */ |
| memset(((u8 *)reg) + sizeof(reg->type), 0, |
| offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); |
| reg->id = 0; |
| reg->ref_obj_id = 0; |
| ___mark_reg_known(reg, imm); |
| } |
| |
| static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) |
| { |
| reg->var_off = tnum_const_subreg(reg->var_off, imm); |
| reg->s32_min_value = (s32)imm; |
| reg->s32_max_value = (s32)imm; |
| reg->u32_min_value = (u32)imm; |
| reg->u32_max_value = (u32)imm; |
| } |
| |
| /* Mark the 'variable offset' part of a register as zero. This should be |
| * used only on registers holding a pointer type. |
| */ |
| static void __mark_reg_known_zero(struct bpf_reg_state *reg) |
| { |
| __mark_reg_known(reg, 0); |
| } |
| |
| static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| __mark_reg_known(reg, 0); |
| reg->type = SCALAR_VALUE; |
| /* all scalars are assumed imprecise initially (unless unprivileged, |
| * in which case everything is forced to be precise) |
| */ |
| reg->precise = !env->bpf_capable; |
| } |
| |
| static void mark_reg_known_zero(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, u32 regno) |
| { |
| if (WARN_ON(regno >= MAX_BPF_REG)) { |
| verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); |
| /* Something bad happened, let's kill all regs */ |
| for (regno = 0; regno < MAX_BPF_REG; regno++) |
| __mark_reg_not_init(env, regs + regno); |
| return; |
| } |
| __mark_reg_known_zero(regs + regno); |
| } |
| |
| static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, |
| bool first_slot, int dynptr_id) |
| { |
| /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for |
| * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply |
| * set it unconditionally as it is ignored for STACK_DYNPTR anyway. |
| */ |
| __mark_reg_known_zero(reg); |
| reg->type = CONST_PTR_TO_DYNPTR; |
| /* Give each dynptr a unique id to uniquely associate slices to it. */ |
| reg->id = dynptr_id; |
| reg->dynptr.type = type; |
| reg->dynptr.first_slot = first_slot; |
| } |
| |
| static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) |
| { |
| if (base_type(reg->type) == PTR_TO_MAP_VALUE) { |
| const struct bpf_map *map = reg->map_ptr; |
| |
| if (map->inner_map_meta) { |
| reg->type = CONST_PTR_TO_MAP; |
| reg->map_ptr = map->inner_map_meta; |
| /* transfer reg's id which is unique for every map_lookup_elem |
| * as UID of the inner map. |
| */ |
| if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) |
| reg->map_uid = reg->id; |
| } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { |
| reg->type = PTR_TO_XDP_SOCK; |
| } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || |
| map->map_type == BPF_MAP_TYPE_SOCKHASH) { |
| reg->type = PTR_TO_SOCKET; |
| } else { |
| reg->type = PTR_TO_MAP_VALUE; |
| } |
| return; |
| } |
| |
| reg->type &= ~PTR_MAYBE_NULL; |
| } |
| |
| static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, |
| struct btf_field_graph_root *ds_head) |
| { |
| __mark_reg_known_zero(®s[regno]); |
| regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; |
| regs[regno].btf = ds_head->btf; |
| regs[regno].btf_id = ds_head->value_btf_id; |
| regs[regno].off = ds_head->node_offset; |
| } |
| |
| static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) |
| { |
| return type_is_pkt_pointer(reg->type); |
| } |
| |
| static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) |
| { |
| return reg_is_pkt_pointer(reg) || |
| reg->type == PTR_TO_PACKET_END; |
| } |
| |
| static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) |
| { |
| return base_type(reg->type) == PTR_TO_MEM && |
| (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); |
| } |
| |
| /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ |
| static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, |
| enum bpf_reg_type which) |
| { |
| /* The register can already have a range from prior markings. |
| * This is fine as long as it hasn't been advanced from its |
| * origin. |
| */ |
| return reg->type == which && |
| reg->id == 0 && |
| reg->off == 0 && |
| tnum_equals_const(reg->var_off, 0); |
| } |
| |
| /* Reset the min/max bounds of a register */ |
| static void __mark_reg_unbounded(struct bpf_reg_state *reg) |
| { |
| reg->smin_value = S64_MIN; |
| reg->smax_value = S64_MAX; |
| reg->umin_value = 0; |
| reg->umax_value = U64_MAX; |
| |
| reg->s32_min_value = S32_MIN; |
| reg->s32_max_value = S32_MAX; |
| reg->u32_min_value = 0; |
| reg->u32_max_value = U32_MAX; |
| } |
| |
| static void __mark_reg64_unbounded(struct bpf_reg_state *reg) |
| { |
| reg->smin_value = S64_MIN; |
| reg->smax_value = S64_MAX; |
| reg->umin_value = 0; |
| reg->umax_value = U64_MAX; |
| } |
| |
| static void __mark_reg32_unbounded(struct bpf_reg_state *reg) |
| { |
| reg->s32_min_value = S32_MIN; |
| reg->s32_max_value = S32_MAX; |
| reg->u32_min_value = 0; |
| reg->u32_max_value = U32_MAX; |
| } |
| |
| static void __update_reg32_bounds(struct bpf_reg_state *reg) |
| { |
| struct tnum var32_off = tnum_subreg(reg->var_off); |
| |
| /* min signed is max(sign bit) | min(other bits) */ |
| reg->s32_min_value = max_t(s32, reg->s32_min_value, |
| var32_off.value | (var32_off.mask & S32_MIN)); |
| /* max signed is min(sign bit) | max(other bits) */ |
| reg->s32_max_value = min_t(s32, reg->s32_max_value, |
| var32_off.value | (var32_off.mask & S32_MAX)); |
| reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); |
| reg->u32_max_value = min(reg->u32_max_value, |
| (u32)(var32_off.value | var32_off.mask)); |
| } |
| |
| static void __update_reg64_bounds(struct bpf_reg_state *reg) |
| { |
| /* min signed is max(sign bit) | min(other bits) */ |
| reg->smin_value = max_t(s64, reg->smin_value, |
| reg->var_off.value | (reg->var_off.mask & S64_MIN)); |
| /* max signed is min(sign bit) | max(other bits) */ |
| reg->smax_value = min_t(s64, reg->smax_value, |
| reg->var_off.value | (reg->var_off.mask & S64_MAX)); |
| reg->umin_value = max(reg->umin_value, reg->var_off.value); |
| reg->umax_value = min(reg->umax_value, |
| reg->var_off.value | reg->var_off.mask); |
| } |
| |
| static void __update_reg_bounds(struct bpf_reg_state *reg) |
| { |
| __update_reg32_bounds(reg); |
| __update_reg64_bounds(reg); |
| } |
| |
| /* Uses signed min/max values to inform unsigned, and vice-versa */ |
| static void __reg32_deduce_bounds(struct bpf_reg_state *reg) |
| { |
| /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 |
| * bits to improve our u32/s32 boundaries. |
| * |
| * E.g., the case where we have upper 32 bits as zero ([10, 20] in |
| * u64) is pretty trivial, it's obvious that in u32 we'll also have |
| * [10, 20] range. But this property holds for any 64-bit range as |
| * long as upper 32 bits in that entire range of values stay the same. |
| * |
| * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] |
| * in decimal) has the same upper 32 bits throughout all the values in |
| * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) |
| * range. |
| * |
| * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, |
| * following the rules outlined below about u64/s64 correspondence |
| * (which equally applies to u32 vs s32 correspondence). In general it |
| * depends on actual hexadecimal values of 32-bit range. They can form |
| * only valid u32, or only valid s32 ranges in some cases. |
| * |
| * So we use all these insights to derive bounds for subregisters here. |
| */ |
| if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { |
| /* u64 to u32 casting preserves validity of low 32 bits as |
| * a range, if upper 32 bits are the same |
| */ |
| reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); |
| reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); |
| |
| if ((s32)reg->umin_value <= (s32)reg->umax_value) { |
| reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); |
| reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); |
| } |
| } |
| if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { |
| /* low 32 bits should form a proper u32 range */ |
| if ((u32)reg->smin_value <= (u32)reg->smax_value) { |
| reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); |
| reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); |
| } |
| /* low 32 bits should form a proper s32 range */ |
| if ((s32)reg->smin_value <= (s32)reg->smax_value) { |
| reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); |
| reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); |
| } |
| } |
| /* Special case where upper bits form a small sequence of two |
| * sequential numbers (in 32-bit unsigned space, so 0xffffffff to |
| * 0x00000000 is also valid), while lower bits form a proper s32 range |
| * going from negative numbers to positive numbers. E.g., let's say we |
| * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). |
| * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, |
| * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, |
| * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). |
| * Note that it doesn't have to be 0xffffffff going to 0x00000000 in |
| * upper 32 bits. As a random example, s64 range |
| * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range |
| * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. |
| */ |
| if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && |
| (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { |
| reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); |
| reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); |
| } |
| if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && |
| (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { |
| reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); |
| reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); |
| } |
| /* if u32 range forms a valid s32 range (due to matching sign bit), |
| * try to learn from that |
| */ |
| if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { |
| reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); |
| reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); |
| } |
| /* If we cannot cross the sign boundary, then signed and unsigned bounds |
| * are the same, so combine. This works even in the negative case, e.g. |
| * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. |
| */ |
| if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { |
| reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); |
| reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); |
| } |
| } |
| |
| static void __reg64_deduce_bounds(struct bpf_reg_state *reg) |
| { |
| /* If u64 range forms a valid s64 range (due to matching sign bit), |
| * try to learn from that. Let's do a bit of ASCII art to see when |
| * this is happening. Let's take u64 range first: |
| * |
| * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX |
| * |-------------------------------|--------------------------------| |
| * |
| * Valid u64 range is formed when umin and umax are anywhere in the |
| * range [0, U64_MAX], and umin <= umax. u64 case is simple and |
| * straightforward. Let's see how s64 range maps onto the same range |
| * of values, annotated below the line for comparison: |
| * |
| * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX |
| * |-------------------------------|--------------------------------| |
| * 0 S64_MAX S64_MIN -1 |
| * |
| * So s64 values basically start in the middle and they are logically |
| * contiguous to the right of it, wrapping around from -1 to 0, and |
| * then finishing as S64_MAX (0x7fffffffffffffff) right before |
| * S64_MIN. We can try drawing the continuity of u64 vs s64 values |
| * more visually as mapped to sign-agnostic range of hex values. |
| * |
| * u64 start u64 end |
| * _______________________________________________________________ |
| * / \ |
| * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX |
| * |-------------------------------|--------------------------------| |
| * 0 S64_MAX S64_MIN -1 |
| * / \ |
| * >------------------------------ -------------------------------> |
| * s64 continues... s64 end s64 start s64 "midpoint" |
| * |
| * What this means is that, in general, we can't always derive |
| * something new about u64 from any random s64 range, and vice versa. |
| * |
| * But we can do that in two particular cases. One is when entire |
| * u64/s64 range is *entirely* contained within left half of the above |
| * diagram or when it is *entirely* contained in the right half. I.e.: |
| * |
| * |-------------------------------|--------------------------------| |
| * ^ ^ ^ ^ |
| * A B C D |
| * |
| * [A, B] and [C, D] are contained entirely in their respective halves |
| * and form valid contiguous ranges as both u64 and s64 values. [A, B] |
| * will be non-negative both as u64 and s64 (and in fact it will be |
| * identical ranges no matter the signedness). [C, D] treated as s64 |
| * will be a range of negative values, while in u64 it will be |
| * non-negative range of values larger than 0x8000000000000000. |
| * |
| * Now, any other range here can't be represented in both u64 and s64 |
| * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid |
| * contiguous u64 ranges, but they are discontinuous in s64. [B, C] |
| * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], |
| * for example. Similarly, valid s64 range [D, A] (going from negative |
| * to positive values), would be two separate [D, U64_MAX] and [0, A] |
| * ranges as u64. Currently reg_state can't represent two segments per |
| * numeric domain, so in such situations we can only derive maximal |
| * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). |
| * |
| * So we use these facts to derive umin/umax from smin/smax and vice |
| * versa only if they stay within the same "half". This is equivalent |
| * to checking sign bit: lower half will have sign bit as zero, upper |
| * half have sign bit 1. Below in code we simplify this by just |
| * casting umin/umax as smin/smax and checking if they form valid |
| * range, and vice versa. Those are equivalent checks. |
| */ |
| if ((s64)reg->umin_value <= (s64)reg->umax_value) { |
| reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); |
| reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); |
| } |
| /* If we cannot cross the sign boundary, then signed and unsigned bounds |
| * are the same, so combine. This works even in the negative case, e.g. |
| * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. |
| */ |
| if ((u64)reg->smin_value <= (u64)reg->smax_value) { |
| reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); |
| reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); |
| } |
| } |
| |
| static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) |
| { |
| /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit |
| * values on both sides of 64-bit range in hope to have tigher range. |
| * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from |
| * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. |
| * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound |
| * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of |
| * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a |
| * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. |
| * We just need to make sure that derived bounds we are intersecting |
| * with are well-formed ranges in respecitve s64 or u64 domain, just |
| * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. |
| */ |
| __u64 new_umin, new_umax; |
| __s64 new_smin, new_smax; |
| |
| /* u32 -> u64 tightening, it's always well-formed */ |
| new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; |
| new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; |
| reg->umin_value = max_t(u64, reg->umin_value, new_umin); |
| reg->umax_value = min_t(u64, reg->umax_value, new_umax); |
| /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ |
| new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; |
| new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; |
| reg->smin_value = max_t(s64, reg->smin_value, new_smin); |
| reg->smax_value = min_t(s64, reg->smax_value, new_smax); |
| |
| /* if s32 can be treated as valid u32 range, we can use it as well */ |
| if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { |
| /* s32 -> u64 tightening */ |
| new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; |
| new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; |
| reg->umin_value = max_t(u64, reg->umin_value, new_umin); |
| reg->umax_value = min_t(u64, reg->umax_value, new_umax); |
| /* s32 -> s64 tightening */ |
| new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; |
| new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; |
| reg->smin_value = max_t(s64, reg->smin_value, new_smin); |
| reg->smax_value = min_t(s64, reg->smax_value, new_smax); |
| } |
| } |
| |
| static void __reg_deduce_bounds(struct bpf_reg_state *reg) |
| { |
| __reg32_deduce_bounds(reg); |
| __reg64_deduce_bounds(reg); |
| __reg_deduce_mixed_bounds(reg); |
| } |
| |
| /* Attempts to improve var_off based on unsigned min/max information */ |
| static void __reg_bound_offset(struct bpf_reg_state *reg) |
| { |
| struct tnum var64_off = tnum_intersect(reg->var_off, |
| tnum_range(reg->umin_value, |
| reg->umax_value)); |
| struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), |
| tnum_range(reg->u32_min_value, |
| reg->u32_max_value)); |
| |
| reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); |
| } |
| |
| static void reg_bounds_sync(struct bpf_reg_state *reg) |
| { |
| /* We might have learned new bounds from the var_off. */ |
| __update_reg_bounds(reg); |
| /* We might have learned something about the sign bit. */ |
| __reg_deduce_bounds(reg); |
| __reg_deduce_bounds(reg); |
| /* We might have learned some bits from the bounds. */ |
| __reg_bound_offset(reg); |
| /* Intersecting with the old var_off might have improved our bounds |
| * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), |
| * then new var_off is (0; 0x7f...fc) which improves our umax. |
| */ |
| __update_reg_bounds(reg); |
| } |
| |
| static int reg_bounds_sanity_check(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, const char *ctx) |
| { |
| const char *msg; |
| |
| if (reg->umin_value > reg->umax_value || |
| reg->smin_value > reg->smax_value || |
| reg->u32_min_value > reg->u32_max_value || |
| reg->s32_min_value > reg->s32_max_value) { |
| msg = "range bounds violation"; |
| goto out; |
| } |
| |
| if (tnum_is_const(reg->var_off)) { |
| u64 uval = reg->var_off.value; |
| s64 sval = (s64)uval; |
| |
| if (reg->umin_value != uval || reg->umax_value != uval || |
| reg->smin_value != sval || reg->smax_value != sval) { |
| msg = "const tnum out of sync with range bounds"; |
| goto out; |
| } |
| } |
| |
| if (tnum_subreg_is_const(reg->var_off)) { |
| u32 uval32 = tnum_subreg(reg->var_off).value; |
| s32 sval32 = (s32)uval32; |
| |
| if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || |
| reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { |
| msg = "const subreg tnum out of sync with range bounds"; |
| goto out; |
| } |
| } |
| |
| return 0; |
| out: |
| verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " |
| "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", |
| ctx, msg, reg->umin_value, reg->umax_value, |
| reg->smin_value, reg->smax_value, |
| reg->u32_min_value, reg->u32_max_value, |
| reg->s32_min_value, reg->s32_max_value, |
| reg->var_off.value, reg->var_off.mask); |
| if (env->test_reg_invariants) |
| return -EFAULT; |
| __mark_reg_unbounded(reg); |
| return 0; |
| } |
| |
| static bool __reg32_bound_s64(s32 a) |
| { |
| return a >= 0 && a <= S32_MAX; |
| } |
| |
| static void __reg_assign_32_into_64(struct bpf_reg_state *reg) |
| { |
| reg->umin_value = reg->u32_min_value; |
| reg->umax_value = reg->u32_max_value; |
| |
| /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must |
| * be positive otherwise set to worse case bounds and refine later |
| * from tnum. |
| */ |
| if (__reg32_bound_s64(reg->s32_min_value) && |
| __reg32_bound_s64(reg->s32_max_value)) { |
| reg->smin_value = reg->s32_min_value; |
| reg->smax_value = reg->s32_max_value; |
| } else { |
| reg->smin_value = 0; |
| reg->smax_value = U32_MAX; |
| } |
| } |
| |
| /* Mark a register as having a completely unknown (scalar) value. */ |
| static void __mark_reg_unknown(const struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg) |
| { |
| /* |
| * Clear type, off, and union(map_ptr, range) and |
| * padding between 'type' and union |
| */ |
| memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); |
| reg->type = SCALAR_VALUE; |
| reg->id = 0; |
| reg->ref_obj_id = 0; |
| reg->var_off = tnum_unknown; |
| reg->frameno = 0; |
| reg->precise = !env->bpf_capable; |
| __mark_reg_unbounded(reg); |
| } |
| |
| static void mark_reg_unknown(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, u32 regno) |
| { |
| if (WARN_ON(regno >= MAX_BPF_REG)) { |
| verbose(env, "mark_reg_unknown(regs, %u)\n", regno); |
| /* Something bad happened, let's kill all regs except FP */ |
| for (regno = 0; regno < BPF_REG_FP; regno++) |
| __mark_reg_not_init(env, regs + regno); |
| return; |
| } |
| __mark_reg_unknown(env, regs + regno); |
| } |
| |
| static void __mark_reg_not_init(const struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg) |
| { |
| __mark_reg_unknown(env, reg); |
| reg->type = NOT_INIT; |
| } |
| |
| static void mark_reg_not_init(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, u32 regno) |
| { |
| if (WARN_ON(regno >= MAX_BPF_REG)) { |
| verbose(env, "mark_reg_not_init(regs, %u)\n", regno); |
| /* Something bad happened, let's kill all regs except FP */ |
| for (regno = 0; regno < BPF_REG_FP; regno++) |
| __mark_reg_not_init(env, regs + regno); |
| return; |
| } |
| __mark_reg_not_init(env, regs + regno); |
| } |
| |
| static void mark_btf_ld_reg(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, u32 regno, |
| enum bpf_reg_type reg_type, |
| struct btf *btf, u32 btf_id, |
| enum bpf_type_flag flag) |
| { |
| if (reg_type == SCALAR_VALUE) { |
| mark_reg_unknown(env, regs, regno); |
| return; |
| } |
| mark_reg_known_zero(env, regs, regno); |
| regs[regno].type = PTR_TO_BTF_ID | flag; |
| regs[regno].btf = btf; |
| regs[regno].btf_id = btf_id; |
| } |
| |
| #define DEF_NOT_SUBREG (0) |
| static void init_reg_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *state) |
| { |
| struct bpf_reg_state *regs = state->regs; |
| int i; |
| |
| for (i = 0; i < MAX_BPF_REG; i++) { |
| mark_reg_not_init(env, regs, i); |
| regs[i].live = REG_LIVE_NONE; |
| regs[i].parent = NULL; |
| regs[i].subreg_def = DEF_NOT_SUBREG; |
| } |
| |
| /* frame pointer */ |
| regs[BPF_REG_FP].type = PTR_TO_STACK; |
| mark_reg_known_zero(env, regs, BPF_REG_FP); |
| regs[BPF_REG_FP].frameno = state->frameno; |
| } |
| |
| static struct bpf_retval_range retval_range(s32 minval, s32 maxval) |
| { |
| return (struct bpf_retval_range){ minval, maxval }; |
| } |
| |
| #define BPF_MAIN_FUNC (-1) |
| static void init_func_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *state, |
| int callsite, int frameno, int subprogno) |
| { |
| state->callsite = callsite; |
| state->frameno = frameno; |
| state->subprogno = subprogno; |
| state->callback_ret_range = retval_range(0, 0); |
| init_reg_state(env, state); |
| mark_verifier_state_scratched(env); |
| } |
| |
| /* Similar to push_stack(), but for async callbacks */ |
| static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, |
| int insn_idx, int prev_insn_idx, |
| int subprog) |
| { |
| struct bpf_verifier_stack_elem *elem; |
| struct bpf_func_state *frame; |
| |
| elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); |
| if (!elem) |
| goto err; |
| |
| elem->insn_idx = insn_idx; |
| elem->prev_insn_idx = prev_insn_idx; |
| elem->next = env->head; |
| elem->log_pos = env->log.end_pos; |
| env->head = elem; |
| env->stack_size++; |
| if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { |
| verbose(env, |
| "The sequence of %d jumps is too complex for async cb.\n", |
| env->stack_size); |
| goto err; |
| } |
| /* Unlike push_stack() do not copy_verifier_state(). |
| * The caller state doesn't matter. |
| * This is async callback. It starts in a fresh stack. |
| * Initialize it similar to do_check_common(). |
| */ |
| elem->st.branches = 1; |
| frame = kzalloc(sizeof(*frame), GFP_KERNEL); |
| if (!frame) |
| goto err; |
| init_func_state(env, frame, |
| BPF_MAIN_FUNC /* callsite */, |
| 0 /* frameno within this callchain */, |
| subprog /* subprog number within this prog */); |
| elem->st.frame[0] = frame; |
| return &elem->st; |
| err: |
| free_verifier_state(env->cur_state, true); |
| env->cur_state = NULL; |
| /* pop all elements and return */ |
| while (!pop_stack(env, NULL, NULL, false)); |
| return NULL; |
| } |
| |
| |
| enum reg_arg_type { |
| SRC_OP, /* register is used as source operand */ |
| DST_OP, /* register is used as destination operand */ |
| DST_OP_NO_MARK /* same as above, check only, don't mark */ |
| }; |
| |
| static int cmp_subprogs(const void *a, const void *b) |
| { |
| return ((struct bpf_subprog_info *)a)->start - |
| ((struct bpf_subprog_info *)b)->start; |
| } |
| |
| static int find_subprog(struct bpf_verifier_env *env, int off) |
| { |
| struct bpf_subprog_info *p; |
| |
| p = bsearch(&off, env->subprog_info, env->subprog_cnt, |
| sizeof(env->subprog_info[0]), cmp_subprogs); |
| if (!p) |
| return -ENOENT; |
| return p - env->subprog_info; |
| |
| } |
| |
| static int add_subprog(struct bpf_verifier_env *env, int off) |
| { |
| int insn_cnt = env->prog->len; |
| int ret; |
| |
| if (off >= insn_cnt || off < 0) { |
| verbose(env, "call to invalid destination\n"); |
| return -EINVAL; |
| } |
| ret = find_subprog(env, off); |
| if (ret >= 0) |
| return ret; |
| if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { |
| verbose(env, "too many subprograms\n"); |
| return -E2BIG; |
| } |
| /* determine subprog starts. The end is one before the next starts */ |
| env->subprog_info[env->subprog_cnt++].start = off; |
| sort(env->subprog_info, env->subprog_cnt, |
| sizeof(env->subprog_info[0]), cmp_subprogs, NULL); |
| return env->subprog_cnt - 1; |
| } |
| |
| static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) |
| { |
| struct bpf_prog_aux *aux = env->prog->aux; |
| struct btf *btf = aux->btf; |
| const struct btf_type *t; |
| u32 main_btf_id, id; |
| const char *name; |
| int ret, i; |
| |
| /* Non-zero func_info_cnt implies valid btf */ |
| if (!aux->func_info_cnt) |
| return 0; |
| main_btf_id = aux->func_info[0].type_id; |
| |
| t = btf_type_by_id(btf, main_btf_id); |
| if (!t) { |
| verbose(env, "invalid btf id for main subprog in func_info\n"); |
| return -EINVAL; |
| } |
| |
| name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); |
| if (IS_ERR(name)) { |
| ret = PTR_ERR(name); |
| /* If there is no tag present, there is no exception callback */ |
| if (ret == -ENOENT) |
| ret = 0; |
| else if (ret == -EEXIST) |
| verbose(env, "multiple exception callback tags for main subprog\n"); |
| return ret; |
| } |
| |
| ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); |
| if (ret < 0) { |
| verbose(env, "exception callback '%s' could not be found in BTF\n", name); |
| return ret; |
| } |
| id = ret; |
| t = btf_type_by_id(btf, id); |
| if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { |
| verbose(env, "exception callback '%s' must have global linkage\n", name); |
| return -EINVAL; |
| } |
| ret = 0; |
| for (i = 0; i < aux->func_info_cnt; i++) { |
| if (aux->func_info[i].type_id != id) |
| continue; |
| ret = aux->func_info[i].insn_off; |
| /* Further func_info and subprog checks will also happen |
| * later, so assume this is the right insn_off for now. |
| */ |
| if (!ret) { |
| verbose(env, "invalid exception callback insn_off in func_info: 0\n"); |
| ret = -EINVAL; |
| } |
| } |
| if (!ret) { |
| verbose(env, "exception callback type id not found in func_info\n"); |
| ret = -EINVAL; |
| } |
| return ret; |
| } |
| |
| #define MAX_KFUNC_DESCS 256 |
| #define MAX_KFUNC_BTFS 256 |
| |
| struct bpf_kfunc_desc { |
| struct btf_func_model func_model; |
| u32 func_id; |
| s32 imm; |
| u16 offset; |
| unsigned long addr; |
| }; |
| |
| struct bpf_kfunc_btf { |
| struct btf *btf; |
| struct module *module; |
| u16 offset; |
| }; |
| |
| struct bpf_kfunc_desc_tab { |
| /* Sorted by func_id (BTF ID) and offset (fd_array offset) during |
| * verification. JITs do lookups by bpf_insn, where func_id may not be |
| * available, therefore at the end of verification do_misc_fixups() |
| * sorts this by imm and offset. |
| */ |
| struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; |
| u32 nr_descs; |
| }; |
| |
| struct bpf_kfunc_btf_tab { |
| struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; |
| u32 nr_descs; |
| }; |
| |
| static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) |
| { |
| const struct bpf_kfunc_desc *d0 = a; |
| const struct bpf_kfunc_desc *d1 = b; |
| |
| /* func_id is not greater than BTF_MAX_TYPE */ |
| return d0->func_id - d1->func_id ?: d0->offset - d1->offset; |
| } |
| |
| static int kfunc_btf_cmp_by_off(const void *a, const void *b) |
| { |
| const struct bpf_kfunc_btf *d0 = a; |
| const struct bpf_kfunc_btf *d1 = b; |
| |
| return d0->offset - d1->offset; |
| } |
| |
| static const struct bpf_kfunc_desc * |
| find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) |
| { |
| struct bpf_kfunc_desc desc = { |
| .func_id = func_id, |
| .offset = offset, |
| }; |
| struct bpf_kfunc_desc_tab *tab; |
| |
| tab = prog->aux->kfunc_tab; |
| return bsearch(&desc, tab->descs, tab->nr_descs, |
| sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); |
| } |
| |
| int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, |
| u16 btf_fd_idx, u8 **func_addr) |
| { |
| const struct bpf_kfunc_desc *desc; |
| |
| desc = find_kfunc_desc(prog, func_id, btf_fd_idx); |
| if (!desc) |
| return -EFAULT; |
| |
| *func_addr = (u8 *)desc->addr; |
| return 0; |
| } |
| |
| static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, |
| s16 offset) |
| { |
| struct bpf_kfunc_btf kf_btf = { .offset = offset }; |
| struct bpf_kfunc_btf_tab *tab; |
| struct bpf_kfunc_btf *b; |
| struct module *mod; |
| struct btf *btf; |
| int btf_fd; |
| |
| tab = env->prog->aux->kfunc_btf_tab; |
| b = bsearch(&kf_btf, tab->descs, tab->nr_descs, |
| sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); |
| if (!b) { |
| if (tab->nr_descs == MAX_KFUNC_BTFS) { |
| verbose(env, "too many different module BTFs\n"); |
| return ERR_PTR(-E2BIG); |
| } |
| |
| if (bpfptr_is_null(env->fd_array)) { |
| verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); |
| return ERR_PTR(-EPROTO); |
| } |
| |
| if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, |
| offset * sizeof(btf_fd), |
| sizeof(btf_fd))) |
| return ERR_PTR(-EFAULT); |
| |
| btf = btf_get_by_fd(btf_fd); |
| if (IS_ERR(btf)) { |
| verbose(env, "invalid module BTF fd specified\n"); |
| return btf; |
| } |
| |
| if (!btf_is_module(btf)) { |
| verbose(env, "BTF fd for kfunc is not a module BTF\n"); |
| btf_put(btf); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| mod = btf_try_get_module(btf); |
| if (!mod) { |
| btf_put(btf); |
| return ERR_PTR(-ENXIO); |
| } |
| |
| b = &tab->descs[tab->nr_descs++]; |
| b->btf = btf; |
| b->module = mod; |
| b->offset = offset; |
| |
| sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), |
| kfunc_btf_cmp_by_off, NULL); |
| } |
| return b->btf; |
| } |
| |
| void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) |
| { |
| if (!tab) |
| return; |
| |
| while (tab->nr_descs--) { |
| module_put(tab->descs[tab->nr_descs].module); |
| btf_put(tab->descs[tab->nr_descs].btf); |
| } |
| kfree(tab); |
| } |
| |
| static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) |
| { |
| if (offset) { |
| if (offset < 0) { |
| /* In the future, this can be allowed to increase limit |
| * of fd index into fd_array, interpreted as u16. |
| */ |
| verbose(env, "negative offset disallowed for kernel module function call\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| return __find_kfunc_desc_btf(env, offset); |
| } |
| return btf_vmlinux ?: ERR_PTR(-ENOENT); |
| } |
| |
| static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) |
| { |
| const struct btf_type *func, *func_proto; |
| struct bpf_kfunc_btf_tab *btf_tab; |
| struct bpf_kfunc_desc_tab *tab; |
| struct bpf_prog_aux *prog_aux; |
| struct bpf_kfunc_desc *desc; |
| const char *func_name; |
| struct btf *desc_btf; |
| unsigned long call_imm; |
| unsigned long addr; |
| int err; |
| |
| prog_aux = env->prog->aux; |
| tab = prog_aux->kfunc_tab; |
| btf_tab = prog_aux->kfunc_btf_tab; |
| if (!tab) { |
| if (!btf_vmlinux) { |
| verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (!env->prog->jit_requested) { |
| verbose(env, "JIT is required for calling kernel function\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (!bpf_jit_supports_kfunc_call()) { |
| verbose(env, "JIT does not support calling kernel function\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (!env->prog->gpl_compatible) { |
| verbose(env, "cannot call kernel function from non-GPL compatible program\n"); |
| return -EINVAL; |
| } |
| |
| tab = kzalloc(sizeof(*tab), GFP_KERNEL); |
| if (!tab) |
| return -ENOMEM; |
| prog_aux->kfunc_tab = tab; |
| } |
| |
| /* func_id == 0 is always invalid, but instead of returning an error, be |
| * conservative and wait until the code elimination pass before returning |
| * error, so that invalid calls that get pruned out can be in BPF programs |
| * loaded from userspace. It is also required that offset be untouched |
| * for such calls. |
| */ |
| if (!func_id && !offset) |
| return 0; |
| |
| if (!btf_tab && offset) { |
| btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); |
| if (!btf_tab) |
| return -ENOMEM; |
| prog_aux->kfunc_btf_tab = btf_tab; |
| } |
| |
| desc_btf = find_kfunc_desc_btf(env, offset); |
| if (IS_ERR(desc_btf)) { |
| verbose(env, "failed to find BTF for kernel function\n"); |
| return PTR_ERR(desc_btf); |
| } |
| |
| if (find_kfunc_desc(env->prog, func_id, offset)) |
| return 0; |
| |
| if (tab->nr_descs == MAX_KFUNC_DESCS) { |
| verbose(env, "too many different kernel function calls\n"); |
| return -E2BIG; |
| } |
| |
| func = btf_type_by_id(desc_btf, func_id); |
| if (!func || !btf_type_is_func(func)) { |
| verbose(env, "kernel btf_id %u is not a function\n", |
| func_id); |
| return -EINVAL; |
| } |
| func_proto = btf_type_by_id(desc_btf, func->type); |
| if (!func_proto || !btf_type_is_func_proto(func_proto)) { |
| verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", |
| func_id); |
| return -EINVAL; |
| } |
| |
| func_name = btf_name_by_offset(desc_btf, func->name_off); |
| addr = kallsyms_lookup_name(func_name); |
| if (!addr) { |
| verbose(env, "cannot find address for kernel function %s\n", |
| func_name); |
| return -EINVAL; |
| } |
| specialize_kfunc(env, func_id, offset, &addr); |
| |
| if (bpf_jit_supports_far_kfunc_call()) { |
| call_imm = func_id; |
| } else { |
| call_imm = BPF_CALL_IMM(addr); |
| /* Check whether the relative offset overflows desc->imm */ |
| if ((unsigned long)(s32)call_imm != call_imm) { |
| verbose(env, "address of kernel function %s is out of range\n", |
| func_name); |
| return -EINVAL; |
| } |
| } |
| |
| if (bpf_dev_bound_kfunc_id(func_id)) { |
| err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); |
| if (err) |
| return err; |
| } |
| |
| desc = &tab->descs[tab->nr_descs++]; |
| desc->func_id = func_id; |
| desc->imm = call_imm; |
| desc->offset = offset; |
| desc->addr = addr; |
| err = btf_distill_func_proto(&env->log, desc_btf, |
| func_proto, func_name, |
| &desc->func_model); |
| if (!err) |
| sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), |
| kfunc_desc_cmp_by_id_off, NULL); |
| return err; |
| } |
| |
| static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) |
| { |
| const struct bpf_kfunc_desc *d0 = a; |
| const struct bpf_kfunc_desc *d1 = b; |
| |
| if (d0->imm != d1->imm) |
| return d0->imm < d1->imm ? -1 : 1; |
| if (d0->offset != d1->offset) |
| return d0->offset < d1->offset ? -1 : 1; |
| return 0; |
| } |
| |
| static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) |
| { |
| struct bpf_kfunc_desc_tab *tab; |
| |
| tab = prog->aux->kfunc_tab; |
| if (!tab) |
| return; |
| |
| sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), |
| kfunc_desc_cmp_by_imm_off, NULL); |
| } |
| |
| bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) |
| { |
| return !!prog->aux->kfunc_tab; |
| } |
| |
| const struct btf_func_model * |
| bpf_jit_find_kfunc_model(const struct bpf_prog *prog, |
| const struct bpf_insn *insn) |
| { |
| const struct bpf_kfunc_desc desc = { |
| .imm = insn->imm, |
| .offset = insn->off, |
| }; |
| const struct bpf_kfunc_desc *res; |
| struct bpf_kfunc_desc_tab *tab; |
| |
| tab = prog->aux->kfunc_tab; |
| res = bsearch(&desc, tab->descs, tab->nr_descs, |
| sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); |
| |
| return res ? &res->func_model : NULL; |
| } |
| |
| static int add_subprog_and_kfunc(struct bpf_verifier_env *env) |
| { |
| struct bpf_subprog_info *subprog = env->subprog_info; |
| int i, ret, insn_cnt = env->prog->len, ex_cb_insn; |
| struct bpf_insn *insn = env->prog->insnsi; |
| |
| /* Add entry function. */ |
| ret = add_subprog(env, 0); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && |
| !bpf_pseudo_kfunc_call(insn)) |
| continue; |
| |
| if (!env->bpf_capable) { |
| verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); |
| return -EPERM; |
| } |
| |
| if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) |
| ret = add_subprog(env, i + insn->imm + 1); |
| else |
| ret = add_kfunc_call(env, insn->imm, insn->off); |
| |
| if (ret < 0) |
| return ret; |
| } |
| |
| ret = bpf_find_exception_callback_insn_off(env); |
| if (ret < 0) |
| return ret; |
| ex_cb_insn = ret; |
| |
| /* If ex_cb_insn > 0, this means that the main program has a subprog |
| * marked using BTF decl tag to serve as the exception callback. |
| */ |
| if (ex_cb_insn) { |
| ret = add_subprog(env, ex_cb_insn); |
| if (ret < 0) |
| return ret; |
| for (i = 1; i < env->subprog_cnt; i++) { |
| if (env->subprog_info[i].start != ex_cb_insn) |
| continue; |
| env->exception_callback_subprog = i; |
| mark_subprog_exc_cb(env, i); |
| break; |
| } |
| } |
| |
| /* Add a fake 'exit' subprog which could simplify subprog iteration |
| * logic. 'subprog_cnt' should not be increased. |
| */ |
| subprog[env->subprog_cnt].start = insn_cnt; |
| |
| if (env->log.level & BPF_LOG_LEVEL2) |
| for (i = 0; i < env->subprog_cnt; i++) |
| verbose(env, "func#%d @%d\n", i, subprog[i].start); |
| |
| return 0; |
| } |
| |
| static int check_subprogs(struct bpf_verifier_env *env) |
| { |
| int i, subprog_start, subprog_end, off, cur_subprog = 0; |
| struct bpf_subprog_info *subprog = env->subprog_info; |
| struct bpf_insn *insn = env->prog->insnsi; |
| int insn_cnt = env->prog->len; |
| |
| /* now check that all jumps are within the same subprog */ |
| subprog_start = subprog[cur_subprog].start; |
| subprog_end = subprog[cur_subprog + 1].start; |
| for (i = 0; i < insn_cnt; i++) { |
| u8 code = insn[i].code; |
| |
| if (code == (BPF_JMP | BPF_CALL) && |
| insn[i].src_reg == 0 && |
| insn[i].imm == BPF_FUNC_tail_call) |
| subprog[cur_subprog].has_tail_call = true; |
| if (BPF_CLASS(code) == BPF_LD && |
| (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) |
| subprog[cur_subprog].has_ld_abs = true; |
| if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) |
| goto next; |
| if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) |
| goto next; |
| if (code == (BPF_JMP32 | BPF_JA)) |
| off = i + insn[i].imm + 1; |
| else |
| off = i + insn[i].off + 1; |
| if (off < subprog_start || off >= subprog_end) { |
| verbose(env, "jump out of range from insn %d to %d\n", i, off); |
| return -EINVAL; |
| } |
| next: |
| if (i == subprog_end - 1) { |
| /* to avoid fall-through from one subprog into another |
| * the last insn of the subprog should be either exit |
| * or unconditional jump back or bpf_throw call |
| */ |
| if (code != (BPF_JMP | BPF_EXIT) && |
| code != (BPF_JMP32 | BPF_JA) && |
| code != (BPF_JMP | BPF_JA)) { |
| verbose(env, "last insn is not an exit or jmp\n"); |
| return -EINVAL; |
| } |
| subprog_start = subprog_end; |
| cur_subprog++; |
| if (cur_subprog < env->subprog_cnt) |
| subprog_end = subprog[cur_subprog + 1].start; |
| } |
| } |
| return 0; |
| } |
| |
| /* Parentage chain of this register (or stack slot) should take care of all |
| * issues like callee-saved registers, stack slot allocation time, etc. |
| */ |
| static int mark_reg_read(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *state, |
| struct bpf_reg_state *parent, u8 flag) |
| { |
| bool writes = parent == state->parent; /* Observe write marks */ |
| int cnt = 0; |
| |
| while (parent) { |
| /* if read wasn't screened by an earlier write ... */ |
| if (writes && state->live & REG_LIVE_WRITTEN) |
| break; |
| if (parent->live & REG_LIVE_DONE) { |
| verbose(env, "verifier BUG type %s var_off %lld off %d\n", |
| reg_type_str(env, parent->type), |
| parent->var_off.value, parent->off); |
| return -EFAULT; |
| } |
| /* The first condition is more likely to be true than the |
| * second, checked it first. |
| */ |
| if ((parent->live & REG_LIVE_READ) == flag || |
| parent->live & REG_LIVE_READ64) |
| /* The parentage chain never changes and |
| * this parent was already marked as LIVE_READ. |
| * There is no need to keep walking the chain again and |
| * keep re-marking all parents as LIVE_READ. |
| * This case happens when the same register is read |
| * multiple times without writes into it in-between. |
| * Also, if parent has the stronger REG_LIVE_READ64 set, |
| * then no need to set the weak REG_LIVE_READ32. |
| */ |
| break; |
| /* ... then we depend on parent's value */ |
| parent->live |= flag; |
| /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ |
| if (flag == REG_LIVE_READ64) |
| parent->live &= ~REG_LIVE_READ32; |
| state = parent; |
| parent = state->parent; |
| writes = true; |
| cnt++; |
| } |
| |
| if (env->longest_mark_read_walk < cnt) |
| env->longest_mark_read_walk = cnt; |
| return 0; |
| } |
| |
| static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int spi, ret; |
| |
| /* For CONST_PTR_TO_DYNPTR, it must have already been done by |
| * check_reg_arg in check_helper_call and mark_btf_func_reg_size in |
| * check_kfunc_call. |
| */ |
| if (reg->type == CONST_PTR_TO_DYNPTR) |
| return 0; |
| spi = dynptr_get_spi(env, reg); |
| if (spi < 0) |
| return spi; |
| /* Caller ensures dynptr is valid and initialized, which means spi is in |
| * bounds and spi is the first dynptr slot. Simply mark stack slot as |
| * read. |
| */ |
| ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, |
| state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); |
| if (ret) |
| return ret; |
| return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, |
| state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); |
| } |
| |
| static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, |
| int spi, int nr_slots) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int err, i; |
| |
| for (i = 0; i < nr_slots; i++) { |
| struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; |
| |
| err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); |
| if (err) |
| return err; |
| |
| mark_stack_slot_scratched(env, spi - i); |
| } |
| |
| return 0; |
| } |
| |
| /* This function is supposed to be used by the following 32-bit optimization |
| * code only. It returns TRUE if the source or destination register operates |
| * on 64-bit, otherwise return FALSE. |
| */ |
| static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, |
| u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) |
| { |
| u8 code, class, op; |
| |
| code = insn->code; |
| class = BPF_CLASS(code); |
| op = BPF_OP(code); |
| if (class == BPF_JMP) { |
| /* BPF_EXIT for "main" will reach here. Return TRUE |
| * conservatively. |
| */ |
| if (op == BPF_EXIT) |
| return true; |
| if (op == BPF_CALL) { |
| /* BPF to BPF call will reach here because of marking |
| * caller saved clobber with DST_OP_NO_MARK for which we |
| * don't care the register def because they are anyway |
| * marked as NOT_INIT already. |
| */ |
| if (insn->src_reg == BPF_PSEUDO_CALL) |
| return false; |
| /* Helper call will reach here because of arg type |
| * check, conservatively return TRUE. |
| */ |
| if (t == SRC_OP) |
| return true; |
| |
| return false; |
| } |
| } |
| |
| if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) |
| return false; |
| |
| if (class == BPF_ALU64 || class == BPF_JMP || |
| (class == BPF_ALU && op == BPF_END && insn->imm == 64)) |
| return true; |
| |
| if (class == BPF_ALU || class == BPF_JMP32) |
| return false; |
| |
| if (class == BPF_LDX) { |
| if (t != SRC_OP) |
| return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; |
| /* LDX source must be ptr. */ |
| return true; |
| } |
| |
| if (class == BPF_STX) { |
| /* BPF_STX (including atomic variants) has multiple source |
| * operands, one of which is a ptr. Check whether the caller is |
| * asking about it. |
| */ |
| if (t == SRC_OP && reg->type != SCALAR_VALUE) |
| return true; |
| return BPF_SIZE(code) == BPF_DW; |
| } |
| |
| if (class == BPF_LD) { |
| u8 mode = BPF_MODE(code); |
| |
| /* LD_IMM64 */ |
| if (mode == BPF_IMM) |
| return true; |
| |
| /* Both LD_IND and LD_ABS return 32-bit data. */ |
| if (t != SRC_OP) |
| return false; |
| |
| /* Implicit ctx ptr. */ |
| if (regno == BPF_REG_6) |
| return true; |
| |
| /* Explicit source could be any width. */ |
| return true; |
| } |
| |
| if (class == BPF_ST) |
| /* The only source register for BPF_ST is a ptr. */ |
| return true; |
| |
| /* Conservatively return true at default. */ |
| return true; |
| } |
| |
| /* Return the regno defined by the insn, or -1. */ |
| static int insn_def_regno(const struct bpf_insn *insn) |
| { |
| switch (BPF_CLASS(insn->code)) { |
| case BPF_JMP: |
| case BPF_JMP32: |
| case BPF_ST: |
| return -1; |
| case BPF_STX: |
| if (BPF_MODE(insn->code) == BPF_ATOMIC && |
| (insn->imm & BPF_FETCH)) { |
| if (insn->imm == BPF_CMPXCHG) |
| return BPF_REG_0; |
| else |
| return insn->src_reg; |
| } else { |
| return -1; |
| } |
| default: |
| return insn->dst_reg; |
| } |
| } |
| |
| /* Return TRUE if INSN has defined any 32-bit value explicitly. */ |
| static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) |
| { |
| int dst_reg = insn_def_regno(insn); |
| |
| if (dst_reg == -1) |
| return false; |
| |
| return !is_reg64(env, insn, dst_reg, NULL, DST_OP); |
| } |
| |
| static void mark_insn_zext(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg) |
| { |
| s32 def_idx = reg->subreg_def; |
| |
| if (def_idx == DEF_NOT_SUBREG) |
| return; |
| |
| env->insn_aux_data[def_idx - 1].zext_dst = true; |
| /* The dst will be zero extended, so won't be sub-register anymore. */ |
| reg->subreg_def = DEF_NOT_SUBREG; |
| } |
| |
| static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, |
| enum reg_arg_type t) |
| { |
| struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; |
| struct bpf_reg_state *reg; |
| bool rw64; |
| |
| if (regno >= MAX_BPF_REG) { |
| verbose(env, "R%d is invalid\n", regno); |
| return -EINVAL; |
| } |
| |
| mark_reg_scratched(env, regno); |
| |
| reg = ®s[regno]; |
| rw64 = is_reg64(env, insn, regno, reg, t); |
| if (t == SRC_OP) { |
| /* check whether register used as source operand can be read */ |
| if (reg->type == NOT_INIT) { |
| verbose(env, "R%d !read_ok\n", regno); |
| return -EACCES; |
| } |
| /* We don't need to worry about FP liveness because it's read-only */ |
| if (regno == BPF_REG_FP) |
| return 0; |
| |
| if (rw64) |
| mark_insn_zext(env, reg); |
| |
| return mark_reg_read(env, reg, reg->parent, |
| rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); |
| } else { |
| /* check whether register used as dest operand can be written to */ |
| if (regno == BPF_REG_FP) { |
| verbose(env, "frame pointer is read only\n"); |
| return -EACCES; |
| } |
| reg->live |= REG_LIVE_WRITTEN; |
| reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; |
| if (t == DST_OP) |
| mark_reg_unknown(env, regs, regno); |
| } |
| return 0; |
| } |
| |
| static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, |
| enum reg_arg_type t) |
| { |
| struct bpf_verifier_state *vstate = env->cur_state; |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| |
| return __check_reg_arg(env, state->regs, regno, t); |
| } |
| |
| static int insn_stack_access_flags(int frameno, int spi) |
| { |
| return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; |
| } |
| |
| static int insn_stack_access_spi(int insn_flags) |
| { |
| return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; |
| } |
| |
| static int insn_stack_access_frameno(int insn_flags) |
| { |
| return insn_flags & INSN_F_FRAMENO_MASK; |
| } |
| |
| static void mark_jmp_point(struct bpf_verifier_env *env, int idx) |
| { |
| env->insn_aux_data[idx].jmp_point = true; |
| } |
| |
| static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) |
| { |
| return env->insn_aux_data[insn_idx].jmp_point; |
| } |
| |
| /* for any branch, call, exit record the history of jmps in the given state */ |
| static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, |
| int insn_flags) |
| { |
| u32 cnt = cur->jmp_history_cnt; |
| struct bpf_jmp_history_entry *p; |
| size_t alloc_size; |
| |
| /* combine instruction flags if we already recorded this instruction */ |
| if (env->cur_hist_ent) { |
| /* atomic instructions push insn_flags twice, for READ and |
| * WRITE sides, but they should agree on stack slot |
| */ |
| WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && |
| (env->cur_hist_ent->flags & insn_flags) != insn_flags, |
| "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", |
| env->insn_idx, env->cur_hist_ent->flags, insn_flags); |
| env->cur_hist_ent->flags |= insn_flags; |
| return 0; |
| } |
| |
| cnt++; |
| alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); |
| p = krealloc(cur->jmp_history, alloc_size, GFP_USER); |
| if (!p) |
| return -ENOMEM; |
| cur->jmp_history = p; |
| |
| p = &cur->jmp_history[cnt - 1]; |
| p->idx = env->insn_idx; |
| p->prev_idx = env->prev_insn_idx; |
| p->flags = insn_flags; |
| cur->jmp_history_cnt = cnt; |
| env->cur_hist_ent = p; |
| |
| return 0; |
| } |
| |
| static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, |
| u32 hist_end, int insn_idx) |
| { |
| if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) |
| return &st->jmp_history[hist_end - 1]; |
| return NULL; |
| } |
| |
| /* Backtrack one insn at a time. If idx is not at the top of recorded |
| * history then previous instruction came from straight line execution. |
| * Return -ENOENT if we exhausted all instructions within given state. |
| * |
| * It's legal to have a bit of a looping with the same starting and ending |
| * insn index within the same state, e.g.: 3->4->5->3, so just because current |
| * instruction index is the same as state's first_idx doesn't mean we are |
| * done. If there is still some jump history left, we should keep going. We |
| * need to take into account that we might have a jump history between given |
| * state's parent and itself, due to checkpointing. In this case, we'll have |
| * history entry recording a jump from last instruction of parent state and |
| * first instruction of given state. |
| */ |
| static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, |
| u32 *history) |
| { |
| u32 cnt = *history; |
| |
| if (i == st->first_insn_idx) { |
| if (cnt == 0) |
| return -ENOENT; |
| if (cnt == 1 && st->jmp_history[0].idx == i) |
| return -ENOENT; |
| } |
| |
| if (cnt && st->jmp_history[cnt - 1].idx == i) { |
| i = st->jmp_history[cnt - 1].prev_idx; |
| (*history)--; |
| } else { |
| i--; |
| } |
| return i; |
| } |
| |
| static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) |
| { |
| const struct btf_type *func; |
| struct btf *desc_btf; |
| |
| if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) |
| return NULL; |
| |
| desc_btf = find_kfunc_desc_btf(data, insn->off); |
| if (IS_ERR(desc_btf)) |
| return "<error>"; |
| |
| func = btf_type_by_id(desc_btf, insn->imm); |
| return btf_name_by_offset(desc_btf, func->name_off); |
| } |
| |
| static inline void bt_init(struct backtrack_state *bt, u32 frame) |
| { |
| bt->frame = frame; |
| } |
| |
| static inline void bt_reset(struct backtrack_state *bt) |
| { |
| struct bpf_verifier_env *env = bt->env; |
| |
| memset(bt, 0, sizeof(*bt)); |
| bt->env = env; |
| } |
| |
| static inline u32 bt_empty(struct backtrack_state *bt) |
| { |
| u64 mask = 0; |
| int i; |
| |
| for (i = 0; i <= bt->frame; i++) |
| mask |= bt->reg_masks[i] | bt->stack_masks[i]; |
| |
| return mask == 0; |
| } |
| |
| static inline int bt_subprog_enter(struct backtrack_state *bt) |
| { |
| if (bt->frame == MAX_CALL_FRAMES - 1) { |
| verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| bt->frame++; |
| return 0; |
| } |
| |
| static inline int bt_subprog_exit(struct backtrack_state *bt) |
| { |
| if (bt->frame == 0) { |
| verbose(bt->env, "BUG subprog exit from frame 0\n"); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| bt->frame--; |
| return 0; |
| } |
| |
| static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) |
| { |
| bt->reg_masks[frame] |= 1 << reg; |
| } |
| |
| static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) |
| { |
| bt->reg_masks[frame] &= ~(1 << reg); |
| } |
| |
| static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) |
| { |
| bt_set_frame_reg(bt, bt->frame, reg); |
| } |
| |
| static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) |
| { |
| bt_clear_frame_reg(bt, bt->frame, reg); |
| } |
| |
| static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) |
| { |
| bt->stack_masks[frame] |= 1ull << slot; |
| } |
| |
| static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) |
| { |
| bt->stack_masks[frame] &= ~(1ull << slot); |
| } |
| |
| static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) |
| { |
| return bt->reg_masks[frame]; |
| } |
| |
| static inline u32 bt_reg_mask(struct backtrack_state *bt) |
| { |
| return bt->reg_masks[bt->frame]; |
| } |
| |
| static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) |
| { |
| return bt->stack_masks[frame]; |
| } |
| |
| static inline u64 bt_stack_mask(struct backtrack_state *bt) |
| { |
| return bt->stack_masks[bt->frame]; |
| } |
| |
| static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) |
| { |
| return bt->reg_masks[bt->frame] & (1 << reg); |
| } |
| |
| static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) |
| { |
| return bt->stack_masks[frame] & (1ull << slot); |
| } |
| |
| /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ |
| static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) |
| { |
| DECLARE_BITMAP(mask, 64); |
| bool first = true; |
| int i, n; |
| |
| buf[0] = '\0'; |
| |
| bitmap_from_u64(mask, reg_mask); |
| for_each_set_bit(i, mask, 32) { |
| n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); |
| first = false; |
| buf += n; |
| buf_sz -= n; |
| if (buf_sz < 0) |
| break; |
| } |
| } |
| /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ |
| static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) |
| { |
| DECLARE_BITMAP(mask, 64); |
| bool first = true; |
| int i, n; |
| |
| buf[0] = '\0'; |
| |
| bitmap_from_u64(mask, stack_mask); |
| for_each_set_bit(i, mask, 64) { |
| n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); |
| first = false; |
| buf += n; |
| buf_sz -= n; |
| if (buf_sz < 0) |
| break; |
| } |
| } |
| |
| static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); |
| |
| /* For given verifier state backtrack_insn() is called from the last insn to |
| * the first insn. Its purpose is to compute a bitmask of registers and |
| * stack slots that needs precision in the parent verifier state. |
| * |
| * @idx is an index of the instruction we are currently processing; |
| * @subseq_idx is an index of the subsequent instruction that: |
| * - *would be* executed next, if jump history is viewed in forward order; |
| * - *was* processed previously during backtracking. |
| */ |
| static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, |
| struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) |
| { |
| const struct bpf_insn_cbs cbs = { |
| .cb_call = disasm_kfunc_name, |
| .cb_print = verbose, |
| .private_data = env, |
| }; |
| struct bpf_insn *insn = env->prog->insnsi + idx; |
| u8 class = BPF_CLASS(insn->code); |
| u8 opcode = BPF_OP(insn->code); |
| u8 mode = BPF_MODE(insn->code); |
| u32 dreg = insn->dst_reg; |
| u32 sreg = insn->src_reg; |
| u32 spi, i, fr; |
| |
| if (insn->code == 0) |
| return 0; |
| if (env->log.level & BPF_LOG_LEVEL2) { |
| fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); |
| verbose(env, "mark_precise: frame%d: regs=%s ", |
| bt->frame, env->tmp_str_buf); |
| fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); |
| verbose(env, "stack=%s before ", env->tmp_str_buf); |
| verbose(env, "%d: ", idx); |
| print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); |
| } |
| |
| if (class == BPF_ALU || class == BPF_ALU64) { |
| if (!bt_is_reg_set(bt, dreg)) |
| return 0; |
| if (opcode == BPF_END || opcode == BPF_NEG) { |
| /* sreg is reserved and unused |
| * dreg still need precision before this insn |
| */ |
| return 0; |
| } else if (opcode == BPF_MOV) { |
| if (BPF_SRC(insn->code) == BPF_X) { |
| /* dreg = sreg or dreg = (s8, s16, s32)sreg |
| * dreg needs precision after this insn |
| * sreg needs precision before this insn |
| */ |
| bt_clear_reg(bt, dreg); |
| bt_set_reg(bt, sreg); |
| } else { |
| /* dreg = K |
| * dreg needs precision after this insn. |
| * Corresponding register is already marked |
| * as precise=true in this verifier state. |
| * No further markings in parent are necessary |
| */ |
| bt_clear_reg(bt, dreg); |
| } |
| } else { |
| if (BPF_SRC(insn->code) == BPF_X) { |
| /* dreg += sreg |
| * both dreg and sreg need precision |
| * before this insn |
| */ |
| bt_set_reg(bt, sreg); |
| } /* else dreg += K |
| * dreg still needs precision before this insn |
| */ |
| } |
| } else if (class == BPF_LDX) { |
| if (!bt_is_reg_set(bt, dreg)) |
| return 0; |
| bt_clear_reg(bt, dreg); |
| |
| /* scalars can only be spilled into stack w/o losing precision. |
| * Load from any other memory can be zero extended. |
| * The desire to keep that precision is already indicated |
| * by 'precise' mark in corresponding register of this state. |
| * No further tracking necessary. |
| */ |
| if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) |
| return 0; |
| /* dreg = *(u64 *)[fp - off] was a fill from the stack. |
| * that [fp - off] slot contains scalar that needs to be |
| * tracked with precision |
| */ |
| spi = insn_stack_access_spi(hist->flags); |
| fr = insn_stack_access_frameno(hist->flags); |
| bt_set_frame_slot(bt, fr, spi); |
| } else if (class == BPF_STX || class == BPF_ST) { |
| if (bt_is_reg_set(bt, dreg)) |
| /* stx & st shouldn't be using _scalar_ dst_reg |
| * to access memory. It means backtracking |
| * encountered a case of pointer subtraction. |
| */ |
| return -ENOTSUPP; |
| /* scalars can only be spilled into stack */ |
| if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) |
| return 0; |
| spi = insn_stack_access_spi(hist->flags); |
| fr = insn_stack_access_frameno(hist->flags); |
| if (!bt_is_frame_slot_set(bt, fr, spi)) |
| return 0; |
| bt_clear_frame_slot(bt, fr, spi); |
| if (class == BPF_STX) |
| bt_set_reg(bt, sreg); |
| } else if (class == BPF_JMP || class == BPF_JMP32) { |
| if (bpf_pseudo_call(insn)) { |
| int subprog_insn_idx, subprog; |
| |
| subprog_insn_idx = idx + insn->imm + 1; |
| subprog = find_subprog(env, subprog_insn_idx); |
| if (subprog < 0) |
| return -EFAULT; |
| |
| if (subprog_is_global(env, subprog)) { |
| /* check that jump history doesn't have any |
| * extra instructions from subprog; the next |
| * instruction after call to global subprog |
| * should be literally next instruction in |
| * caller program |
| */ |
| WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); |
| /* r1-r5 are invalidated after subprog call, |
| * so for global func call it shouldn't be set |
| * anymore |
| */ |
| if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { |
| verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| /* global subprog always sets R0 */ |
| bt_clear_reg(bt, BPF_REG_0); |
| return 0; |
| } else { |
| /* static subprog call instruction, which |
| * means that we are exiting current subprog, |
| * so only r1-r5 could be still requested as |
| * precise, r0 and r6-r10 or any stack slot in |
| * the current frame should be zero by now |
| */ |
| if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { |
| verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| /* we are now tracking register spills correctly, |
| * so any instance of leftover slots is a bug |
| */ |
| if (bt_stack_mask(bt) != 0) { |
| verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); |
| WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); |
| return -EFAULT; |
| } |
| /* propagate r1-r5 to the caller */ |
| for (i = BPF_REG_1; i <= BPF_REG_5; i++) { |
| if (bt_is_reg_set(bt, i)) { |
| bt_clear_reg(bt, i); |
| bt_set_frame_reg(bt, bt->frame - 1, i); |
| } |
| } |
| if (bt_subprog_exit(bt)) |
| return -EFAULT; |
| return 0; |
| } |
| } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { |
| /* exit from callback subprog to callback-calling helper or |
| * kfunc call. Use idx/subseq_idx check to discern it from |
| * straight line code backtracking. |
| * Unlike the subprog call handling above, we shouldn't |
| * propagate precision of r1-r5 (if any requested), as they are |
| * not actually arguments passed directly to callback subprogs |
| */ |
| if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { |
| verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| if (bt_stack_mask(bt) != 0) { |
| verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); |
| WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); |
| return -EFAULT; |
| } |
| /* clear r1-r5 in callback subprog's mask */ |
| for (i = BPF_REG_1; i <= BPF_REG_5; i++) |
| bt_clear_reg(bt, i); |
| if (bt_subprog_exit(bt)) |
| return -EFAULT; |
| return 0; |
| } else if (opcode == BPF_CALL) { |
| /* kfunc with imm==0 is invalid and fixup_kfunc_call will |
| * catch this error later. Make backtracking conservative |
| * with ENOTSUPP. |
| */ |
| if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) |
| return -ENOTSUPP; |
| /* regular helper call sets R0 */ |
| bt_clear_reg(bt, BPF_REG_0); |
| if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { |
| /* if backtracing was looking for registers R1-R5 |
| * they should have been found already. |
| */ |
| verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| } else if (opcode == BPF_EXIT) { |
| bool r0_precise; |
| |
| /* Backtracking to a nested function call, 'idx' is a part of |
| * the inner frame 'subseq_idx' is a part of the outer frame. |
| * In case of a regular function call, instructions giving |
| * precision to registers R1-R5 should have been found already. |
| * In case of a callback, it is ok to have R1-R5 marked for |
| * backtracking, as these registers are set by the function |
| * invoking callback. |
| */ |
| if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) |
| for (i = BPF_REG_1; i <= BPF_REG_5; i++) |
| bt_clear_reg(bt, i); |
| if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { |
| verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| |
| /* BPF_EXIT in subprog or callback always returns |
| * right after the call instruction, so by checking |
| * whether the instruction at subseq_idx-1 is subprog |
| * call or not we can distinguish actual exit from |
| * *subprog* from exit from *callback*. In the former |
| * case, we need to propagate r0 precision, if |
| * necessary. In the former we never do that. |
| */ |
| r0_precise = subseq_idx - 1 >= 0 && |
| bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && |
| bt_is_reg_set(bt, BPF_REG_0); |
| |
| bt_clear_reg(bt, BPF_REG_0); |
| if (bt_subprog_enter(bt)) |
| return -EFAULT; |
| |
| if (r0_precise) |
| bt_set_reg(bt, BPF_REG_0); |
| /* r6-r9 and stack slots will stay set in caller frame |
| * bitmasks until we return back from callee(s) |
| */ |
| return 0; |
| } else if (BPF_SRC(insn->code) == BPF_X) { |
| if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) |
| return 0; |
| /* dreg <cond> sreg |
| * Both dreg and sreg need precision before |
| * this insn. If only sreg was marked precise |
| * before it would be equally necessary to |
| * propagate it to dreg. |
| */ |
| bt_set_reg(bt, dreg); |
| bt_set_reg(bt, sreg); |
| /* else dreg <cond> K |
| * Only dreg still needs precision before |
| * this insn, so for the K-based conditional |
| * there is nothing new to be marked. |
| */ |
| } |
| } else if (class == BPF_LD) { |
| if (!bt_is_reg_set(bt, dreg)) |
| return 0; |
| bt_clear_reg(bt, dreg); |
| /* It's ld_imm64 or ld_abs or ld_ind. |
| * For ld_imm64 no further tracking of precision |
| * into parent is necessary |
| */ |
| if (mode == BPF_IND || mode == BPF_ABS) |
| /* to be analyzed */ |
| return -ENOTSUPP; |
| } |
| return 0; |
| } |
| |
| /* the scalar precision tracking algorithm: |
| * . at the start all registers have precise=false. |
| * . scalar ranges are tracked as normal through alu and jmp insns. |
| * . once precise value of the scalar register is used in: |
| * . ptr + scalar alu |
| * . if (scalar cond K|scalar) |
| * . helper_call(.., scalar, ...) where ARG_CONST is expected |
| * backtrack through the verifier states and mark all registers and |
| * stack slots with spilled constants that these scalar regisers |
| * should be precise. |
| * . during state pruning two registers (or spilled stack slots) |
| * are equivalent if both are not precise. |
| * |
| * Note the verifier cannot simply walk register parentage chain, |
| * since many different registers and stack slots could have been |
| * used to compute single precise scalar. |
| * |
| * The approach of starting with precise=true for all registers and then |
| * backtrack to mark a register as not precise when the verifier detects |
| * that program doesn't care about specific value (e.g., when helper |
| * takes register as ARG_ANYTHING parameter) is not safe. |
| * |
| * It's ok to walk single parentage chain of the verifier states. |
| * It's possible that this backtracking will go all the way till 1st insn. |
| * All other branches will be explored for needing precision later. |
| * |
| * The backtracking needs to deal with cases like: |
| * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) |
| * r9 -= r8 |
| * r5 = r9 |
| * if r5 > 0x79f goto pc+7 |
| * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) |
| * r5 += 1 |
| * ... |
| * call bpf_perf_event_output#25 |
| * where .arg5_type = ARG_CONST_SIZE_OR_ZERO |
| * |
| * and this case: |
| * r6 = 1 |
| * call foo // uses callee's r6 inside to compute r0 |
| * r0 += r6 |
| * if r0 == 0 goto |
| * |
| * to track above reg_mask/stack_mask needs to be independent for each frame. |
| * |
| * Also if parent's curframe > frame where backtracking started, |
| * the verifier need to mark registers in both frames, otherwise callees |
| * may incorrectly prune callers. This is similar to |
| * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") |
| * |
| * For now backtracking falls back into conservative marking. |
| */ |
| static void mark_all_scalars_precise(struct bpf_verifier_env *env, |
| struct bpf_verifier_state *st) |
| { |
| struct bpf_func_state *func; |
| struct bpf_reg_state *reg; |
| int i, j; |
| |
| if (env->log.level & BPF_LOG_LEVEL2) { |
| verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", |
| st->curframe); |
| } |
| |
| /* big hammer: mark all scalars precise in this path. |
| * pop_stack may still get !precise scalars. |
| * We also skip current state and go straight to first parent state, |
| * because precision markings in current non-checkpointed state are |
| * not needed. See why in the comment in __mark_chain_precision below. |
| */ |
| for (st = st->parent; st; st = st->parent) { |
| for (i = 0; i <= st->curframe; i++) { |
| func = st->frame[i]; |
| for (j = 0; j < BPF_REG_FP; j++) { |
| reg = &func->regs[j]; |
| if (reg->type != SCALAR_VALUE || reg->precise) |
| continue; |
| reg->precise = true; |
| if (env->log.level & BPF_LOG_LEVEL2) { |
| verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", |
| i, j); |
| } |
| } |
| for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { |
| if (!is_spilled_reg(&func->stack[j])) |
| continue; |
| reg = &func->stack[j].spilled_ptr; |
| if (reg->type != SCALAR_VALUE || reg->precise) |
| continue; |
| reg->precise = true; |
| if (env->log.level & BPF_LOG_LEVEL2) { |
| verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", |
| i, -(j + 1) * 8); |
| } |
| } |
| } |
| } |
| } |
| |
| static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) |
| { |
| struct bpf_func_state *func; |
| struct bpf_reg_state *reg; |
| int i, j; |
| |
| for (i = 0; i <= st->curframe; i++) { |
| func = st->frame[i]; |
| for (j = 0; j < BPF_REG_FP; j++) { |
| reg = &func->regs[j]; |
| if (reg->type != SCALAR_VALUE) |
| continue; |
| reg->precise = false; |
| } |
| for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { |
| if (!is_spilled_reg(&func->stack[j])) |
| continue; |
| reg = &func->stack[j].spilled_ptr; |
| if (reg->type != SCALAR_VALUE) |
| continue; |
| reg->precise = false; |
| } |
| } |
| } |
| |
| static bool idset_contains(struct bpf_idset *s, u32 id) |
| { |
| u32 i; |
| |
| for (i = 0; i < s->count; ++i) |
| if (s->ids[i] == id) |
| return true; |
| |
| return false; |
| } |
| |
| static int idset_push(struct bpf_idset *s, u32 id) |
| { |
| if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) |
| return -EFAULT; |
| s->ids[s->count++] = id; |
| return 0; |
| } |
| |
| static void idset_reset(struct bpf_idset *s) |
| { |
| s->count = 0; |
| } |
| |
| /* Collect a set of IDs for all registers currently marked as precise in env->bt. |
| * Mark all registers with these IDs as precise. |
| */ |
| static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) |
| { |
| struct bpf_idset *precise_ids = &env->idset_scratch; |
| struct backtrack_state *bt = &env->bt; |
| struct bpf_func_state *func; |
| struct bpf_reg_state *reg; |
| DECLARE_BITMAP(mask, 64); |
| int i, fr; |
| |
| idset_reset(precise_ids); |
| |
| for (fr = bt->frame; fr >= 0; fr--) { |
| func = st->frame[fr]; |
| |
| bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); |
| for_each_set_bit(i, mask, 32) { |
| reg = &func->regs[i]; |
| if (!reg->id || reg->type != SCALAR_VALUE) |
| continue; |
| if (idset_push(precise_ids, reg->id)) |
| return -EFAULT; |
| } |
| |
| bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); |
| for_each_set_bit(i, mask, 64) { |
| if (i >= func->allocated_stack / BPF_REG_SIZE) |
| break; |
| if (!is_spilled_scalar_reg(&func->stack[i])) |
| continue; |
| reg = &func->stack[i].spilled_ptr; |
| if (!reg->id) |
| continue; |
| if (idset_push(precise_ids, reg->id)) |
| return -EFAULT; |
| } |
| } |
| |
| for (fr = 0; fr <= st->curframe; ++fr) { |
| func = st->frame[fr]; |
| |
| for (i = BPF_REG_0; i < BPF_REG_10; ++i) { |
| reg = &func->regs[i]; |
| if (!reg->id) |
| continue; |
| if (!idset_contains(precise_ids, reg->id)) |
| continue; |
| bt_set_frame_reg(bt, fr, i); |
| } |
| for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { |
| if (!is_spilled_scalar_reg(&func->stack[i])) |
| continue; |
| reg = &func->stack[i].spilled_ptr; |
| if (!reg->id) |
| continue; |
| if (!idset_contains(precise_ids, reg->id)) |
| continue; |
| bt_set_frame_slot(bt, fr, i); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * __mark_chain_precision() backtracks BPF program instruction sequence and |
| * chain of verifier states making sure that register *regno* (if regno >= 0) |
| * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked |
| * SCALARS, as well as any other registers and slots that contribute to |
| * a tracked state of given registers/stack slots, depending on specific BPF |
| * assembly instructions (see backtrack_insns() for exact instruction handling |
| * logic). This backtracking relies on recorded jmp_history and is able to |
| * traverse entire chain of parent states. This process ends only when all the |
| * necessary registers/slots and their transitive dependencies are marked as |
| * precise. |
| * |
| * One important and subtle aspect is that precise marks *do not matter* in |
| * the currently verified state (current state). It is important to understand |
| * why this is the case. |
| * |
| * First, note that current state is the state that is not yet "checkpointed", |
| * i.e., it is not yet put into env->explored_states, and it has no children |
| * states as well. It's ephemeral, and can end up either a) being discarded if |
| * compatible explored state is found at some point or BPF_EXIT instruction is |
| * reached or b) checkpointed and put into env->explored_states, branching out |
| * into one or more children states. |
| * |
| * In the former case, precise markings in current state are completely |
| * ignored by state comparison code (see regsafe() for details). Only |
| * checkpointed ("old") state precise markings are important, and if old |
| * state's register/slot is precise, regsafe() assumes current state's |
| * register/slot as precise and checks value ranges exactly and precisely. If |
| * states turn out to be compatible, current state's necessary precise |
| * markings and any required parent states' precise markings are enforced |
| * after the fact with propagate_precision() logic, after the fact. But it's |
| * important to realize that in this case, even after marking current state |
| * registers/slots as precise, we immediately discard current state. So what |
| * actually matters is any of the precise markings propagated into current |
| * state's parent states, which are always checkpointed (due to b) case above). |
| * As such, for scenario a) it doesn't matter if current state has precise |
| * markings set or not. |
| * |
| * Now, for the scenario b), checkpointing and forking into child(ren) |
| * state(s). Note that before current state gets to checkpointing step, any |
| * processed instruction always assumes precise SCALAR register/slot |
| * knowledge: if precise value or range is useful to prune jump branch, BPF |
| * verifier takes this opportunity enthusiastically. Similarly, when |
| * register's value is used to calculate offset or memory address, exact |
| * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to |
| * what we mentioned above about state comparison ignoring precise markings |
| * during state comparison, BPF verifier ignores and also assumes precise |
| * markings *at will* during instruction verification process. But as verifier |
| * assumes precision, it also propagates any precision dependencies across |
| * parent states, which are not yet finalized, so can be further restricted |
| * based on new knowledge gained from restrictions enforced by their children |
| * states. This is so that once those parent states are finalized, i.e., when |
| * they have no more active children state, state comparison logic in |
| * is_state_visited() would enforce strict and precise SCALAR ranges, if |
| * required for correctness. |
| * |
| * To build a bit more intuition, note also that once a state is checkpointed, |
| * the path we took to get to that state is not important. This is crucial |
| * property for state pruning. When state is checkpointed and finalized at |
| * some instruction index, it can be correctly and safely used to "short |
| * circuit" any *compatible* state that reaches exactly the same instruction |
| * index. I.e., if we jumped to that instruction from a completely different |
| * code path than original finalized state was derived from, it doesn't |
| * matter, current state can be discarded because from that instruction |
| * forward having a compatible state will ensure we will safely reach the |
| * exit. States describe preconditions for further exploration, but completely |
| * forget the history of how we got here. |
| * |
| * This also means that even if we needed precise SCALAR range to get to |
| * finalized state, but from that point forward *that same* SCALAR register is |
| * never used in a precise context (i.e., it's precise value is not needed for |
| * correctness), it's correct and safe to mark such register as "imprecise" |
| * (i.e., precise marking set to false). This is what we rely on when we do |
| * not set precise marking in current state. If no child state requires |
| * precision for any given SCALAR register, it's safe to dictate that it can |
| * be imprecise. If any child state does require this register to be precise, |
| * we'll mark it precise later retroactively during precise markings |
| * propagation from child state to parent states. |
| * |
| * Skipping precise marking setting in current state is a mild version of |
| * relying on the above observation. But we can utilize this property even |
| * more aggressively by proactively forgetting any precise marking in the |
| * current state (which we inherited from the parent state), right before we |
| * checkpoint it and branch off into new child state. This is done by |
| * mark_all_scalars_imprecise() to hopefully get more permissive and generic |
| * finalized states which help in short circuiting more future states. |
| */ |
| static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) |
| { |
| struct backtrack_state *bt = &env->bt; |
| struct bpf_verifier_state *st = env->cur_state; |
| int first_idx = st->first_insn_idx; |
| int last_idx = env->insn_idx; |
| int subseq_idx = -1; |
| struct bpf_func_state *func; |
| struct bpf_reg_state *reg; |
| bool skip_first = true; |
| int i, fr, err; |
| |
| if (!env->bpf_capable) |
| return 0; |
| |
| /* set frame number from which we are starting to backtrack */ |
| bt_init(bt, env->cur_state->curframe); |
| |
| /* Do sanity checks against current state of register and/or stack |
| * slot, but don't set precise flag in current state, as precision |
| * tracking in the current state is unnecessary. |
| */ |
| func = st->frame[bt->frame]; |
| if (regno >= 0) { |
| reg = &func->regs[regno]; |
| if (reg->type != SCALAR_VALUE) { |
| WARN_ONCE(1, "backtracing misuse"); |
| return -EFAULT; |
| } |
| bt_set_reg(bt, regno); |
| } |
| |
| if (bt_empty(bt)) |
| return 0; |
| |
| for (;;) { |
| DECLARE_BITMAP(mask, 64); |
| u32 history = st->jmp_history_cnt; |
| struct bpf_jmp_history_entry *hist; |
| |
| if (env->log.level & BPF_LOG_LEVEL2) { |
| verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", |
| bt->frame, last_idx, first_idx, subseq_idx); |
| } |
| |
| /* If some register with scalar ID is marked as precise, |
| * make sure that all registers sharing this ID are also precise. |
| * This is needed to estimate effect of find_equal_scalars(). |
| * Do this at the last instruction of each state, |
| * bpf_reg_state::id fields are valid for these instructions. |
| * |
| * Allows to track precision in situation like below: |
| * |
| * r2 = unknown value |
| * ... |
| * --- state #0 --- |
| * ... |
| * r1 = r2 // r1 and r2 now share the same ID |
| * ... |
| * --- state #1 {r1.id = A, r2.id = A} --- |
| * ... |
| * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 |
| * ... |
| * --- state #2 {r1.id = A, r2.id = A} --- |
| * r3 = r10 |
| * r3 += r1 // need to mark both r1 and r2 |
| */ |
| if (mark_precise_scalar_ids(env, st)) |
| return -EFAULT; |
| |
| if (last_idx < 0) { |
| /* we are at the entry into subprog, which |
| * is expected for global funcs, but only if |
| * requested precise registers are R1-R5 |
| * (which are global func's input arguments) |
| */ |
| if (st->curframe == 0 && |
| st->frame[0]->subprogno > 0 && |
| st->frame[0]->callsite == BPF_MAIN_FUNC && |
| bt_stack_mask(bt) == 0 && |
| (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { |
| bitmap_from_u64(mask, bt_reg_mask(bt)); |
| for_each_set_bit(i, mask, 32) { |
| reg = &st->frame[0]->regs[i]; |
| bt_clear_reg(bt, i); |
| if (reg->type == SCALAR_VALUE) |
| reg->precise = true; |
| } |
| return 0; |
| } |
| |
| verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", |
| st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| |
| for (i = last_idx;;) { |
| if (skip_first) { |
| err = 0; |
| skip_first = false; |
| } else { |
| hist = get_jmp_hist_entry(st, history, i); |
| err = backtrack_insn(env, i, subseq_idx, hist, bt); |
| } |
| if (err == -ENOTSUPP) { |
| mark_all_scalars_precise(env, env->cur_state); |
| bt_reset(bt); |
| return 0; |
| } else if (err) { |
| return err; |
| } |
| if (bt_empty(bt)) |
| /* Found assignment(s) into tracked register in this state. |
| * Since this state is already marked, just return. |
| * Nothing to be tracked further in the parent state. |
| */ |
| return 0; |
| subseq_idx = i; |
| i = get_prev_insn_idx(st, i, &history); |
| if (i == -ENOENT) |
| break; |
| if (i >= env->prog->len) { |
| /* This can happen if backtracking reached insn 0 |
| * and there are still reg_mask or stack_mask |
| * to backtrack. |
| * It means the backtracking missed the spot where |
| * particular register was initialized with a constant. |
| */ |
| verbose(env, "BUG backtracking idx %d\n", i); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| } |
| st = st->parent; |
| if (!st) |
| break; |
| |
| for (fr = bt->frame; fr >= 0; fr--) { |
| func = st->frame[fr]; |
| bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); |
| for_each_set_bit(i, mask, 32) { |
| reg = &func->regs[i]; |
| if (reg->type != SCALAR_VALUE) { |
| bt_clear_frame_reg(bt, fr, i); |
| continue; |
| } |
| if (reg->precise) |
| bt_clear_frame_reg(bt, fr, i); |
| else |
| reg->precise = true; |
| } |
| |
| bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); |
| for_each_set_bit(i, mask, 64) { |
| if (i >= func->allocated_stack / BPF_REG_SIZE) { |
| verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", |
| i, func->allocated_stack / BPF_REG_SIZE); |
| WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); |
| return -EFAULT; |
| } |
| |
| if (!is_spilled_scalar_reg(&func->stack[i])) { |
| bt_clear_frame_slot(bt, fr, i); |
| continue; |
| } |
| reg = &func->stack[i].spilled_ptr; |
| if (reg->precise) |
| bt_clear_frame_slot(bt, fr, i); |
| else |
| reg->precise = true; |
| } |
| if (env->log.level & BPF_LOG_LEVEL2) { |
| fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, |
| bt_frame_reg_mask(bt, fr)); |
| verbose(env, "mark_precise: frame%d: parent state regs=%s ", |
| fr, env->tmp_str_buf); |
| fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, |
| bt_frame_stack_mask(bt, fr)); |
| verbose(env, "stack=%s: ", env->tmp_str_buf); |
| print_verifier_state(env, func, true); |
| } |
| } |
| |
| if (bt_empty(bt)) |
| return 0; |
| |
| subseq_idx = first_idx; |
| last_idx = st->last_insn_idx; |
| first_idx = st->first_insn_idx; |
| } |
| |
| /* if we still have requested precise regs or slots, we missed |
| * something (e.g., stack access through non-r10 register), so |
| * fallback to marking all precise |
| */ |
| if (!bt_empty(bt)) { |
| mark_all_scalars_precise(env, env->cur_state); |
| bt_reset(bt); |
| } |
| |
| return 0; |
| } |
| |
| int mark_chain_precision(struct bpf_verifier_env *env, int regno) |
| { |
| return __mark_chain_precision(env, regno); |
| } |
| |
| /* mark_chain_precision_batch() assumes that env->bt is set in the caller to |
| * desired reg and stack masks across all relevant frames |
| */ |
| static int mark_chain_precision_batch(struct bpf_verifier_env *env) |
| { |
| return __mark_chain_precision(env, -1); |
| } |
| |
| static bool is_spillable_regtype(enum bpf_reg_type type) |
| { |
| switch (base_type(type)) { |
| case PTR_TO_MAP_VALUE: |
| case PTR_TO_STACK: |
| case PTR_TO_CTX: |
| case PTR_TO_PACKET: |
| case PTR_TO_PACKET_META: |
| case PTR_TO_PACKET_END: |
| case PTR_TO_FLOW_KEYS: |
| case CONST_PTR_TO_MAP: |
| case PTR_TO_SOCKET: |
| case PTR_TO_SOCK_COMMON: |
| case PTR_TO_TCP_SOCK: |
| case PTR_TO_XDP_SOCK: |
| case PTR_TO_BTF_ID: |
| case PTR_TO_BUF: |
| case PTR_TO_MEM: |
| case PTR_TO_FUNC: |
| case PTR_TO_MAP_KEY: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* Does this register contain a constant zero? */ |
| static bool register_is_null(struct bpf_reg_state *reg) |
| { |
| return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); |
| } |
| |
| /* check if register is a constant scalar value */ |
| static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) |
| { |
| return reg->type == SCALAR_VALUE && |
| tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); |
| } |
| |
| /* assuming is_reg_const() is true, return constant value of a register */ |
| static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) |
| { |
| return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; |
| } |
| |
| static bool __is_scalar_unbounded(struct bpf_reg_state *reg) |
| { |
| return tnum_is_unknown(reg->var_off) && |
| reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && |
| reg->umin_value == 0 && reg->umax_value == U64_MAX && |
| reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && |
| reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; |
| } |
| |
| static bool register_is_bounded(struct bpf_reg_state *reg) |
| { |
| return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); |
| } |
| |
| static bool __is_pointer_value(bool allow_ptr_leaks, |
| const struct bpf_reg_state *reg) |
| { |
| if (allow_ptr_leaks) |
| return false; |
| |
| return reg->type != SCALAR_VALUE; |
| } |
| |
| static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, |
| struct bpf_reg_state *src_reg) |
| { |
| if (src_reg->type == SCALAR_VALUE && !src_reg->id && |
| !tnum_is_const(src_reg->var_off)) |
| /* Ensure that src_reg has a valid ID that will be copied to |
| * dst_reg and then will be used by find_equal_scalars() to |
| * propagate min/max range. |
| */ |
| src_reg->id = ++env->id_gen; |
| } |
| |
| /* Copy src state preserving dst->parent and dst->live fields */ |
| static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) |
| { |
| struct bpf_reg_state *parent = dst->parent; |
| enum bpf_reg_liveness live = dst->live; |
| |
| *dst = *src; |
| dst->parent = parent; |
| dst->live = live; |
| } |
| |
| static void save_register_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *state, |
| int spi, struct bpf_reg_state *reg, |
| int size) |
| { |
| int i; |
| |
| copy_register_state(&state->stack[spi].spilled_ptr, reg); |
| if (size == BPF_REG_SIZE) |
| state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| |
| for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) |
| state->stack[spi].slot_type[i - 1] = STACK_SPILL; |
| |
| /* size < 8 bytes spill */ |
| for (; i; i--) |
| mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); |
| } |
| |
| static bool is_bpf_st_mem(struct bpf_insn *insn) |
| { |
| return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; |
| } |
| |
| static int get_reg_width(struct bpf_reg_state *reg) |
| { |
| return fls64(reg->umax_value); |
| } |
| |
| /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, |
| * stack boundary and alignment are checked in check_mem_access() |
| */ |
| static int check_stack_write_fixed_off(struct bpf_verifier_env *env, |
| /* stack frame we're writing to */ |
| struct bpf_func_state *state, |
| int off, int size, int value_regno, |
| int insn_idx) |
| { |
| struct bpf_func_state *cur; /* state of the current function */ |
| int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; |
| struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; |
| struct bpf_reg_state *reg = NULL; |
| int insn_flags = insn_stack_access_flags(state->frameno, spi); |
| |
| /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, |
| * so it's aligned access and [off, off + size) are within stack limits |
| */ |
| if (!env->allow_ptr_leaks && |
| is_spilled_reg(&state->stack[spi]) && |
| size != BPF_REG_SIZE) { |
| verbose(env, "attempt to corrupt spilled pointer on stack\n"); |
| return -EACCES; |
| } |
| |
| cur = env->cur_state->frame[env->cur_state->curframe]; |
| if (value_regno >= 0) |
| reg = &cur->regs[value_regno]; |
| if (!env->bypass_spec_v4) { |
| bool sanitize = reg && is_spillable_regtype(reg->type); |
| |
| for (i = 0; i < size; i++) { |
| u8 type = state->stack[spi].slot_type[i]; |
| |
| if (type != STACK_MISC && type != STACK_ZERO) { |
| sanitize = true; |
| break; |
| } |
| } |
| |
| if (sanitize) |
| env->insn_aux_data[insn_idx].sanitize_stack_spill = true; |
| } |
| |
| err = destroy_if_dynptr_stack_slot(env, state, spi); |
| if (err) |
| return err; |
| |
| mark_stack_slot_scratched(env, spi); |
| if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && env->bpf_capable) { |
| bool reg_value_fits; |
| |
| reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; |
| /* Make sure that reg had an ID to build a relation on spill. */ |
| if (reg_value_fits) |
| assign_scalar_id_before_mov(env, reg); |
| save_register_state(env, state, spi, reg, size); |
| /* Break the relation on a narrowing spill. */ |
| if (!reg_value_fits) |
| state->stack[spi].spilled_ptr.id = 0; |
| } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && |
| env->bpf_capable) { |
| struct bpf_reg_state fake_reg = {}; |
| |
| __mark_reg_known(&fake_reg, insn->imm); |
| fake_reg.type = SCALAR_VALUE; |
| save_register_state(env, state, spi, &fake_reg, size); |
| } else if (reg && is_spillable_regtype(reg->type)) { |
| /* register containing pointer is being spilled into stack */ |
| if (size != BPF_REG_SIZE) { |
| verbose_linfo(env, insn_idx, "; "); |
| verbose(env, "invalid size of register spill\n"); |
| return -EACCES; |
| } |
| if (state != cur && reg->type == PTR_TO_STACK) { |
| verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); |
| return -EINVAL; |
| } |
| save_register_state(env, state, spi, reg, size); |
| } else { |
| u8 type = STACK_MISC; |
| |
| /* regular write of data into stack destroys any spilled ptr */ |
| state->stack[spi].spilled_ptr.type = NOT_INIT; |
| /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ |
| if (is_stack_slot_special(&state->stack[spi])) |
| for (i = 0; i < BPF_REG_SIZE; i++) |
| scrub_spilled_slot(&state->stack[spi].slot_type[i]); |
| |
| /* only mark the slot as written if all 8 bytes were written |
| * otherwise read propagation may incorrectly stop too soon |
| * when stack slots are partially written. |
| * This heuristic means that read propagation will be |
| * conservative, since it will add reg_live_read marks |
| * to stack slots all the way to first state when programs |
| * writes+reads less than 8 bytes |
| */ |
| if (size == BPF_REG_SIZE) |
| state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| |
| /* when we zero initialize stack slots mark them as such */ |
| if ((reg && register_is_null(reg)) || |
| (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { |
| /* STACK_ZERO case happened because register spill |
| * wasn't properly aligned at the stack slot boundary, |
| * so it's not a register spill anymore; force |
| * originating register to be precise to make |
| * STACK_ZERO correct for subsequent states |
| */ |
| err = mark_chain_precision(env, value_regno); |
| if (err) |
| return err; |
| type = STACK_ZERO; |
| } |
| |
| /* Mark slots affected by this stack write. */ |
| for (i = 0; i < size; i++) |
| state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; |
| insn_flags = 0; /* not a register spill */ |
| } |
| |
| if (insn_flags) |
| return push_jmp_history(env, env->cur_state, insn_flags); |
| return 0; |
| } |
| |
| /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is |
| * known to contain a variable offset. |
| * This function checks whether the write is permitted and conservatively |
| * tracks the effects of the write, considering that each stack slot in the |
| * dynamic range is potentially written to. |
| * |
| * 'off' includes 'regno->off'. |
| * 'value_regno' can be -1, meaning that an unknown value is being written to |
| * the stack. |
| * |
| * Spilled pointers in range are not marked as written because we don't know |
| * what's going to be actually written. This means that read propagation for |
| * future reads cannot be terminated by this write. |
| * |
| * For privileged programs, uninitialized stack slots are considered |
| * initialized by this write (even though we don't know exactly what offsets |
| * are going to be written to). The idea is that we don't want the verifier to |
| * reject future reads that access slots written to through variable offsets. |
| */ |
| static int check_stack_write_var_off(struct bpf_verifier_env *env, |
| /* func where register points to */ |
| struct bpf_func_state *state, |
| int ptr_regno, int off, int size, |
| int value_regno, int insn_idx) |
| { |
| struct bpf_func_state *cur; /* state of the current function */ |
| int min_off, max_off; |
| int i, err; |
| struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; |
| struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; |
| bool writing_zero = false; |
| /* set if the fact that we're writing a zero is used to let any |
| * stack slots remain STACK_ZERO |
| */ |
| bool zero_used = false; |
| |
| cur = env->cur_state->frame[env->cur_state->curframe]; |
| ptr_reg = &cur->regs[ptr_regno]; |
| min_off = ptr_reg->smin_value + off; |
| max_off = ptr_reg->smax_value + off + size; |
| if (value_regno >= 0) |
| value_reg = &cur->regs[value_regno]; |
| if ((value_reg && register_is_null(value_reg)) || |
| (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) |
| writing_zero = true; |
| |
| for (i = min_off; i < max_off; i++) { |
| int spi; |
| |
| spi = __get_spi(i); |
| err = destroy_if_dynptr_stack_slot(env, state, spi); |
| if (err) |
| return err; |
| } |
| |
| /* Variable offset writes destroy any spilled pointers in range. */ |
| for (i = min_off; i < max_off; i++) { |
| u8 new_type, *stype; |
| int slot, spi; |
| |
| slot = -i - 1; |
| spi = slot / BPF_REG_SIZE; |
| stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; |
| mark_stack_slot_scratched(env, spi); |
| |
| if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { |
| /* Reject the write if range we may write to has not |
| * been initialized beforehand. If we didn't reject |
| * here, the ptr status would be erased below (even |
| * though not all slots are actually overwritten), |
| * possibly opening the door to leaks. |
| * |
| * We do however catch STACK_INVALID case below, and |
| * only allow reading possibly uninitialized memory |
| * later for CAP_PERFMON, as the write may not happen to |
| * that slot. |
| */ |
| verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", |
| insn_idx, i); |
| return -EINVAL; |
| } |
| |
| /* If writing_zero and the spi slot contains a spill of value 0, |
| * maintain the spill type. |
| */ |
| if (writing_zero && *stype == STACK_SPILL && |
| is_spilled_scalar_reg(&state->stack[spi])) { |
| struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; |
| |
| if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { |
| zero_used = true; |
| continue; |
| } |
| } |
| |
| /* Erase all other spilled pointers. */ |
| state->stack[spi].spilled_ptr.type = NOT_INIT; |
| |
| /* Update the slot type. */ |
| new_type = STACK_MISC; |
| if (writing_zero && *stype == STACK_ZERO) { |
| new_type = STACK_ZERO; |
| zero_used = true; |
| } |
| /* If the slot is STACK_INVALID, we check whether it's OK to |
| * pretend that it will be initialized by this write. The slot |
| * might not actually be written to, and so if we mark it as |
| * initialized future reads might leak uninitialized memory. |
| * For privileged programs, we will accept such reads to slots |
| * that may or may not be written because, if we're reject |
| * them, the error would be too confusing. |
| */ |
| if (*stype == STACK_INVALID && !env->allow_uninit_stack) { |
| verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", |
| insn_idx, i); |
| return -EINVAL; |
| } |
| *stype = new_type; |
| } |
| if (zero_used) { |
| /* backtracking doesn't work for STACK_ZERO yet. */ |
| err = mark_chain_precision(env, value_regno); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| /* When register 'dst_regno' is assigned some values from stack[min_off, |
| * max_off), we set the register's type according to the types of the |
| * respective stack slots. If all the stack values are known to be zeros, then |
| * so is the destination reg. Otherwise, the register is considered to be |
| * SCALAR. This function does not deal with register filling; the caller must |
| * ensure that all spilled registers in the stack range have been marked as |
| * read. |
| */ |
| static void mark_reg_stack_read(struct bpf_verifier_env *env, |
| /* func where src register points to */ |
| struct bpf_func_state *ptr_state, |
| int min_off, int max_off, int dst_regno) |
| { |
| struct bpf_verifier_state *vstate = env->cur_state; |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| int i, slot, spi; |
| u8 *stype; |
| int zeros = 0; |
| |
| for (i = min_off; i < max_off; i++) { |
| slot = -i - 1; |
| spi = slot / BPF_REG_SIZE; |
| mark_stack_slot_scratched(env, spi); |
| stype = ptr_state->stack[spi].slot_type; |
| if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) |
| break; |
| zeros++; |
| } |
| if (zeros == max_off - min_off) { |
| /* Any access_size read into register is zero extended, |
| * so the whole register == const_zero. |
| */ |
| __mark_reg_const_zero(env, &state->regs[dst_regno]); |
| } else { |
| /* have read misc data from the stack */ |
| mark_reg_unknown(env, state->regs, dst_regno); |
| } |
| state->regs[dst_regno].live |= REG_LIVE_WRITTEN; |
| } |
| |
| /* Read the stack at 'off' and put the results into the register indicated by |
| * 'dst_regno'. It handles reg filling if the addressed stack slot is a |
| * spilled reg. |
| * |
| * 'dst_regno' can be -1, meaning that the read value is not going to a |
| * register. |
| * |
| * The access is assumed to be within the current stack bounds. |
| */ |
| static int check_stack_read_fixed_off(struct bpf_verifier_env *env, |
| /* func where src register points to */ |
| struct bpf_func_state *reg_state, |
| int off, int size, int dst_regno) |
| { |
| struct bpf_verifier_state *vstate = env->cur_state; |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; |
| struct bpf_reg_state *reg; |
| u8 *stype, type; |
| int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); |
| |
| stype = reg_state->stack[spi].slot_type; |
| reg = ®_state->stack[spi].spilled_ptr; |
| |
| mark_stack_slot_scratched(env, spi); |
| |
| if (is_spilled_reg(®_state->stack[spi])) { |
| u8 spill_size = 1; |
| |
| for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) |
| spill_size++; |
| |
| if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { |
| if (reg->type != SCALAR_VALUE) { |
| verbose_linfo(env, env->insn_idx, "; "); |
| verbose(env, "invalid size of register fill\n"); |
| return -EACCES; |
| } |
| |
| mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); |
| if (dst_regno < 0) |
| return 0; |
| |
| if (!(off % BPF_REG_SIZE) && size == spill_size) { |
| /* The earlier check_reg_arg() has decided the |
| * subreg_def for this insn. Save it first. |
| */ |
| s32 subreg_def = state->regs[dst_regno].subreg_def; |
| |
| copy_register_state(&state->regs[dst_regno], reg); |
| state->regs[dst_regno].subreg_def = subreg_def; |
| } else { |
| int spill_cnt = 0, zero_cnt = 0; |
| |
| for (i = 0; i < size; i++) { |
| type = stype[(slot - i) % BPF_REG_SIZE]; |
| if (type == STACK_SPILL) { |
| spill_cnt++; |
| continue; |
| } |
| if (type == STACK_MISC) |
| continue; |
| if (type == STACK_ZERO) { |
| zero_cnt++; |
| continue; |
| } |
| if (type == STACK_INVALID && env->allow_uninit_stack) |
| continue; |
| verbose(env, "invalid read from stack off %d+%d size %d\n", |
| off, i, size); |
| return -EACCES; |
| } |
| |
| if (spill_cnt == size && |
| tnum_is_const(reg->var_off) && reg->var_off.value == 0) { |
| __mark_reg_const_zero(env, &state->regs[dst_regno]); |
| /* this IS register fill, so keep insn_flags */ |
| } else if (zero_cnt == size) { |
| /* similarly to mark_reg_stack_read(), preserve zeroes */ |
| __mark_reg_const_zero(env, &state->regs[dst_regno]); |
| insn_flags = 0; /* not restoring original register state */ |
| } else { |
| mark_reg_unknown(env, state->regs, dst_regno); |
| insn_flags = 0; /* not restoring original register state */ |
| } |
| } |
| state->regs[dst_regno].live |= REG_LIVE_WRITTEN; |
| } else if (dst_regno >= 0) { |
| /* restore register state from stack */ |
| copy_register_state(&state->regs[dst_regno], reg); |
| /* mark reg as written since spilled pointer state likely |
| * has its liveness marks cleared by is_state_visited() |
| * which resets stack/reg liveness for state transitions |
| */ |
| state->regs[dst_regno].live |= REG_LIVE_WRITTEN; |
| } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { |
| /* If dst_regno==-1, the caller is asking us whether |
| * it is acceptable to use this value as a SCALAR_VALUE |
| * (e.g. for XADD). |
| * We must not allow unprivileged callers to do that |
| * with spilled pointers. |
| */ |
| verbose(env, "leaking pointer from stack off %d\n", |
| off); |
| return -EACCES; |
| } |
| mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); |
| } else { |
| for (i = 0; i < size; i++) { |
| type = stype[(slot - i) % BPF_REG_SIZE]; |
| if (type == STACK_MISC) |
| continue; |
| if (type == STACK_ZERO) |
| continue; |
| if (type == STACK_INVALID && env->allow_uninit_stack) |
| continue; |
| verbose(env, "invalid read from stack off %d+%d size %d\n", |
| off, i, size); |
| return -EACCES; |
| } |
| mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); |
| if (dst_regno >= 0) |
| mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); |
| insn_flags = 0; /* we are not restoring spilled register */ |
| } |
| if (insn_flags) |
| return push_jmp_history(env, env->cur_state, insn_flags); |
| return 0; |
| } |
| |
| enum bpf_access_src { |
| ACCESS_DIRECT = 1, /* the access is performed by an instruction */ |
| ACCESS_HELPER = 2, /* the access is performed by a helper */ |
| }; |
| |
| static int check_stack_range_initialized(struct bpf_verifier_env *env, |
| int regno, int off, int access_size, |
| bool zero_size_allowed, |
| enum bpf_access_src type, |
| struct bpf_call_arg_meta *meta); |
| |
| static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) |
| { |
| return cur_regs(env) + regno; |
| } |
| |
| /* Read the stack at 'ptr_regno + off' and put the result into the register |
| * 'dst_regno'. |
| * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), |
| * but not its variable offset. |
| * 'size' is assumed to be <= reg size and the access is assumed to be aligned. |
| * |
| * As opposed to check_stack_read_fixed_off, this function doesn't deal with |
| * filling registers (i.e. reads of spilled register cannot be detected when |
| * the offset is not fixed). We conservatively mark 'dst_regno' as containing |
| * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable |
| * offset; for a fixed offset check_stack_read_fixed_off should be used |
| * instead. |
| */ |
| static int check_stack_read_var_off(struct bpf_verifier_env *env, |
| int ptr_regno, int off, int size, int dst_regno) |
| { |
| /* The state of the source register. */ |
| struct bpf_reg_state *reg = reg_state(env, ptr_regno); |
| struct bpf_func_state *ptr_state = func(env, reg); |
| int err; |
| int min_off, max_off; |
| |
| /* Note that we pass a NULL meta, so raw access will not be permitted. |
| */ |
| err = check_stack_range_initialized(env, ptr_regno, off, size, |
| false, ACCESS_DIRECT, NULL); |
| if (err) |
| return err; |
| |
| min_off = reg->smin_value + off; |
| max_off = reg->smax_value + off; |
| mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); |
| return 0; |
| } |
| |
| /* check_stack_read dispatches to check_stack_read_fixed_off or |
| * check_stack_read_var_off. |
| * |
| * The caller must ensure that the offset falls within the allocated stack |
| * bounds. |
| * |
| * 'dst_regno' is a register which will receive the value from the stack. It |
| * can be -1, meaning that the read value is not going to a register. |
| */ |
| static int check_stack_read(struct bpf_verifier_env *env, |
| int ptr_regno, int off, int size, |
| int dst_regno) |
| { |
| struct bpf_reg_state *reg = reg_state(env, ptr_regno); |
| struct bpf_func_state *state = func(env, reg); |
| int err; |
| /* Some accesses are only permitted with a static offset. */ |
| bool var_off = !tnum_is_const(reg->var_off); |
| |
| /* The offset is required to be static when reads don't go to a |
| * register, in order to not leak pointers (see |
| * check_stack_read_fixed_off). |
| */ |
| if (dst_regno < 0 && var_off) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", |
| tn_buf, off, size); |
| return -EACCES; |
| } |
| /* Variable offset is prohibited for unprivileged mode for simplicity |
| * since it requires corresponding support in Spectre masking for stack |
| * ALU. See also retrieve_ptr_limit(). The check in |
| * check_stack_access_for_ptr_arithmetic() called by |
| * adjust_ptr_min_max_vals() prevents users from creating stack pointers |
| * with variable offsets, therefore no check is required here. Further, |
| * just checking it here would be insufficient as speculative stack |
| * writes could still lead to unsafe speculative behaviour. |
| */ |
| if (!var_off) { |
| off += reg->var_off.value; |
| err = check_stack_read_fixed_off(env, state, off, size, |
| dst_regno); |
| } else { |
| /* Variable offset stack reads need more conservative handling |
| * than fixed offset ones. Note that dst_regno >= 0 on this |
| * branch. |
| */ |
| err = check_stack_read_var_off(env, ptr_regno, off, size, |
| dst_regno); |
| } |
| return err; |
| } |
| |
| |
| /* check_stack_write dispatches to check_stack_write_fixed_off or |
| * check_stack_write_var_off. |
| * |
| * 'ptr_regno' is the register used as a pointer into the stack. |
| * 'off' includes 'ptr_regno->off', but not its variable offset (if any). |
| * 'value_regno' is the register whose value we're writing to the stack. It can |
| * be -1, meaning that we're not writing from a register. |
| * |
| * The caller must ensure that the offset falls within the maximum stack size. |
| */ |
| static int check_stack_write(struct bpf_verifier_env *env, |
| int ptr_regno, int off, int size, |
| int value_regno, int insn_idx) |
| { |
| struct bpf_reg_state *reg = reg_state(env, ptr_regno); |
| struct bpf_func_state *state = func(env, reg); |
| int err; |
| |
| if (tnum_is_const(reg->var_off)) { |
| off += reg->var_off.value; |
| err = check_stack_write_fixed_off(env, state, off, size, |
| value_regno, insn_idx); |
| } else { |
| /* Variable offset stack reads need more conservative handling |
| * than fixed offset ones. |
| */ |
| err = check_stack_write_var_off(env, state, |
| ptr_regno, off, size, |
| value_regno, insn_idx); |
| } |
| return err; |
| } |
| |
| static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, |
| int off, int size, enum bpf_access_type type) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_map *map = regs[regno].map_ptr; |
| u32 cap = bpf_map_flags_to_cap(map); |
| |
| if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { |
| verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", |
| map->value_size, off, size); |
| return -EACCES; |
| } |
| |
| if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { |
| verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", |
| map->value_size, off, size); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ |
| static int __check_mem_access(struct bpf_verifier_env *env, int regno, |
| int off, int size, u32 mem_size, |
| bool zero_size_allowed) |
| { |
| bool size_ok = size > 0 || (size == 0 && zero_size_allowed); |
| struct bpf_reg_state *reg; |
| |
| if (off >= 0 && size_ok && (u64)off + size <= mem_size) |
| return 0; |
| |
| reg = &cur_regs(env)[regno]; |
| switch (reg->type) { |
| case PTR_TO_MAP_KEY: |
| verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", |
| mem_size, off, size); |
| break; |
| case PTR_TO_MAP_VALUE: |
| verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", |
| mem_size, off, size); |
| break; |
| case PTR_TO_PACKET: |
| case PTR_TO_PACKET_META: |
| case PTR_TO_PACKET_END: |
| verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", |
| off, size, regno, reg->id, off, mem_size); |
| break; |
| case PTR_TO_MEM: |
| default: |
| verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", |
| mem_size, off, size); |
| } |
| |
| return -EACCES; |
| } |
| |
| /* check read/write into a memory region with possible variable offset */ |
| static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, |
| int off, int size, u32 mem_size, |
| bool zero_size_allowed) |
| { |
| struct bpf_verifier_state *vstate = env->cur_state; |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| struct bpf_reg_state *reg = &state->regs[regno]; |
| int err; |
| |
| /* We may have adjusted the register pointing to memory region, so we |
| * need to try adding each of min_value and max_value to off |
| * to make sure our theoretical access will be safe. |
| * |
| * The minimum value is only important with signed |
| * comparisons where we can't assume the floor of a |
| * value is 0. If we are using signed variables for our |
| * index'es we need to make sure that whatever we use |
| * will have a set floor within our range. |
| */ |
| if (reg->smin_value < 0 && |
| (reg->smin_value == S64_MIN || |
| (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || |
| reg->smin_value + off < 0)) { |
| verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", |
| regno); |
| return -EACCES; |
| } |
| err = __check_mem_access(env, regno, reg->smin_value + off, size, |
| mem_size, zero_size_allowed); |
| if (err) { |
| verbose(env, "R%d min value is outside of the allowed memory range\n", |
| regno); |
| return err; |
| } |
| |
| /* If we haven't set a max value then we need to bail since we can't be |
| * sure we won't do bad things. |
| * If reg->umax_value + off could overflow, treat that as unbounded too. |
| */ |
| if (reg->umax_value >= BPF_MAX_VAR_OFF) { |
| verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", |
| regno); |
| return -EACCES; |
| } |
| err = __check_mem_access(env, regno, reg->umax_value + off, size, |
| mem_size, zero_size_allowed); |
| if (err) { |
| verbose(env, "R%d max value is outside of the allowed memory range\n", |
| regno); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int __check_ptr_off_reg(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, int regno, |
| bool fixed_off_ok) |
| { |
| /* Access to this pointer-typed register or passing it to a helper |
| * is only allowed in its original, unmodified form. |
| */ |
| |
| if (reg->off < 0) { |
| verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", |
| reg_type_str(env, reg->type), regno, reg->off); |
| return -EACCES; |
| } |
| |
| if (!fixed_off_ok && reg->off) { |
| verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", |
| reg_type_str(env, reg->type), regno, reg->off); |
| return -EACCES; |
| } |
| |
| if (!tnum_is_const(reg->var_off) || reg->var_off.value) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, "variable %s access var_off=%s disallowed\n", |
| reg_type_str(env, reg->type), tn_buf); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static int check_ptr_off_reg(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, int regno) |
| { |
| return __check_ptr_off_reg(env, reg, regno, false); |
| } |
| |
| static int map_kptr_match_type(struct bpf_verifier_env *env, |
| struct btf_field *kptr_field, |
| struct bpf_reg_state *reg, u32 regno) |
| { |
| const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); |
| int perm_flags; |
| const char *reg_name = ""; |
| |
| if (btf_is_kernel(reg->btf)) { |
| perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; |
| |
| /* Only unreferenced case accepts untrusted pointers */ |
| if (kptr_field->type == BPF_KPTR_UNREF) |
| perm_flags |= PTR_UNTRUSTED; |
| } else { |
| perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; |
| if (kptr_field->type == BPF_KPTR_PERCPU) |
| perm_flags |= MEM_PERCPU; |
| } |
| |
| if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) |
| goto bad_type; |
| |
| /* We need to verify reg->type and reg->btf, before accessing reg->btf */ |
| reg_name = btf_type_name(reg->btf, reg->btf_id); |
| |
| /* For ref_ptr case, release function check should ensure we get one |
| * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the |
| * normal store of unreferenced kptr, we must ensure var_off is zero. |
| * Since ref_ptr cannot be accessed directly by BPF insns, checks for |
| * reg->off and reg->ref_obj_id are not needed here. |
| */ |
| if (__check_ptr_off_reg(env, reg, regno, true)) |
| return -EACCES; |
| |
| /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and |
| * we also need to take into account the reg->off. |
| * |
| * We want to support cases like: |
| * |
| * struct foo { |
| * struct bar br; |
| * struct baz bz; |
| * }; |
| * |
| * struct foo *v; |
| * v = func(); // PTR_TO_BTF_ID |
| * val->foo = v; // reg->off is zero, btf and btf_id match type |
| * val->bar = &v->br; // reg->off is still zero, but we need to retry with |
| * // first member type of struct after comparison fails |
| * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked |
| * // to match type |
| * |
| * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off |
| * is zero. We must also ensure that btf_struct_ids_match does not walk |
| * the struct to match type against first member of struct, i.e. reject |
| * second case from above. Hence, when type is BPF_KPTR_REF, we set |
| * strict mode to true for type match. |
| */ |
| if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, |
| kptr_field->kptr.btf, kptr_field->kptr.btf_id, |
| kptr_field->type != BPF_KPTR_UNREF)) |
| goto bad_type; |
| return 0; |
| bad_type: |
| verbose(env, "invalid kptr access, R%d type=%s%s ", regno, |
| reg_type_str(env, reg->type), reg_name); |
| verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); |
| if (kptr_field->type == BPF_KPTR_UNREF) |
| verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), |
| targ_name); |
| else |
| verbose(env, "\n"); |
| return -EINVAL; |
| } |
| |
| /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() |
| * can dereference RCU protected pointers and result is PTR_TRUSTED. |
| */ |
| static bool in_rcu_cs(struct bpf_verifier_env *env) |
| { |
| return env->cur_state->active_rcu_lock || |
| env->cur_state->active_lock.ptr || |
| !env->prog->aux->sleepable; |
| } |
| |
| /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ |
| BTF_SET_START(rcu_protected_types) |
| BTF_ID(struct, prog_test_ref_kfunc) |
| #ifdef CONFIG_CGROUPS |
| BTF_ID(struct, cgroup) |
| #endif |
| #ifdef CONFIG_BPF_JIT |
| BTF_ID(struct, bpf_cpumask) |
| #endif |
| BTF_ID(struct, task_struct) |
| BTF_SET_END(rcu_protected_types) |
| |
| static bool rcu_protected_object(const struct btf *btf, u32 btf_id) |
| { |
| if (!btf_is_kernel(btf)) |
| return true; |
| return btf_id_set_contains(&rcu_protected_types, btf_id); |
| } |
| |
| static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) |
| { |
| struct btf_struct_meta *meta; |
| |
| if (btf_is_kernel(kptr_field->kptr.btf)) |
| return NULL; |
| |
| meta = btf_find_struct_meta(kptr_field->kptr.btf, |
| kptr_field->kptr.btf_id); |
| |
| return meta ? meta->record : NULL; |
| } |
| |
| static bool rcu_safe_kptr(const struct btf_field *field) |
| { |
| const struct btf_field_kptr *kptr = &field->kptr; |
| |
| return field->type == BPF_KPTR_PERCPU || |
| (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); |
| } |
| |
| static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) |
| { |
| struct btf_record *rec; |
| u32 ret; |
| |
| ret = PTR_MAYBE_NULL; |
| if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { |
| ret |= MEM_RCU; |
| if (kptr_field->type == BPF_KPTR_PERCPU) |
| ret |= MEM_PERCPU; |
| else if (!btf_is_kernel(kptr_field->kptr.btf)) |
| ret |= MEM_ALLOC; |
| |
| rec = kptr_pointee_btf_record(kptr_field); |
| if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) |
| ret |= NON_OWN_REF; |
| } else { |
| ret |= PTR_UNTRUSTED; |
| } |
| |
| return ret; |
| } |
| |
| static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, |
| int value_regno, int insn_idx, |
| struct btf_field *kptr_field) |
| { |
| struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; |
| int class = BPF_CLASS(insn->code); |
| struct bpf_reg_state *val_reg; |
| |
| /* Things we already checked for in check_map_access and caller: |
| * - Reject cases where variable offset may touch kptr |
| * - size of access (must be BPF_DW) |
| * - tnum_is_const(reg->var_off) |
| * - kptr_field->offset == off + reg->var_off.value |
| */ |
| /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ |
| if (BPF_MODE(insn->code) != BPF_MEM) { |
| verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); |
| return -EACCES; |
| } |
| |
| /* We only allow loading referenced kptr, since it will be marked as |
| * untrusted, similar to unreferenced kptr. |
| */ |
| if (class != BPF_LDX && |
| (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { |
| verbose(env, "store to referenced kptr disallowed\n"); |
| return -EACCES; |
| } |
| |
| if (class == BPF_LDX) { |
| val_reg = reg_state(env, value_regno); |
| /* We can simply mark the value_regno receiving the pointer |
| * value from map as PTR_TO_BTF_ID, with the correct type. |
| */ |
| mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, |
| kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); |
| /* For mark_ptr_or_null_reg */ |
| val_reg->id = ++env->id_gen; |
| } else if (class == BPF_STX) { |
| val_reg = reg_state(env, value_regno); |
| if (!register_is_null(val_reg) && |
| map_kptr_match_type(env, kptr_field, val_reg, value_regno)) |
| return -EACCES; |
| } else if (class == BPF_ST) { |
| if (insn->imm) { |
| verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", |
| kptr_field->offset); |
| return -EACCES; |
| } |
| } else { |
| verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); |
| return -EACCES; |
| } |
| return 0; |
| } |
| |
| /* check read/write into a map element with possible variable offset */ |
| static int check_map_access(struct bpf_verifier_env *env, u32 regno, |
| int off, int size, bool zero_size_allowed, |
| enum bpf_access_src src) |
| { |
| struct bpf_verifier_state *vstate = env->cur_state; |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| struct bpf_reg_state *reg = &state->regs[regno]; |
| struct bpf_map *map = reg->map_ptr; |
| struct btf_record *rec; |
| int err, i; |
| |
| err = check_mem_region_access(env, regno, off, size, map->value_size, |
| zero_size_allowed); |
| if (err) |
| return err; |
| |
| if (IS_ERR_OR_NULL(map->record)) |
| return 0; |
| rec = map->record; |
| for (i = 0; i < rec->cnt; i++) { |
| struct btf_field *field = &rec->fields[i]; |
| u32 p = field->offset; |
| |
| /* If any part of a field can be touched by load/store, reject |
| * this program. To check that [x1, x2) overlaps with [y1, y2), |
| * it is sufficient to check x1 < y2 && y1 < x2. |
| */ |
| if (reg->smin_value + off < p + btf_field_type_size(field->type) && |
| p < reg->umax_value + off + size) { |
| switch (field->type) { |
| case BPF_KPTR_UNREF: |
| case BPF_KPTR_REF: |
| case BPF_KPTR_PERCPU: |
| if (src != ACCESS_DIRECT) { |
| verbose(env, "kptr cannot be accessed indirectly by helper\n"); |
| return -EACCES; |
| } |
| if (!tnum_is_const(reg->var_off)) { |
| verbose(env, "kptr access cannot have variable offset\n"); |
| return -EACCES; |
| } |
| if (p != off + reg->var_off.value) { |
| verbose(env, "kptr access misaligned expected=%u off=%llu\n", |
| p, off + reg->var_off.value); |
| return -EACCES; |
| } |
| if (size != bpf_size_to_bytes(BPF_DW)) { |
| verbose(env, "kptr access size must be BPF_DW\n"); |
| return -EACCES; |
| } |
| break; |
| default: |
| verbose(env, "%s cannot be accessed directly by load/store\n", |
| btf_field_type_name(field->type)); |
| return -EACCES; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| #define MAX_PACKET_OFF 0xffff |
| |
| static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, |
| const struct bpf_call_arg_meta *meta, |
| enum bpf_access_type t) |
| { |
| enum bpf_prog_type prog_type = resolve_prog_type(env->prog); |
| |
| switch (prog_type) { |
| /* Program types only with direct read access go here! */ |
| case BPF_PROG_TYPE_LWT_IN: |
| case BPF_PROG_TYPE_LWT_OUT: |
| case BPF_PROG_TYPE_LWT_SEG6LOCAL: |
| case BPF_PROG_TYPE_SK_REUSEPORT: |
| case BPF_PROG_TYPE_FLOW_DISSECTOR: |
| case BPF_PROG_TYPE_CGROUP_SKB: |
| if (t == BPF_WRITE) |
| return false; |
| fallthrough; |
| |
| /* Program types with direct read + write access go here! */ |
| case BPF_PROG_TYPE_SCHED_CLS: |
| case BPF_PROG_TYPE_SCHED_ACT: |
| case BPF_PROG_TYPE_XDP: |
| case BPF_PROG_TYPE_LWT_XMIT: |
| case BPF_PROG_TYPE_SK_SKB: |
| case BPF_PROG_TYPE_SK_MSG: |
| if (meta) |
| return meta->pkt_access; |
| |
| env->seen_direct_write = true; |
| return true; |
| |
| case BPF_PROG_TYPE_CGROUP_SOCKOPT: |
| if (t == BPF_WRITE) |
| env->seen_direct_write = true; |
| |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, |
| int size, bool zero_size_allowed) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *reg = ®s[regno]; |
| int err; |
| |
| /* We may have added a variable offset to the packet pointer; but any |
| * reg->range we have comes after that. We are only checking the fixed |
| * offset. |
| */ |
| |
| /* We don't allow negative numbers, because we aren't tracking enough |
| * detail to prove they're safe. |
| */ |
| if (reg->smin_value < 0) { |
| verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", |
| regno); |
| return -EACCES; |
| } |
| |
| err = reg->range < 0 ? -EINVAL : |
| __check_mem_access(env, regno, off, size, reg->range, |
| zero_size_allowed); |
| if (err) { |
| verbose(env, "R%d offset is outside of the packet\n", regno); |
| return err; |
| } |
| |
| /* __check_mem_access has made sure "off + size - 1" is within u16. |
| * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, |
| * otherwise find_good_pkt_pointers would have refused to set range info |
| * that __check_mem_access would have rejected this pkt access. |
| * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. |
| */ |
| env->prog->aux->max_pkt_offset = |
| max_t(u32, env->prog->aux->max_pkt_offset, |
| off + reg->umax_value + size - 1); |
| |
| return err; |
| } |
| |
| /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ |
| static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, |
| enum bpf_access_type t, enum bpf_reg_type *reg_type, |
| struct btf **btf, u32 *btf_id) |
| { |
| struct bpf_insn_access_aux info = { |
| .reg_type = *reg_type, |
| .log = &env->log, |
| }; |
| |
| if (env->ops->is_valid_access && |
| env->ops->is_valid_access(off, size, t, env->prog, &info)) { |
| /* A non zero info.ctx_field_size indicates that this field is a |
| * candidate for later verifier transformation to load the whole |
| * field and then apply a mask when accessed with a narrower |
| * access than actual ctx access size. A zero info.ctx_field_size |
| * will only allow for whole field access and rejects any other |
| * type of narrower access. |
| */ |
| *reg_type = info.reg_type; |
| |
| if (base_type(*reg_type) == PTR_TO_BTF_ID) { |
| *btf = info.btf; |
| *btf_id = info.btf_id; |
| } else { |
| env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; |
| } |
| /* remember the offset of last byte accessed in ctx */ |
| if (env->prog->aux->max_ctx_offset < off + size) |
| env->prog->aux->max_ctx_offset = off + size; |
| return 0; |
| } |
| |
| verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); |
| return -EACCES; |
| } |
| |
| static int check_flow_keys_access(struct bpf_verifier_env *env, int off, |
| int size) |
| { |
| if (size < 0 || off < 0 || |
| (u64)off + size > sizeof(struct bpf_flow_keys)) { |
| verbose(env, "invalid access to flow keys off=%d size=%d\n", |
| off, size); |
| return -EACCES; |
| } |
| return 0; |
| } |
| |
| static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, |
| u32 regno, int off, int size, |
| enum bpf_access_type t) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *reg = ®s[regno]; |
| struct bpf_insn_access_aux info = {}; |
| bool valid; |
| |
| if (reg->smin_value < 0) { |
| verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", |
| regno); |
| return -EACCES; |
| } |
| |
| switch (reg->type) { |
| case PTR_TO_SOCK_COMMON: |
| valid = bpf_sock_common_is_valid_access(off, size, t, &info); |
| break; |
| case PTR_TO_SOCKET: |
| valid = bpf_sock_is_valid_access(off, size, t, &info); |
| break; |
| case PTR_TO_TCP_SOCK: |
| valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); |
| break; |
| case PTR_TO_XDP_SOCK: |
| valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); |
| break; |
| default: |
| valid = false; |
| } |
| |
| |
| if (valid) { |
| env->insn_aux_data[insn_idx].ctx_field_size = |
| info.ctx_field_size; |
| return 0; |
| } |
| |
| verbose(env, "R%d invalid %s access off=%d size=%d\n", |
| regno, reg_type_str(env, reg->type), off, size); |
| |
| return -EACCES; |
| } |
| |
| static bool is_pointer_value(struct bpf_verifier_env *env, int regno) |
| { |
| return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); |
| } |
| |
| static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) |
| { |
| const struct bpf_reg_state *reg = reg_state(env, regno); |
| |
| return reg->type == PTR_TO_CTX; |
| } |
| |
| static bool is_sk_reg(struct bpf_verifier_env *env, int regno) |
| { |
| const struct bpf_reg_state *reg = reg_state(env, regno); |
| |
| return type_is_sk_pointer(reg->type); |
| } |
| |
| static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) |
| { |
| const struct bpf_reg_state *reg = reg_state(env, regno); |
| |
| return type_is_pkt_pointer(reg->type); |
| } |
| |
| static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) |
| { |
| const struct bpf_reg_state *reg = reg_state(env, regno); |
| |
| /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ |
| return reg->type == PTR_TO_FLOW_KEYS; |
| } |
| |
| static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { |
| #ifdef CONFIG_NET |
| [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], |
| [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], |
| [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], |
| #endif |
| [CONST_PTR_TO_MAP] = btf_bpf_map_id, |
| }; |
| |
| static bool is_trusted_reg(const struct bpf_reg_state *reg) |
| { |
| /* A referenced register is always trusted. */ |
| if (reg->ref_obj_id) |
| return true; |
| |
| /* Types listed in the reg2btf_ids are always trusted */ |
| if (reg2btf_ids[base_type(reg->type)]) |
| return true; |
| |
| /* If a register is not referenced, it is trusted if it has the |
| * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the |
| * other type modifiers may be safe, but we elect to take an opt-in |
| * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are |
| * not. |
| * |
| * Eventually, we should make PTR_TRUSTED the single source of truth |
| * for whether a register is trusted. |
| */ |
| return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && |
| !bpf_type_has_unsafe_modifiers(reg->type); |
| } |
| |
| static bool is_rcu_reg(const struct bpf_reg_state *reg) |
| { |
| return reg->type & MEM_RCU; |
| } |
| |
| static void clear_trusted_flags(enum bpf_type_flag *flag) |
| { |
| *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); |
| } |
| |
| static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, |
| int off, int size, bool strict) |
| { |
| struct tnum reg_off; |
| int ip_align; |
| |
| /* Byte size accesses are always allowed. */ |
| if (!strict || size == 1) |
| return 0; |
| |
| /* For platforms that do not have a Kconfig enabling |
| * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of |
| * NET_IP_ALIGN is universally set to '2'. And on platforms |
| * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get |
| * to this code only in strict mode where we want to emulate |
| * the NET_IP_ALIGN==2 checking. Therefore use an |
| * unconditional IP align value of '2'. |
| */ |
| ip_align = 2; |
| |
| reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); |
| if (!tnum_is_aligned(reg_off, size)) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, |
| "misaligned packet access off %d+%s+%d+%d size %d\n", |
| ip_align, tn_buf, reg->off, off, size); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static int check_generic_ptr_alignment(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, |
| const char *pointer_desc, |
| int off, int size, bool strict) |
| { |
| struct tnum reg_off; |
| |
| /* Byte size accesses are always allowed. */ |
| if (!strict || size == 1) |
| return 0; |
| |
| reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); |
| if (!tnum_is_aligned(reg_off, size)) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", |
| pointer_desc, tn_buf, reg->off, off, size); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static int check_ptr_alignment(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, int off, |
| int size, bool strict_alignment_once) |
| { |
| bool strict = env->strict_alignment || strict_alignment_once; |
| const char *pointer_desc = ""; |
| |
| switch (reg->type) { |
| case PTR_TO_PACKET: |
| case PTR_TO_PACKET_META: |
| /* Special case, because of NET_IP_ALIGN. Given metadata sits |
| * right in front, treat it the very same way. |
| */ |
| return check_pkt_ptr_alignment(env, reg, off, size, strict); |
| case PTR_TO_FLOW_KEYS: |
| pointer_desc = "flow keys "; |
| break; |
| case PTR_TO_MAP_KEY: |
| pointer_desc = "key "; |
| break; |
| case PTR_TO_MAP_VALUE: |
| pointer_desc = "value "; |
| break; |
| case PTR_TO_CTX: |
| pointer_desc = "context "; |
| break; |
| case PTR_TO_STACK: |
| pointer_desc = "stack "; |
| /* The stack spill tracking logic in check_stack_write_fixed_off() |
| * and check_stack_read_fixed_off() relies on stack accesses being |
| * aligned. |
| */ |
| strict = true; |
| break; |
| case PTR_TO_SOCKET: |
| pointer_desc = "sock "; |
| break; |
| case PTR_TO_SOCK_COMMON: |
| pointer_desc = "sock_common "; |
| break; |
| case PTR_TO_TCP_SOCK: |
| pointer_desc = "tcp_sock "; |
| break; |
| case PTR_TO_XDP_SOCK: |
| pointer_desc = "xdp_sock "; |
| break; |
| default: |
| break; |
| } |
| return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, |
| strict); |
| } |
| |
| /* starting from main bpf function walk all instructions of the function |
| * and recursively walk all callees that given function can call. |
| * Ignore jump and exit insns. |
| * Since recursion is prevented by check_cfg() this algorithm |
| * only needs a local stack of MAX_CALL_FRAMES to remember callsites |
| */ |
| static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) |
| { |
| struct bpf_subprog_info *subprog = env->subprog_info; |
| struct bpf_insn *insn = env->prog->insnsi; |
| int depth = 0, frame = 0, i, subprog_end; |
| bool tail_call_reachable = false; |
| int ret_insn[MAX_CALL_FRAMES]; |
| int ret_prog[MAX_CALL_FRAMES]; |
| int j; |
| |
| i = subprog[idx].start; |
| process_func: |
| /* protect against potential stack overflow that might happen when |
| * bpf2bpf calls get combined with tailcalls. Limit the caller's stack |
| * depth for such case down to 256 so that the worst case scenario |
| * would result in 8k stack size (32 which is tailcall limit * 256 = |
| * 8k). |
| * |
| * To get the idea what might happen, see an example: |
| * func1 -> sub rsp, 128 |
| * subfunc1 -> sub rsp, 256 |
| * tailcall1 -> add rsp, 256 |
| * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) |
| * subfunc2 -> sub rsp, 64 |
| * subfunc22 -> sub rsp, 128 |
| * tailcall2 -> add rsp, 128 |
| * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) |
| * |
| * tailcall will unwind the current stack frame but it will not get rid |
| * of caller's stack as shown on the example above. |
| */ |
| if (idx && subprog[idx].has_tail_call && depth >= 256) { |
| verbose(env, |
| "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", |
| depth); |
| return -EACCES; |
| } |
| /* round up to 32-bytes, since this is granularity |
| * of interpreter stack size |
| */ |
| depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); |
| if (depth > MAX_BPF_STACK) { |
| verbose(env, "combined stack size of %d calls is %d. Too large\n", |
| frame + 1, depth); |
| return -EACCES; |
| } |
| continue_func: |
| subprog_end = subprog[idx + 1].start; |
| for (; i < subprog_end; i++) { |
| int next_insn, sidx; |
| |
| if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { |
| bool err = false; |
| |
| if (!is_bpf_throw_kfunc(insn + i)) |
| continue; |
| if (subprog[idx].is_cb) |
| err = true; |
| for (int c = 0; c < frame && !err; c++) { |
| if (subprog[ret_prog[c]].is_cb) { |
| err = true; |
| break; |
| } |
| } |
| if (!err) |
| continue; |
| verbose(env, |
| "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", |
| i, idx); |
| return -EINVAL; |
| } |
| |
| if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) |
| continue; |
| /* remember insn and function to return to */ |
| ret_insn[frame] = i + 1; |
| ret_prog[frame] = idx; |
| |
| /* find the callee */ |
| next_insn = i + insn[i].imm + 1; |
| sidx = find_subprog(env, next_insn); |
| if (sidx < 0) { |
| WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", |
| next_insn); |
| return -EFAULT; |
| } |
| if (subprog[sidx].is_async_cb) { |
| if (subprog[sidx].has_tail_call) { |
| verbose(env, "verifier bug. subprog has tail_call and async cb\n"); |
| return -EFAULT; |
| } |
| /* async callbacks don't increase bpf prog stack size unless called directly */ |
| if (!bpf_pseudo_call(insn + i)) |
| continue; |
| if (subprog[sidx].is_exception_cb) { |
| verbose(env, "insn %d cannot call exception cb directly\n", i); |
| return -EINVAL; |
| } |
| } |
| i = next_insn; |
| idx = sidx; |
| |
| if (subprog[idx].has_tail_call) |
| tail_call_reachable = true; |
| |
| frame++; |
| if (frame >= MAX_CALL_FRAMES) { |
| verbose(env, "the call stack of %d frames is too deep !\n", |
| frame); |
| return -E2BIG; |
| } |
| goto process_func; |
| } |
| /* if tail call got detected across bpf2bpf calls then mark each of the |
| * currently present subprog frames as tail call reachable subprogs; |
| * this info will be utilized by JIT so that we will be preserving the |
| * tail call counter throughout bpf2bpf calls combined with tailcalls |
| */ |
| if (tail_call_reachable) |
| for (j = 0; j < frame; j++) { |
| if (subprog[ret_prog[j]].is_exception_cb) { |
| verbose(env, "cannot tail call within exception cb\n"); |
| return -EINVAL; |
| } |
| subprog[ret_prog[j]].tail_call_reachable = true; |
| } |
| if (subprog[0].tail_call_reachable) |
| env->prog->aux->tail_call_reachable = true; |
| |
| /* end of for() loop means the last insn of the 'subprog' |
| * was reached. Doesn't matter whether it was JA or EXIT |
| */ |
| if (frame == 0) |
| return 0; |
| depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); |
| frame--; |
| i = ret_insn[frame]; |
| idx = ret_prog[frame]; |
| goto continue_func; |
| } |
| |
| static int check_max_stack_depth(struct bpf_verifier_env *env) |
| { |
| struct bpf_subprog_info *si = env->subprog_info; |
| int ret; |
| |
| for (int i = 0; i < env->subprog_cnt; i++) { |
| if (!i || si[i].is_async_cb) { |
| ret = check_max_stack_depth_subprog(env, i); |
| if (ret < 0) |
| return ret; |
| } |
| continue; |
| } |
| return 0; |
| } |
| |
| #ifndef CONFIG_BPF_JIT_ALWAYS_ON |
| static int get_callee_stack_depth(struct bpf_verifier_env *env, |
| const struct bpf_insn *insn, int idx) |
| { |
| int start = idx + insn->imm + 1, subprog; |
| |
| subprog = find_subprog(env, start); |
| if (subprog < 0) { |
| WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", |
| start); |
| return -EFAULT; |
| } |
| return env->subprog_info[subprog].stack_depth; |
| } |
| #endif |
| |
| static int __check_buffer_access(struct bpf_verifier_env *env, |
| const char *buf_info, |
| const struct bpf_reg_state *reg, |
| int regno, int off, int size) |
| { |
| if (off < 0) { |
| verbose(env, |
| "R%d invalid %s buffer access: off=%d, size=%d\n", |
| regno, buf_info, off, size); |
| return -EACCES; |
| } |
| if (!tnum_is_const(reg->var_off) || reg->var_off.value) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, |
| "R%d invalid variable buffer offset: off=%d, var_off=%s\n", |
| regno, off, tn_buf); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static int check_tp_buffer_access(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, |
| int regno, int off, int size) |
| { |
| int err; |
| |
| err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); |
| if (err) |
| return err; |
| |
| if (off + size > env->prog->aux->max_tp_access) |
| env->prog->aux->max_tp_access = off + size; |
| |
| return 0; |
| } |
| |
| static int check_buffer_access(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, |
| int regno, int off, int size, |
| bool zero_size_allowed, |
| u32 *max_access) |
| { |
| const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; |
| int err; |
| |
| err = __check_buffer_access(env, buf_info, reg, regno, off, size); |
| if (err) |
| return err; |
| |
| if (off + size > *max_access) |
| *max_access = off + size; |
| |
| return 0; |
| } |
| |
| /* BPF architecture zero extends alu32 ops into 64-bit registesr */ |
| static void zext_32_to_64(struct bpf_reg_state *reg) |
| { |
| reg->var_off = tnum_subreg(reg->var_off); |
| __reg_assign_32_into_64(reg); |
| } |
| |
| /* truncate register to smaller size (in bytes) |
| * must be called with size < BPF_REG_SIZE |
| */ |
| static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) |
| { |
| u64 mask; |
| |
| /* clear high bits in bit representation */ |
| reg->var_off = tnum_cast(reg->var_off, size); |
| |
| /* fix arithmetic bounds */ |
| mask = ((u64)1 << (size * 8)) - 1; |
| if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { |
| reg->umin_value &= mask; |
| reg->umax_value &= mask; |
| } else { |
| reg->umin_value = 0; |
| reg->umax_value = mask; |
| } |
| reg->smin_value = reg->umin_value; |
| reg->smax_value = reg->umax_value; |
| |
| /* If size is smaller than 32bit register the 32bit register |
| * values are also truncated so we push 64-bit bounds into |
| * 32-bit bounds. Above were truncated < 32-bits already. |
| */ |
| if (size < 4) { |
| __mark_reg32_unbounded(reg); |
| reg_bounds_sync(reg); |
| } |
| } |
| |
| static void set_sext64_default_val(struct bpf_reg_state *reg, int size) |
| { |
| if (size == 1) { |
| reg->smin_value = reg->s32_min_value = S8_MIN; |
| reg->smax_value = reg->s32_max_value = S8_MAX; |
| } else if (size == 2) { |
| reg->smin_value = reg->s32_min_value = S16_MIN; |
| reg->smax_value = reg->s32_max_value = S16_MAX; |
| } else { |
| /* size == 4 */ |
| reg->smin_value = reg->s32_min_value = S32_MIN; |
| reg->smax_value = reg->s32_max_value = S32_MAX; |
| } |
| reg->umin_value = reg->u32_min_value = 0; |
| reg->umax_value = U64_MAX; |
| reg->u32_max_value = U32_MAX; |
| reg->var_off = tnum_unknown; |
| } |
| |
| static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) |
| { |
| s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; |
| u64 top_smax_value, top_smin_value; |
| u64 num_bits = size * 8; |
| |
| if (tnum_is_const(reg->var_off)) { |
| u64_cval = reg->var_off.value; |
| if (size == 1) |
| reg->var_off = tnum_const((s8)u64_cval); |
| else if (size == 2) |
| reg->var_off = tnum_const((s16)u64_cval); |
| else |
| /* size == 4 */ |
| reg->var_off = tnum_const((s32)u64_cval); |
| |
| u64_cval = reg->var_off.value; |
| reg->smax_value = reg->smin_value = u64_cval; |
| reg->umax_value = reg->umin_value = u64_cval; |
| reg->s32_max_value = reg->s32_min_value = u64_cval; |
| reg->u32_max_value = reg->u32_min_value = u64_cval; |
| return; |
| } |
| |
| top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; |
| top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; |
| |
| if (top_smax_value != top_smin_value) |
| goto out; |
| |
| /* find the s64_min and s64_min after sign extension */ |
| if (size == 1) { |
| init_s64_max = (s8)reg->smax_value; |
| init_s64_min = (s8)reg->smin_value; |
| } else if (size == 2) { |
| init_s64_max = (s16)reg->smax_value; |
| init_s64_min = (s16)reg->smin_value; |
| } else { |
| init_s64_max = (s32)reg->smax_value; |
| init_s64_min = (s32)reg->smin_value; |
| } |
| |
| s64_max = max(init_s64_max, init_s64_min); |
| s64_min = min(init_s64_max, init_s64_min); |
| |
| /* both of s64_max/s64_min positive or negative */ |
| if ((s64_max >= 0) == (s64_min >= 0)) { |
| reg->smin_value = reg->s32_min_value = s64_min; |
| reg->smax_value = reg->s32_max_value = s64_max; |
| reg->umin_value = reg->u32_min_value = s64_min; |
| reg->umax_value = reg->u32_max_value = s64_max; |
| reg->var_off = tnum_range(s64_min, s64_max); |
| return; |
| } |
| |
| out: |
| set_sext64_default_val(reg, size); |
| } |
| |
| static void set_sext32_default_val(struct bpf_reg_state *reg, int size) |
| { |
| if (size == 1) { |
| reg->s32_min_value = S8_MIN; |
| reg->s32_max_value = S8_MAX; |
| } else { |
| /* size == 2 */ |
| reg->s32_min_value = S16_MIN; |
| reg->s32_max_value = S16_MAX; |
| } |
| reg->u32_min_value = 0; |
| reg->u32_max_value = U32_MAX; |
| } |
| |
| static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) |
| { |
| s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; |
| u32 top_smax_value, top_smin_value; |
| u32 num_bits = size * 8; |
| |
| if (tnum_is_const(reg->var_off)) { |
| u32_val = reg->var_off.value; |
| if (size == 1) |
| reg->var_off = tnum_const((s8)u32_val); |
| else |
| reg->var_off = tnum_const((s16)u32_val); |
| |
| u32_val = reg->var_off.value; |
| reg->s32_min_value = reg->s32_max_value = u32_val; |
| reg->u32_min_value = reg->u32_max_value = u32_val; |
| return; |
| } |
| |
| top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; |
| top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; |
| |
| if (top_smax_value != top_smin_value) |
| goto out; |
| |
| /* find the s32_min and s32_min after sign extension */ |
| if (size == 1) { |
| init_s32_max = (s8)reg->s32_max_value; |
| init_s32_min = (s8)reg->s32_min_value; |
| } else { |
| /* size == 2 */ |
| init_s32_max = (s16)reg->s32_max_value; |
| init_s32_min = (s16)reg->s32_min_value; |
| } |
| s32_max = max(init_s32_max, init_s32_min); |
| s32_min = min(init_s32_max, init_s32_min); |
| |
| if ((s32_min >= 0) == (s32_max >= 0)) { |
| reg->s32_min_value = s32_min; |
| reg->s32_max_value = s32_max; |
| reg->u32_min_value = (u32)s32_min; |
| reg->u32_max_value = (u32)s32_max; |
| return; |
| } |
| |
| out: |
| set_sext32_default_val(reg, size); |
| } |
| |
| static bool bpf_map_is_rdonly(const struct bpf_map *map) |
| { |
| /* A map is considered read-only if the following condition are true: |
| * |
| * 1) BPF program side cannot change any of the map content. The |
| * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map |
| * and was set at map creation time. |
| * 2) The map value(s) have been initialized from user space by a |
| * loader and then "frozen", such that no new map update/delete |
| * operations from syscall side are possible for the rest of |
| * the map's lifetime from that point onwards. |
| * 3) Any parallel/pending map update/delete operations from syscall |
| * side have been completed. Only after that point, it's safe to |
| * assume that map value(s) are immutable. |
| */ |
| return (map->map_flags & BPF_F_RDONLY_PROG) && |
| READ_ONCE(map->frozen) && |
| !bpf_map_write_active(map); |
| } |
| |
| static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, |
| bool is_ldsx) |
| { |
| void *ptr; |
| u64 addr; |
| int err; |
| |
| err = map->ops->map_direct_value_addr(map, &addr, off); |
| if (err) |
| return err; |
| ptr = (void *)(long)addr + off; |
| |
| switch (size) { |
| case sizeof(u8): |
| *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; |
| break; |
| case sizeof(u16): |
| *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; |
| break; |
| case sizeof(u32): |
| *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; |
| break; |
| case sizeof(u64): |
| *val = *(u64 *)ptr; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) |
| #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) |
| #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) |
| |
| /* |
| * Allow list few fields as RCU trusted or full trusted. |
| * This logic doesn't allow mix tagging and will be removed once GCC supports |
| * btf_type_tag. |
| */ |
| |
| /* RCU trusted: these fields are trusted in RCU CS and never NULL */ |
| BTF_TYPE_SAFE_RCU(struct task_struct) { |
| const cpumask_t *cpus_ptr; |
| struct css_set __rcu *cgroups; |
| struct task_struct __rcu *real_parent; |
| struct task_struct *group_leader; |
| }; |
| |
| BTF_TYPE_SAFE_RCU(struct cgroup) { |
| /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ |
| struct kernfs_node *kn; |
| }; |
| |
| BTF_TYPE_SAFE_RCU(struct css_set) { |
| struct cgroup *dfl_cgrp; |
| }; |
| |
| /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ |
| BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { |
| struct file __rcu *exe_file; |
| }; |
| |
| /* skb->sk, req->sk are not RCU protected, but we mark them as such |
| * because bpf prog accessible sockets are SOCK_RCU_FREE. |
| */ |
| BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { |
| struct sock *sk; |
| }; |
| |
| BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { |
| struct sock *sk; |
| }; |
| |
| /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ |
| BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { |
| struct seq_file *seq; |
| }; |
| |
| BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { |
| struct bpf_iter_meta *meta; |
| struct task_struct *task; |
| }; |
| |
| BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { |
| struct file *file; |
| }; |
| |
| BTF_TYPE_SAFE_TRUSTED(struct file) { |
| struct inode *f_inode; |
| }; |
| |
| BTF_TYPE_SAFE_TRUSTED(struct dentry) { |
| /* no negative dentry-s in places where bpf can see it */ |
| struct inode *d_inode; |
| }; |
| |
| BTF_TYPE_SAFE_TRUSTED(struct socket) { |
| struct sock *sk; |
| }; |
| |
| static bool type_is_rcu(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, |
| const char *field_name, u32 btf_id) |
| { |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); |
| |
| return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); |
| } |
| |
| static bool type_is_rcu_or_null(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, |
| const char *field_name, u32 btf_id) |
| { |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); |
| |
| return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); |
| } |
| |
| static bool type_is_trusted(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, |
| const char *field_name, u32 btf_id) |
| { |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); |
| BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); |
| |
| return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); |
| } |
| |
| static int check_ptr_to_btf_access(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, |
| int regno, int off, int size, |
| enum bpf_access_type atype, |
| int value_regno) |
| { |
| struct bpf_reg_state *reg = regs + regno; |
| const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); |
| const char *tname = btf_name_by_offset(reg->btf, t->name_off); |
| const char *field_name = NULL; |
| enum bpf_type_flag flag = 0; |
| u32 btf_id = 0; |
| int ret; |
| |
| if (!env->allow_ptr_leaks) { |
| verbose(env, |
| "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", |
| tname); |
| return -EPERM; |
| } |
| if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { |
| verbose(env, |
| "Cannot access kernel 'struct %s' from non-GPL compatible program\n", |
| tname); |
| return -EINVAL; |
| } |
| if (off < 0) { |
| verbose(env, |
| "R%d is ptr_%s invalid negative access: off=%d\n", |
| regno, tname, off); |
| return -EACCES; |
| } |
| if (!tnum_is_const(reg->var_off) || reg->var_off.value) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, |
| "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", |
| regno, tname, off, tn_buf); |
| return -EACCES; |
| } |
| |
| if (reg->type & MEM_USER) { |
| verbose(env, |
| "R%d is ptr_%s access user memory: off=%d\n", |
| regno, tname, off); |
| return -EACCES; |
| } |
| |
| if (reg->type & MEM_PERCPU) { |
| verbose(env, |
| "R%d is ptr_%s access percpu memory: off=%d\n", |
| regno, tname, off); |
| return -EACCES; |
| } |
| |
| if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { |
| if (!btf_is_kernel(reg->btf)) { |
| verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); |
| return -EFAULT; |
| } |
| ret = env->ops->btf_struct_access(&env->log, reg, off, size); |
| } else { |
| /* Writes are permitted with default btf_struct_access for |
| * program allocated objects (which always have ref_obj_id > 0), |
| * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. |
| */ |
| if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { |
| verbose(env, "only read is supported\n"); |
| return -EACCES; |
| } |
| |
| if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && |
| !(reg->type & MEM_RCU) && !reg->ref_obj_id) { |
| verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); |
| return -EFAULT; |
| } |
| |
| ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); |
| } |
| |
| if (ret < 0) |
| return ret; |
| |
| if (ret != PTR_TO_BTF_ID) { |
| /* just mark; */ |
| |
| } else if (type_flag(reg->type) & PTR_UNTRUSTED) { |
| /* If this is an untrusted pointer, all pointers formed by walking it |
| * also inherit the untrusted flag. |
| */ |
| flag = PTR_UNTRUSTED; |
| |
| } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { |
| /* By default any pointer obtained from walking a trusted pointer is no |
| * longer trusted, unless the field being accessed has explicitly been |
| * marked as inheriting its parent's state of trust (either full or RCU). |
| * For example: |
| * 'cgroups' pointer is untrusted if task->cgroups dereference |
| * happened in a sleepable program outside of bpf_rcu_read_lock() |
| * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). |
| * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. |
| * |
| * A regular RCU-protected pointer with __rcu tag can also be deemed |
| * trusted if we are in an RCU CS. Such pointer can be NULL. |
| */ |
| if (type_is_trusted(env, reg, field_name, btf_id)) { |
| flag |= PTR_TRUSTED; |
| } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { |
| if (type_is_rcu(env, reg, field_name, btf_id)) { |
| /* ignore __rcu tag and mark it MEM_RCU */ |
| flag |= MEM_RCU; |
| } else if (flag & MEM_RCU || |
| type_is_rcu_or_null(env, reg, field_name, btf_id)) { |
| /* __rcu tagged pointers can be NULL */ |
| flag |= MEM_RCU | PTR_MAYBE_NULL; |
| |
| /* We always trust them */ |
| if (type_is_rcu_or_null(env, reg, field_name, btf_id) && |
| flag & PTR_UNTRUSTED) |
| flag &= ~PTR_UNTRUSTED; |
| } else if (flag & (MEM_PERCPU | MEM_USER)) { |
| /* keep as-is */ |
| } else { |
| /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ |
| clear_trusted_flags(&flag); |
| } |
| } else { |
| /* |
| * If not in RCU CS or MEM_RCU pointer can be NULL then |
| * aggressively mark as untrusted otherwise such |
| * pointers will be plain PTR_TO_BTF_ID without flags |
| * and will be allowed to be passed into helpers for |
| * compat reasons. |
| */ |
| flag = PTR_UNTRUSTED; |
| } |
| } else { |
| /* Old compat. Deprecated */ |
| clear_trusted_flags(&flag); |
| } |
| |
| if (atype == BPF_READ && value_regno >= 0) |
| mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); |
| |
| return 0; |
| } |
| |
| static int check_ptr_to_map_access(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, |
| int regno, int off, int size, |
| enum bpf_access_type atype, |
| int value_regno) |
| { |
| struct bpf_reg_state *reg = regs + regno; |
| struct bpf_map *map = reg->map_ptr; |
| struct bpf_reg_state map_reg; |
| enum bpf_type_flag flag = 0; |
| const struct btf_type *t; |
| const char *tname; |
| u32 btf_id; |
| int ret; |
| |
| if (!btf_vmlinux) { |
| verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { |
| verbose(env, "map_ptr access not supported for map type %d\n", |
| map->map_type); |
| return -ENOTSUPP; |
| } |
| |
| t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); |
| tname = btf_name_by_offset(btf_vmlinux, t->name_off); |
| |
| if (!env->allow_ptr_leaks) { |
| verbose(env, |
| "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", |
| tname); |
| return -EPERM; |
| } |
| |
| if (off < 0) { |
| verbose(env, "R%d is %s invalid negative access: off=%d\n", |
| regno, tname, off); |
| return -EACCES; |
| } |
| |
| if (atype != BPF_READ) { |
| verbose(env, "only read from %s is supported\n", tname); |
| return -EACCES; |
| } |
| |
| /* Simulate access to a PTR_TO_BTF_ID */ |
| memset(&map_reg, 0, sizeof(map_reg)); |
| mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); |
| ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); |
| if (ret < 0) |
| return ret; |
| |
| if (value_regno >= 0) |
| mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); |
| |
| return 0; |
| } |
| |
| /* Check that the stack access at the given offset is within bounds. The |
| * maximum valid offset is -1. |
| * |
| * The minimum valid offset is -MAX_BPF_STACK for writes, and |
| * -state->allocated_stack for reads. |
| */ |
| static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, |
| s64 off, |
| struct bpf_func_state *state, |
| enum bpf_access_type t) |
| { |
| int min_valid_off; |
| |
| if (t == BPF_WRITE || env->allow_uninit_stack) |
| min_valid_off = -MAX_BPF_STACK; |
| else |
| min_valid_off = -state->allocated_stack; |
| |
| if (off < min_valid_off || off > -1) |
| return -EACCES; |
| return 0; |
| } |
| |
| /* Check that the stack access at 'regno + off' falls within the maximum stack |
| * bounds. |
| * |
| * 'off' includes `regno->offset`, but not its dynamic part (if any). |
| */ |
| static int check_stack_access_within_bounds( |
| struct bpf_verifier_env *env, |
| int regno, int off, int access_size, |
| enum bpf_access_src src, enum bpf_access_type type) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *reg = regs + regno; |
| struct bpf_func_state *state = func(env, reg); |
| s64 min_off, max_off; |
| int err; |
| char *err_extra; |
| |
| if (src == ACCESS_HELPER) |
| /* We don't know if helpers are reading or writing (or both). */ |
| err_extra = " indirect access to"; |
| else if (type == BPF_READ) |
| err_extra = " read from"; |
| else |
| err_extra = " write to"; |
| |
| if (tnum_is_const(reg->var_off)) { |
| min_off = (s64)reg->var_off.value + off; |
| max_off = min_off + access_size; |
| } else { |
| if (reg->smax_value >= BPF_MAX_VAR_OFF || |
| reg->smin_value <= -BPF_MAX_VAR_OFF) { |
| verbose(env, "invalid unbounded variable-offset%s stack R%d\n", |
| err_extra, regno); |
| return -EACCES; |
| } |
| min_off = reg->smin_value + off; |
| max_off = reg->smax_value + off + access_size; |
| } |
| |
| err = check_stack_slot_within_bounds(env, min_off, state, type); |
| if (!err && max_off > 0) |
| err = -EINVAL; /* out of stack access into non-negative offsets */ |
| |
| if (err) { |
| if (tnum_is_const(reg->var_off)) { |
| verbose(env, "invalid%s stack R%d off=%d size=%d\n", |
| err_extra, regno, off, access_size); |
| } else { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", |
| err_extra, regno, tn_buf, off, access_size); |
| } |
| return err; |
| } |
| |
| /* Note that there is no stack access with offset zero, so the needed stack |
| * size is -min_off, not -min_off+1. |
| */ |
| return grow_stack_state(env, state, -min_off /* size */); |
| } |
| |
| /* check whether memory at (regno + off) is accessible for t = (read | write) |
| * if t==write, value_regno is a register which value is stored into memory |
| * if t==read, value_regno is a register which will receive the value from memory |
| * if t==write && value_regno==-1, some unknown value is stored into memory |
| * if t==read && value_regno==-1, don't care what we read from memory |
| */ |
| static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, |
| int off, int bpf_size, enum bpf_access_type t, |
| int value_regno, bool strict_alignment_once, bool is_ldsx) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *reg = regs + regno; |
| int size, err = 0; |
| |
| size = bpf_size_to_bytes(bpf_size); |
| if (size < 0) |
| return size; |
| |
| /* alignment checks will add in reg->off themselves */ |
| err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); |
| if (err) |
| return err; |
| |
| /* for access checks, reg->off is just part of off */ |
| off += reg->off; |
| |
| if (reg->type == PTR_TO_MAP_KEY) { |
| if (t == BPF_WRITE) { |
| verbose(env, "write to change key R%d not allowed\n", regno); |
| return -EACCES; |
| } |
| |
| err = check_mem_region_access(env, regno, off, size, |
| reg->map_ptr->key_size, false); |
| if (err) |
| return err; |
| if (value_regno >= 0) |
| mark_reg_unknown(env, regs, value_regno); |
| } else if (reg->type == PTR_TO_MAP_VALUE) { |
| struct btf_field *kptr_field = NULL; |
| |
| if (t == BPF_WRITE && value_regno >= 0 && |
| is_pointer_value(env, value_regno)) { |
| verbose(env, "R%d leaks addr into map\n", value_regno); |
| return -EACCES; |
| } |
| err = check_map_access_type(env, regno, off, size, t); |
| if (err) |
| return err; |
| err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); |
| if (err) |
| return err; |
| if (tnum_is_const(reg->var_off)) |
| kptr_field = btf_record_find(reg->map_ptr->record, |
| off + reg->var_off.value, BPF_KPTR); |
| if (kptr_field) { |
| err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); |
| } else if (t == BPF_READ && value_regno >= 0) { |
| struct bpf_map *map = reg->map_ptr; |
| |
| /* if map is read-only, track its contents as scalars */ |
| if (tnum_is_const(reg->var_off) && |
| bpf_map_is_rdonly(map) && |
| map->ops->map_direct_value_addr) { |
| int map_off = off + reg->var_off.value; |
| u64 val = 0; |
| |
| err = bpf_map_direct_read(map, map_off, size, |
| &val, is_ldsx); |
| if (err) |
| return err; |
| |
| regs[value_regno].type = SCALAR_VALUE; |
| __mark_reg_known(®s[value_regno], val); |
| } else { |
| mark_reg_unknown(env, regs, value_regno); |
| } |
| } |
| } else if (base_type(reg->type) == PTR_TO_MEM) { |
| bool rdonly_mem = type_is_rdonly_mem(reg->type); |
| |
| if (type_may_be_null(reg->type)) { |
| verbose(env, "R%d invalid mem access '%s'\n", regno, |
| reg_type_str(env, reg->type)); |
| return -EACCES; |
| } |
| |
| if (t == BPF_WRITE && rdonly_mem) { |
| verbose(env, "R%d cannot write into %s\n", |
| regno, reg_type_str(env, reg->type)); |
| return -EACCES; |
| } |
| |
| if (t == BPF_WRITE && value_regno >= 0 && |
| is_pointer_value(env, value_regno)) { |
| verbose(env, "R%d leaks addr into mem\n", value_regno); |
| return -EACCES; |
| } |
| |
| err = check_mem_region_access(env, regno, off, size, |
| reg->mem_size, false); |
| if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) |
| mark_reg_unknown(env, regs, value_regno); |
| } else if (reg->type == PTR_TO_CTX) { |
| enum bpf_reg_type reg_type = SCALAR_VALUE; |
| struct btf *btf = NULL; |
| u32 btf_id = 0; |
| |
| if (t == BPF_WRITE && value_regno >= 0 && |
| is_pointer_value(env, value_regno)) { |
| verbose(env, "R%d leaks addr into ctx\n", value_regno); |
| return -EACCES; |
| } |
| |
| err = check_ptr_off_reg(env, reg, regno); |
| if (err < 0) |
| return err; |
| |
| err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, |
| &btf_id); |
| if (err) |
| verbose_linfo(env, insn_idx, "; "); |
| if (!err && t == BPF_READ && value_regno >= 0) { |
| /* ctx access returns either a scalar, or a |
| * PTR_TO_PACKET[_META,_END]. In the latter |
| * case, we know the offset is zero. |
| */ |
| if (reg_type == SCALAR_VALUE) { |
| mark_reg_unknown(env, regs, value_regno); |
| } else { |
| mark_reg_known_zero(env, regs, |
| value_regno); |
| if (type_may_be_null(reg_type)) |
| regs[value_regno].id = ++env->id_gen; |
| /* A load of ctx field could have different |
| * actual load size with the one encoded in the |
| * insn. When the dst is PTR, it is for sure not |
| * a sub-register. |
| */ |
| regs[value_regno].subreg_def = DEF_NOT_SUBREG; |
| if (base_type(reg_type) == PTR_TO_BTF_ID) { |
| regs[value_regno].btf = btf; |
| regs[value_regno].btf_id = btf_id; |
| } |
| } |
| regs[value_regno].type = reg_type; |
| } |
| |
| } else if (reg->type == PTR_TO_STACK) { |
| /* Basic bounds checks. */ |
| err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); |
| if (err) |
| return err; |
| |
| if (t == BPF_READ) |
| err = check_stack_read(env, regno, off, size, |
| value_regno); |
| else |
| err = check_stack_write(env, regno, off, size, |
| value_regno, insn_idx); |
| } else if (reg_is_pkt_pointer(reg)) { |
| if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { |
| verbose(env, "cannot write into packet\n"); |
| return -EACCES; |
| } |
| if (t == BPF_WRITE && value_regno >= 0 && |
| is_pointer_value(env, value_regno)) { |
| verbose(env, "R%d leaks addr into packet\n", |
| value_regno); |
| return -EACCES; |
| } |
| err = check_packet_access(env, regno, off, size, false); |
| if (!err && t == BPF_READ && value_regno >= 0) |
| mark_reg_unknown(env, regs, value_regno); |
| } else if (reg->type == PTR_TO_FLOW_KEYS) { |
| if (t == BPF_WRITE && value_regno >= 0 && |
| is_pointer_value(env, value_regno)) { |
| verbose(env, "R%d leaks addr into flow keys\n", |
| value_regno); |
| return -EACCES; |
| } |
| |
| err = check_flow_keys_access(env, off, size); |
| if (!err && t == BPF_READ && value_regno >= 0) |
| mark_reg_unknown(env, regs, value_regno); |
| } else if (type_is_sk_pointer(reg->type)) { |
| if (t == BPF_WRITE) { |
| verbose(env, "R%d cannot write into %s\n", |
| regno, reg_type_str(env, reg->type)); |
| return -EACCES; |
| } |
| err = check_sock_access(env, insn_idx, regno, off, size, t); |
| if (!err && value_regno >= 0) |
| mark_reg_unknown(env, regs, value_regno); |
| } else if (reg->type == PTR_TO_TP_BUFFER) { |
| err = check_tp_buffer_access(env, reg, regno, off, size); |
| if (!err && t == BPF_READ && value_regno >= 0) |
| mark_reg_unknown(env, regs, value_regno); |
| } else if (base_type(reg->type) == PTR_TO_BTF_ID && |
| !type_may_be_null(reg->type)) { |
| err = check_ptr_to_btf_access(env, regs, regno, off, size, t, |
| value_regno); |
| } else if (reg->type == CONST_PTR_TO_MAP) { |
| err = check_ptr_to_map_access(env, regs, regno, off, size, t, |
| value_regno); |
| } else if (base_type(reg->type) == PTR_TO_BUF) { |
| bool rdonly_mem = type_is_rdonly_mem(reg->type); |
| u32 *max_access; |
| |
| if (rdonly_mem) { |
| if (t == BPF_WRITE) { |
| verbose(env, "R%d cannot write into %s\n", |
| regno, reg_type_str(env, reg->type)); |
| return -EACCES; |
| } |
| max_access = &env->prog->aux->max_rdonly_access; |
| } else { |
| max_access = &env->prog->aux->max_rdwr_access; |
| } |
| |
| err = check_buffer_access(env, reg, regno, off, size, false, |
| max_access); |
| |
| if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) |
| mark_reg_unknown(env, regs, value_regno); |
| } else { |
| verbose(env, "R%d invalid mem access '%s'\n", regno, |
| reg_type_str(env, reg->type)); |
| return -EACCES; |
| } |
| |
| if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && |
| regs[value_regno].type == SCALAR_VALUE) { |
| if (!is_ldsx) |
| /* b/h/w load zero-extends, mark upper bits as known 0 */ |
| coerce_reg_to_size(®s[value_regno], size); |
| else |
| coerce_reg_to_size_sx(®s[value_regno], size); |
| } |
| return err; |
| } |
| |
| static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) |
| { |
| int load_reg; |
| int err; |
| |
| switch (insn->imm) { |
| case BPF_ADD: |
| case BPF_ADD | BPF_FETCH: |
| case BPF_AND: |
| case BPF_AND | BPF_FETCH: |
| case BPF_OR: |
| case BPF_OR | BPF_FETCH: |
| case BPF_XOR: |
| case BPF_XOR | BPF_FETCH: |
| case BPF_XCHG: |
| case BPF_CMPXCHG: |
| break; |
| default: |
| verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); |
| return -EINVAL; |
| } |
| |
| if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { |
| verbose(env, "invalid atomic operand size\n"); |
| return -EINVAL; |
| } |
| |
| /* check src1 operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| /* check src2 operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if (insn->imm == BPF_CMPXCHG) { |
| /* Check comparison of R0 with memory location */ |
| const u32 aux_reg = BPF_REG_0; |
| |
| err = check_reg_arg(env, aux_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if (is_pointer_value(env, aux_reg)) { |
| verbose(env, "R%d leaks addr into mem\n", aux_reg); |
| return -EACCES; |
| } |
| } |
| |
| if (is_pointer_value(env, insn->src_reg)) { |
| verbose(env, "R%d leaks addr into mem\n", insn->src_reg); |
| return -EACCES; |
| } |
| |
| if (is_ctx_reg(env, insn->dst_reg) || |
| is_pkt_reg(env, insn->dst_reg) || |
| is_flow_key_reg(env, insn->dst_reg) || |
| is_sk_reg(env, insn->dst_reg)) { |
| verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", |
| insn->dst_reg, |
| reg_type_str(env, reg_state(env, insn->dst_reg)->type)); |
| return -EACCES; |
| } |
| |
| if (insn->imm & BPF_FETCH) { |
| if (insn->imm == BPF_CMPXCHG) |
| load_reg = BPF_REG_0; |
| else |
| load_reg = insn->src_reg; |
| |
| /* check and record load of old value */ |
| err = check_reg_arg(env, load_reg, DST_OP); |
| if (err) |
| return err; |
| } else { |
| /* This instruction accesses a memory location but doesn't |
| * actually load it into a register. |
| */ |
| load_reg = -1; |
| } |
| |
| /* Check whether we can read the memory, with second call for fetch |
| * case to simulate the register fill. |
| */ |
| err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, |
| BPF_SIZE(insn->code), BPF_READ, -1, true, false); |
| if (!err && load_reg >= 0) |
| err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, |
| BPF_SIZE(insn->code), BPF_READ, load_reg, |
| true, false); |
| if (err) |
| return err; |
| |
| /* Check whether we can write into the same memory. */ |
| err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, |
| BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); |
| if (err) |
| return err; |
| return 0; |
| } |
| |
| /* When register 'regno' is used to read the stack (either directly or through |
| * a helper function) make sure that it's within stack boundary and, depending |
| * on the access type and privileges, that all elements of the stack are |
| * initialized. |
| * |
| * 'off' includes 'regno->off', but not its dynamic part (if any). |
| * |
| * All registers that have been spilled on the stack in the slots within the |
| * read offsets are marked as read. |
| */ |
| static int check_stack_range_initialized( |
| struct bpf_verifier_env *env, int regno, int off, |
| int access_size, bool zero_size_allowed, |
| enum bpf_access_src type, struct bpf_call_arg_meta *meta) |
| { |
| struct bpf_reg_state *reg = reg_state(env, regno); |
| struct bpf_func_state *state = func(env, reg); |
| int err, min_off, max_off, i, j, slot, spi; |
| char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; |
| enum bpf_access_type bounds_check_type; |
| /* Some accesses can write anything into the stack, others are |
| * read-only. |
| */ |
| bool clobber = false; |
| |
| if (access_size == 0 && !zero_size_allowed) { |
| verbose(env, "invalid zero-sized read\n"); |
| return -EACCES; |
| } |
| |
| if (type == ACCESS_HELPER) { |
| /* The bounds checks for writes are more permissive than for |
| * reads. However, if raw_mode is not set, we'll do extra |
| * checks below. |
| */ |
| bounds_check_type = BPF_WRITE; |
| clobber = true; |
| } else { |
| bounds_check_type = BPF_READ; |
| } |
| err = check_stack_access_within_bounds(env, regno, off, access_size, |
| type, bounds_check_type); |
| if (err) |
| return err; |
| |
| |
| if (tnum_is_const(reg->var_off)) { |
| min_off = max_off = reg->var_off.value + off; |
| } else { |
| /* Variable offset is prohibited for unprivileged mode for |
| * simplicity since it requires corresponding support in |
| * Spectre masking for stack ALU. |
| * See also retrieve_ptr_limit(). |
| */ |
| if (!env->bypass_spec_v1) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", |
| regno, err_extra, tn_buf); |
| return -EACCES; |
| } |
| /* Only initialized buffer on stack is allowed to be accessed |
| * with variable offset. With uninitialized buffer it's hard to |
| * guarantee that whole memory is marked as initialized on |
| * helper return since specific bounds are unknown what may |
| * cause uninitialized stack leaking. |
| */ |
| if (meta && meta->raw_mode) |
| meta = NULL; |
| |
| min_off = reg->smin_value + off; |
| max_off = reg->smax_value + off; |
| } |
| |
| if (meta && meta->raw_mode) { |
| /* Ensure we won't be overwriting dynptrs when simulating byte |
| * by byte access in check_helper_call using meta.access_size. |
| * This would be a problem if we have a helper in the future |
| * which takes: |
| * |
| * helper(uninit_mem, len, dynptr) |
| * |
| * Now, uninint_mem may overlap with dynptr pointer. Hence, it |
| * may end up writing to dynptr itself when touching memory from |
| * arg 1. This can be relaxed on a case by case basis for known |
| * safe cases, but reject due to the possibilitiy of aliasing by |
| * default. |
| */ |
| for (i = min_off; i < max_off + access_size; i++) { |
| int stack_off = -i - 1; |
| |
| spi = __get_spi(i); |
| /* raw_mode may write past allocated_stack */ |
| if (state->allocated_stack <= stack_off) |
| continue; |
| if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { |
| verbose(env, "potential write to dynptr at off=%d disallowed\n", i); |
| return -EACCES; |
| } |
| } |
| meta->access_size = access_size; |
| meta->regno = regno; |
| return 0; |
| } |
| |
| for (i = min_off; i < max_off + access_size; i++) { |
| u8 *stype; |
| |
| slot = -i - 1; |
| spi = slot / BPF_REG_SIZE; |
| if (state->allocated_stack <= slot) { |
| verbose(env, "verifier bug: allocated_stack too small"); |
| return -EFAULT; |
| } |
| |
| stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; |
| if (*stype == STACK_MISC) |
| goto mark; |
| if ((*stype == STACK_ZERO) || |
| (*stype == STACK_INVALID && env->allow_uninit_stack)) { |
| if (clobber) { |
| /* helper can write anything into the stack */ |
| *stype = STACK_MISC; |
| } |
| goto mark; |
| } |
| |
| if (is_spilled_reg(&state->stack[spi]) && |
| (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || |
| env->allow_ptr_leaks)) { |
| if (clobber) { |
| __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); |
| for (j = 0; j < BPF_REG_SIZE; j++) |
| scrub_spilled_slot(&state->stack[spi].slot_type[j]); |
| } |
| goto mark; |
| } |
| |
| if (tnum_is_const(reg->var_off)) { |
| verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", |
| err_extra, regno, min_off, i - min_off, access_size); |
| } else { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", |
| err_extra, regno, tn_buf, i - min_off, access_size); |
| } |
| return -EACCES; |
| mark: |
| /* reading any byte out of 8-byte 'spill_slot' will cause |
| * the whole slot to be marked as 'read' |
| */ |
| mark_reg_read(env, &state->stack[spi].spilled_ptr, |
| state->stack[spi].spilled_ptr.parent, |
| REG_LIVE_READ64); |
| /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not |
| * be sure that whether stack slot is written to or not. Hence, |
| * we must still conservatively propagate reads upwards even if |
| * helper may write to the entire memory range. |
| */ |
| } |
| return 0; |
| } |
| |
| static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, |
| int access_size, bool zero_size_allowed, |
| struct bpf_call_arg_meta *meta) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| u32 *max_access; |
| |
| switch (base_type(reg->type)) { |
| case PTR_TO_PACKET: |
| case PTR_TO_PACKET_META: |
| return check_packet_access(env, regno, reg->off, access_size, |
| zero_size_allowed); |
| case PTR_TO_MAP_KEY: |
| if (meta && meta->raw_mode) { |
| verbose(env, "R%d cannot write into %s\n", regno, |
| reg_type_str(env, reg->type)); |
| return -EACCES; |
| } |
| return check_mem_region_access(env, regno, reg->off, access_size, |
| reg->map_ptr->key_size, false); |
| case PTR_TO_MAP_VALUE: |
| if (check_map_access_type(env, regno, reg->off, access_size, |
| meta && meta->raw_mode ? BPF_WRITE : |
| BPF_READ)) |
| return -EACCES; |
| return check_map_access(env, regno, reg->off, access_size, |
| zero_size_allowed, ACCESS_HELPER); |
| case PTR_TO_MEM: |
| if (type_is_rdonly_mem(reg->type)) { |
| if (meta && meta->raw_mode) { |
| verbose(env, "R%d cannot write into %s\n", regno, |
| reg_type_str(env, reg->type)); |
| return -EACCES; |
| } |
| } |
| return check_mem_region_access(env, regno, reg->off, |
| access_size, reg->mem_size, |
| zero_size_allowed); |
| case PTR_TO_BUF: |
| if (type_is_rdonly_mem(reg->type)) { |
| if (meta && meta->raw_mode) { |
| verbose(env, "R%d cannot write into %s\n", regno, |
| reg_type_str(env, reg->type)); |
| return -EACCES; |
| } |
| |
| max_access = &env->prog->aux->max_rdonly_access; |
| } else { |
| max_access = &env->prog->aux->max_rdwr_access; |
| } |
| return check_buffer_access(env, reg, regno, reg->off, |
| access_size, zero_size_allowed, |
| max_access); |
| case PTR_TO_STACK: |
| return check_stack_range_initialized( |
| env, |
| regno, reg->off, access_size, |
| zero_size_allowed, ACCESS_HELPER, meta); |
| case PTR_TO_BTF_ID: |
| return check_ptr_to_btf_access(env, regs, regno, reg->off, |
| access_size, BPF_READ, -1); |
| case PTR_TO_CTX: |
| /* in case the function doesn't know how to access the context, |
| * (because we are in a program of type SYSCALL for example), we |
| * can not statically check its size. |
| * Dynamically check it now. |
| */ |
| if (!env->ops->convert_ctx_access) { |
| enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; |
| int offset = access_size - 1; |
| |
| /* Allow zero-byte read from PTR_TO_CTX */ |
| if (access_size == 0) |
| return zero_size_allowed ? 0 : -EACCES; |
| |
| return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, |
| atype, -1, false, false); |
| } |
| |
| fallthrough; |
| default: /* scalar_value or invalid ptr */ |
| /* Allow zero-byte read from NULL, regardless of pointer type */ |
| if (zero_size_allowed && access_size == 0 && |
| register_is_null(reg)) |
| return 0; |
| |
| verbose(env, "R%d type=%s ", regno, |
| reg_type_str(env, reg->type)); |
| verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); |
| return -EACCES; |
| } |
| } |
| |
| /* verify arguments to helpers or kfuncs consisting of a pointer and an access |
| * size. |
| * |
| * @regno is the register containing the access size. regno-1 is the register |
| * containing the pointer. |
| */ |
| static int check_mem_size_reg(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, u32 regno, |
| bool zero_size_allowed, |
| struct bpf_call_arg_meta *meta) |
| { |
| int err; |
| |
| /* This is used to refine r0 return value bounds for helpers |
| * that enforce this value as an upper bound on return values. |
| * See do_refine_retval_range() for helpers that can refine |
| * the return value. C type of helper is u32 so we pull register |
| * bound from umax_value however, if negative verifier errors |
| * out. Only upper bounds can be learned because retval is an |
| * int type and negative retvals are allowed. |
| */ |
| meta->msize_max_value = reg->umax_value; |
| |
| /* The register is SCALAR_VALUE; the access check |
| * happens using its boundaries. |
| */ |
| if (!tnum_is_const(reg->var_off)) |
| /* For unprivileged variable accesses, disable raw |
| * mode so that the program is required to |
| * initialize all the memory that the helper could |
| * just partially fill up. |
| */ |
| meta = NULL; |
| |
| if (reg->smin_value < 0) { |
| verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", |
| regno); |
| return -EACCES; |
| } |
| |
| if (reg->umin_value == 0 && !zero_size_allowed) { |
| verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", |
| regno, reg->umin_value, reg->umax_value); |
| return -EACCES; |
| } |
| |
| if (reg->umax_value >= BPF_MAX_VAR_SIZ) { |
| verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", |
| regno); |
| return -EACCES; |
| } |
| err = check_helper_mem_access(env, regno - 1, |
| reg->umax_value, |
| zero_size_allowed, meta); |
| if (!err) |
| err = mark_chain_precision(env, regno); |
| return err; |
| } |
| |
| static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, |
| u32 regno, u32 mem_size) |
| { |
| bool may_be_null = type_may_be_null(reg->type); |
| struct bpf_reg_state saved_reg; |
| struct bpf_call_arg_meta meta; |
| int err; |
| |
| if (register_is_null(reg)) |
| return 0; |
| |
| memset(&meta, 0, sizeof(meta)); |
| /* Assuming that the register contains a value check if the memory |
| * access is safe. Temporarily save and restore the register's state as |
| * the conversion shouldn't be visible to a caller. |
| */ |
| if (may_be_null) { |
| saved_reg = *reg; |
| mark_ptr_not_null_reg(reg); |
| } |
| |
| err = check_helper_mem_access(env, regno, mem_size, true, &meta); |
| /* Check access for BPF_WRITE */ |
| meta.raw_mode = true; |
| err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); |
| |
| if (may_be_null) |
| *reg = saved_reg; |
| |
| return err; |
| } |
| |
| static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, |
| u32 regno) |
| { |
| struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; |
| bool may_be_null = type_may_be_null(mem_reg->type); |
| struct bpf_reg_state saved_reg; |
| struct bpf_call_arg_meta meta; |
| int err; |
| |
| WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); |
| |
| memset(&meta, 0, sizeof(meta)); |
| |
| if (may_be_null) { |
| saved_reg = *mem_reg; |
| mark_ptr_not_null_reg(mem_reg); |
| } |
| |
| err = check_mem_size_reg(env, reg, regno, true, &meta); |
| /* Check access for BPF_WRITE */ |
| meta.raw_mode = true; |
| err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); |
| |
| if (may_be_null) |
| *mem_reg = saved_reg; |
| return err; |
| } |
| |
| /* Implementation details: |
| * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. |
| * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. |
| * Two bpf_map_lookups (even with the same key) will have different reg->id. |
| * Two separate bpf_obj_new will also have different reg->id. |
| * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier |
| * clears reg->id after value_or_null->value transition, since the verifier only |
| * cares about the range of access to valid map value pointer and doesn't care |
| * about actual address of the map element. |
| * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps |
| * reg->id > 0 after value_or_null->value transition. By doing so |
| * two bpf_map_lookups will be considered two different pointers that |
| * point to different bpf_spin_locks. Likewise for pointers to allocated objects |
| * returned from bpf_obj_new. |
| * The verifier allows taking only one bpf_spin_lock at a time to avoid |
| * dead-locks. |
| * Since only one bpf_spin_lock is allowed the checks are simpler than |
| * reg_is_refcounted() logic. The verifier needs to remember only |
| * one spin_lock instead of array of acquired_refs. |
| * cur_state->active_lock remembers which map value element or allocated |
| * object got locked and clears it after bpf_spin_unlock. |
| */ |
| static int process_spin_lock(struct bpf_verifier_env *env, int regno, |
| bool is_lock) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| struct bpf_verifier_state *cur = env->cur_state; |
| bool is_const = tnum_is_const(reg->var_off); |
| u64 val = reg->var_off.value; |
| struct bpf_map *map = NULL; |
| struct btf *btf = NULL; |
| struct btf_record *rec; |
| |
| if (!is_const) { |
| verbose(env, |
| "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", |
| regno); |
| return -EINVAL; |
| } |
| if (reg->type == PTR_TO_MAP_VALUE) { |
| map = reg->map_ptr; |
| if (!map->btf) { |
| verbose(env, |
| "map '%s' has to have BTF in order to use bpf_spin_lock\n", |
| map->name); |
| return -EINVAL; |
| } |
| } else { |
| btf = reg->btf; |
| } |
| |
| rec = reg_btf_record(reg); |
| if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { |
| verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", |
| map ? map->name : "kptr"); |
| return -EINVAL; |
| } |
| if (rec->spin_lock_off != val + reg->off) { |
| verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", |
| val + reg->off, rec->spin_lock_off); |
| return -EINVAL; |
| } |
| if (is_lock) { |
| if (cur->active_lock.ptr) { |
| verbose(env, |
| "Locking two bpf_spin_locks are not allowed\n"); |
| return -EINVAL; |
| } |
| if (map) |
| cur->active_lock.ptr = map; |
| else |
| cur->active_lock.ptr = btf; |
| cur->active_lock.id = reg->id; |
| } else { |
| void *ptr; |
| |
| if (map) |
| ptr = map; |
| else |
| ptr = btf; |
| |
| if (!cur->active_lock.ptr) { |
| verbose(env, "bpf_spin_unlock without taking a lock\n"); |
| return -EINVAL; |
| } |
| if (cur->active_lock.ptr != ptr || |
| cur->active_lock.id != reg->id) { |
| verbose(env, "bpf_spin_unlock of different lock\n"); |
| return -EINVAL; |
| } |
| |
| invalidate_non_owning_refs(env); |
| |
| cur->active_lock.ptr = NULL; |
| cur->active_lock.id = 0; |
| } |
| return 0; |
| } |
| |
| static int process_timer_func(struct bpf_verifier_env *env, int regno, |
| struct bpf_call_arg_meta *meta) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| bool is_const = tnum_is_const(reg->var_off); |
| struct bpf_map *map = reg->map_ptr; |
| u64 val = reg->var_off.value; |
| |
| if (!is_const) { |
| verbose(env, |
| "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", |
| regno); |
| return -EINVAL; |
| } |
| if (!map->btf) { |
| verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", |
| map->name); |
| return -EINVAL; |
| } |
| if (!btf_record_has_field(map->record, BPF_TIMER)) { |
| verbose(env, "map '%s' has no valid bpf_timer\n", map->name); |
| return -EINVAL; |
| } |
| if (map->record->timer_off != val + reg->off) { |
| verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", |
| val + reg->off, map->record->timer_off); |
| return -EINVAL; |
| } |
| if (meta->map_ptr) { |
| verbose(env, "verifier bug. Two map pointers in a timer helper\n"); |
| return -EFAULT; |
| } |
| meta->map_uid = reg->map_uid; |
| meta->map_ptr = map; |
| return 0; |
| } |
| |
| static int process_kptr_func(struct bpf_verifier_env *env, int regno, |
| struct bpf_call_arg_meta *meta) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| struct bpf_map *map_ptr = reg->map_ptr; |
| struct btf_field *kptr_field; |
| u32 kptr_off; |
| |
| if (!tnum_is_const(reg->var_off)) { |
| verbose(env, |
| "R%d doesn't have constant offset. kptr has to be at the constant offset\n", |
| regno); |
| return -EINVAL; |
| } |
| if (!map_ptr->btf) { |
| verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", |
| map_ptr->name); |
| return -EINVAL; |
| } |
| if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { |
| verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); |
| return -EINVAL; |
| } |
| |
| meta->map_ptr = map_ptr; |
| kptr_off = reg->off + reg->var_off.value; |
| kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); |
| if (!kptr_field) { |
| verbose(env, "off=%d doesn't point to kptr\n", kptr_off); |
| return -EACCES; |
| } |
| if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { |
| verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); |
| return -EACCES; |
| } |
| meta->kptr_field = kptr_field; |
| return 0; |
| } |
| |
| /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK |
| * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. |
| * |
| * In both cases we deal with the first 8 bytes, but need to mark the next 8 |
| * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of |
| * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. |
| * |
| * Mutability of bpf_dynptr is at two levels, one is at the level of struct |
| * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct |
| * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can |
| * mutate the view of the dynptr and also possibly destroy it. In the latter |
| * case, it cannot mutate the bpf_dynptr itself but it can still mutate the |
| * memory that dynptr points to. |
| * |
| * The verifier will keep track both levels of mutation (bpf_dynptr's in |
| * reg->type and the memory's in reg->dynptr.type), but there is no support for |
| * readonly dynptr view yet, hence only the first case is tracked and checked. |
| * |
| * This is consistent with how C applies the const modifier to a struct object, |
| * where the pointer itself inside bpf_dynptr becomes const but not what it |
| * points to. |
| * |
| * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument |
| * type, and declare it as 'const struct bpf_dynptr *' in their prototype. |
| */ |
| static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, |
| enum bpf_arg_type arg_type, int clone_ref_obj_id) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| int err; |
| |
| /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an |
| * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): |
| */ |
| if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { |
| verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); |
| return -EFAULT; |
| } |
| |
| /* MEM_UNINIT - Points to memory that is an appropriate candidate for |
| * constructing a mutable bpf_dynptr object. |
| * |
| * Currently, this is only possible with PTR_TO_STACK |
| * pointing to a region of at least 16 bytes which doesn't |
| * contain an existing bpf_dynptr. |
| * |
| * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be |
| * mutated or destroyed. However, the memory it points to |
| * may be mutated. |
| * |
| * None - Points to a initialized dynptr that can be mutated and |
| * destroyed, including mutation of the memory it points |
| * to. |
| */ |
| if (arg_type & MEM_UNINIT) { |
| int i; |
| |
| if (!is_dynptr_reg_valid_uninit(env, reg)) { |
| verbose(env, "Dynptr has to be an uninitialized dynptr\n"); |
| return -EINVAL; |
| } |
| |
| /* we write BPF_DW bits (8 bytes) at a time */ |
| for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { |
| err = check_mem_access(env, insn_idx, regno, |
| i, BPF_DW, BPF_WRITE, -1, false, false); |
| if (err) |
| return err; |
| } |
| |
| err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); |
| } else /* MEM_RDONLY and None case from above */ { |
| /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ |
| if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { |
| verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); |
| return -EINVAL; |
| } |
| |
| if (!is_dynptr_reg_valid_init(env, reg)) { |
| verbose(env, |
| "Expected an initialized dynptr as arg #%d\n", |
| regno); |
| return -EINVAL; |
| } |
| |
| /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ |
| if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { |
| verbose(env, |
| "Expected a dynptr of type %s as arg #%d\n", |
| dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); |
| return -EINVAL; |
| } |
| |
| err = mark_dynptr_read(env, reg); |
| } |
| return err; |
| } |
| |
| static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| |
| return state->stack[spi].spilled_ptr.ref_obj_id; |
| } |
| |
| static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); |
| } |
| |
| static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & KF_ITER_NEW; |
| } |
| |
| static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & KF_ITER_NEXT; |
| } |
| |
| static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & KF_ITER_DESTROY; |
| } |
| |
| static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) |
| { |
| /* btf_check_iter_kfuncs() guarantees that first argument of any iter |
| * kfunc is iter state pointer |
| */ |
| return arg == 0 && is_iter_kfunc(meta); |
| } |
| |
| static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, |
| struct bpf_kfunc_call_arg_meta *meta) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| const struct btf_type *t; |
| const struct btf_param *arg; |
| int spi, err, i, nr_slots; |
| u32 btf_id; |
| |
| /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ |
| arg = &btf_params(meta->func_proto)[0]; |
| t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ |
| t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ |
| nr_slots = t->size / BPF_REG_SIZE; |
| |
| if (is_iter_new_kfunc(meta)) { |
| /* bpf_iter_<type>_new() expects pointer to uninit iter state */ |
| if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { |
| verbose(env, "expected uninitialized iter_%s as arg #%d\n", |
| iter_type_str(meta->btf, btf_id), regno); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { |
| err = check_mem_access(env, insn_idx, regno, |
| i, BPF_DW, BPF_WRITE, -1, false, false); |
| if (err) |
| return err; |
| } |
| |
| err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); |
| if (err) |
| return err; |
| } else { |
| /* iter_next() or iter_destroy() expect initialized iter state*/ |
| err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); |
| switch (err) { |
| case 0: |
| break; |
| case -EINVAL: |
| verbose(env, "expected an initialized iter_%s as arg #%d\n", |
| iter_type_str(meta->btf, btf_id), regno); |
| return err; |
| case -EPROTO: |
| verbose(env, "expected an RCU CS when using %s\n", meta->func_name); |
| return err; |
| default: |
| return err; |
| } |
| |
| spi = iter_get_spi(env, reg, nr_slots); |
| if (spi < 0) |
| return spi; |
| |
| err = mark_iter_read(env, reg, spi, nr_slots); |
| if (err) |
| return err; |
| |
| /* remember meta->iter info for process_iter_next_call() */ |
| meta->iter.spi = spi; |
| meta->iter.frameno = reg->frameno; |
| meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); |
| |
| if (is_iter_destroy_kfunc(meta)) { |
| err = unmark_stack_slots_iter(env, reg, nr_slots); |
| if (err) |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Look for a previous loop entry at insn_idx: nearest parent state |
| * stopped at insn_idx with callsites matching those in cur->frame. |
| */ |
| static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, |
| struct bpf_verifier_state *cur, |
| int insn_idx) |
| { |
| struct bpf_verifier_state_list *sl; |
| struct bpf_verifier_state *st; |
| |
| /* Explored states are pushed in stack order, most recent states come first */ |
| sl = *explored_state(env, insn_idx); |
| for (; sl; sl = sl->next) { |
| /* If st->branches != 0 state is a part of current DFS verification path, |
| * hence cur & st for a loop. |
| */ |
| st = &sl->state; |
| if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && |
| st->dfs_depth < cur->dfs_depth) |
| return st; |
| } |
| |
| return NULL; |
| } |
| |
| static void reset_idmap_scratch(struct bpf_verifier_env *env); |
| static bool regs_exact(const struct bpf_reg_state *rold, |
| const struct bpf_reg_state *rcur, |
| struct bpf_idmap *idmap); |
| |
| static void maybe_widen_reg(struct bpf_verifier_env *env, |
| struct bpf_reg_state *rold, struct bpf_reg_state *rcur, |
| struct bpf_idmap *idmap) |
| { |
| if (rold->type != SCALAR_VALUE) |
| return; |
| if (rold->type != rcur->type) |
| return; |
| if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) |
| return; |
| __mark_reg_unknown(env, rcur); |
| } |
| |
| static int widen_imprecise_scalars(struct bpf_verifier_env *env, |
| struct bpf_verifier_state *old, |
| struct bpf_verifier_state *cur) |
| { |
| struct bpf_func_state *fold, *fcur; |
| int i, fr; |
| |
| reset_idmap_scratch(env); |
| for (fr = old->curframe; fr >= 0; fr--) { |
| fold = old->frame[fr]; |
| fcur = cur->frame[fr]; |
| |
| for (i = 0; i < MAX_BPF_REG; i++) |
| maybe_widen_reg(env, |
| &fold->regs[i], |
| &fcur->regs[i], |
| &env->idmap_scratch); |
| |
| for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { |
| if (!is_spilled_reg(&fold->stack[i]) || |
| !is_spilled_reg(&fcur->stack[i])) |
| continue; |
| |
| maybe_widen_reg(env, |
| &fold->stack[i].spilled_ptr, |
| &fcur->stack[i].spilled_ptr, |
| &env->idmap_scratch); |
| } |
| } |
| return 0; |
| } |
| |
| /* process_iter_next_call() is called when verifier gets to iterator's next |
| * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer |
| * to it as just "iter_next()" in comments below. |
| * |
| * BPF verifier relies on a crucial contract for any iter_next() |
| * implementation: it should *eventually* return NULL, and once that happens |
| * it should keep returning NULL. That is, once iterator exhausts elements to |
| * iterate, it should never reset or spuriously return new elements. |
| * |
| * With the assumption of such contract, process_iter_next_call() simulates |
| * a fork in the verifier state to validate loop logic correctness and safety |
| * without having to simulate infinite amount of iterations. |
| * |
| * In current state, we first assume that iter_next() returned NULL and |
| * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such |
| * conditions we should not form an infinite loop and should eventually reach |
| * exit. |
| * |
| * Besides that, we also fork current state and enqueue it for later |
| * verification. In a forked state we keep iterator state as ACTIVE |
| * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We |
| * also bump iteration depth to prevent erroneous infinite loop detection |
| * later on (see iter_active_depths_differ() comment for details). In this |
| * state we assume that we'll eventually loop back to another iter_next() |
| * calls (it could be in exactly same location or in some other instruction, |
| * it doesn't matter, we don't make any unnecessary assumptions about this, |
| * everything revolves around iterator state in a stack slot, not which |
| * instruction is calling iter_next()). When that happens, we either will come |
| * to iter_next() with equivalent state and can conclude that next iteration |
| * will proceed in exactly the same way as we just verified, so it's safe to |
| * assume that loop converges. If not, we'll go on another iteration |
| * simulation with a different input state, until all possible starting states |
| * are validated or we reach maximum number of instructions limit. |
| * |
| * This way, we will either exhaustively discover all possible input states |
| * that iterator loop can start with and eventually will converge, or we'll |
| * effectively regress into bounded loop simulation logic and either reach |
| * maximum number of instructions if loop is not provably convergent, or there |
| * is some statically known limit on number of iterations (e.g., if there is |
| * an explicit `if n > 100 then break;` statement somewhere in the loop). |
| * |
| * Iteration convergence logic in is_state_visited() relies on exact |
| * states comparison, which ignores read and precision marks. |
| * This is necessary because read and precision marks are not finalized |
| * while in the loop. Exact comparison might preclude convergence for |
| * simple programs like below: |
| * |
| * i = 0; |
| * while(iter_next(&it)) |
| * i++; |
| * |
| * At each iteration step i++ would produce a new distinct state and |
| * eventually instruction processing limit would be reached. |
| * |
| * To avoid such behavior speculatively forget (widen) range for |
| * imprecise scalar registers, if those registers were not precise at the |
| * end of the previous iteration and do not match exactly. |
| * |
| * This is a conservative heuristic that allows to verify wide range of programs, |
| * however it precludes verification of programs that conjure an |
| * imprecise value on the first loop iteration and use it as precise on a second. |
| * For example, the following safe program would fail to verify: |
| * |
| * struct bpf_num_iter it; |
| * int arr[10]; |
| * int i = 0, a = 0; |
| * bpf_iter_num_new(&it, 0, 10); |
| * while (bpf_iter_num_next(&it)) { |
| * if (a == 0) { |
| * a = 1; |
| * i = 7; // Because i changed verifier would forget |
| * // it's range on second loop entry. |
| * } else { |
| * arr[i] = 42; // This would fail to verify. |
| * } |
| * } |
| * bpf_iter_num_destroy(&it); |
| */ |
| static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, |
| struct bpf_kfunc_call_arg_meta *meta) |
| { |
| struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; |
| struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; |
| struct bpf_reg_state *cur_iter, *queued_iter; |
| int iter_frameno = meta->iter.frameno; |
| int iter_spi = meta->iter.spi; |
| |
| BTF_TYPE_EMIT(struct bpf_iter); |
| |
| cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; |
| |
| if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && |
| cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { |
| verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", |
| cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); |
| return -EFAULT; |
| } |
| |
| if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { |
| /* Because iter_next() call is a checkpoint is_state_visitied() |
| * should guarantee parent state with same call sites and insn_idx. |
| */ |
| if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || |
| !same_callsites(cur_st->parent, cur_st)) { |
| verbose(env, "bug: bad parent state for iter next call"); |
| return -EFAULT; |
| } |
| /* Note cur_st->parent in the call below, it is necessary to skip |
| * checkpoint created for cur_st by is_state_visited() |
| * right at this instruction. |
| */ |
| prev_st = find_prev_entry(env, cur_st->parent, insn_idx); |
| /* branch out active iter state */ |
| queued_st = push_stack(env, insn_idx + 1, insn_idx, false); |
| if (!queued_st) |
| return -ENOMEM; |
| |
| queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; |
| queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; |
| queued_iter->iter.depth++; |
| if (prev_st) |
| widen_imprecise_scalars(env, prev_st, queued_st); |
| |
| queued_fr = queued_st->frame[queued_st->curframe]; |
| mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); |
| } |
| |
| /* switch to DRAINED state, but keep the depth unchanged */ |
| /* mark current iter state as drained and assume returned NULL */ |
| cur_iter->iter.state = BPF_ITER_STATE_DRAINED; |
| __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); |
| |
| return 0; |
| } |
| |
| static bool arg_type_is_mem_size(enum bpf_arg_type type) |
| { |
| return type == ARG_CONST_SIZE || |
| type == ARG_CONST_SIZE_OR_ZERO; |
| } |
| |
| static bool arg_type_is_release(enum bpf_arg_type type) |
| { |
| return type & OBJ_RELEASE; |
| } |
| |
| static bool arg_type_is_dynptr(enum bpf_arg_type type) |
| { |
| return base_type(type) == ARG_PTR_TO_DYNPTR; |
| } |
| |
| static int int_ptr_type_to_size(enum bpf_arg_type type) |
| { |
| if (type == ARG_PTR_TO_INT) |
| return sizeof(u32); |
| else if (type == ARG_PTR_TO_LONG) |
| return sizeof(u64); |
| |
| return -EINVAL; |
| } |
| |
| static int resolve_map_arg_type(struct bpf_verifier_env *env, |
| const struct bpf_call_arg_meta *meta, |
| enum bpf_arg_type *arg_type) |
| { |
| if (!meta->map_ptr) { |
| /* kernel subsystem misconfigured verifier */ |
| verbose(env, "invalid map_ptr to access map->type\n"); |
| return -EACCES; |
| } |
| |
| switch (meta->map_ptr->map_type) { |
| case BPF_MAP_TYPE_SOCKMAP: |
| case BPF_MAP_TYPE_SOCKHASH: |
| if (*arg_type == ARG_PTR_TO_MAP_VALUE) { |
| *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; |
| } else { |
| verbose(env, "invalid arg_type for sockmap/sockhash\n"); |
| return -EINVAL; |
| } |
| break; |
| case BPF_MAP_TYPE_BLOOM_FILTER: |
| if (meta->func_id == BPF_FUNC_map_peek_elem) |
| *arg_type = ARG_PTR_TO_MAP_VALUE; |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| struct bpf_reg_types { |
| const enum bpf_reg_type types[10]; |
| u32 *btf_id; |
| }; |
| |
| static const struct bpf_reg_types sock_types = { |
| .types = { |
| PTR_TO_SOCK_COMMON, |
| PTR_TO_SOCKET, |
| PTR_TO_TCP_SOCK, |
| PTR_TO_XDP_SOCK, |
| }, |
| }; |
| |
| #ifdef CONFIG_NET |
| static const struct bpf_reg_types btf_id_sock_common_types = { |
| .types = { |
| PTR_TO_SOCK_COMMON, |
| PTR_TO_SOCKET, |
| PTR_TO_TCP_SOCK, |
| PTR_TO_XDP_SOCK, |
| PTR_TO_BTF_ID, |
| PTR_TO_BTF_ID | PTR_TRUSTED, |
| }, |
| .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], |
| }; |
| #endif |
| |
| static const struct bpf_reg_types mem_types = { |
| .types = { |
| PTR_TO_STACK, |
| PTR_TO_PACKET, |
| PTR_TO_PACKET_META, |
| PTR_TO_MAP_KEY, |
| PTR_TO_MAP_VALUE, |
| PTR_TO_MEM, |
| PTR_TO_MEM | MEM_RINGBUF, |
| PTR_TO_BUF, |
| PTR_TO_BTF_ID | PTR_TRUSTED, |
| }, |
| }; |
| |
| static const struct bpf_reg_types int_ptr_types = { |
| .types = { |
| PTR_TO_STACK, |
| PTR_TO_PACKET, |
| PTR_TO_PACKET_META, |
| PTR_TO_MAP_KEY, |
| PTR_TO_MAP_VALUE, |
| }, |
| }; |
| |
| static const struct bpf_reg_types spin_lock_types = { |
| .types = { |
| PTR_TO_MAP_VALUE, |
| PTR_TO_BTF_ID | MEM_ALLOC, |
| } |
| }; |
| |
| static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; |
| static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; |
| static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; |
| static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; |
| static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; |
| static const struct bpf_reg_types btf_ptr_types = { |
| .types = { |
| PTR_TO_BTF_ID, |
| PTR_TO_BTF_ID | PTR_TRUSTED, |
| PTR_TO_BTF_ID | MEM_RCU, |
| }, |
| }; |
| static const struct bpf_reg_types percpu_btf_ptr_types = { |
| .types = { |
| PTR_TO_BTF_ID | MEM_PERCPU, |
| PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, |
| PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, |
| } |
| }; |
| static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; |
| static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; |
| static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; |
| static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; |
| static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; |
| static const struct bpf_reg_types dynptr_types = { |
| .types = { |
| PTR_TO_STACK, |
| CONST_PTR_TO_DYNPTR, |
| } |
| }; |
| |
| static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { |
| [ARG_PTR_TO_MAP_KEY] = &mem_types, |
| [ARG_PTR_TO_MAP_VALUE] = &mem_types, |
| [ARG_CONST_SIZE] = &scalar_types, |
| [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, |
| [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, |
| [ARG_CONST_MAP_PTR] = &const_map_ptr_types, |
| [ARG_PTR_TO_CTX] = &context_types, |
| [ARG_PTR_TO_SOCK_COMMON] = &sock_types, |
| #ifdef CONFIG_NET |
| [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, |
| #endif |
| [ARG_PTR_TO_SOCKET] = &fullsock_types, |
| [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, |
| [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, |
| [ARG_PTR_TO_MEM] = &mem_types, |
| [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, |
| [ARG_PTR_TO_INT] = &int_ptr_types, |
| [ARG_PTR_TO_LONG] = &int_ptr_types, |
| [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, |
| [ARG_PTR_TO_FUNC] = &func_ptr_types, |
| [ARG_PTR_TO_STACK] = &stack_ptr_types, |
| [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, |
| [ARG_PTR_TO_TIMER] = &timer_types, |
| [ARG_PTR_TO_KPTR] = &kptr_types, |
| [ARG_PTR_TO_DYNPTR] = &dynptr_types, |
| }; |
| |
| static int check_reg_type(struct bpf_verifier_env *env, u32 regno, |
| enum bpf_arg_type arg_type, |
| const u32 *arg_btf_id, |
| struct bpf_call_arg_meta *meta) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| enum bpf_reg_type expected, type = reg->type; |
| const struct bpf_reg_types *compatible; |
| int i, j; |
| |
| compatible = compatible_reg_types[base_type(arg_type)]; |
| if (!compatible) { |
| verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); |
| return -EFAULT; |
| } |
| |
| /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, |
| * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY |
| * |
| * Same for MAYBE_NULL: |
| * |
| * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, |
| * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL |
| * |
| * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. |
| * |
| * Therefore we fold these flags depending on the arg_type before comparison. |
| */ |
| if (arg_type & MEM_RDONLY) |
| type &= ~MEM_RDONLY; |
| if (arg_type & PTR_MAYBE_NULL) |
| type &= ~PTR_MAYBE_NULL; |
| if (base_type(arg_type) == ARG_PTR_TO_MEM) |
| type &= ~DYNPTR_TYPE_FLAG_MASK; |
| |
| if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) { |
| type &= ~MEM_ALLOC; |
| type &= ~MEM_PERCPU; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { |
| expected = compatible->types[i]; |
| if (expected == NOT_INIT) |
| break; |
| |
| if (type == expected) |
| goto found; |
| } |
| |
| verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); |
| for (j = 0; j + 1 < i; j++) |
| verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); |
| verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); |
| return -EACCES; |
| |
| found: |
| if (base_type(reg->type) != PTR_TO_BTF_ID) |
| return 0; |
| |
| if (compatible == &mem_types) { |
| if (!(arg_type & MEM_RDONLY)) { |
| verbose(env, |
| "%s() may write into memory pointed by R%d type=%s\n", |
| func_id_name(meta->func_id), |
| regno, reg_type_str(env, reg->type)); |
| return -EACCES; |
| } |
| return 0; |
| } |
| |
| switch ((int)reg->type) { |
| case PTR_TO_BTF_ID: |
| case PTR_TO_BTF_ID | PTR_TRUSTED: |
| case PTR_TO_BTF_ID | MEM_RCU: |
| case PTR_TO_BTF_ID | PTR_MAYBE_NULL: |
| case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: |
| { |
| /* For bpf_sk_release, it needs to match against first member |
| * 'struct sock_common', hence make an exception for it. This |
| * allows bpf_sk_release to work for multiple socket types. |
| */ |
| bool strict_type_match = arg_type_is_release(arg_type) && |
| meta->func_id != BPF_FUNC_sk_release; |
| |
| if (type_may_be_null(reg->type) && |
| (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { |
| verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); |
| return -EACCES; |
| } |
| |
| if (!arg_btf_id) { |
| if (!compatible->btf_id) { |
| verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); |
| return -EFAULT; |
| } |
| arg_btf_id = compatible->btf_id; |
| } |
| |
| if (meta->func_id == BPF_FUNC_kptr_xchg) { |
| if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) |
| return -EACCES; |
| } else { |
| if (arg_btf_id == BPF_PTR_POISON) { |
| verbose(env, "verifier internal error:"); |
| verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", |
| regno); |
| return -EACCES; |
| } |
| |
| if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, |
| btf_vmlinux, *arg_btf_id, |
| strict_type_match)) { |
| verbose(env, "R%d is of type %s but %s is expected\n", |
| regno, btf_type_name(reg->btf, reg->btf_id), |
| btf_type_name(btf_vmlinux, *arg_btf_id)); |
| return -EACCES; |
| } |
| } |
| break; |
| } |
| case PTR_TO_BTF_ID | MEM_ALLOC: |
| case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: |
| if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && |
| meta->func_id != BPF_FUNC_kptr_xchg) { |
| verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); |
| return -EFAULT; |
| } |
| if (meta->func_id == BPF_FUNC_kptr_xchg) { |
| if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) |
| return -EACCES; |
| } |
| break; |
| case PTR_TO_BTF_ID | MEM_PERCPU: |
| case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: |
| case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: |
| /* Handled by helper specific checks */ |
| break; |
| default: |
| verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| static struct btf_field * |
| reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) |
| { |
| struct btf_field *field; |
| struct btf_record *rec; |
| |
| rec = reg_btf_record(reg); |
| if (!rec) |
| return NULL; |
| |
| field = btf_record_find(rec, off, fields); |
| if (!field) |
| return NULL; |
| |
| return field; |
| } |
| |
| static int check_func_arg_reg_off(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, int regno, |
| enum bpf_arg_type arg_type) |
| { |
| u32 type = reg->type; |
| |
| /* When referenced register is passed to release function, its fixed |
| * offset must be 0. |
| * |
| * We will check arg_type_is_release reg has ref_obj_id when storing |
| * meta->release_regno. |
| */ |
| if (arg_type_is_release(arg_type)) { |
| /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it |
| * may not directly point to the object being released, but to |
| * dynptr pointing to such object, which might be at some offset |
| * on the stack. In that case, we simply to fallback to the |
| * default handling. |
| */ |
| if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) |
| return 0; |
| |
| /* Doing check_ptr_off_reg check for the offset will catch this |
| * because fixed_off_ok is false, but checking here allows us |
| * to give the user a better error message. |
| */ |
| if (reg->off) { |
| verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", |
| regno); |
| return -EINVAL; |
| } |
| return __check_ptr_off_reg(env, reg, regno, false); |
| } |
| |
| switch (type) { |
| /* Pointer types where both fixed and variable offset is explicitly allowed: */ |
| case PTR_TO_STACK: |
| case PTR_TO_PACKET: |
| case PTR_TO_PACKET_META: |
| case PTR_TO_MAP_KEY: |
| case PTR_TO_MAP_VALUE: |
| case PTR_TO_MEM: |
| case PTR_TO_MEM | MEM_RDONLY: |
| case PTR_TO_MEM | MEM_RINGBUF: |
| case PTR_TO_BUF: |
| case PTR_TO_BUF | MEM_RDONLY: |
| case SCALAR_VALUE: |
| return 0; |
| /* All the rest must be rejected, except PTR_TO_BTF_ID which allows |
| * fixed offset. |
| */ |
| case PTR_TO_BTF_ID: |
| case PTR_TO_BTF_ID | MEM_ALLOC: |
| case PTR_TO_BTF_ID | PTR_TRUSTED: |
| case PTR_TO_BTF_ID | MEM_RCU: |
| case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: |
| case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: |
| /* When referenced PTR_TO_BTF_ID is passed to release function, |
| * its fixed offset must be 0. In the other cases, fixed offset |
| * can be non-zero. This was already checked above. So pass |
| * fixed_off_ok as true to allow fixed offset for all other |
| * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we |
| * still need to do checks instead of returning. |
| */ |
| return __check_ptr_off_reg(env, reg, regno, true); |
| default: |
| return __check_ptr_off_reg(env, reg, regno, false); |
| } |
| } |
| |
| static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, |
| const struct bpf_func_proto *fn, |
| struct bpf_reg_state *regs) |
| { |
| struct bpf_reg_state *state = NULL; |
| int i; |
| |
| for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) |
| if (arg_type_is_dynptr(fn->arg_type[i])) { |
| if (state) { |
| verbose(env, "verifier internal error: multiple dynptr args\n"); |
| return NULL; |
| } |
| state = ®s[BPF_REG_1 + i]; |
| } |
| |
| if (!state) |
| verbose(env, "verifier internal error: no dynptr arg found\n"); |
| |
| return state; |
| } |
| |
| static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int spi; |
| |
| if (reg->type == CONST_PTR_TO_DYNPTR) |
| return reg->id; |
| spi = dynptr_get_spi(env, reg); |
| if (spi < 0) |
| return spi; |
| return state->stack[spi].spilled_ptr.id; |
| } |
| |
| static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int spi; |
| |
| if (reg->type == CONST_PTR_TO_DYNPTR) |
| return reg->ref_obj_id; |
| spi = dynptr_get_spi(env, reg); |
| if (spi < 0) |
| return spi; |
| return state->stack[spi].spilled_ptr.ref_obj_id; |
| } |
| |
| static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg) |
| { |
| struct bpf_func_state *state = func(env, reg); |
| int spi; |
| |
| if (reg->type == CONST_PTR_TO_DYNPTR) |
| return reg->dynptr.type; |
| |
| spi = __get_spi(reg->off); |
| if (spi < 0) { |
| verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); |
| return BPF_DYNPTR_TYPE_INVALID; |
| } |
| |
| return state->stack[spi].spilled_ptr.dynptr.type; |
| } |
| |
| static int check_reg_const_str(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, u32 regno) |
| { |
| struct bpf_map *map = reg->map_ptr; |
| int err; |
| int map_off; |
| u64 map_addr; |
| char *str_ptr; |
| |
| if (reg->type != PTR_TO_MAP_VALUE) |
| return -EINVAL; |
| |
| if (!bpf_map_is_rdonly(map)) { |
| verbose(env, "R%d does not point to a readonly map'\n", regno); |
| return -EACCES; |
| } |
| |
| if (!tnum_is_const(reg->var_off)) { |
| verbose(env, "R%d is not a constant address'\n", regno); |
| return -EACCES; |
| } |
| |
| if (!map->ops->map_direct_value_addr) { |
| verbose(env, "no direct value access support for this map type\n"); |
| return -EACCES; |
| } |
| |
| err = check_map_access(env, regno, reg->off, |
| map->value_size - reg->off, false, |
| ACCESS_HELPER); |
| if (err) |
| return err; |
| |
| map_off = reg->off + reg->var_off.value; |
| err = map->ops->map_direct_value_addr(map, &map_addr, map_off); |
| if (err) { |
| verbose(env, "direct value access on string failed\n"); |
| return err; |
| } |
| |
| str_ptr = (char *)(long)(map_addr); |
| if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { |
| verbose(env, "string is not zero-terminated\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int check_func_arg(struct bpf_verifier_env *env, u32 arg, |
| struct bpf_call_arg_meta *meta, |
| const struct bpf_func_proto *fn, |
| int insn_idx) |
| { |
| u32 regno = BPF_REG_1 + arg; |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| enum bpf_arg_type arg_type = fn->arg_type[arg]; |
| enum bpf_reg_type type = reg->type; |
| u32 *arg_btf_id = NULL; |
| int err = 0; |
| |
| if (arg_type == ARG_DONTCARE) |
| return 0; |
| |
| err = check_reg_arg(env, regno, SRC_OP); |
| if (err) |
| return err; |
| |
| if (arg_type == ARG_ANYTHING) { |
| if (is_pointer_value(env, regno)) { |
| verbose(env, "R%d leaks addr into helper function\n", |
| regno); |
| return -EACCES; |
| } |
| return 0; |
| } |
| |
| if (type_is_pkt_pointer(type) && |
| !may_access_direct_pkt_data(env, meta, BPF_READ)) { |
| verbose(env, "helper access to the packet is not allowed\n"); |
| return -EACCES; |
| } |
| |
| if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { |
| err = resolve_map_arg_type(env, meta, &arg_type); |
| if (err) |
| return err; |
| } |
| |
| if (register_is_null(reg) && type_may_be_null(arg_type)) |
| /* A NULL register has a SCALAR_VALUE type, so skip |
| * type checking. |
| */ |
| goto skip_type_check; |
| |
| /* arg_btf_id and arg_size are in a union. */ |
| if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || |
| base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) |
| arg_btf_id = fn->arg_btf_id[arg]; |
| |
| err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); |
| if (err) |
| return err; |
| |
| err = check_func_arg_reg_off(env, reg, regno, arg_type); |
| if (err) |
| return err; |
| |
| skip_type_check: |
| if (arg_type_is_release(arg_type)) { |
| if (arg_type_is_dynptr(arg_type)) { |
| struct bpf_func_state *state = func(env, reg); |
| int spi; |
| |
| /* Only dynptr created on stack can be released, thus |
| * the get_spi and stack state checks for spilled_ptr |
| * should only be done before process_dynptr_func for |
| * PTR_TO_STACK. |
| */ |
| if (reg->type == PTR_TO_STACK) { |
| spi = dynptr_get_spi(env, reg); |
| if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { |
| verbose(env, "arg %d is an unacquired reference\n", regno); |
| return -EINVAL; |
| } |
| } else { |
| verbose(env, "cannot release unowned const bpf_dynptr\n"); |
| return -EINVAL; |
| } |
| } else if (!reg->ref_obj_id && !register_is_null(reg)) { |
| verbose(env, "R%d must be referenced when passed to release function\n", |
| regno); |
| return -EINVAL; |
| } |
| if (meta->release_regno) { |
| verbose(env, "verifier internal error: more than one release argument\n"); |
| return -EFAULT; |
| } |
| meta->release_regno = regno; |
| } |
| |
| if (reg->ref_obj_id) { |
| if (meta->ref_obj_id) { |
| verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", |
| regno, reg->ref_obj_id, |
| meta->ref_obj_id); |
| return -EFAULT; |
| } |
| meta->ref_obj_id = reg->ref_obj_id; |
| } |
| |
| switch (base_type(arg_type)) { |
| case ARG_CONST_MAP_PTR: |
| /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ |
| if (meta->map_ptr) { |
| /* Use map_uid (which is unique id of inner map) to reject: |
| * inner_map1 = bpf_map_lookup_elem(outer_map, key1) |
| * inner_map2 = bpf_map_lookup_elem(outer_map, key2) |
| * if (inner_map1 && inner_map2) { |
| * timer = bpf_map_lookup_elem(inner_map1); |
| * if (timer) |
| * // mismatch would have been allowed |
| * bpf_timer_init(timer, inner_map2); |
| * } |
| * |
| * Comparing map_ptr is enough to distinguish normal and outer maps. |
| */ |
| if (meta->map_ptr != reg->map_ptr || |
| meta->map_uid != reg->map_uid) { |
| verbose(env, |
| "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", |
| meta->map_uid, reg->map_uid); |
| return -EINVAL; |
| } |
| } |
| meta->map_ptr = reg->map_ptr; |
| meta->map_uid = reg->map_uid; |
| break; |
| case ARG_PTR_TO_MAP_KEY: |
| /* bpf_map_xxx(..., map_ptr, ..., key) call: |
| * check that [key, key + map->key_size) are within |
| * stack limits and initialized |
| */ |
| if (!meta->map_ptr) { |
| /* in function declaration map_ptr must come before |
| * map_key, so that it's verified and known before |
| * we have to check map_key here. Otherwise it means |
| * that kernel subsystem misconfigured verifier |
| */ |
| verbose(env, "invalid map_ptr to access map->key\n"); |
| return -EACCES; |
| } |
| err = check_helper_mem_access(env, regno, |
| meta->map_ptr->key_size, false, |
| NULL); |
| break; |
| case ARG_PTR_TO_MAP_VALUE: |
| if (type_may_be_null(arg_type) && register_is_null(reg)) |
| return 0; |
| |
| /* bpf_map_xxx(..., map_ptr, ..., value) call: |
| * check [value, value + map->value_size) validity |
| */ |
| if (!meta->map_ptr) { |
| /* kernel subsystem misconfigured verifier */ |
| verbose(env, "invalid map_ptr to access map->value\n"); |
| return -EACCES; |
| } |
| meta->raw_mode = arg_type & MEM_UNINIT; |
| err = check_helper_mem_access(env, regno, |
| meta->map_ptr->value_size, false, |
| meta); |
| break; |
| case ARG_PTR_TO_PERCPU_BTF_ID: |
| if (!reg->btf_id) { |
| verbose(env, "Helper has invalid btf_id in R%d\n", regno); |
| return -EACCES; |
| } |
| meta->ret_btf = reg->btf; |
| meta->ret_btf_id = reg->btf_id; |
| break; |
| case ARG_PTR_TO_SPIN_LOCK: |
| if (in_rbtree_lock_required_cb(env)) { |
| verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); |
| return -EACCES; |
| } |
| if (meta->func_id == BPF_FUNC_spin_lock) { |
| err = process_spin_lock(env, regno, true); |
| if (err) |
| return err; |
| } else if (meta->func_id == BPF_FUNC_spin_unlock) { |
| err = process_spin_lock(env, regno, false); |
| if (err) |
| return err; |
| } else { |
| verbose(env, "verifier internal error\n"); |
| return -EFAULT; |
| } |
| break; |
| case ARG_PTR_TO_TIMER: |
| err = process_timer_func(env, regno, meta); |
| if (err) |
| return err; |
| break; |
| case ARG_PTR_TO_FUNC: |
| meta->subprogno = reg->subprogno; |
| break; |
| case ARG_PTR_TO_MEM: |
| /* The access to this pointer is only checked when we hit the |
| * next is_mem_size argument below. |
| */ |
| meta->raw_mode = arg_type & MEM_UNINIT; |
| if (arg_type & MEM_FIXED_SIZE) { |
| err = check_helper_mem_access(env, regno, |
| fn->arg_size[arg], false, |
| meta); |
| } |
| break; |
| case ARG_CONST_SIZE: |
| err = check_mem_size_reg(env, reg, regno, false, meta); |
| break; |
| case ARG_CONST_SIZE_OR_ZERO: |
| err = check_mem_size_reg(env, reg, regno, true, meta); |
| break; |
| case ARG_PTR_TO_DYNPTR: |
| err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); |
| if (err) |
| return err; |
| break; |
| case ARG_CONST_ALLOC_SIZE_OR_ZERO: |
| if (!tnum_is_const(reg->var_off)) { |
| verbose(env, "R%d is not a known constant'\n", |
| regno); |
| return -EACCES; |
| } |
| meta->mem_size = reg->var_off.value; |
| err = mark_chain_precision(env, regno); |
| if (err) |
| return err; |
| break; |
| case ARG_PTR_TO_INT: |
| case ARG_PTR_TO_LONG: |
| { |
| int size = int_ptr_type_to_size(arg_type); |
| |
| err = check_helper_mem_access(env, regno, size, false, meta); |
| if (err) |
| return err; |
| err = check_ptr_alignment(env, reg, 0, size, true); |
| break; |
| } |
| case ARG_PTR_TO_CONST_STR: |
| { |
| err = check_reg_const_str(env, reg, regno); |
| if (err) |
| return err; |
| break; |
| } |
| case ARG_PTR_TO_KPTR: |
| err = process_kptr_func(env, regno, meta); |
| if (err) |
| return err; |
| break; |
| } |
| |
| return err; |
| } |
| |
| static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) |
| { |
| enum bpf_attach_type eatype = env->prog->expected_attach_type; |
| enum bpf_prog_type type = resolve_prog_type(env->prog); |
| |
| if (func_id != BPF_FUNC_map_update_elem) |
| return false; |
| |
| /* It's not possible to get access to a locked struct sock in these |
| * contexts, so updating is safe. |
| */ |
| switch (type) { |
| case BPF_PROG_TYPE_TRACING: |
| if (eatype == BPF_TRACE_ITER) |
| return true; |
| break; |
| case BPF_PROG_TYPE_SOCKET_FILTER: |
| case BPF_PROG_TYPE_SCHED_CLS: |
| case BPF_PROG_TYPE_SCHED_ACT: |
| case BPF_PROG_TYPE_XDP: |
| case BPF_PROG_TYPE_SK_REUSEPORT: |
| case BPF_PROG_TYPE_FLOW_DISSECTOR: |
| case BPF_PROG_TYPE_SK_LOOKUP: |
| return true; |
| default: |
| break; |
| } |
| |
| verbose(env, "cannot update sockmap in this context\n"); |
| return false; |
| } |
| |
| static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) |
| { |
| return env->prog->jit_requested && |
| bpf_jit_supports_subprog_tailcalls(); |
| } |
| |
| static int check_map_func_compatibility(struct bpf_verifier_env *env, |
| struct bpf_map *map, int func_id) |
| { |
| if (!map) |
| return 0; |
| |
| /* We need a two way check, first is from map perspective ... */ |
| switch (map->map_type) { |
| case BPF_MAP_TYPE_PROG_ARRAY: |
| if (func_id != BPF_FUNC_tail_call) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_PERF_EVENT_ARRAY: |
| if (func_id != BPF_FUNC_perf_event_read && |
| func_id != BPF_FUNC_perf_event_output && |
| func_id != BPF_FUNC_skb_output && |
| func_id != BPF_FUNC_perf_event_read_value && |
| func_id != BPF_FUNC_xdp_output) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_RINGBUF: |
| if (func_id != BPF_FUNC_ringbuf_output && |
| func_id != BPF_FUNC_ringbuf_reserve && |
| func_id != BPF_FUNC_ringbuf_query && |
| func_id != BPF_FUNC_ringbuf_reserve_dynptr && |
| func_id != BPF_FUNC_ringbuf_submit_dynptr && |
| func_id != BPF_FUNC_ringbuf_discard_dynptr) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_USER_RINGBUF: |
| if (func_id != BPF_FUNC_user_ringbuf_drain) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_STACK_TRACE: |
| if (func_id != BPF_FUNC_get_stackid) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_CGROUP_ARRAY: |
| if (func_id != BPF_FUNC_skb_under_cgroup && |
| func_id != BPF_FUNC_current_task_under_cgroup) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_CGROUP_STORAGE: |
| case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: |
| if (func_id != BPF_FUNC_get_local_storage) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_DEVMAP: |
| case BPF_MAP_TYPE_DEVMAP_HASH: |
| if (func_id != BPF_FUNC_redirect_map && |
| func_id != BPF_FUNC_map_lookup_elem) |
| goto error; |
| break; |
| /* Restrict bpf side of cpumap and xskmap, open when use-cases |
| * appear. |
| */ |
| case BPF_MAP_TYPE_CPUMAP: |
| if (func_id != BPF_FUNC_redirect_map) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_XSKMAP: |
| if (func_id != BPF_FUNC_redirect_map && |
| func_id != BPF_FUNC_map_lookup_elem) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_ARRAY_OF_MAPS: |
| case BPF_MAP_TYPE_HASH_OF_MAPS: |
| if (func_id != BPF_FUNC_map_lookup_elem) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_SOCKMAP: |
| if (func_id != BPF_FUNC_sk_redirect_map && |
| func_id != BPF_FUNC_sock_map_update && |
| func_id != BPF_FUNC_map_delete_elem && |
| func_id != BPF_FUNC_msg_redirect_map && |
| func_id != BPF_FUNC_sk_select_reuseport && |
| func_id != BPF_FUNC_map_lookup_elem && |
| !may_update_sockmap(env, func_id)) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_SOCKHASH: |
| if (func_id != BPF_FUNC_sk_redirect_hash && |
| func_id != BPF_FUNC_sock_hash_update && |
| func_id != BPF_FUNC_map_delete_elem && |
| func_id != BPF_FUNC_msg_redirect_hash && |
| func_id != BPF_FUNC_sk_select_reuseport && |
| func_id != BPF_FUNC_map_lookup_elem && |
| !may_update_sockmap(env, func_id)) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: |
| if (func_id != BPF_FUNC_sk_select_reuseport) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_QUEUE: |
| case BPF_MAP_TYPE_STACK: |
| if (func_id != BPF_FUNC_map_peek_elem && |
| func_id != BPF_FUNC_map_pop_elem && |
| func_id != BPF_FUNC_map_push_elem) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_SK_STORAGE: |
| if (func_id != BPF_FUNC_sk_storage_get && |
| func_id != BPF_FUNC_sk_storage_delete && |
| func_id != BPF_FUNC_kptr_xchg) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_INODE_STORAGE: |
| if (func_id != BPF_FUNC_inode_storage_get && |
| func_id != BPF_FUNC_inode_storage_delete && |
| func_id != BPF_FUNC_kptr_xchg) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_TASK_STORAGE: |
| if (func_id != BPF_FUNC_task_storage_get && |
| func_id != BPF_FUNC_task_storage_delete && |
| func_id != BPF_FUNC_kptr_xchg) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_CGRP_STORAGE: |
| if (func_id != BPF_FUNC_cgrp_storage_get && |
| func_id != BPF_FUNC_cgrp_storage_delete && |
| func_id != BPF_FUNC_kptr_xchg) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_BLOOM_FILTER: |
| if (func_id != BPF_FUNC_map_peek_elem && |
| func_id != BPF_FUNC_map_push_elem) |
| goto error; |
| break; |
| default: |
| break; |
| } |
| |
| /* ... and second from the function itself. */ |
| switch (func_id) { |
| case BPF_FUNC_tail_call: |
| if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) |
| goto error; |
| if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { |
| verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); |
| return -EINVAL; |
| } |
| break; |
| case BPF_FUNC_perf_event_read: |
| case BPF_FUNC_perf_event_output: |
| case BPF_FUNC_perf_event_read_value: |
| case BPF_FUNC_skb_output: |
| case BPF_FUNC_xdp_output: |
| if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) |
| goto error; |
| break; |
| case BPF_FUNC_ringbuf_output: |
| case BPF_FUNC_ringbuf_reserve: |
| case BPF_FUNC_ringbuf_query: |
| case BPF_FUNC_ringbuf_reserve_dynptr: |
| case BPF_FUNC_ringbuf_submit_dynptr: |
| case BPF_FUNC_ringbuf_discard_dynptr: |
| if (map->map_type != BPF_MAP_TYPE_RINGBUF) |
| goto error; |
| break; |
| case BPF_FUNC_user_ringbuf_drain: |
| if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) |
| goto error; |
| break; |
| case BPF_FUNC_get_stackid: |
| if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) |
| goto error; |
| break; |
| case BPF_FUNC_current_task_under_cgroup: |
| case BPF_FUNC_skb_under_cgroup: |
| if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) |
| goto error; |
| break; |
| case BPF_FUNC_redirect_map: |
| if (map->map_type != BPF_MAP_TYPE_DEVMAP && |
| map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && |
| map->map_type != BPF_MAP_TYPE_CPUMAP && |
| map->map_type != BPF_MAP_TYPE_XSKMAP) |
| goto error; |
| break; |
| case BPF_FUNC_sk_redirect_map: |
| case BPF_FUNC_msg_redirect_map: |
| case BPF_FUNC_sock_map_update: |
| if (map->map_type != BPF_MAP_TYPE_SOCKMAP) |
| goto error; |
| break; |
| case BPF_FUNC_sk_redirect_hash: |
| case BPF_FUNC_msg_redirect_hash: |
| case BPF_FUNC_sock_hash_update: |
| if (map->map_type != BPF_MAP_TYPE_SOCKHASH) |
| goto error; |
| break; |
| case BPF_FUNC_get_local_storage: |
| if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && |
| map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) |
| goto error; |
| break; |
| case BPF_FUNC_sk_select_reuseport: |
| if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && |
| map->map_type != BPF_MAP_TYPE_SOCKMAP && |
| map->map_type != BPF_MAP_TYPE_SOCKHASH) |
| goto error; |
| break; |
| case BPF_FUNC_map_pop_elem: |
| if (map->map_type != BPF_MAP_TYPE_QUEUE && |
| map->map_type != BPF_MAP_TYPE_STACK) |
| goto error; |
| break; |
| case BPF_FUNC_map_peek_elem: |
| case BPF_FUNC_map_push_elem: |
| if (map->map_type != BPF_MAP_TYPE_QUEUE && |
| map->map_type != BPF_MAP_TYPE_STACK && |
| map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) |
| goto error; |
| break; |
| case BPF_FUNC_map_lookup_percpu_elem: |
| if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && |
| map->map_type != BPF_MAP_TYPE_PERCPU_HASH && |
| map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) |
| goto error; |
| break; |
| case BPF_FUNC_sk_storage_get: |
| case BPF_FUNC_sk_storage_delete: |
| if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) |
| goto error; |
| break; |
| case BPF_FUNC_inode_storage_get: |
| case BPF_FUNC_inode_storage_delete: |
| if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) |
| goto error; |
| break; |
| case BPF_FUNC_task_storage_get: |
| case BPF_FUNC_task_storage_delete: |
| if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) |
| goto error; |
| break; |
| case BPF_FUNC_cgrp_storage_get: |
| case BPF_FUNC_cgrp_storage_delete: |
| if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) |
| goto error; |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| error: |
| verbose(env, "cannot pass map_type %d into func %s#%d\n", |
| map->map_type, func_id_name(func_id), func_id); |
| return -EINVAL; |
| } |
| |
| static bool check_raw_mode_ok(const struct bpf_func_proto *fn) |
| { |
| int count = 0; |
| |
| if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| |
| /* We only support one arg being in raw mode at the moment, |
| * which is sufficient for the helper functions we have |
| * right now. |
| */ |
| return count <= 1; |
| } |
| |
| static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) |
| { |
| bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; |
| bool has_size = fn->arg_size[arg] != 0; |
| bool is_next_size = false; |
| |
| if (arg + 1 < ARRAY_SIZE(fn->arg_type)) |
| is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); |
| |
| if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) |
| return is_next_size; |
| |
| return has_size == is_next_size || is_next_size == is_fixed; |
| } |
| |
| static bool check_arg_pair_ok(const struct bpf_func_proto *fn) |
| { |
| /* bpf_xxx(..., buf, len) call will access 'len' |
| * bytes from memory 'buf'. Both arg types need |
| * to be paired, so make sure there's no buggy |
| * helper function specification. |
| */ |
| if (arg_type_is_mem_size(fn->arg1_type) || |
| check_args_pair_invalid(fn, 0) || |
| check_args_pair_invalid(fn, 1) || |
| check_args_pair_invalid(fn, 2) || |
| check_args_pair_invalid(fn, 3) || |
| check_args_pair_invalid(fn, 4)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool check_btf_id_ok(const struct bpf_func_proto *fn) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { |
| if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) |
| return !!fn->arg_btf_id[i]; |
| if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) |
| return fn->arg_btf_id[i] == BPF_PTR_POISON; |
| if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && |
| /* arg_btf_id and arg_size are in a union. */ |
| (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || |
| !(fn->arg_type[i] & MEM_FIXED_SIZE))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int check_func_proto(const struct bpf_func_proto *fn, int func_id) |
| { |
| return check_raw_mode_ok(fn) && |
| check_arg_pair_ok(fn) && |
| check_btf_id_ok(fn) ? 0 : -EINVAL; |
| } |
| |
| /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] |
| * are now invalid, so turn them into unknown SCALAR_VALUE. |
| * |
| * This also applies to dynptr slices belonging to skb and xdp dynptrs, |
| * since these slices point to packet data. |
| */ |
| static void clear_all_pkt_pointers(struct bpf_verifier_env *env) |
| { |
| struct bpf_func_state *state; |
| struct bpf_reg_state *reg; |
| |
| bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ |
| if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) |
| mark_reg_invalid(env, reg); |
| })); |
| } |
| |
| enum { |
| AT_PKT_END = -1, |
| BEYOND_PKT_END = -2, |
| }; |
| |
| static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) |
| { |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| struct bpf_reg_state *reg = &state->regs[regn]; |
| |
| if (reg->type != PTR_TO_PACKET) |
| /* PTR_TO_PACKET_META is not supported yet */ |
| return; |
| |
| /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. |
| * How far beyond pkt_end it goes is unknown. |
| * if (!range_open) it's the case of pkt >= pkt_end |
| * if (range_open) it's the case of pkt > pkt_end |
| * hence this pointer is at least 1 byte bigger than pkt_end |
| */ |
| if (range_open) |
| reg->range = BEYOND_PKT_END; |
| else |
| reg->range = AT_PKT_END; |
| } |
| |
| /* The pointer with the specified id has released its reference to kernel |
| * resources. Identify all copies of the same pointer and clear the reference. |
| */ |
| static int release_reference(struct bpf_verifier_env *env, |
| int ref_obj_id) |
| { |
| struct bpf_func_state *state; |
| struct bpf_reg_state *reg; |
| int err; |
| |
| err = release_reference_state(cur_func(env), ref_obj_id); |
| if (err) |
| return err; |
| |
| bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ |
| if (reg->ref_obj_id == ref_obj_id) |
| mark_reg_invalid(env, reg); |
| })); |
| |
| return 0; |
| } |
| |
| static void invalidate_non_owning_refs(struct bpf_verifier_env *env) |
| { |
| struct bpf_func_state *unused; |
| struct bpf_reg_state *reg; |
| |
| bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ |
| if (type_is_non_owning_ref(reg->type)) |
| mark_reg_invalid(env, reg); |
| })); |
| } |
| |
| static void clear_caller_saved_regs(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs) |
| { |
| int i; |
| |
| /* after the call registers r0 - r5 were scratched */ |
| for (i = 0; i < CALLER_SAVED_REGS; i++) { |
| mark_reg_not_init(env, regs, caller_saved[i]); |
| __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); |
| } |
| } |
| |
| typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee, |
| int insn_idx); |
| |
| static int set_callee_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee, int insn_idx); |
| |
| static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, |
| set_callee_state_fn set_callee_state_cb, |
| struct bpf_verifier_state *state) |
| { |
| struct bpf_func_state *caller, *callee; |
| int err; |
| |
| if (state->curframe + 1 >= MAX_CALL_FRAMES) { |
| verbose(env, "the call stack of %d frames is too deep\n", |
| state->curframe + 2); |
| return -E2BIG; |
| } |
| |
| if (state->frame[state->curframe + 1]) { |
| verbose(env, "verifier bug. Frame %d already allocated\n", |
| state->curframe + 1); |
| return -EFAULT; |
| } |
| |
| caller = state->frame[state->curframe]; |
| callee = kzalloc(sizeof(*callee), GFP_KERNEL); |
| if (!callee) |
| return -ENOMEM; |
| state->frame[state->curframe + 1] = callee; |
| |
| /* callee cannot access r0, r6 - r9 for reading and has to write |
| * into its own stack before reading from it. |
| * callee can read/write into caller's stack |
| */ |
| init_func_state(env, callee, |
| /* remember the callsite, it will be used by bpf_exit */ |
| callsite, |
| state->curframe + 1 /* frameno within this callchain */, |
| subprog /* subprog number within this prog */); |
| /* Transfer references to the callee */ |
| err = copy_reference_state(callee, caller); |
| err = err ?: set_callee_state_cb(env, caller, callee, callsite); |
| if (err) |
| goto err_out; |
| |
| /* only increment it after check_reg_arg() finished */ |
| state->curframe++; |
| |
| return 0; |
| |
| err_out: |
| free_func_state(callee); |
| state->frame[state->curframe + 1] = NULL; |
| return err; |
| } |
| |
| static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, |
| const struct btf *btf, |
| struct bpf_reg_state *regs) |
| { |
| struct bpf_subprog_info *sub = subprog_info(env, subprog); |
| struct bpf_verifier_log *log = &env->log; |
| u32 i; |
| int ret; |
| |
| ret = btf_prepare_func_args(env, subprog); |
| if (ret) |
| return ret; |
| |
| /* check that BTF function arguments match actual types that the |
| * verifier sees. |
| */ |
| for (i = 0; i < sub->arg_cnt; i++) { |
| u32 regno = i + 1; |
| struct bpf_reg_state *reg = ®s[regno]; |
| struct bpf_subprog_arg_info *arg = &sub->args[i]; |
| |
| if (arg->arg_type == ARG_ANYTHING) { |
| if (reg->type != SCALAR_VALUE) { |
| bpf_log(log, "R%d is not a scalar\n", regno); |
| return -EINVAL; |
| } |
| } else if (arg->arg_type == ARG_PTR_TO_CTX) { |
| ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); |
| if (ret < 0) |
| return ret; |
| /* If function expects ctx type in BTF check that caller |
| * is passing PTR_TO_CTX. |
| */ |
| if (reg->type != PTR_TO_CTX) { |
| bpf_log(log, "arg#%d expects pointer to ctx\n", i); |
| return -EINVAL; |
| } |
| } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { |
| ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); |
| if (ret < 0) |
| return ret; |
| if (check_mem_reg(env, reg, regno, arg->mem_size)) |
| return -EINVAL; |
| if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { |
| bpf_log(log, "arg#%d is expected to be non-NULL\n", i); |
| return -EINVAL; |
| } |
| } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { |
| ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); |
| if (ret) |
| return ret; |
| } else { |
| bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", |
| i, arg->arg_type); |
| return -EFAULT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Compare BTF of a function call with given bpf_reg_state. |
| * Returns: |
| * EFAULT - there is a verifier bug. Abort verification. |
| * EINVAL - there is a type mismatch or BTF is not available. |
| * 0 - BTF matches with what bpf_reg_state expects. |
| * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. |
| */ |
| static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, |
| struct bpf_reg_state *regs) |
| { |
| struct bpf_prog *prog = env->prog; |
| struct btf *btf = prog->aux->btf; |
| u32 btf_id; |
| int err; |
| |
| if (!prog->aux->func_info) |
| return -EINVAL; |
| |
| btf_id = prog->aux->func_info[subprog].type_id; |
| if (!btf_id) |
| return -EFAULT; |
| |
| if (prog->aux->func_info_aux[subprog].unreliable) |
| return -EINVAL; |
| |
| err = btf_check_func_arg_match(env, subprog, btf, regs); |
| /* Compiler optimizations can remove arguments from static functions |
| * or mismatched type can be passed into a global function. |
| * In such cases mark the function as unreliable from BTF point of view. |
| */ |
| if (err) |
| prog->aux->func_info_aux[subprog].unreliable = true; |
| return err; |
| } |
| |
| static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, |
| int insn_idx, int subprog, |
| set_callee_state_fn set_callee_state_cb) |
| { |
| struct bpf_verifier_state *state = env->cur_state, *callback_state; |
| struct bpf_func_state *caller, *callee; |
| int err; |
| |
| caller = state->frame[state->curframe]; |
| err = btf_check_subprog_call(env, subprog, caller->regs); |
| if (err == -EFAULT) |
| return err; |
| |
| /* set_callee_state is used for direct subprog calls, but we are |
| * interested in validating only BPF helpers that can call subprogs as |
| * callbacks |
| */ |
| env->subprog_info[subprog].is_cb = true; |
| if (bpf_pseudo_kfunc_call(insn) && |
| !is_sync_callback_calling_kfunc(insn->imm)) { |
| verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", |
| func_id_name(insn->imm), insn->imm); |
| return -EFAULT; |
| } else if (!bpf_pseudo_kfunc_call(insn) && |
| !is_callback_calling_function(insn->imm)) { /* helper */ |
| verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", |
| func_id_name(insn->imm), insn->imm); |
| return -EFAULT; |
| } |
| |
| if (insn->code == (BPF_JMP | BPF_CALL) && |
| insn->src_reg == 0 && |
| insn->imm == BPF_FUNC_timer_set_callback) { |
| struct bpf_verifier_state *async_cb; |
| |
| /* there is no real recursion here. timer callbacks are async */ |
| env->subprog_info[subprog].is_async_cb = true; |
| async_cb = push_async_cb(env, env->subprog_info[subprog].start, |
| insn_idx, subprog); |
| if (!async_cb) |
| return -EFAULT; |
| callee = async_cb->frame[0]; |
| callee->async_entry_cnt = caller->async_entry_cnt + 1; |
| |
| /* Convert bpf_timer_set_callback() args into timer callback args */ |
| err = set_callee_state_cb(env, caller, callee, insn_idx); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| /* for callback functions enqueue entry to callback and |
| * proceed with next instruction within current frame. |
| */ |
| callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); |
| if (!callback_state) |
| return -ENOMEM; |
| |
| err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, |
| callback_state); |
| if (err) |
| return err; |
| |
| callback_state->callback_unroll_depth++; |
| callback_state->frame[callback_state->curframe - 1]->callback_depth++; |
| caller->callback_depth = 0; |
| return 0; |
| } |
| |
| static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, |
| int *insn_idx) |
| { |
| struct bpf_verifier_state *state = env->cur_state; |
| struct bpf_func_state *caller; |
| int err, subprog, target_insn; |
| |
| target_insn = *insn_idx + insn->imm + 1; |
| subprog = find_subprog(env, target_insn); |
| if (subprog < 0) { |
| verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); |
| return -EFAULT; |
| } |
| |
| caller = state->frame[state->curframe]; |
| err = btf_check_subprog_call(env, subprog, caller->regs); |
| if (err == -EFAULT) |
| return err; |
| if (subprog_is_global(env, subprog)) { |
| const char *sub_name = subprog_name(env, subprog); |
| |
| if (err) { |
| verbose(env, "Caller passes invalid args into func#%d ('%s')\n", |
| subprog, sub_name); |
| return err; |
| } |
| |
| verbose(env, "Func#%d ('%s') is global and assumed valid.\n", |
| subprog, sub_name); |
| /* mark global subprog for verifying after main prog */ |
| subprog_aux(env, subprog)->called = true; |
| clear_caller_saved_regs(env, caller->regs); |
| |
| /* All global functions return a 64-bit SCALAR_VALUE */ |
| mark_reg_unknown(env, caller->regs, BPF_REG_0); |
| caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; |
| |
| /* continue with next insn after call */ |
| return 0; |
| } |
| |
| /* for regular function entry setup new frame and continue |
| * from that frame. |
| */ |
| err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); |
| if (err) |
| return err; |
| |
| clear_caller_saved_regs(env, caller->regs); |
| |
| /* and go analyze first insn of the callee */ |
| *insn_idx = env->subprog_info[subprog].start - 1; |
| |
| if (env->log.level & BPF_LOG_LEVEL) { |
| verbose(env, "caller:\n"); |
| print_verifier_state(env, caller, true); |
| verbose(env, "callee:\n"); |
| print_verifier_state(env, state->frame[state->curframe], true); |
| } |
| |
| return 0; |
| } |
| |
| int map_set_for_each_callback_args(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee) |
| { |
| /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, |
| * void *callback_ctx, u64 flags); |
| * callback_fn(struct bpf_map *map, void *key, void *value, |
| * void *callback_ctx); |
| */ |
| callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; |
| |
| callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; |
| __mark_reg_known_zero(&callee->regs[BPF_REG_2]); |
| callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; |
| |
| callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; |
| __mark_reg_known_zero(&callee->regs[BPF_REG_3]); |
| callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; |
| |
| /* pointer to stack or null */ |
| callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; |
| |
| /* unused */ |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); |
| return 0; |
| } |
| |
| static int set_callee_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee, int insn_idx) |
| { |
| int i; |
| |
| /* copy r1 - r5 args that callee can access. The copy includes parent |
| * pointers, which connects us up to the liveness chain |
| */ |
| for (i = BPF_REG_1; i <= BPF_REG_5; i++) |
| callee->regs[i] = caller->regs[i]; |
| return 0; |
| } |
| |
| static int set_map_elem_callback_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee, |
| int insn_idx) |
| { |
| struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; |
| struct bpf_map *map; |
| int err; |
| |
| if (bpf_map_ptr_poisoned(insn_aux)) { |
| verbose(env, "tail_call abusing map_ptr\n"); |
| return -EINVAL; |
| } |
| |
| map = BPF_MAP_PTR(insn_aux->map_ptr_state); |
| if (!map->ops->map_set_for_each_callback_args || |
| !map->ops->map_for_each_callback) { |
| verbose(env, "callback function not allowed for map\n"); |
| return -ENOTSUPP; |
| } |
| |
| err = map->ops->map_set_for_each_callback_args(env, caller, callee); |
| if (err) |
| return err; |
| |
| callee->in_callback_fn = true; |
| callee->callback_ret_range = retval_range(0, 1); |
| return 0; |
| } |
| |
| static int set_loop_callback_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee, |
| int insn_idx) |
| { |
| /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, |
| * u64 flags); |
| * callback_fn(u32 index, void *callback_ctx); |
| */ |
| callee->regs[BPF_REG_1].type = SCALAR_VALUE; |
| callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; |
| |
| /* unused */ |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); |
| |
| callee->in_callback_fn = true; |
| callee->callback_ret_range = retval_range(0, 1); |
| return 0; |
| } |
| |
| static int set_timer_callback_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee, |
| int insn_idx) |
| { |
| struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; |
| |
| /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); |
| * callback_fn(struct bpf_map *map, void *key, void *value); |
| */ |
| callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; |
| __mark_reg_known_zero(&callee->regs[BPF_REG_1]); |
| callee->regs[BPF_REG_1].map_ptr = map_ptr; |
| |
| callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; |
| __mark_reg_known_zero(&callee->regs[BPF_REG_2]); |
| callee->regs[BPF_REG_2].map_ptr = map_ptr; |
| |
| callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; |
| __mark_reg_known_zero(&callee->regs[BPF_REG_3]); |
| callee->regs[BPF_REG_3].map_ptr = map_ptr; |
| |
| /* unused */ |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); |
| callee->in_async_callback_fn = true; |
| callee->callback_ret_range = retval_range(0, 1); |
| return 0; |
| } |
| |
| static int set_find_vma_callback_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee, |
| int insn_idx) |
| { |
| /* bpf_find_vma(struct task_struct *task, u64 addr, |
| * void *callback_fn, void *callback_ctx, u64 flags) |
| * (callback_fn)(struct task_struct *task, |
| * struct vm_area_struct *vma, void *callback_ctx); |
| */ |
| callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; |
| |
| callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; |
| __mark_reg_known_zero(&callee->regs[BPF_REG_2]); |
| callee->regs[BPF_REG_2].btf = btf_vmlinux; |
| callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; |
| |
| /* pointer to stack or null */ |
| callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; |
| |
| /* unused */ |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); |
| callee->in_callback_fn = true; |
| callee->callback_ret_range = retval_range(0, 1); |
| return 0; |
| } |
| |
| static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee, |
| int insn_idx) |
| { |
| /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void |
| * callback_ctx, u64 flags); |
| * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); |
| */ |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); |
| mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); |
| callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; |
| |
| /* unused */ |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); |
| |
| callee->in_callback_fn = true; |
| callee->callback_ret_range = retval_range(0, 1); |
| return 0; |
| } |
| |
| static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *caller, |
| struct bpf_func_state *callee, |
| int insn_idx) |
| { |
| /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, |
| * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); |
| * |
| * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset |
| * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd |
| * by this point, so look at 'root' |
| */ |
| struct btf_field *field; |
| |
| field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, |
| BPF_RB_ROOT); |
| if (!field || !field->graph_root.value_btf_id) |
| return -EFAULT; |
| |
| mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); |
| ref_set_non_owning(env, &callee->regs[BPF_REG_1]); |
| mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); |
| ref_set_non_owning(env, &callee->regs[BPF_REG_2]); |
| |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); |
| __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); |
| callee->in_callback_fn = true; |
| callee->callback_ret_range = retval_range(0, 1); |
| return 0; |
| } |
| |
| static bool is_rbtree_lock_required_kfunc(u32 btf_id); |
| |
| /* Are we currently verifying the callback for a rbtree helper that must |
| * be called with lock held? If so, no need to complain about unreleased |
| * lock |
| */ |
| static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) |
| { |
| struct bpf_verifier_state *state = env->cur_state; |
| struct bpf_insn *insn = env->prog->insnsi; |
| struct bpf_func_state *callee; |
| int kfunc_btf_id; |
| |
| if (!state->curframe) |
| return false; |
| |
| callee = state->frame[state->curframe]; |
| |
| if (!callee->in_callback_fn) |
| return false; |
| |
| kfunc_btf_id = insn[callee->callsite].imm; |
| return is_rbtree_lock_required_kfunc(kfunc_btf_id); |
| } |
| |
| static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg) |
| { |
| return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; |
| } |
| |
| static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) |
| { |
| struct bpf_verifier_state *state = env->cur_state, *prev_st; |
| struct bpf_func_state *caller, *callee; |
| struct bpf_reg_state *r0; |
| bool in_callback_fn; |
| int err; |
| |
| callee = state->frame[state->curframe]; |
| r0 = &callee->regs[BPF_REG_0]; |
| if (r0->type == PTR_TO_STACK) { |
| /* technically it's ok to return caller's stack pointer |
| * (or caller's caller's pointer) back to the caller, |
| * since these pointers are valid. Only current stack |
| * pointer will be invalid as soon as function exits, |
| * but let's be conservative |
| */ |
| verbose(env, "cannot return stack pointer to the caller\n"); |
| return -EINVAL; |
| } |
| |
| caller = state->frame[state->curframe - 1]; |
| if (callee->in_callback_fn) { |
| if (r0->type != SCALAR_VALUE) { |
| verbose(env, "R0 not a scalar value\n"); |
| return -EACCES; |
| } |
| |
| /* we are going to rely on register's precise value */ |
| err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); |
| err = err ?: mark_chain_precision(env, BPF_REG_0); |
| if (err) |
| return err; |
| |
| /* enforce R0 return value range */ |
| if (!retval_range_within(callee->callback_ret_range, r0)) { |
| verbose_invalid_scalar(env, r0, callee->callback_ret_range, |
| "At callback return", "R0"); |
| return -EINVAL; |
| } |
| if (!calls_callback(env, callee->callsite)) { |
| verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", |
| *insn_idx, callee->callsite); |
| return -EFAULT; |
| } |
| } else { |
| /* return to the caller whatever r0 had in the callee */ |
| caller->regs[BPF_REG_0] = *r0; |
| } |
| |
| /* callback_fn frame should have released its own additions to parent's |
| * reference state at this point, or check_reference_leak would |
| * complain, hence it must be the same as the caller. There is no need |
| * to copy it back. |
| */ |
| if (!callee->in_callback_fn) { |
| /* Transfer references to the caller */ |
| err = copy_reference_state(caller, callee); |
| if (err) |
| return err; |
| } |
| |
| /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, |
| * there function call logic would reschedule callback visit. If iteration |
| * converges is_state_visited() would prune that visit eventually. |
| */ |
| in_callback_fn = callee->in_callback_fn; |
| if (in_callback_fn) |
| *insn_idx = callee->callsite; |
| else |
| *insn_idx = callee->callsite + 1; |
| |
| if (env->log.level & BPF_LOG_LEVEL) { |
| verbose(env, "returning from callee:\n"); |
| print_verifier_state(env, callee, true); |
| verbose(env, "to caller at %d:\n", *insn_idx); |
| print_verifier_state(env, caller, true); |
| } |
| /* clear everything in the callee. In case of exceptional exits using |
| * bpf_throw, this will be done by copy_verifier_state for extra frames. */ |
| free_func_state(callee); |
| state->frame[state->curframe--] = NULL; |
| |
| /* for callbacks widen imprecise scalars to make programs like below verify: |
| * |
| * struct ctx { int i; } |
| * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } |
| * ... |
| * struct ctx = { .i = 0; } |
| * bpf_loop(100, cb, &ctx, 0); |
| * |
| * This is similar to what is done in process_iter_next_call() for open |
| * coded iterators. |
| */ |
| prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; |
| if (prev_st) { |
| err = widen_imprecise_scalars(env, prev_st, state); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| static int do_refine_retval_range(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, int ret_type, |
| int func_id, |
| struct bpf_call_arg_meta *meta) |
| { |
| struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; |
| |
| if (ret_type != RET_INTEGER) |
| return 0; |
| |
| switch (func_id) { |
| case BPF_FUNC_get_stack: |
| case BPF_FUNC_get_task_stack: |
| case BPF_FUNC_probe_read_str: |
| case BPF_FUNC_probe_read_kernel_str: |
| case BPF_FUNC_probe_read_user_str: |
| ret_reg->smax_value = meta->msize_max_value; |
| ret_reg->s32_max_value = meta->msize_max_value; |
| ret_reg->smin_value = -MAX_ERRNO; |
| ret_reg->s32_min_value = -MAX_ERRNO; |
| reg_bounds_sync(ret_reg); |
| break; |
| case BPF_FUNC_get_smp_processor_id: |
| ret_reg->umax_value = nr_cpu_ids - 1; |
| ret_reg->u32_max_value = nr_cpu_ids - 1; |
| ret_reg->smax_value = nr_cpu_ids - 1; |
| ret_reg->s32_max_value = nr_cpu_ids - 1; |
| ret_reg->umin_value = 0; |
| ret_reg->u32_min_value = 0; |
| ret_reg->smin_value = 0; |
| ret_reg->s32_min_value = 0; |
| reg_bounds_sync(ret_reg); |
| break; |
| } |
| |
| return reg_bounds_sanity_check(env, ret_reg, "retval"); |
| } |
| |
| static int |
| record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, |
| int func_id, int insn_idx) |
| { |
| struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; |
| struct bpf_map *map = meta->map_ptr; |
| |
| if (func_id != BPF_FUNC_tail_call && |
| func_id != BPF_FUNC_map_lookup_elem && |
| func_id != BPF_FUNC_map_update_elem && |
| func_id != BPF_FUNC_map_delete_elem && |
| func_id != BPF_FUNC_map_push_elem && |
| func_id != BPF_FUNC_map_pop_elem && |
| func_id != BPF_FUNC_map_peek_elem && |
| func_id != BPF_FUNC_for_each_map_elem && |
| func_id != BPF_FUNC_redirect_map && |
| func_id != BPF_FUNC_map_lookup_percpu_elem) |
| return 0; |
| |
| if (map == NULL) { |
| verbose(env, "kernel subsystem misconfigured verifier\n"); |
| return -EINVAL; |
| } |
| |
| /* In case of read-only, some additional restrictions |
| * need to be applied in order to prevent altering the |
| * state of the map from program side. |
| */ |
| if ((map->map_flags & BPF_F_RDONLY_PROG) && |
| (func_id == BPF_FUNC_map_delete_elem || |
| func_id == BPF_FUNC_map_update_elem || |
| func_id == BPF_FUNC_map_push_elem || |
| func_id == BPF_FUNC_map_pop_elem)) { |
| verbose(env, "write into map forbidden\n"); |
| return -EACCES; |
| } |
| |
| if (!BPF_MAP_PTR(aux->map_ptr_state)) |
| bpf_map_ptr_store(aux, meta->map_ptr, |
| !meta->map_ptr->bypass_spec_v1); |
| else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) |
| bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, |
| !meta->map_ptr->bypass_spec_v1); |
| return 0; |
| } |
| |
| static int |
| record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, |
| int func_id, int insn_idx) |
| { |
| struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; |
| struct bpf_reg_state *regs = cur_regs(env), *reg; |
| struct bpf_map *map = meta->map_ptr; |
| u64 val, max; |
| int err; |
| |
| if (func_id != BPF_FUNC_tail_call) |
| return 0; |
| if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { |
| verbose(env, "kernel subsystem misconfigured verifier\n"); |
| return -EINVAL; |
| } |
| |
| reg = ®s[BPF_REG_3]; |
| val = reg->var_off.value; |
| max = map->max_entries; |
| |
| if (!(is_reg_const(reg, false) && val < max)) { |
| bpf_map_key_store(aux, BPF_MAP_KEY_POISON); |
| return 0; |
| } |
| |
| err = mark_chain_precision(env, BPF_REG_3); |
| if (err) |
| return err; |
| if (bpf_map_key_unseen(aux)) |
| bpf_map_key_store(aux, val); |
| else if (!bpf_map_key_poisoned(aux) && |
| bpf_map_key_immediate(aux) != val) |
| bpf_map_key_store(aux, BPF_MAP_KEY_POISON); |
| return 0; |
| } |
| |
| static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) |
| { |
| struct bpf_func_state *state = cur_func(env); |
| bool refs_lingering = false; |
| int i; |
| |
| if (!exception_exit && state->frameno && !state->in_callback_fn) |
| return 0; |
| |
| for (i = 0; i < state->acquired_refs; i++) { |
| if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) |
| continue; |
| verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", |
| state->refs[i].id, state->refs[i].insn_idx); |
| refs_lingering = true; |
| } |
| return refs_lingering ? -EINVAL : 0; |
| } |
| |
| static int check_bpf_snprintf_call(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs) |
| { |
| struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; |
| struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; |
| struct bpf_map *fmt_map = fmt_reg->map_ptr; |
| struct bpf_bprintf_data data = {}; |
| int err, fmt_map_off, num_args; |
| u64 fmt_addr; |
| char *fmt; |
| |
| /* data must be an array of u64 */ |
| if (data_len_reg->var_off.value % 8) |
| return -EINVAL; |
| num_args = data_len_reg->var_off.value / 8; |
| |
| /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const |
| * and map_direct_value_addr is set. |
| */ |
| fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; |
| err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, |
| fmt_map_off); |
| if (err) { |
| verbose(env, "verifier bug\n"); |
| return -EFAULT; |
| } |
| fmt = (char *)(long)fmt_addr + fmt_map_off; |
| |
| /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we |
| * can focus on validating the format specifiers. |
| */ |
| err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); |
| if (err < 0) |
| verbose(env, "Invalid format string\n"); |
| |
| return err; |
| } |
| |
| static int check_get_func_ip(struct bpf_verifier_env *env) |
| { |
| enum bpf_prog_type type = resolve_prog_type(env->prog); |
| int func_id = BPF_FUNC_get_func_ip; |
| |
| if (type == BPF_PROG_TYPE_TRACING) { |
| if (!bpf_prog_has_trampoline(env->prog)) { |
| verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", |
| func_id_name(func_id), func_id); |
| return -ENOTSUPP; |
| } |
| return 0; |
| } else if (type == BPF_PROG_TYPE_KPROBE) { |
| return 0; |
| } |
| |
| verbose(env, "func %s#%d not supported for program type %d\n", |
| func_id_name(func_id), func_id, type); |
| return -ENOTSUPP; |
| } |
| |
| static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) |
| { |
| return &env->insn_aux_data[env->insn_idx]; |
| } |
| |
| static bool loop_flag_is_zero(struct bpf_verifier_env *env) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *reg = ®s[BPF_REG_4]; |
| bool reg_is_null = register_is_null(reg); |
| |
| if (reg_is_null) |
| mark_chain_precision(env, BPF_REG_4); |
| |
| return reg_is_null; |
| } |
| |
| static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) |
| { |
| struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; |
| |
| if (!state->initialized) { |
| state->initialized = 1; |
| state->fit_for_inline = loop_flag_is_zero(env); |
| state->callback_subprogno = subprogno; |
| return; |
| } |
| |
| if (!state->fit_for_inline) |
| return; |
| |
| state->fit_for_inline = (loop_flag_is_zero(env) && |
| state->callback_subprogno == subprogno); |
| } |
| |
| static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, |
| int *insn_idx_p) |
| { |
| enum bpf_prog_type prog_type = resolve_prog_type(env->prog); |
| bool returns_cpu_specific_alloc_ptr = false; |
| const struct bpf_func_proto *fn = NULL; |
| enum bpf_return_type ret_type; |
| enum bpf_type_flag ret_flag; |
| struct bpf_reg_state *regs; |
| struct bpf_call_arg_meta meta; |
| int insn_idx = *insn_idx_p; |
| bool changes_data; |
| int i, err, func_id; |
| |
| /* find function prototype */ |
| func_id = insn->imm; |
| if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { |
| verbose(env, "invalid func %s#%d\n", func_id_name(func_id), |
| func_id); |
| return -EINVAL; |
| } |
| |
| if (env->ops->get_func_proto) |
| fn = env->ops->get_func_proto(func_id, env->prog); |
| if (!fn) { |
| verbose(env, "unknown func %s#%d\n", func_id_name(func_id), |
| func_id); |
| return -EINVAL; |
| } |
| |
| /* eBPF programs must be GPL compatible to use GPL-ed functions */ |
| if (!env->prog->gpl_compatible && fn->gpl_only) { |
| verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); |
| return -EINVAL; |
| } |
| |
| if (fn->allowed && !fn->allowed(env->prog)) { |
| verbose(env, "helper call is not allowed in probe\n"); |
| return -EINVAL; |
| } |
| |
| if (!env->prog->aux->sleepable && fn->might_sleep) { |
| verbose(env, "helper call might sleep in a non-sleepable prog\n"); |
| return -EINVAL; |
| } |
| |
| /* With LD_ABS/IND some JITs save/restore skb from r1. */ |
| changes_data = bpf_helper_changes_pkt_data(fn->func); |
| if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { |
| verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", |
| func_id_name(func_id), func_id); |
| return -EINVAL; |
| } |
| |
| memset(&meta, 0, sizeof(meta)); |
| meta.pkt_access = fn->pkt_access; |
| |
| err = check_func_proto(fn, func_id); |
| if (err) { |
| verbose(env, "kernel subsystem misconfigured func %s#%d\n", |
| func_id_name(func_id), func_id); |
| return err; |
| } |
| |
| if (env->cur_state->active_rcu_lock) { |
| if (fn->might_sleep) { |
| verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", |
| func_id_name(func_id), func_id); |
| return -EINVAL; |
| } |
| |
| if (env->prog->aux->sleepable && is_storage_get_function(func_id)) |
| env->insn_aux_data[insn_idx].storage_get_func_atomic = true; |
| } |
| |
| meta.func_id = func_id; |
| /* check args */ |
| for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { |
| err = check_func_arg(env, i, &meta, fn, insn_idx); |
| if (err) |
| return err; |
| } |
| |
| err = record_func_map(env, &meta, func_id, insn_idx); |
| if (err) |
| return err; |
| |
| err = record_func_key(env, &meta, func_id, insn_idx); |
| if (err) |
| return err; |
| |
| /* Mark slots with STACK_MISC in case of raw mode, stack offset |
| * is inferred from register state. |
| */ |
| for (i = 0; i < meta.access_size; i++) { |
| err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, |
| BPF_WRITE, -1, false, false); |
| if (err) |
| return err; |
| } |
| |
| regs = cur_regs(env); |
| |
| if (meta.release_regno) { |
| err = -EINVAL; |
| /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot |
| * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr |
| * is safe to do directly. |
| */ |
| if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { |
| if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { |
| verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); |
| return -EFAULT; |
| } |
| err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); |
| } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { |
| u32 ref_obj_id = meta.ref_obj_id; |
| bool in_rcu = in_rcu_cs(env); |
| struct bpf_func_state *state; |
| struct bpf_reg_state *reg; |
| |
| err = release_reference_state(cur_func(env), ref_obj_id); |
| if (!err) { |
| bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ |
| if (reg->ref_obj_id == ref_obj_id) { |
| if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { |
| reg->ref_obj_id = 0; |
| reg->type &= ~MEM_ALLOC; |
| reg->type |= MEM_RCU; |
| } else { |
| mark_reg_invalid(env, reg); |
| } |
| } |
| })); |
| } |
| } else if (meta.ref_obj_id) { |
| err = release_reference(env, meta.ref_obj_id); |
| } else if (register_is_null(®s[meta.release_regno])) { |
| /* meta.ref_obj_id can only be 0 if register that is meant to be |
| * released is NULL, which must be > R0. |
| */ |
| err = 0; |
| } |
| if (err) { |
| verbose(env, "func %s#%d reference has not been acquired before\n", |
| func_id_name(func_id), func_id); |
| return err; |
| } |
| } |
| |
| switch (func_id) { |
| case BPF_FUNC_tail_call: |
| err = check_reference_leak(env, false); |
| if (err) { |
| verbose(env, "tail_call would lead to reference leak\n"); |
| return err; |
| } |
| break; |
| case BPF_FUNC_get_local_storage: |
| /* check that flags argument in get_local_storage(map, flags) is 0, |
| * this is required because get_local_storage() can't return an error. |
| */ |
| if (!register_is_null(®s[BPF_REG_2])) { |
| verbose(env, "get_local_storage() doesn't support non-zero flags\n"); |
| return -EINVAL; |
| } |
| break; |
| case BPF_FUNC_for_each_map_elem: |
| err = push_callback_call(env, insn, insn_idx, meta.subprogno, |
| set_map_elem_callback_state); |
| break; |
| case BPF_FUNC_timer_set_callback: |
| err = push_callback_call(env, insn, insn_idx, meta.subprogno, |
| set_timer_callback_state); |
| break; |
| case BPF_FUNC_find_vma: |
| err = push_callback_call(env, insn, insn_idx, meta.subprogno, |
| set_find_vma_callback_state); |
| break; |
| case BPF_FUNC_snprintf: |
| err = check_bpf_snprintf_call(env, regs); |
| break; |
| case BPF_FUNC_loop: |
| update_loop_inline_state(env, meta.subprogno); |
| /* Verifier relies on R1 value to determine if bpf_loop() iteration |
| * is finished, thus mark it precise. |
| */ |
| err = mark_chain_precision(env, BPF_REG_1); |
| if (err) |
| return err; |
| if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { |
| err = push_callback_call(env, insn, insn_idx, meta.subprogno, |
| set_loop_callback_state); |
| } else { |
| cur_func(env)->callback_depth = 0; |
| if (env->log.level & BPF_LOG_LEVEL2) |
| verbose(env, "frame%d bpf_loop iteration limit reached\n", |
| env->cur_state->curframe); |
| } |
| break; |
| case BPF_FUNC_dynptr_from_mem: |
| if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { |
| verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", |
| reg_type_str(env, regs[BPF_REG_1].type)); |
| return -EACCES; |
| } |
| break; |
| case BPF_FUNC_set_retval: |
| if (prog_type == BPF_PROG_TYPE_LSM && |
| env->prog->expected_attach_type == BPF_LSM_CGROUP) { |
| if (!env->prog->aux->attach_func_proto->type) { |
| /* Make sure programs that attach to void |
| * hooks don't try to modify return value. |
| */ |
| verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); |
| return -EINVAL; |
| } |
| } |
| break; |
| case BPF_FUNC_dynptr_data: |
| { |
| struct bpf_reg_state *reg; |
| int id, ref_obj_id; |
| |
| reg = get_dynptr_arg_reg(env, fn, regs); |
| if (!reg) |
| return -EFAULT; |
| |
| |
| if (meta.dynptr_id) { |
| verbose(env, "verifier internal error: meta.dynptr_id already set\n"); |
| return -EFAULT; |
| } |
| if (meta.ref_obj_id) { |
| verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); |
| return -EFAULT; |
| } |
| |
| id = dynptr_id(env, reg); |
| if (id < 0) { |
| verbose(env, "verifier internal error: failed to obtain dynptr id\n"); |
| return id; |
| } |
| |
| ref_obj_id = dynptr_ref_obj_id(env, reg); |
| if (ref_obj_id < 0) { |
| verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); |
| return ref_obj_id; |
| } |
| |
| meta.dynptr_id = id; |
| meta.ref_obj_id = ref_obj_id; |
| |
| break; |
| } |
| case BPF_FUNC_dynptr_write: |
| { |
| enum bpf_dynptr_type dynptr_type; |
| struct bpf_reg_state *reg; |
| |
| reg = get_dynptr_arg_reg(env, fn, regs); |
| if (!reg) |
| return -EFAULT; |
| |
| dynptr_type = dynptr_get_type(env, reg); |
| if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) |
| return -EFAULT; |
| |
| if (dynptr_type == BPF_DYNPTR_TYPE_SKB) |
| /* this will trigger clear_all_pkt_pointers(), which will |
| * invalidate all dynptr slices associated with the skb |
| */ |
| changes_data = true; |
| |
| break; |
| } |
| case BPF_FUNC_per_cpu_ptr: |
| case BPF_FUNC_this_cpu_ptr: |
| { |
| struct bpf_reg_state *reg = ®s[BPF_REG_1]; |
| const struct btf_type *type; |
| |
| if (reg->type & MEM_RCU) { |
| type = btf_type_by_id(reg->btf, reg->btf_id); |
| if (!type || !btf_type_is_struct(type)) { |
| verbose(env, "Helper has invalid btf/btf_id in R1\n"); |
| return -EFAULT; |
| } |
| returns_cpu_specific_alloc_ptr = true; |
| env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; |
| } |
| break; |
| } |
| case BPF_FUNC_user_ringbuf_drain: |
| err = push_callback_call(env, insn, insn_idx, meta.subprogno, |
| set_user_ringbuf_callback_state); |
| break; |
| } |
| |
| if (err) |
| return err; |
| |
| /* reset caller saved regs */ |
| for (i = 0; i < CALLER_SAVED_REGS; i++) { |
| mark_reg_not_init(env, regs, caller_saved[i]); |
| check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); |
| } |
| |
| /* helper call returns 64-bit value. */ |
| regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; |
| |
| /* update return register (already marked as written above) */ |
| ret_type = fn->ret_type; |
| ret_flag = type_flag(ret_type); |
| |
| switch (base_type(ret_type)) { |
| case RET_INTEGER: |
| /* sets type to SCALAR_VALUE */ |
| mark_reg_unknown(env, regs, BPF_REG_0); |
| break; |
| case RET_VOID: |
| regs[BPF_REG_0].type = NOT_INIT; |
| break; |
| case RET_PTR_TO_MAP_VALUE: |
| /* There is no offset yet applied, variable or fixed */ |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| /* remember map_ptr, so that check_map_access() |
| * can check 'value_size' boundary of memory access |
| * to map element returned from bpf_map_lookup_elem() |
| */ |
| if (meta.map_ptr == NULL) { |
| verbose(env, |
| "kernel subsystem misconfigured verifier\n"); |
| return -EINVAL; |
| } |
| regs[BPF_REG_0].map_ptr = meta.map_ptr; |
| regs[BPF_REG_0].map_uid = meta.map_uid; |
| regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; |
| if (!type_may_be_null(ret_type) && |
| btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { |
| regs[BPF_REG_0].id = ++env->id_gen; |
| } |
| break; |
| case RET_PTR_TO_SOCKET: |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; |
| break; |
| case RET_PTR_TO_SOCK_COMMON: |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; |
| break; |
| case RET_PTR_TO_TCP_SOCK: |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; |
| break; |
| case RET_PTR_TO_MEM: |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; |
| regs[BPF_REG_0].mem_size = meta.mem_size; |
| break; |
| case RET_PTR_TO_MEM_OR_BTF_ID: |
| { |
| const struct btf_type *t; |
| |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); |
| if (!btf_type_is_struct(t)) { |
| u32 tsize; |
| const struct btf_type *ret; |
| const char *tname; |
| |
| /* resolve the type size of ksym. */ |
| ret = btf_resolve_size(meta.ret_btf, t, &tsize); |
| if (IS_ERR(ret)) { |
| tname = btf_name_by_offset(meta.ret_btf, t->name_off); |
| verbose(env, "unable to resolve the size of type '%s': %ld\n", |
| tname, PTR_ERR(ret)); |
| return -EINVAL; |
| } |
| regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; |
| regs[BPF_REG_0].mem_size = tsize; |
| } else { |
| if (returns_cpu_specific_alloc_ptr) { |
| regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; |
| } else { |
| /* MEM_RDONLY may be carried from ret_flag, but it |
| * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise |
| * it will confuse the check of PTR_TO_BTF_ID in |
| * check_mem_access(). |
| */ |
| ret_flag &= ~MEM_RDONLY; |
| regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; |
| } |
| |
| regs[BPF_REG_0].btf = meta.ret_btf; |
| regs[BPF_REG_0].btf_id = meta.ret_btf_id; |
| } |
| break; |
| } |
| case RET_PTR_TO_BTF_ID: |
| { |
| struct btf *ret_btf; |
| int ret_btf_id; |
| |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; |
| if (func_id == BPF_FUNC_kptr_xchg) { |
| ret_btf = meta.kptr_field->kptr.btf; |
| ret_btf_id = meta.kptr_field->kptr.btf_id; |
| if (!btf_is_kernel(ret_btf)) { |
| regs[BPF_REG_0].type |= MEM_ALLOC; |
| if (meta.kptr_field->type == BPF_KPTR_PERCPU) |
| regs[BPF_REG_0].type |= MEM_PERCPU; |
| } |
| } else { |
| if (fn->ret_btf_id == BPF_PTR_POISON) { |
| verbose(env, "verifier internal error:"); |
| verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", |
| func_id_name(func_id)); |
| return -EINVAL; |
| } |
| ret_btf = btf_vmlinux; |
| ret_btf_id = *fn->ret_btf_id; |
| } |
| if (ret_btf_id == 0) { |
| verbose(env, "invalid return type %u of func %s#%d\n", |
| base_type(ret_type), func_id_name(func_id), |
| func_id); |
| return -EINVAL; |
| } |
| regs[BPF_REG_0].btf = ret_btf; |
| regs[BPF_REG_0].btf_id = ret_btf_id; |
| break; |
| } |
| default: |
| verbose(env, "unknown return type %u of func %s#%d\n", |
| base_type(ret_type), func_id_name(func_id), func_id); |
| return -EINVAL; |
| } |
| |
| if (type_may_be_null(regs[BPF_REG_0].type)) |
| regs[BPF_REG_0].id = ++env->id_gen; |
| |
| if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { |
| verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", |
| func_id_name(func_id), func_id); |
| return -EFAULT; |
| } |
| |
| if (is_dynptr_ref_function(func_id)) |
| regs[BPF_REG_0].dynptr_id = meta.dynptr_id; |
| |
| if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { |
| /* For release_reference() */ |
| regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; |
| } else if (is_acquire_function(func_id, meta.map_ptr)) { |
| int id = acquire_reference_state(env, insn_idx); |
| |
| if (id < 0) |
| return id; |
| /* For mark_ptr_or_null_reg() */ |
| regs[BPF_REG_0].id = id; |
| /* For release_reference() */ |
| regs[BPF_REG_0].ref_obj_id = id; |
| } |
| |
| err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); |
| if (err) |
| return err; |
| |
| err = check_map_func_compatibility(env, meta.map_ptr, func_id); |
| if (err) |
| return err; |
| |
| if ((func_id == BPF_FUNC_get_stack || |
| func_id == BPF_FUNC_get_task_stack) && |
| !env->prog->has_callchain_buf) { |
| const char *err_str; |
| |
| #ifdef CONFIG_PERF_EVENTS |
| err = get_callchain_buffers(sysctl_perf_event_max_stack); |
| err_str = "cannot get callchain buffer for func %s#%d\n"; |
| #else |
| err = -ENOTSUPP; |
| err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; |
| #endif |
| if (err) { |
| verbose(env, err_str, func_id_name(func_id), func_id); |
| return err; |
| } |
| |
| env->prog->has_callchain_buf = true; |
| } |
| |
| if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) |
| env->prog->call_get_stack = true; |
| |
| if (func_id == BPF_FUNC_get_func_ip) { |
| if (check_get_func_ip(env)) |
| return -ENOTSUPP; |
| env->prog->call_get_func_ip = true; |
| } |
| |
| if (changes_data) |
| clear_all_pkt_pointers(env); |
| return 0; |
| } |
| |
| /* mark_btf_func_reg_size() is used when the reg size is determined by |
| * the BTF func_proto's return value size and argument. |
| */ |
| static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, |
| size_t reg_size) |
| { |
| struct bpf_reg_state *reg = &cur_regs(env)[regno]; |
| |
| if (regno == BPF_REG_0) { |
| /* Function return value */ |
| reg->live |= REG_LIVE_WRITTEN; |
| reg->subreg_def = reg_size == sizeof(u64) ? |
| DEF_NOT_SUBREG : env->insn_idx + 1; |
| } else { |
| /* Function argument */ |
| if (reg_size == sizeof(u64)) { |
| mark_insn_zext(env, reg); |
| mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); |
| } else { |
| mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); |
| } |
| } |
| } |
| |
| static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & KF_ACQUIRE; |
| } |
| |
| static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & KF_RELEASE; |
| } |
| |
| static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); |
| } |
| |
| static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & KF_SLEEPABLE; |
| } |
| |
| static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & KF_DESTRUCTIVE; |
| } |
| |
| static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & KF_RCU; |
| } |
| |
| static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->kfunc_flags & KF_RCU_PROTECTED; |
| } |
| |
| static bool __kfunc_param_match_suffix(const struct btf *btf, |
| const struct btf_param *arg, |
| const char *suffix) |
| { |
| int suffix_len = strlen(suffix), len; |
| const char *param_name; |
| |
| /* In the future, this can be ported to use BTF tagging */ |
| param_name = btf_name_by_offset(btf, arg->name_off); |
| if (str_is_empty(param_name)) |
| return false; |
| len = strlen(param_name); |
| if (len < suffix_len) |
| return false; |
| param_name += len - suffix_len; |
| return !strncmp(param_name, suffix, suffix_len); |
| } |
| |
| static bool is_kfunc_arg_mem_size(const struct btf *btf, |
| const struct btf_param *arg, |
| const struct bpf_reg_state *reg) |
| { |
| const struct btf_type *t; |
| |
| t = btf_type_skip_modifiers(btf, arg->type, NULL); |
| if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) |
| return false; |
| |
| return __kfunc_param_match_suffix(btf, arg, "__sz"); |
| } |
| |
| static bool is_kfunc_arg_const_mem_size(const struct btf *btf, |
| const struct btf_param *arg, |
| const struct bpf_reg_state *reg) |
| { |
| const struct btf_type *t; |
| |
| t = btf_type_skip_modifiers(btf, arg->type, NULL); |
| if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) |
| return false; |
| |
| return __kfunc_param_match_suffix(btf, arg, "__szk"); |
| } |
| |
| static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __kfunc_param_match_suffix(btf, arg, "__opt"); |
| } |
| |
| static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __kfunc_param_match_suffix(btf, arg, "__k"); |
| } |
| |
| static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __kfunc_param_match_suffix(btf, arg, "__ign"); |
| } |
| |
| static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __kfunc_param_match_suffix(btf, arg, "__alloc"); |
| } |
| |
| static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __kfunc_param_match_suffix(btf, arg, "__uninit"); |
| } |
| |
| static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); |
| } |
| |
| static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __kfunc_param_match_suffix(btf, arg, "__nullable"); |
| } |
| |
| static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __kfunc_param_match_suffix(btf, arg, "__str"); |
| } |
| |
| static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, |
| const struct btf_param *arg, |
| const char *name) |
| { |
| int len, target_len = strlen(name); |
| const char *param_name; |
| |
| param_name = btf_name_by_offset(btf, arg->name_off); |
| if (str_is_empty(param_name)) |
| return false; |
| len = strlen(param_name); |
| if (len != target_len) |
| return false; |
| if (strcmp(param_name, name)) |
| return false; |
| |
| return true; |
| } |
| |
| enum { |
| KF_ARG_DYNPTR_ID, |
| KF_ARG_LIST_HEAD_ID, |
| KF_ARG_LIST_NODE_ID, |
| KF_ARG_RB_ROOT_ID, |
| KF_ARG_RB_NODE_ID, |
| }; |
| |
| BTF_ID_LIST(kf_arg_btf_ids) |
| BTF_ID(struct, bpf_dynptr_kern) |
| BTF_ID(struct, bpf_list_head) |
| BTF_ID(struct, bpf_list_node) |
| BTF_ID(struct, bpf_rb_root) |
| BTF_ID(struct, bpf_rb_node) |
| |
| static bool __is_kfunc_ptr_arg_type(const struct btf *btf, |
| const struct btf_param *arg, int type) |
| { |
| const struct btf_type *t; |
| u32 res_id; |
| |
| t = btf_type_skip_modifiers(btf, arg->type, NULL); |
| if (!t) |
| return false; |
| if (!btf_type_is_ptr(t)) |
| return false; |
| t = btf_type_skip_modifiers(btf, t->type, &res_id); |
| if (!t) |
| return false; |
| return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); |
| } |
| |
| static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); |
| } |
| |
| static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); |
| } |
| |
| static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); |
| } |
| |
| static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); |
| } |
| |
| static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) |
| { |
| return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); |
| } |
| |
| static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, |
| const struct btf_param *arg) |
| { |
| const struct btf_type *t; |
| |
| t = btf_type_resolve_func_ptr(btf, arg->type, NULL); |
| if (!t) |
| return false; |
| |
| return true; |
| } |
| |
| /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ |
| static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, |
| const struct btf *btf, |
| const struct btf_type *t, int rec) |
| { |
| const struct btf_type *member_type; |
| const struct btf_member *member; |
| u32 i; |
| |
| if (!btf_type_is_struct(t)) |
| return false; |
| |
| for_each_member(i, t, member) { |
| const struct btf_array *array; |
| |
| member_type = btf_type_skip_modifiers(btf, member->type, NULL); |
| if (btf_type_is_struct(member_type)) { |
| if (rec >= 3) { |
| verbose(env, "max struct nesting depth exceeded\n"); |
| return false; |
| } |
| if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) |
| return false; |
| continue; |
| } |
| if (btf_type_is_array(member_type)) { |
| array = btf_array(member_type); |
| if (!array->nelems) |
| return false; |
| member_type = btf_type_skip_modifiers(btf, array->type, NULL); |
| if (!btf_type_is_scalar(member_type)) |
| return false; |
| continue; |
| } |
| if (!btf_type_is_scalar(member_type)) |
| return false; |
| } |
| return true; |
| } |
| |
| enum kfunc_ptr_arg_type { |
| KF_ARG_PTR_TO_CTX, |
| KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ |
| KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ |
| KF_ARG_PTR_TO_DYNPTR, |
| KF_ARG_PTR_TO_ITER, |
| KF_ARG_PTR_TO_LIST_HEAD, |
| KF_ARG_PTR_TO_LIST_NODE, |
| KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ |
| KF_ARG_PTR_TO_MEM, |
| KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ |
| KF_ARG_PTR_TO_CALLBACK, |
| KF_ARG_PTR_TO_RB_ROOT, |
| KF_ARG_PTR_TO_RB_NODE, |
| KF_ARG_PTR_TO_NULL, |
| KF_ARG_PTR_TO_CONST_STR, |
| }; |
| |
| enum special_kfunc_type { |
| KF_bpf_obj_new_impl, |
| KF_bpf_obj_drop_impl, |
| KF_bpf_refcount_acquire_impl, |
| KF_bpf_list_push_front_impl, |
| KF_bpf_list_push_back_impl, |
| KF_bpf_list_pop_front, |
| KF_bpf_list_pop_back, |
| KF_bpf_cast_to_kern_ctx, |
| KF_bpf_rdonly_cast, |
| KF_bpf_rcu_read_lock, |
| KF_bpf_rcu_read_unlock, |
| KF_bpf_rbtree_remove, |
| KF_bpf_rbtree_add_impl, |
| KF_bpf_rbtree_first, |
| KF_bpf_dynptr_from_skb, |
| KF_bpf_dynptr_from_xdp, |
| KF_bpf_dynptr_slice, |
| KF_bpf_dynptr_slice_rdwr, |
| KF_bpf_dynptr_clone, |
| KF_bpf_percpu_obj_new_impl, |
| KF_bpf_percpu_obj_drop_impl, |
| KF_bpf_throw, |
| KF_bpf_iter_css_task_new, |
| }; |
| |
| BTF_SET_START(special_kfunc_set) |
| BTF_ID(func, bpf_obj_new_impl) |
| BTF_ID(func, bpf_obj_drop_impl) |
| BTF_ID(func, bpf_refcount_acquire_impl) |
| BTF_ID(func, bpf_list_push_front_impl) |
| BTF_ID(func, bpf_list_push_back_impl) |
| BTF_ID(func, bpf_list_pop_front) |
| BTF_ID(func, bpf_list_pop_back) |
| BTF_ID(func, bpf_cast_to_kern_ctx) |
| BTF_ID(func, bpf_rdonly_cast) |
| BTF_ID(func, bpf_rbtree_remove) |
| BTF_ID(func, bpf_rbtree_add_impl) |
| BTF_ID(func, bpf_rbtree_first) |
| BTF_ID(func, bpf_dynptr_from_skb) |
| BTF_ID(func, bpf_dynptr_from_xdp) |
| BTF_ID(func, bpf_dynptr_slice) |
| BTF_ID(func, bpf_dynptr_slice_rdwr) |
| BTF_ID(func, bpf_dynptr_clone) |
| BTF_ID(func, bpf_percpu_obj_new_impl) |
| BTF_ID(func, bpf_percpu_obj_drop_impl) |
| BTF_ID(func, bpf_throw) |
| #ifdef CONFIG_CGROUPS |
| BTF_ID(func, bpf_iter_css_task_new) |
| #endif |
| BTF_SET_END(special_kfunc_set) |
| |
| BTF_ID_LIST(special_kfunc_list) |
| BTF_ID(func, bpf_obj_new_impl) |
| BTF_ID(func, bpf_obj_drop_impl) |
| BTF_ID(func, bpf_refcount_acquire_impl) |
| BTF_ID(func, bpf_list_push_front_impl) |
| BTF_ID(func, bpf_list_push_back_impl) |
| BTF_ID(func, bpf_list_pop_front) |
| BTF_ID(func, bpf_list_pop_back) |
| BTF_ID(func, bpf_cast_to_kern_ctx) |
| BTF_ID(func, bpf_rdonly_cast) |
| BTF_ID(func, bpf_rcu_read_lock) |
| BTF_ID(func, bpf_rcu_read_unlock) |
| BTF_ID(func, bpf_rbtree_remove) |
| BTF_ID(func, bpf_rbtree_add_impl) |
| BTF_ID(func, bpf_rbtree_first) |
| BTF_ID(func, bpf_dynptr_from_skb) |
| BTF_ID(func, bpf_dynptr_from_xdp) |
| BTF_ID(func, bpf_dynptr_slice) |
| BTF_ID(func, bpf_dynptr_slice_rdwr) |
| BTF_ID(func, bpf_dynptr_clone) |
| BTF_ID(func, bpf_percpu_obj_new_impl) |
| BTF_ID(func, bpf_percpu_obj_drop_impl) |
| BTF_ID(func, bpf_throw) |
| #ifdef CONFIG_CGROUPS |
| BTF_ID(func, bpf_iter_css_task_new) |
| #else |
| BTF_ID_UNUSED |
| #endif |
| |
| static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && |
| meta->arg_owning_ref) { |
| return false; |
| } |
| |
| return meta->kfunc_flags & KF_RET_NULL; |
| } |
| |
| static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; |
| } |
| |
| static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; |
| } |
| |
| static enum kfunc_ptr_arg_type |
| get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, |
| struct bpf_kfunc_call_arg_meta *meta, |
| const struct btf_type *t, const struct btf_type *ref_t, |
| const char *ref_tname, const struct btf_param *args, |
| int argno, int nargs) |
| { |
| u32 regno = argno + 1; |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *reg = ®s[regno]; |
| bool arg_mem_size = false; |
| |
| if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) |
| return KF_ARG_PTR_TO_CTX; |
| |
| /* In this function, we verify the kfunc's BTF as per the argument type, |
| * leaving the rest of the verification with respect to the register |
| * type to our caller. When a set of conditions hold in the BTF type of |
| * arguments, we resolve it to a known kfunc_ptr_arg_type. |
| */ |
| if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) |
| return KF_ARG_PTR_TO_CTX; |
| |
| if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) |
| return KF_ARG_PTR_TO_ALLOC_BTF_ID; |
| |
| if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) |
| return KF_ARG_PTR_TO_REFCOUNTED_KPTR; |
| |
| if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) |
| return KF_ARG_PTR_TO_DYNPTR; |
| |
| if (is_kfunc_arg_iter(meta, argno)) |
| return KF_ARG_PTR_TO_ITER; |
| |
| if (is_kfunc_arg_list_head(meta->btf, &args[argno])) |
| return KF_ARG_PTR_TO_LIST_HEAD; |
| |
| if (is_kfunc_arg_list_node(meta->btf, &args[argno])) |
| return KF_ARG_PTR_TO_LIST_NODE; |
| |
| if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) |
| return KF_ARG_PTR_TO_RB_ROOT; |
| |
| if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) |
| return KF_ARG_PTR_TO_RB_NODE; |
| |
| if (is_kfunc_arg_const_str(meta->btf, &args[argno])) |
| return KF_ARG_PTR_TO_CONST_STR; |
| |
| if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { |
| if (!btf_type_is_struct(ref_t)) { |
| verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", |
| meta->func_name, argno, btf_type_str(ref_t), ref_tname); |
| return -EINVAL; |
| } |
| return KF_ARG_PTR_TO_BTF_ID; |
| } |
| |
| if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) |
| return KF_ARG_PTR_TO_CALLBACK; |
| |
| if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) |
| return KF_ARG_PTR_TO_NULL; |
| |
| if (argno + 1 < nargs && |
| (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || |
| is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) |
| arg_mem_size = true; |
| |
| /* This is the catch all argument type of register types supported by |
| * check_helper_mem_access. However, we only allow when argument type is |
| * pointer to scalar, or struct composed (recursively) of scalars. When |
| * arg_mem_size is true, the pointer can be void *. |
| */ |
| if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && |
| (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { |
| verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", |
| argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); |
| return -EINVAL; |
| } |
| return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; |
| } |
| |
| static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, |
| const struct btf_type *ref_t, |
| const char *ref_tname, u32 ref_id, |
| struct bpf_kfunc_call_arg_meta *meta, |
| int argno) |
| { |
| const struct btf_type *reg_ref_t; |
| bool strict_type_match = false; |
| const struct btf *reg_btf; |
| const char *reg_ref_tname; |
| u32 reg_ref_id; |
| |
| if (base_type(reg->type) == PTR_TO_BTF_ID) { |
| reg_btf = reg->btf; |
| reg_ref_id = reg->btf_id; |
| } else { |
| reg_btf = btf_vmlinux; |
| reg_ref_id = *reg2btf_ids[base_type(reg->type)]; |
| } |
| |
| /* Enforce strict type matching for calls to kfuncs that are acquiring |
| * or releasing a reference, or are no-cast aliases. We do _not_ |
| * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, |
| * as we want to enable BPF programs to pass types that are bitwise |
| * equivalent without forcing them to explicitly cast with something |
| * like bpf_cast_to_kern_ctx(). |
| * |
| * For example, say we had a type like the following: |
| * |
| * struct bpf_cpumask { |
| * cpumask_t cpumask; |
| * refcount_t usage; |
| * }; |
| * |
| * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed |
| * to a struct cpumask, so it would be safe to pass a struct |
| * bpf_cpumask * to a kfunc expecting a struct cpumask *. |
| * |
| * The philosophy here is similar to how we allow scalars of different |
| * types to be passed to kfuncs as long as the size is the same. The |
| * only difference here is that we're simply allowing |
| * btf_struct_ids_match() to walk the struct at the 0th offset, and |
| * resolve types. |
| */ |
| if (is_kfunc_acquire(meta) || |
| (is_kfunc_release(meta) && reg->ref_obj_id) || |
| btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) |
| strict_type_match = true; |
| |
| WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); |
| |
| reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); |
| reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); |
| if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { |
| verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", |
| meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, |
| btf_type_str(reg_ref_t), reg_ref_tname); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| struct bpf_verifier_state *state = env->cur_state; |
| struct btf_record *rec = reg_btf_record(reg); |
| |
| if (!state->active_lock.ptr) { |
| verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); |
| return -EFAULT; |
| } |
| |
| if (type_flag(reg->type) & NON_OWN_REF) { |
| verbose(env, "verifier internal error: NON_OWN_REF already set\n"); |
| return -EFAULT; |
| } |
| |
| reg->type |= NON_OWN_REF; |
| if (rec->refcount_off >= 0) |
| reg->type |= MEM_RCU; |
| |
| return 0; |
| } |
| |
| static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) |
| { |
| struct bpf_func_state *state, *unused; |
| struct bpf_reg_state *reg; |
| int i; |
| |
| state = cur_func(env); |
| |
| if (!ref_obj_id) { |
| verbose(env, "verifier internal error: ref_obj_id is zero for " |
| "owning -> non-owning conversion\n"); |
| return -EFAULT; |
| } |
| |
| for (i = 0; i < state->acquired_refs; i++) { |
| if (state->refs[i].id != ref_obj_id) |
| continue; |
| |
| /* Clear ref_obj_id here so release_reference doesn't clobber |
| * the whole reg |
| */ |
| bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ |
| if (reg->ref_obj_id == ref_obj_id) { |
| reg->ref_obj_id = 0; |
| ref_set_non_owning(env, reg); |
| } |
| })); |
| return 0; |
| } |
| |
| verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); |
| return -EFAULT; |
| } |
| |
| /* Implementation details: |
| * |
| * Each register points to some region of memory, which we define as an |
| * allocation. Each allocation may embed a bpf_spin_lock which protects any |
| * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same |
| * allocation. The lock and the data it protects are colocated in the same |
| * memory region. |
| * |
| * Hence, everytime a register holds a pointer value pointing to such |
| * allocation, the verifier preserves a unique reg->id for it. |
| * |
| * The verifier remembers the lock 'ptr' and the lock 'id' whenever |
| * bpf_spin_lock is called. |
| * |
| * To enable this, lock state in the verifier captures two values: |
| * active_lock.ptr = Register's type specific pointer |
| * active_lock.id = A unique ID for each register pointer value |
| * |
| * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two |
| * supported register types. |
| * |
| * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of |
| * allocated objects is the reg->btf pointer. |
| * |
| * The active_lock.id is non-unique for maps supporting direct_value_addr, as we |
| * can establish the provenance of the map value statically for each distinct |
| * lookup into such maps. They always contain a single map value hence unique |
| * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. |
| * |
| * So, in case of global variables, they use array maps with max_entries = 1, |
| * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point |
| * into the same map value as max_entries is 1, as described above). |
| * |
| * In case of inner map lookups, the inner map pointer has same map_ptr as the |
| * outer map pointer (in verifier context), but each lookup into an inner map |
| * assigns a fresh reg->id to the lookup, so while lookups into distinct inner |
| * maps from the same outer map share the same map_ptr as active_lock.ptr, they |
| * will get different reg->id assigned to each lookup, hence different |
| * active_lock.id. |
| * |
| * In case of allocated objects, active_lock.ptr is the reg->btf, and the |
| * reg->id is a unique ID preserved after the NULL pointer check on the pointer |
| * returned from bpf_obj_new. Each allocation receives a new reg->id. |
| */ |
| static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) |
| { |
| void *ptr; |
| u32 id; |
| |
| switch ((int)reg->type) { |
| case PTR_TO_MAP_VALUE: |
| ptr = reg->map_ptr; |
| break; |
| case PTR_TO_BTF_ID | MEM_ALLOC: |
| ptr = reg->btf; |
| break; |
| default: |
| verbose(env, "verifier internal error: unknown reg type for lock check\n"); |
| return -EFAULT; |
| } |
| id = reg->id; |
| |
| if (!env->cur_state->active_lock.ptr) |
| return -EINVAL; |
| if (env->cur_state->active_lock.ptr != ptr || |
| env->cur_state->active_lock.id != id) { |
| verbose(env, "held lock and object are not in the same allocation\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static bool is_bpf_list_api_kfunc(u32 btf_id) |
| { |
| return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || |
| btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || |
| btf_id == special_kfunc_list[KF_bpf_list_pop_front] || |
| btf_id == special_kfunc_list[KF_bpf_list_pop_back]; |
| } |
| |
| static bool is_bpf_rbtree_api_kfunc(u32 btf_id) |
| { |
| return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || |
| btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || |
| btf_id == special_kfunc_list[KF_bpf_rbtree_first]; |
| } |
| |
| static bool is_bpf_graph_api_kfunc(u32 btf_id) |
| { |
| return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || |
| btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; |
| } |
| |
| static bool is_sync_callback_calling_kfunc(u32 btf_id) |
| { |
| return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; |
| } |
| |
| static bool is_bpf_throw_kfunc(struct bpf_insn *insn) |
| { |
| return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && |
| insn->imm == special_kfunc_list[KF_bpf_throw]; |
| } |
| |
| static bool is_rbtree_lock_required_kfunc(u32 btf_id) |
| { |
| return is_bpf_rbtree_api_kfunc(btf_id); |
| } |
| |
| static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, |
| enum btf_field_type head_field_type, |
| u32 kfunc_btf_id) |
| { |
| bool ret; |
| |
| switch (head_field_type) { |
| case BPF_LIST_HEAD: |
| ret = is_bpf_list_api_kfunc(kfunc_btf_id); |
| break; |
| case BPF_RB_ROOT: |
| ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); |
| break; |
| default: |
| verbose(env, "verifier internal error: unexpected graph root argument type %s\n", |
| btf_field_type_name(head_field_type)); |
| return false; |
| } |
| |
| if (!ret) |
| verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", |
| btf_field_type_name(head_field_type)); |
| return ret; |
| } |
| |
| static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, |
| enum btf_field_type node_field_type, |
| u32 kfunc_btf_id) |
| { |
| bool ret; |
| |
| switch (node_field_type) { |
| case BPF_LIST_NODE: |
| ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || |
| kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); |
| break; |
| case BPF_RB_NODE: |
| ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || |
| kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); |
| break; |
| default: |
| verbose(env, "verifier internal error: unexpected graph node argument type %s\n", |
| btf_field_type_name(node_field_type)); |
| return false; |
| } |
| |
| if (!ret) |
| verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", |
| btf_field_type_name(node_field_type)); |
| return ret; |
| } |
| |
| static int |
| __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, u32 regno, |
| struct bpf_kfunc_call_arg_meta *meta, |
| enum btf_field_type head_field_type, |
| struct btf_field **head_field) |
| { |
| const char *head_type_name; |
| struct btf_field *field; |
| struct btf_record *rec; |
| u32 head_off; |
| |
| if (meta->btf != btf_vmlinux) { |
| verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); |
| return -EFAULT; |
| } |
| |
| if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) |
| return -EFAULT; |
| |
| head_type_name = btf_field_type_name(head_field_type); |
| if (!tnum_is_const(reg->var_off)) { |
| verbose(env, |
| "R%d doesn't have constant offset. %s has to be at the constant offset\n", |
| regno, head_type_name); |
| return -EINVAL; |
| } |
| |
| rec = reg_btf_record(reg); |
| head_off = reg->off + reg->var_off.value; |
| field = btf_record_find(rec, head_off, head_field_type); |
| if (!field) { |
| verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); |
| return -EINVAL; |
| } |
| |
| /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ |
| if (check_reg_allocation_locked(env, reg)) { |
| verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", |
| rec->spin_lock_off, head_type_name); |
| return -EINVAL; |
| } |
| |
| if (*head_field) { |
| verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); |
| return -EFAULT; |
| } |
| *head_field = field; |
| return 0; |
| } |
| |
| static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, u32 regno, |
| struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, |
| &meta->arg_list_head.field); |
| } |
| |
| static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, u32 regno, |
| struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, |
| &meta->arg_rbtree_root.field); |
| } |
| |
| static int |
| __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, u32 regno, |
| struct bpf_kfunc_call_arg_meta *meta, |
| enum btf_field_type head_field_type, |
| enum btf_field_type node_field_type, |
| struct btf_field **node_field) |
| { |
| const char *node_type_name; |
| const struct btf_type *et, *t; |
| struct btf_field *field; |
| u32 node_off; |
| |
| if (meta->btf != btf_vmlinux) { |
| verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); |
| return -EFAULT; |
| } |
| |
| if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) |
| return -EFAULT; |
| |
| node_type_name = btf_field_type_name(node_field_type); |
| if (!tnum_is_const(reg->var_off)) { |
| verbose(env, |
| "R%d doesn't have constant offset. %s has to be at the constant offset\n", |
| regno, node_type_name); |
| return -EINVAL; |
| } |
| |
| node_off = reg->off + reg->var_off.value; |
| field = reg_find_field_offset(reg, node_off, node_field_type); |
| if (!field || field->offset != node_off) { |
| verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); |
| return -EINVAL; |
| } |
| |
| field = *node_field; |
| |
| et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); |
| t = btf_type_by_id(reg->btf, reg->btf_id); |
| if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, |
| field->graph_root.value_btf_id, true)) { |
| verbose(env, "operation on %s expects arg#1 %s at offset=%d " |
| "in struct %s, but arg is at offset=%d in struct %s\n", |
| btf_field_type_name(head_field_type), |
| btf_field_type_name(node_field_type), |
| field->graph_root.node_offset, |
| btf_name_by_offset(field->graph_root.btf, et->name_off), |
| node_off, btf_name_by_offset(reg->btf, t->name_off)); |
| return -EINVAL; |
| } |
| meta->arg_btf = reg->btf; |
| meta->arg_btf_id = reg->btf_id; |
| |
| if (node_off != field->graph_root.node_offset) { |
| verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", |
| node_off, btf_field_type_name(node_field_type), |
| field->graph_root.node_offset, |
| btf_name_by_offset(field->graph_root.btf, et->name_off)); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, u32 regno, |
| struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, |
| BPF_LIST_HEAD, BPF_LIST_NODE, |
| &meta->arg_list_head.field); |
| } |
| |
| static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, u32 regno, |
| struct bpf_kfunc_call_arg_meta *meta) |
| { |
| return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, |
| BPF_RB_ROOT, BPF_RB_NODE, |
| &meta->arg_rbtree_root.field); |
| } |
| |
| /* |
| * css_task iter allowlist is needed to avoid dead locking on css_set_lock. |
| * LSM hooks and iters (both sleepable and non-sleepable) are safe. |
| * Any sleepable progs are also safe since bpf_check_attach_target() enforce |
| * them can only be attached to some specific hook points. |
| */ |
| static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) |
| { |
| enum bpf_prog_type prog_type = resolve_prog_type(env->prog); |
| |
| switch (prog_type) { |
| case BPF_PROG_TYPE_LSM: |
| return true; |
| case BPF_PROG_TYPE_TRACING: |
| if (env->prog->expected_attach_type == BPF_TRACE_ITER) |
| return true; |
| fallthrough; |
| default: |
| return env->prog->aux->sleepable; |
| } |
| } |
| |
| static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, |
| int insn_idx) |
| { |
| const char *func_name = meta->func_name, *ref_tname; |
| const struct btf *btf = meta->btf; |
| const struct btf_param *args; |
| struct btf_record *rec; |
| u32 i, nargs; |
| int ret; |
| |
| args = (const struct btf_param *)(meta->func_proto + 1); |
| nargs = btf_type_vlen(meta->func_proto); |
| if (nargs > MAX_BPF_FUNC_REG_ARGS) { |
| verbose(env, "Function %s has %d > %d args\n", func_name, nargs, |
| MAX_BPF_FUNC_REG_ARGS); |
| return -EINVAL; |
| } |
| |
| /* Check that BTF function arguments match actual types that the |
| * verifier sees. |
| */ |
| for (i = 0; i < nargs; i++) { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; |
| const struct btf_type *t, *ref_t, *resolve_ret; |
| enum bpf_arg_type arg_type = ARG_DONTCARE; |
| u32 regno = i + 1, ref_id, type_size; |
| bool is_ret_buf_sz = false; |
| int kf_arg_type; |
| |
| t = btf_type_skip_modifiers(btf, args[i].type, NULL); |
| |
| if (is_kfunc_arg_ignore(btf, &args[i])) |
| continue; |
| |
| if (btf_type_is_scalar(t)) { |
| if (reg->type != SCALAR_VALUE) { |
| verbose(env, "R%d is not a scalar\n", regno); |
| return -EINVAL; |
| } |
| |
| if (is_kfunc_arg_constant(meta->btf, &args[i])) { |
| if (meta->arg_constant.found) { |
| verbose(env, "verifier internal error: only one constant argument permitted\n"); |
| return -EFAULT; |
| } |
| if (!tnum_is_const(reg->var_off)) { |
| verbose(env, "R%d must be a known constant\n", regno); |
| return -EINVAL; |
| } |
| ret = mark_chain_precision(env, regno); |
| if (ret < 0) |
| return ret; |
| meta->arg_constant.found = true; |
| meta->arg_constant.value = reg->var_off.value; |
| } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { |
| meta->r0_rdonly = true; |
| is_ret_buf_sz = true; |
| } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { |
| is_ret_buf_sz = true; |
| } |
| |
| if (is_ret_buf_sz) { |
| if (meta->r0_size) { |
| verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); |
| return -EINVAL; |
| } |
| |
| if (!tnum_is_const(reg->var_off)) { |
| verbose(env, "R%d is not a const\n", regno); |
| return -EINVAL; |
| } |
| |
| meta->r0_size = reg->var_off.value; |
| ret = mark_chain_precision(env, regno); |
| if (ret) |
| return ret; |
| } |
| continue; |
| } |
| |
| if (!btf_type_is_ptr(t)) { |
| verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); |
| return -EINVAL; |
| } |
| |
| if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && |
| (register_is_null(reg) || type_may_be_null(reg->type)) && |
| !is_kfunc_arg_nullable(meta->btf, &args[i])) { |
| verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); |
| return -EACCES; |
| } |
| |
| if (reg->ref_obj_id) { |
| if (is_kfunc_release(meta) && meta->ref_obj_id) { |
| verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", |
| regno, reg->ref_obj_id, |
| meta->ref_obj_id); |
| return -EFAULT; |
| } |
| meta->ref_obj_id = reg->ref_obj_id; |
| if (is_kfunc_release(meta)) |
| meta->release_regno = regno; |
| } |
| |
| ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); |
| ref_tname = btf_name_by_offset(btf, ref_t->name_off); |
| |
| kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); |
| if (kf_arg_type < 0) |
| return kf_arg_type; |
| |
| switch (kf_arg_type) { |
| case KF_ARG_PTR_TO_NULL: |
| continue; |
| case KF_ARG_PTR_TO_ALLOC_BTF_ID: |
| case KF_ARG_PTR_TO_BTF_ID: |
| if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) |
| break; |
| |
| if (!is_trusted_reg(reg)) { |
| if (!is_kfunc_rcu(meta)) { |
| verbose(env, "R%d must be referenced or trusted\n", regno); |
| return -EINVAL; |
| } |
| if (!is_rcu_reg(reg)) { |
| verbose(env, "R%d must be a rcu pointer\n", regno); |
| return -EINVAL; |
| } |
| } |
| |
| fallthrough; |
| case KF_ARG_PTR_TO_CTX: |
| /* Trusted arguments have the same offset checks as release arguments */ |
| arg_type |= OBJ_RELEASE; |
| break; |
| case KF_ARG_PTR_TO_DYNPTR: |
| case KF_ARG_PTR_TO_ITER: |
| case KF_ARG_PTR_TO_LIST_HEAD: |
| case KF_ARG_PTR_TO_LIST_NODE: |
| case KF_ARG_PTR_TO_RB_ROOT: |
| case KF_ARG_PTR_TO_RB_NODE: |
| case KF_ARG_PTR_TO_MEM: |
| case KF_ARG_PTR_TO_MEM_SIZE: |
| case KF_ARG_PTR_TO_CALLBACK: |
| case KF_ARG_PTR_TO_REFCOUNTED_KPTR: |
| case KF_ARG_PTR_TO_CONST_STR: |
| /* Trusted by default */ |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| return -EFAULT; |
| } |
| |
| if (is_kfunc_release(meta) && reg->ref_obj_id) |
| arg_type |= OBJ_RELEASE; |
| ret = check_func_arg_reg_off(env, reg, regno, arg_type); |
| if (ret < 0) |
| return ret; |
| |
| switch (kf_arg_type) { |
| case KF_ARG_PTR_TO_CTX: |
| if (reg->type != PTR_TO_CTX) { |
| verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); |
| return -EINVAL; |
| } |
| |
| if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { |
| ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); |
| if (ret < 0) |
| return -EINVAL; |
| meta->ret_btf_id = ret; |
| } |
| break; |
| case KF_ARG_PTR_TO_ALLOC_BTF_ID: |
| if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { |
| if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { |
| verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); |
| return -EINVAL; |
| } |
| } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { |
| if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { |
| verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); |
| return -EINVAL; |
| } |
| } else { |
| verbose(env, "arg#%d expected pointer to allocated object\n", i); |
| return -EINVAL; |
| } |
| if (!reg->ref_obj_id) { |
| verbose(env, "allocated object must be referenced\n"); |
| return -EINVAL; |
| } |
| if (meta->btf == btf_vmlinux) { |
| meta->arg_btf = reg->btf; |
| meta->arg_btf_id = reg->btf_id; |
| } |
| break; |
| case KF_ARG_PTR_TO_DYNPTR: |
| { |
| enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; |
| int clone_ref_obj_id = 0; |
| |
| if (reg->type != PTR_TO_STACK && |
| reg->type != CONST_PTR_TO_DYNPTR) { |
| verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); |
| return -EINVAL; |
| } |
| |
| if (reg->type == CONST_PTR_TO_DYNPTR) |
| dynptr_arg_type |= MEM_RDONLY; |
| |
| if (is_kfunc_arg_uninit(btf, &args[i])) |
| dynptr_arg_type |= MEM_UNINIT; |
| |
| if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { |
| dynptr_arg_type |= DYNPTR_TYPE_SKB; |
| } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { |
| dynptr_arg_type |= DYNPTR_TYPE_XDP; |
| } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && |
| (dynptr_arg_type & MEM_UNINIT)) { |
| enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; |
| |
| if (parent_type == BPF_DYNPTR_TYPE_INVALID) { |
| verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); |
| return -EFAULT; |
| } |
| |
| dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); |
| clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; |
| if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { |
| verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); |
| return -EFAULT; |
| } |
| } |
| |
| ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); |
| if (ret < 0) |
| return ret; |
| |
| if (!(dynptr_arg_type & MEM_UNINIT)) { |
| int id = dynptr_id(env, reg); |
| |
| if (id < 0) { |
| verbose(env, "verifier internal error: failed to obtain dynptr id\n"); |
| return id; |
| } |
| meta->initialized_dynptr.id = id; |
| meta->initialized_dynptr.type = dynptr_get_type(env, reg); |
| meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); |
| } |
| |
| break; |
| } |
| case KF_ARG_PTR_TO_ITER: |
| if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { |
| if (!check_css_task_iter_allowlist(env)) { |
| verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); |
| return -EINVAL; |
| } |
| } |
| ret = process_iter_arg(env, regno, insn_idx, meta); |
| if (ret < 0) |
| return ret; |
| break; |
| case KF_ARG_PTR_TO_LIST_HEAD: |
| if (reg->type != PTR_TO_MAP_VALUE && |
| reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { |
| verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); |
| return -EINVAL; |
| } |
| if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { |
| verbose(env, "allocated object must be referenced\n"); |
| return -EINVAL; |
| } |
| ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); |
| if (ret < 0) |
| return ret; |
| break; |
| case KF_ARG_PTR_TO_RB_ROOT: |
| if (reg->type != PTR_TO_MAP_VALUE && |
| reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { |
| verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); |
| return -EINVAL; |
| } |
| if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { |
| verbose(env, "allocated object must be referenced\n"); |
| return -EINVAL; |
| } |
| ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); |
| if (ret < 0) |
| return ret; |
| break; |
| case KF_ARG_PTR_TO_LIST_NODE: |
| if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { |
| verbose(env, "arg#%d expected pointer to allocated object\n", i); |
| return -EINVAL; |
| } |
| if (!reg->ref_obj_id) { |
| verbose(env, "allocated object must be referenced\n"); |
| return -EINVAL; |
| } |
| ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); |
| if (ret < 0) |
| return ret; |
| break; |
| case KF_ARG_PTR_TO_RB_NODE: |
| if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { |
| if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { |
| verbose(env, "rbtree_remove node input must be non-owning ref\n"); |
| return -EINVAL; |
| } |
| if (in_rbtree_lock_required_cb(env)) { |
| verbose(env, "rbtree_remove not allowed in rbtree cb\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { |
| verbose(env, "arg#%d expected pointer to allocated object\n", i); |
| return -EINVAL; |
| } |
| if (!reg->ref_obj_id) { |
| verbose(env, "allocated object must be referenced\n"); |
| return -EINVAL; |
| } |
| } |
| |
| ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); |
| if (ret < 0) |
| return ret; |
| break; |
| case KF_ARG_PTR_TO_BTF_ID: |
| /* Only base_type is checked, further checks are done here */ |
| if ((base_type(reg->type) != PTR_TO_BTF_ID || |
| (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && |
| !reg2btf_ids[base_type(reg->type)]) { |
| verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); |
| verbose(env, "expected %s or socket\n", |
| reg_type_str(env, base_type(reg->type) | |
| (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); |
| return -EINVAL; |
| } |
| ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); |
| if (ret < 0) |
| return ret; |
| break; |
| case KF_ARG_PTR_TO_MEM: |
| resolve_ret = btf_resolve_size(btf, ref_t, &type_size); |
| if (IS_ERR(resolve_ret)) { |
| verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", |
| i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); |
| return -EINVAL; |
| } |
| ret = check_mem_reg(env, reg, regno, type_size); |
| if (ret < 0) |
| return ret; |
| break; |
| case KF_ARG_PTR_TO_MEM_SIZE: |
| { |
| struct bpf_reg_state *buff_reg = ®s[regno]; |
| const struct btf_param *buff_arg = &args[i]; |
| struct bpf_reg_state *size_reg = ®s[regno + 1]; |
| const struct btf_param *size_arg = &args[i + 1]; |
| |
| if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { |
| ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); |
| if (ret < 0) { |
| verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); |
| return ret; |
| } |
| } |
| |
| if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { |
| if (meta->arg_constant.found) { |
| verbose(env, "verifier internal error: only one constant argument permitted\n"); |
| return -EFAULT; |
| } |
| if (!tnum_is_const(size_reg->var_off)) { |
| verbose(env, "R%d must be a known constant\n", regno + 1); |
| return -EINVAL; |
| } |
| meta->arg_constant.found = true; |
| meta->arg_constant.value = size_reg->var_off.value; |
| } |
| |
| /* Skip next '__sz' or '__szk' argument */ |
| i++; |
| break; |
| } |
| case KF_ARG_PTR_TO_CALLBACK: |
| if (reg->type != PTR_TO_FUNC) { |
| verbose(env, "arg%d expected pointer to func\n", i); |
| return -EINVAL; |
| } |
| meta->subprogno = reg->subprogno; |
| break; |
| case KF_ARG_PTR_TO_REFCOUNTED_KPTR: |
| if (!type_is_ptr_alloc_obj(reg->type)) { |
| verbose(env, "arg#%d is neither owning or non-owning ref\n", i); |
| return -EINVAL; |
| } |
| if (!type_is_non_owning_ref(reg->type)) |
| meta->arg_owning_ref = true; |
| |
| rec = reg_btf_record(reg); |
| if (!rec) { |
| verbose(env, "verifier internal error: Couldn't find btf_record\n"); |
| return -EFAULT; |
| } |
| |
| if (rec->refcount_off < 0) { |
| verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); |
| return -EINVAL; |
| } |
| |
| meta->arg_btf = reg->btf; |
| meta->arg_btf_id = reg->btf_id; |
| break; |
| case KF_ARG_PTR_TO_CONST_STR: |
| if (reg->type != PTR_TO_MAP_VALUE) { |
| verbose(env, "arg#%d doesn't point to a const string\n", i); |
| return -EINVAL; |
| } |
| ret = check_reg_const_str(env, reg, regno); |
| if (ret) |
| return ret; |
| break; |
| } |
| } |
| |
| if (is_kfunc_release(meta) && !meta->release_regno) { |
| verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", |
| func_name); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int fetch_kfunc_meta(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, |
| struct bpf_kfunc_call_arg_meta *meta, |
| const char **kfunc_name) |
| { |
| const struct btf_type *func, *func_proto; |
| u32 func_id, *kfunc_flags; |
| const char *func_name; |
| struct btf *desc_btf; |
| |
| if (kfunc_name) |
| *kfunc_name = NULL; |
| |
| if (!insn->imm) |
| return -EINVAL; |
| |
| desc_btf = find_kfunc_desc_btf(env, insn->off); |
| if (IS_ERR(desc_btf)) |
| return PTR_ERR(desc_btf); |
| |
| func_id = insn->imm; |
| func = btf_type_by_id(desc_btf, func_id); |
| func_name = btf_name_by_offset(desc_btf, func->name_off); |
| if (kfunc_name) |
| *kfunc_name = func_name; |
| func_proto = btf_type_by_id(desc_btf, func->type); |
| |
| kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); |
| if (!kfunc_flags) { |
| return -EACCES; |
| } |
| |
| memset(meta, 0, sizeof(*meta)); |
| meta->btf = desc_btf; |
| meta->func_id = func_id; |
| meta->kfunc_flags = *kfunc_flags; |
| meta->func_proto = func_proto; |
| meta->func_name = func_name; |
| |
| return 0; |
| } |
| |
| static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); |
| |
| static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, |
| int *insn_idx_p) |
| { |
| const struct btf_type *t, *ptr_type; |
| u32 i, nargs, ptr_type_id, release_ref_obj_id; |
| struct bpf_reg_state *regs = cur_regs(env); |
| const char *func_name, *ptr_type_name; |
| bool sleepable, rcu_lock, rcu_unlock; |
| struct bpf_kfunc_call_arg_meta meta; |
| struct bpf_insn_aux_data *insn_aux; |
| int err, insn_idx = *insn_idx_p; |
| const struct btf_param *args; |
| const struct btf_type *ret_t; |
| struct btf *desc_btf; |
| |
| /* skip for now, but return error when we find this in fixup_kfunc_call */ |
| if (!insn->imm) |
| return 0; |
| |
| err = fetch_kfunc_meta(env, insn, &meta, &func_name); |
| if (err == -EACCES && func_name) |
| verbose(env, "calling kernel function %s is not allowed\n", func_name); |
| if (err) |
| return err; |
| desc_btf = meta.btf; |
| insn_aux = &env->insn_aux_data[insn_idx]; |
| |
| insn_aux->is_iter_next = is_iter_next_kfunc(&meta); |
| |
| if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { |
| verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); |
| return -EACCES; |
| } |
| |
| sleepable = is_kfunc_sleepable(&meta); |
| if (sleepable && !env->prog->aux->sleepable) { |
| verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); |
| return -EACCES; |
| } |
| |
| /* Check the arguments */ |
| err = check_kfunc_args(env, &meta, insn_idx); |
| if (err < 0) |
| return err; |
| |
| if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { |
| err = push_callback_call(env, insn, insn_idx, meta.subprogno, |
| set_rbtree_add_callback_state); |
| if (err) { |
| verbose(env, "kfunc %s#%d failed callback verification\n", |
| func_name, meta.func_id); |
| return err; |
| } |
| } |
| |
| rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); |
| rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); |
| |
| if (env->cur_state->active_rcu_lock) { |
| struct bpf_func_state *state; |
| struct bpf_reg_state *reg; |
| u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); |
| |
| if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { |
| verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); |
| return -EACCES; |
| } |
| |
| if (rcu_lock) { |
| verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); |
| return -EINVAL; |
| } else if (rcu_unlock) { |
| bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ |
| if (reg->type & MEM_RCU) { |
| reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); |
| reg->type |= PTR_UNTRUSTED; |
| } |
| })); |
| env->cur_state->active_rcu_lock = false; |
| } else if (sleepable) { |
| verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); |
| return -EACCES; |
| } |
| } else if (rcu_lock) { |
| env->cur_state->active_rcu_lock = true; |
| } else if (rcu_unlock) { |
| verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); |
| return -EINVAL; |
| } |
| |
| /* In case of release function, we get register number of refcounted |
| * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. |
| */ |
| if (meta.release_regno) { |
| err = release_reference(env, regs[meta.release_regno].ref_obj_id); |
| if (err) { |
| verbose(env, "kfunc %s#%d reference has not been acquired before\n", |
| func_name, meta.func_id); |
| return err; |
| } |
| } |
| |
| if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || |
| meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || |
| meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { |
| release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; |
| insn_aux->insert_off = regs[BPF_REG_2].off; |
| insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); |
| err = ref_convert_owning_non_owning(env, release_ref_obj_id); |
| if (err) { |
| verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", |
| func_name, meta.func_id); |
| return err; |
| } |
| |
| err = release_reference(env, release_ref_obj_id); |
| if (err) { |
| verbose(env, "kfunc %s#%d reference has not been acquired before\n", |
| func_name, meta.func_id); |
| return err; |
| } |
| } |
| |
| if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { |
| if (!bpf_jit_supports_exceptions()) { |
| verbose(env, "JIT does not support calling kfunc %s#%d\n", |
| func_name, meta.func_id); |
| return -ENOTSUPP; |
| } |
| env->seen_exception = true; |
| |
| /* In the case of the default callback, the cookie value passed |
| * to bpf_throw becomes the return value of the program. |
| */ |
| if (!env->exception_callback_subprog) { |
| err = check_return_code(env, BPF_REG_1, "R1"); |
| if (err < 0) |
| return err; |
| } |
| } |
| |
| for (i = 0; i < CALLER_SAVED_REGS; i++) |
| mark_reg_not_init(env, regs, caller_saved[i]); |
| |
| /* Check return type */ |
| t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); |
| |
| if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { |
| /* Only exception is bpf_obj_new_impl */ |
| if (meta.btf != btf_vmlinux || |
| (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && |
| meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && |
| meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { |
| verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (btf_type_is_scalar(t)) { |
| mark_reg_unknown(env, regs, BPF_REG_0); |
| mark_btf_func_reg_size(env, BPF_REG_0, t->size); |
| } else if (btf_type_is_ptr(t)) { |
| ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); |
| |
| if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { |
| if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || |
| meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { |
| struct btf_struct_meta *struct_meta; |
| struct btf *ret_btf; |
| u32 ret_btf_id; |
| |
| if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) |
| return -ENOMEM; |
| |
| if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { |
| verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); |
| return -EINVAL; |
| } |
| |
| ret_btf = env->prog->aux->btf; |
| ret_btf_id = meta.arg_constant.value; |
| |
| /* This may be NULL due to user not supplying a BTF */ |
| if (!ret_btf) { |
| verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); |
| return -EINVAL; |
| } |
| |
| ret_t = btf_type_by_id(ret_btf, ret_btf_id); |
| if (!ret_t || !__btf_type_is_struct(ret_t)) { |
| verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); |
| return -EINVAL; |
| } |
| |
| if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { |
| if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { |
| verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", |
| ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); |
| return -EINVAL; |
| } |
| |
| if (!bpf_global_percpu_ma_set) { |
| mutex_lock(&bpf_percpu_ma_lock); |
| if (!bpf_global_percpu_ma_set) { |
| /* Charge memory allocated with bpf_global_percpu_ma to |
| * root memcg. The obj_cgroup for root memcg is NULL. |
| */ |
| err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); |
| if (!err) |
| bpf_global_percpu_ma_set = true; |
| } |
| mutex_unlock(&bpf_percpu_ma_lock); |
| if (err) |
| return err; |
| } |
| |
| mutex_lock(&bpf_percpu_ma_lock); |
| err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); |
| mutex_unlock(&bpf_percpu_ma_lock); |
| if (err) |
| return err; |
| } |
| |
| struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); |
| if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { |
| if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { |
| verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); |
| return -EINVAL; |
| } |
| |
| if (struct_meta) { |
| verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; |
| regs[BPF_REG_0].btf = ret_btf; |
| regs[BPF_REG_0].btf_id = ret_btf_id; |
| if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) |
| regs[BPF_REG_0].type |= MEM_PERCPU; |
| |
| insn_aux->obj_new_size = ret_t->size; |
| insn_aux->kptr_struct_meta = struct_meta; |
| } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; |
| regs[BPF_REG_0].btf = meta.arg_btf; |
| regs[BPF_REG_0].btf_id = meta.arg_btf_id; |
| |
| insn_aux->kptr_struct_meta = |
| btf_find_struct_meta(meta.arg_btf, |
| meta.arg_btf_id); |
| } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || |
| meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { |
| struct btf_field *field = meta.arg_list_head.field; |
| |
| mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); |
| } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || |
| meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { |
| struct btf_field *field = meta.arg_rbtree_root.field; |
| |
| mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); |
| } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; |
| regs[BPF_REG_0].btf = desc_btf; |
| regs[BPF_REG_0].btf_id = meta.ret_btf_id; |
| } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { |
| ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); |
| if (!ret_t || !btf_type_is_struct(ret_t)) { |
| verbose(env, |
| "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); |
| return -EINVAL; |
| } |
| |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; |
| regs[BPF_REG_0].btf = desc_btf; |
| regs[BPF_REG_0].btf_id = meta.arg_constant.value; |
| } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || |
| meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { |
| enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); |
| |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| |
| if (!meta.arg_constant.found) { |
| verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); |
| return -EFAULT; |
| } |
| |
| regs[BPF_REG_0].mem_size = meta.arg_constant.value; |
| |
| /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ |
| regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; |
| |
| if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { |
| regs[BPF_REG_0].type |= MEM_RDONLY; |
| } else { |
| /* this will set env->seen_direct_write to true */ |
| if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { |
| verbose(env, "the prog does not allow writes to packet data\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (!meta.initialized_dynptr.id) { |
| verbose(env, "verifier internal error: no dynptr id\n"); |
| return -EFAULT; |
| } |
| regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; |
| |
| /* we don't need to set BPF_REG_0's ref obj id |
| * because packet slices are not refcounted (see |
| * dynptr_type_refcounted) |
| */ |
| } else { |
| verbose(env, "kernel function %s unhandled dynamic return type\n", |
| meta.func_name); |
| return -EFAULT; |
| } |
| } else if (!__btf_type_is_struct(ptr_type)) { |
| if (!meta.r0_size) { |
| __u32 sz; |
| |
| if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { |
| meta.r0_size = sz; |
| meta.r0_rdonly = true; |
| } |
| } |
| if (!meta.r0_size) { |
| ptr_type_name = btf_name_by_offset(desc_btf, |
| ptr_type->name_off); |
| verbose(env, |
| "kernel function %s returns pointer type %s %s is not supported\n", |
| func_name, |
| btf_type_str(ptr_type), |
| ptr_type_name); |
| return -EINVAL; |
| } |
| |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].type = PTR_TO_MEM; |
| regs[BPF_REG_0].mem_size = meta.r0_size; |
| |
| if (meta.r0_rdonly) |
| regs[BPF_REG_0].type |= MEM_RDONLY; |
| |
| /* Ensures we don't access the memory after a release_reference() */ |
| if (meta.ref_obj_id) |
| regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; |
| } else { |
| mark_reg_known_zero(env, regs, BPF_REG_0); |
| regs[BPF_REG_0].btf = desc_btf; |
| regs[BPF_REG_0].type = PTR_TO_BTF_ID; |
| regs[BPF_REG_0].btf_id = ptr_type_id; |
| } |
| |
| if (is_kfunc_ret_null(&meta)) { |
| regs[BPF_REG_0].type |= PTR_MAYBE_NULL; |
| /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ |
| regs[BPF_REG_0].id = ++env->id_gen; |
| } |
| mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); |
| if (is_kfunc_acquire(&meta)) { |
| int id = acquire_reference_state(env, insn_idx); |
| |
| if (id < 0) |
| return id; |
| if (is_kfunc_ret_null(&meta)) |
| regs[BPF_REG_0].id = id; |
| regs[BPF_REG_0].ref_obj_id = id; |
| } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { |
| ref_set_non_owning(env, ®s[BPF_REG_0]); |
| } |
| |
| if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) |
| regs[BPF_REG_0].id = ++env->id_gen; |
| } else if (btf_type_is_void(t)) { |
| if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { |
| if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || |
| meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { |
| insn_aux->kptr_struct_meta = |
| btf_find_struct_meta(meta.arg_btf, |
| meta.arg_btf_id); |
| } |
| } |
| } |
| |
| nargs = btf_type_vlen(meta.func_proto); |
| args = (const struct btf_param *)(meta.func_proto + 1); |
| for (i = 0; i < nargs; i++) { |
| u32 regno = i + 1; |
| |
| t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); |
| if (btf_type_is_ptr(t)) |
| mark_btf_func_reg_size(env, regno, sizeof(void *)); |
| else |
| /* scalar. ensured by btf_check_kfunc_arg_match() */ |
| mark_btf_func_reg_size(env, regno, t->size); |
| } |
| |
| if (is_iter_next_kfunc(&meta)) { |
| err = process_iter_next_call(env, insn_idx, &meta); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static bool signed_add_overflows(s64 a, s64 b) |
| { |
| /* Do the add in u64, where overflow is well-defined */ |
| s64 res = (s64)((u64)a + (u64)b); |
| |
| if (b < 0) |
| return res > a; |
| return res < a; |
| } |
| |
| static bool signed_add32_overflows(s32 a, s32 b) |
| { |
| /* Do the add in u32, where overflow is well-defined */ |
| s32 res = (s32)((u32)a + (u32)b); |
| |
| if (b < 0) |
| return res > a; |
| return res < a; |
| } |
| |
| static bool signed_sub_overflows(s64 a, s64 b) |
| { |
| /* Do the sub in u64, where overflow is well-defined */ |
| s64 res = (s64)((u64)a - (u64)b); |
| |
| if (b < 0) |
| return res < a; |
| return res > a; |
| } |
| |
| static bool signed_sub32_overflows(s32 a, s32 b) |
| { |
| /* Do the sub in u32, where overflow is well-defined */ |
| s32 res = (s32)((u32)a - (u32)b); |
| |
| if (b < 0) |
| return res < a; |
| return res > a; |
| } |
| |
| static bool check_reg_sane_offset(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, |
| enum bpf_reg_type type) |
| { |
| bool known = tnum_is_const(reg->var_off); |
| s64 val = reg->var_off.value; |
| s64 smin = reg->smin_value; |
| |
| if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { |
| verbose(env, "math between %s pointer and %lld is not allowed\n", |
| reg_type_str(env, type), val); |
| return false; |
| } |
| |
| if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { |
| verbose(env, "%s pointer offset %d is not allowed\n", |
| reg_type_str(env, type), reg->off); |
| return false; |
| } |
| |
| if (smin == S64_MIN) { |
| verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", |
| reg_type_str(env, type)); |
| return false; |
| } |
| |
| if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { |
| verbose(env, "value %lld makes %s pointer be out of bounds\n", |
| smin, reg_type_str(env, type)); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| enum { |
| REASON_BOUNDS = -1, |
| REASON_TYPE = -2, |
| REASON_PATHS = -3, |
| REASON_LIMIT = -4, |
| REASON_STACK = -5, |
| }; |
| |
| static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, |
| u32 *alu_limit, bool mask_to_left) |
| { |
| u32 max = 0, ptr_limit = 0; |
| |
| switch (ptr_reg->type) { |
| case PTR_TO_STACK: |
| /* Offset 0 is out-of-bounds, but acceptable start for the |
| * left direction, see BPF_REG_FP. Also, unknown scalar |
| * offset where we would need to deal with min/max bounds is |
| * currently prohibited for unprivileged. |
| */ |
| max = MAX_BPF_STACK + mask_to_left; |
| ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); |
| break; |
| case PTR_TO_MAP_VALUE: |
| max = ptr_reg->map_ptr->value_size; |
| ptr_limit = (mask_to_left ? |
| ptr_reg->smin_value : |
| ptr_reg->umax_value) + ptr_reg->off; |
| break; |
| default: |
| return REASON_TYPE; |
| } |
| |
| if (ptr_limit >= max) |
| return REASON_LIMIT; |
| *alu_limit = ptr_limit; |
| return 0; |
| } |
| |
| static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, |
| const struct bpf_insn *insn) |
| { |
| return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; |
| } |
| |
| static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, |
| u32 alu_state, u32 alu_limit) |
| { |
| /* If we arrived here from different branches with different |
| * state or limits to sanitize, then this won't work. |
| */ |
| if (aux->alu_state && |
| (aux->alu_state != alu_state || |
| aux->alu_limit != alu_limit)) |
| return REASON_PATHS; |
| |
| /* Corresponding fixup done in do_misc_fixups(). */ |
| aux->alu_state = alu_state; |
| aux->alu_limit = alu_limit; |
| return 0; |
| } |
| |
| static int sanitize_val_alu(struct bpf_verifier_env *env, |
| struct bpf_insn *insn) |
| { |
| struct bpf_insn_aux_data *aux = cur_aux(env); |
| |
| if (can_skip_alu_sanitation(env, insn)) |
| return 0; |
| |
| return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); |
| } |
| |
| static bool sanitize_needed(u8 opcode) |
| { |
| return opcode == BPF_ADD || opcode == BPF_SUB; |
| } |
| |
| struct bpf_sanitize_info { |
| struct bpf_insn_aux_data aux; |
| bool mask_to_left; |
| }; |
| |
| static struct bpf_verifier_state * |
| sanitize_speculative_path(struct bpf_verifier_env *env, |
| const struct bpf_insn *insn, |
| u32 next_idx, u32 curr_idx) |
| { |
| struct bpf_verifier_state *branch; |
| struct bpf_reg_state *regs; |
| |
| branch = push_stack(env, next_idx, curr_idx, true); |
| if (branch && insn) { |
| regs = branch->frame[branch->curframe]->regs; |
| if (BPF_SRC(insn->code) == BPF_K) { |
| mark_reg_unknown(env, regs, insn->dst_reg); |
| } else if (BPF_SRC(insn->code) == BPF_X) { |
| mark_reg_unknown(env, regs, insn->dst_reg); |
| mark_reg_unknown(env, regs, insn->src_reg); |
| } |
| } |
| return branch; |
| } |
| |
| static int sanitize_ptr_alu(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, |
| const struct bpf_reg_state *ptr_reg, |
| const struct bpf_reg_state *off_reg, |
| struct bpf_reg_state *dst_reg, |
| struct bpf_sanitize_info *info, |
| const bool commit_window) |
| { |
| struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; |
| struct bpf_verifier_state *vstate = env->cur_state; |
| bool off_is_imm = tnum_is_const(off_reg->var_off); |
| bool off_is_neg = off_reg->smin_value < 0; |
| bool ptr_is_dst_reg = ptr_reg == dst_reg; |
| u8 opcode = BPF_OP(insn->code); |
| u32 alu_state, alu_limit; |
| struct bpf_reg_state tmp; |
| bool ret; |
| int err; |
| |
| if (can_skip_alu_sanitation(env, insn)) |
| return 0; |
| |
| /* We already marked aux for masking from non-speculative |
| * paths, thus we got here in the first place. We only care |
| * to explore bad access from here. |
| */ |
| if (vstate->speculative) |
| goto do_sim; |
| |
| if (!commit_window) { |
| if (!tnum_is_const(off_reg->var_off) && |
| (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) |
| return REASON_BOUNDS; |
| |
| info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || |
| (opcode == BPF_SUB && !off_is_neg); |
| } |
| |
| err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); |
| if (err < 0) |
| return err; |
| |
| if (commit_window) { |
| /* In commit phase we narrow the masking window based on |
| * the observed pointer move after the simulated operation. |
| */ |
| alu_state = info->aux.alu_state; |
| alu_limit = abs(info->aux.alu_limit - alu_limit); |
| } else { |
| alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; |
| alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; |
| alu_state |= ptr_is_dst_reg ? |
| BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; |
| |
| /* Limit pruning on unknown scalars to enable deep search for |
| * potential masking differences from other program paths. |
| */ |
| if (!off_is_imm) |
| env->explore_alu_limits = true; |
| } |
| |
| err = update_alu_sanitation_state(aux, alu_state, alu_limit); |
| if (err < 0) |
| return err; |
| do_sim: |
| /* If we're in commit phase, we're done here given we already |
| * pushed the truncated dst_reg into the speculative verification |
| * stack. |
| * |
| * Also, when register is a known constant, we rewrite register-based |
| * operation to immediate-based, and thus do not need masking (and as |
| * a consequence, do not need to simulate the zero-truncation either). |
| */ |
| if (commit_window || off_is_imm) |
| return 0; |
| |
| /* Simulate and find potential out-of-bounds access under |
| * speculative execution from truncation as a result of |
| * masking when off was not within expected range. If off |
| * sits in dst, then we temporarily need to move ptr there |
| * to simulate dst (== 0) +/-= ptr. Needed, for example, |
| * for cases where we use K-based arithmetic in one direction |
| * and truncated reg-based in the other in order to explore |
| * bad access. |
| */ |
| if (!ptr_is_dst_reg) { |
| tmp = *dst_reg; |
| copy_register_state(dst_reg, ptr_reg); |
| } |
| ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, |
| env->insn_idx); |
| if (!ptr_is_dst_reg && ret) |
| *dst_reg = tmp; |
| return !ret ? REASON_STACK : 0; |
| } |
| |
| static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) |
| { |
| struct bpf_verifier_state *vstate = env->cur_state; |
| |
| /* If we simulate paths under speculation, we don't update the |
| * insn as 'seen' such that when we verify unreachable paths in |
| * the non-speculative domain, sanitize_dead_code() can still |
| * rewrite/sanitize them. |
| */ |
| if (!vstate->speculative) |
| env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; |
| } |
| |
| static int sanitize_err(struct bpf_verifier_env *env, |
| const struct bpf_insn *insn, int reason, |
| const struct bpf_reg_state *off_reg, |
| const struct bpf_reg_state *dst_reg) |
| { |
| static const char *err = "pointer arithmetic with it prohibited for !root"; |
| const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; |
| u32 dst = insn->dst_reg, src = insn->src_reg; |
| |
| switch (reason) { |
| case REASON_BOUNDS: |
| verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", |
| off_reg == dst_reg ? dst : src, err); |
| break; |
| case REASON_TYPE: |
| verbose(env, "R%d has pointer with unsupported alu operation, %s\n", |
| off_reg == dst_reg ? src : dst, err); |
| break; |
| case REASON_PATHS: |
| verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", |
| dst, op, err); |
| break; |
| case REASON_LIMIT: |
| verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", |
| dst, op, err); |
| break; |
| case REASON_STACK: |
| verbose(env, "R%d could not be pushed for speculative verification, %s\n", |
| dst, err); |
| break; |
| default: |
| verbose(env, "verifier internal error: unknown reason (%d)\n", |
| reason); |
| break; |
| } |
| |
| return -EACCES; |
| } |
| |
| /* check that stack access falls within stack limits and that 'reg' doesn't |
| * have a variable offset. |
| * |
| * Variable offset is prohibited for unprivileged mode for simplicity since it |
| * requires corresponding support in Spectre masking for stack ALU. See also |
| * retrieve_ptr_limit(). |
| * |
| * |
| * 'off' includes 'reg->off'. |
| */ |
| static int check_stack_access_for_ptr_arithmetic( |
| struct bpf_verifier_env *env, |
| int regno, |
| const struct bpf_reg_state *reg, |
| int off) |
| { |
| if (!tnum_is_const(reg->var_off)) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", |
| regno, tn_buf, off); |
| return -EACCES; |
| } |
| |
| if (off >= 0 || off < -MAX_BPF_STACK) { |
| verbose(env, "R%d stack pointer arithmetic goes out of range, " |
| "prohibited for !root; off=%d\n", regno, off); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static int sanitize_check_bounds(struct bpf_verifier_env *env, |
| const struct bpf_insn *insn, |
| const struct bpf_reg_state *dst_reg) |
| { |
| u32 dst = insn->dst_reg; |
| |
| /* For unprivileged we require that resulting offset must be in bounds |
| * in order to be able to sanitize access later on. |
| */ |
| if (env->bypass_spec_v1) |
| return 0; |
| |
| switch (dst_reg->type) { |
| case PTR_TO_STACK: |
| if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, |
| dst_reg->off + dst_reg->var_off.value)) |
| return -EACCES; |
| break; |
| case PTR_TO_MAP_VALUE: |
| if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { |
| verbose(env, "R%d pointer arithmetic of map value goes out of range, " |
| "prohibited for !root\n", dst); |
| return -EACCES; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. |
| * Caller should also handle BPF_MOV case separately. |
| * If we return -EACCES, caller may want to try again treating pointer as a |
| * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. |
| */ |
| static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, |
| const struct bpf_reg_state *ptr_reg, |
| const struct bpf_reg_state *off_reg) |
| { |
| struct bpf_verifier_state *vstate = env->cur_state; |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| struct bpf_reg_state *regs = state->regs, *dst_reg; |
| bool known = tnum_is_const(off_reg->var_off); |
| s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, |
| smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; |
| u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, |
| umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; |
| struct bpf_sanitize_info info = {}; |
| u8 opcode = BPF_OP(insn->code); |
| u32 dst = insn->dst_reg; |
| int ret; |
| |
| dst_reg = ®s[dst]; |
| |
| if ((known && (smin_val != smax_val || umin_val != umax_val)) || |
| smin_val > smax_val || umin_val > umax_val) { |
| /* Taint dst register if offset had invalid bounds derived from |
| * e.g. dead branches. |
| */ |
| __mark_reg_unknown(env, dst_reg); |
| return 0; |
| } |
| |
| if (BPF_CLASS(insn->code) != BPF_ALU64) { |
| /* 32-bit ALU ops on pointers produce (meaningless) scalars */ |
| if (opcode == BPF_SUB && env->allow_ptr_leaks) { |
| __mark_reg_unknown(env, dst_reg); |
| return 0; |
| } |
| |
| verbose(env, |
| "R%d 32-bit pointer arithmetic prohibited\n", |
| dst); |
| return -EACCES; |
| } |
| |
| if (ptr_reg->type & PTR_MAYBE_NULL) { |
| verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", |
| dst, reg_type_str(env, ptr_reg->type)); |
| return -EACCES; |
| } |
| |
| switch (base_type(ptr_reg->type)) { |
| case PTR_TO_CTX: |
| case PTR_TO_MAP_VALUE: |
| case PTR_TO_MAP_KEY: |
| case PTR_TO_STACK: |
| case PTR_TO_PACKET_META: |
| case PTR_TO_PACKET: |
| case PTR_TO_TP_BUFFER: |
| case PTR_TO_BTF_ID: |
| case PTR_TO_MEM: |
| case PTR_TO_BUF: |
| case PTR_TO_FUNC: |
| case CONST_PTR_TO_DYNPTR: |
| break; |
| case PTR_TO_FLOW_KEYS: |
| if (known) |
| break; |
| fallthrough; |
| case CONST_PTR_TO_MAP: |
| /* smin_val represents the known value */ |
| if (known && smin_val == 0 && opcode == BPF_ADD) |
| break; |
| fallthrough; |
| default: |
| verbose(env, "R%d pointer arithmetic on %s prohibited\n", |
| dst, reg_type_str(env, ptr_reg->type)); |
| return -EACCES; |
| } |
| |
| /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. |
| * The id may be overwritten later if we create a new variable offset. |
| */ |
| dst_reg->type = ptr_reg->type; |
| dst_reg->id = ptr_reg->id; |
| |
| if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || |
| !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) |
| return -EINVAL; |
| |
| /* pointer types do not carry 32-bit bounds at the moment. */ |
| __mark_reg32_unbounded(dst_reg); |
| |
| if (sanitize_needed(opcode)) { |
| ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, |
| &info, false); |
| if (ret < 0) |
| return sanitize_err(env, insn, ret, off_reg, dst_reg); |
| } |
| |
| switch (opcode) { |
| case BPF_ADD: |
| /* We can take a fixed offset as long as it doesn't overflow |
| * the s32 'off' field |
| */ |
| if (known && (ptr_reg->off + smin_val == |
| (s64)(s32)(ptr_reg->off + smin_val))) { |
| /* pointer += K. Accumulate it into fixed offset */ |
| dst_reg->smin_value = smin_ptr; |
| dst_reg->smax_value = smax_ptr; |
| dst_reg->umin_value = umin_ptr; |
| dst_reg->umax_value = umax_ptr; |
| dst_reg->var_off = ptr_reg->var_off; |
| dst_reg->off = ptr_reg->off + smin_val; |
| dst_reg->raw = ptr_reg->raw; |
| break; |
| } |
| /* A new variable offset is created. Note that off_reg->off |
| * == 0, since it's a scalar. |
| * dst_reg gets the pointer type and since some positive |
| * integer value was added to the pointer, give it a new 'id' |
| * if it's a PTR_TO_PACKET. |
| * this creates a new 'base' pointer, off_reg (variable) gets |
| * added into the variable offset, and we copy the fixed offset |
| * from ptr_reg. |
| */ |
| if (signed_add_overflows(smin_ptr, smin_val) || |
| signed_add_overflows(smax_ptr, smax_val)) { |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value = smin_ptr + smin_val; |
| dst_reg->smax_value = smax_ptr + smax_val; |
| } |
| if (umin_ptr + umin_val < umin_ptr || |
| umax_ptr + umax_val < umax_ptr) { |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| dst_reg->umin_value = umin_ptr + umin_val; |
| dst_reg->umax_value = umax_ptr + umax_val; |
| } |
| dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); |
| dst_reg->off = ptr_reg->off; |
| dst_reg->raw = ptr_reg->raw; |
| if (reg_is_pkt_pointer(ptr_reg)) { |
| dst_reg->id = ++env->id_gen; |
| /* something was added to pkt_ptr, set range to zero */ |
| memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); |
| } |
| break; |
| case BPF_SUB: |
| if (dst_reg == off_reg) { |
| /* scalar -= pointer. Creates an unknown scalar */ |
| verbose(env, "R%d tried to subtract pointer from scalar\n", |
| dst); |
| return -EACCES; |
| } |
| /* We don't allow subtraction from FP, because (according to |
| * test_verifier.c test "invalid fp arithmetic", JITs might not |
| * be able to deal with it. |
| */ |
| if (ptr_reg->type == PTR_TO_STACK) { |
| verbose(env, "R%d subtraction from stack pointer prohibited\n", |
| dst); |
| return -EACCES; |
| } |
| if (known && (ptr_reg->off - smin_val == |
| (s64)(s32)(ptr_reg->off - smin_val))) { |
| /* pointer -= K. Subtract it from fixed offset */ |
| dst_reg->smin_value = smin_ptr; |
| dst_reg->smax_value = smax_ptr; |
| dst_reg->umin_value = umin_ptr; |
| dst_reg->umax_value = umax_ptr; |
| dst_reg->var_off = ptr_reg->var_off; |
| dst_reg->id = ptr_reg->id; |
| dst_reg->off = ptr_reg->off - smin_val; |
| dst_reg->raw = ptr_reg->raw; |
| break; |
| } |
| /* A new variable offset is created. If the subtrahend is known |
| * nonnegative, then any reg->range we had before is still good. |
| */ |
| if (signed_sub_overflows(smin_ptr, smax_val) || |
| signed_sub_overflows(smax_ptr, smin_val)) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value = smin_ptr - smax_val; |
| dst_reg->smax_value = smax_ptr - smin_val; |
| } |
| if (umin_ptr < umax_val) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| /* Cannot overflow (as long as bounds are consistent) */ |
| dst_reg->umin_value = umin_ptr - umax_val; |
| dst_reg->umax_value = umax_ptr - umin_val; |
| } |
| dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); |
| dst_reg->off = ptr_reg->off; |
| dst_reg->raw = ptr_reg->raw; |
| if (reg_is_pkt_pointer(ptr_reg)) { |
| dst_reg->id = ++env->id_gen; |
| /* something was added to pkt_ptr, set range to zero */ |
| if (smin_val < 0) |
| memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); |
| } |
| break; |
| case BPF_AND: |
| case BPF_OR: |
| case BPF_XOR: |
| /* bitwise ops on pointers are troublesome, prohibit. */ |
| verbose(env, "R%d bitwise operator %s on pointer prohibited\n", |
| dst, bpf_alu_string[opcode >> 4]); |
| return -EACCES; |
| default: |
| /* other operators (e.g. MUL,LSH) produce non-pointer results */ |
| verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", |
| dst, bpf_alu_string[opcode >> 4]); |
| return -EACCES; |
| } |
| |
| if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) |
| return -EINVAL; |
| reg_bounds_sync(dst_reg); |
| if (sanitize_check_bounds(env, insn, dst_reg) < 0) |
| return -EACCES; |
| if (sanitize_needed(opcode)) { |
| ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, |
| &info, true); |
| if (ret < 0) |
| return sanitize_err(env, insn, ret, off_reg, dst_reg); |
| } |
| |
| return 0; |
| } |
| |
| static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| s32 smin_val = src_reg->s32_min_value; |
| s32 smax_val = src_reg->s32_max_value; |
| u32 umin_val = src_reg->u32_min_value; |
| u32 umax_val = src_reg->u32_max_value; |
| |
| if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || |
| signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { |
| dst_reg->s32_min_value = S32_MIN; |
| dst_reg->s32_max_value = S32_MAX; |
| } else { |
| dst_reg->s32_min_value += smin_val; |
| dst_reg->s32_max_value += smax_val; |
| } |
| if (dst_reg->u32_min_value + umin_val < umin_val || |
| dst_reg->u32_max_value + umax_val < umax_val) { |
| dst_reg->u32_min_value = 0; |
| dst_reg->u32_max_value = U32_MAX; |
| } else { |
| dst_reg->u32_min_value += umin_val; |
| dst_reg->u32_max_value += umax_val; |
| } |
| } |
| |
| static void scalar_min_max_add(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| s64 smin_val = src_reg->smin_value; |
| s64 smax_val = src_reg->smax_value; |
| u64 umin_val = src_reg->umin_value; |
| u64 umax_val = src_reg->umax_value; |
| |
| if (signed_add_overflows(dst_reg->smin_value, smin_val) || |
| signed_add_overflows(dst_reg->smax_value, smax_val)) { |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value += smin_val; |
| dst_reg->smax_value += smax_val; |
| } |
| if (dst_reg->umin_value + umin_val < umin_val || |
| dst_reg->umax_value + umax_val < umax_val) { |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| dst_reg->umin_value += umin_val; |
| dst_reg->umax_value += umax_val; |
| } |
| } |
| |
| static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| s32 smin_val = src_reg->s32_min_value; |
| s32 smax_val = src_reg->s32_max_value; |
| u32 umin_val = src_reg->u32_min_value; |
| u32 umax_val = src_reg->u32_max_value; |
| |
| if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || |
| signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->s32_min_value = S32_MIN; |
| dst_reg->s32_max_value = S32_MAX; |
| } else { |
| dst_reg->s32_min_value -= smax_val; |
| dst_reg->s32_max_value -= smin_val; |
| } |
| if (dst_reg->u32_min_value < umax_val) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->u32_min_value = 0; |
| dst_reg->u32_max_value = U32_MAX; |
| } else { |
| /* Cannot overflow (as long as bounds are consistent) */ |
| dst_reg->u32_min_value -= umax_val; |
| dst_reg->u32_max_value -= umin_val; |
| } |
| } |
| |
| static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| s64 smin_val = src_reg->smin_value; |
| s64 smax_val = src_reg->smax_value; |
| u64 umin_val = src_reg->umin_value; |
| u64 umax_val = src_reg->umax_value; |
| |
| if (signed_sub_overflows(dst_reg->smin_value, smax_val) || |
| signed_sub_overflows(dst_reg->smax_value, smin_val)) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value -= smax_val; |
| dst_reg->smax_value -= smin_val; |
| } |
| if (dst_reg->umin_value < umax_val) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| /* Cannot overflow (as long as bounds are consistent) */ |
| dst_reg->umin_value -= umax_val; |
| dst_reg->umax_value -= umin_val; |
| } |
| } |
| |
| static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| s32 smin_val = src_reg->s32_min_value; |
| u32 umin_val = src_reg->u32_min_value; |
| u32 umax_val = src_reg->u32_max_value; |
| |
| if (smin_val < 0 || dst_reg->s32_min_value < 0) { |
| /* Ain't nobody got time to multiply that sign */ |
| __mark_reg32_unbounded(dst_reg); |
| return; |
| } |
| /* Both values are positive, so we can work with unsigned and |
| * copy the result to signed (unless it exceeds S32_MAX). |
| */ |
| if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { |
| /* Potential overflow, we know nothing */ |
| __mark_reg32_unbounded(dst_reg); |
| return; |
| } |
| dst_reg->u32_min_value *= umin_val; |
| dst_reg->u32_max_value *= umax_val; |
| if (dst_reg->u32_max_value > S32_MAX) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->s32_min_value = S32_MIN; |
| dst_reg->s32_max_value = S32_MAX; |
| } else { |
| dst_reg->s32_min_value = dst_reg->u32_min_value; |
| dst_reg->s32_max_value = dst_reg->u32_max_value; |
| } |
| } |
| |
| static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| s64 smin_val = src_reg->smin_value; |
| u64 umin_val = src_reg->umin_value; |
| u64 umax_val = src_reg->umax_value; |
| |
| if (smin_val < 0 || dst_reg->smin_value < 0) { |
| /* Ain't nobody got time to multiply that sign */ |
| __mark_reg64_unbounded(dst_reg); |
| return; |
| } |
| /* Both values are positive, so we can work with unsigned and |
| * copy the result to signed (unless it exceeds S64_MAX). |
| */ |
| if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { |
| /* Potential overflow, we know nothing */ |
| __mark_reg64_unbounded(dst_reg); |
| return; |
| } |
| dst_reg->umin_value *= umin_val; |
| dst_reg->umax_value *= umax_val; |
| if (dst_reg->umax_value > S64_MAX) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value = dst_reg->umin_value; |
| dst_reg->smax_value = dst_reg->umax_value; |
| } |
| } |
| |
| static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| bool src_known = tnum_subreg_is_const(src_reg->var_off); |
| bool dst_known = tnum_subreg_is_const(dst_reg->var_off); |
| struct tnum var32_off = tnum_subreg(dst_reg->var_off); |
| s32 smin_val = src_reg->s32_min_value; |
| u32 umax_val = src_reg->u32_max_value; |
| |
| if (src_known && dst_known) { |
| __mark_reg32_known(dst_reg, var32_off.value); |
| return; |
| } |
| |
| /* We get our minimum from the var_off, since that's inherently |
| * bitwise. Our maximum is the minimum of the operands' maxima. |
| */ |
| dst_reg->u32_min_value = var32_off.value; |
| dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); |
| if (dst_reg->s32_min_value < 0 || smin_val < 0) { |
| /* Lose signed bounds when ANDing negative numbers, |
| * ain't nobody got time for that. |
| */ |
| dst_reg->s32_min_value = S32_MIN; |
| dst_reg->s32_max_value = S32_MAX; |
| } else { |
| /* ANDing two positives gives a positive, so safe to |
| * cast result into s64. |
| */ |
| dst_reg->s32_min_value = dst_reg->u32_min_value; |
| dst_reg->s32_max_value = dst_reg->u32_max_value; |
| } |
| } |
| |
| static void scalar_min_max_and(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| bool src_known = tnum_is_const(src_reg->var_off); |
| bool dst_known = tnum_is_const(dst_reg->var_off); |
| s64 smin_val = src_reg->smin_value; |
| u64 umax_val = src_reg->umax_value; |
| |
| if (src_known && dst_known) { |
| __mark_reg_known(dst_reg, dst_reg->var_off.value); |
| return; |
| } |
| |
| /* We get our minimum from the var_off, since that's inherently |
| * bitwise. Our maximum is the minimum of the operands' maxima. |
| */ |
| dst_reg->umin_value = dst_reg->var_off.value; |
| dst_reg->umax_value = min(dst_reg->umax_value, umax_val); |
| if (dst_reg->smin_value < 0 || smin_val < 0) { |
| /* Lose signed bounds when ANDing negative numbers, |
| * ain't nobody got time for that. |
| */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| /* ANDing two positives gives a positive, so safe to |
| * cast result into s64. |
| */ |
| dst_reg->smin_value = dst_reg->umin_value; |
| dst_reg->smax_value = dst_reg->umax_value; |
| } |
| /* We may learn something more from the var_off */ |
| __update_reg_bounds(dst_reg); |
| } |
| |
| static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| bool src_known = tnum_subreg_is_const(src_reg->var_off); |
| bool dst_known = tnum_subreg_is_const(dst_reg->var_off); |
| struct tnum var32_off = tnum_subreg(dst_reg->var_off); |
| s32 smin_val = src_reg->s32_min_value; |
| u32 umin_val = src_reg->u32_min_value; |
| |
| if (src_known && dst_known) { |
| __mark_reg32_known(dst_reg, var32_off.value); |
| return; |
| } |
| |
| /* We get our maximum from the var_off, and our minimum is the |
| * maximum of the operands' minima |
| */ |
| dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); |
| dst_reg->u32_max_value = var32_off.value | var32_off.mask; |
| if (dst_reg->s32_min_value < 0 || smin_val < 0) { |
| /* Lose signed bounds when ORing negative numbers, |
| * ain't nobody got time for that. |
| */ |
| dst_reg->s32_min_value = S32_MIN; |
| dst_reg->s32_max_value = S32_MAX; |
| } else { |
| /* ORing two positives gives a positive, so safe to |
| * cast result into s64. |
| */ |
| dst_reg->s32_min_value = dst_reg->u32_min_value; |
| dst_reg->s32_max_value = dst_reg->u32_max_value; |
| } |
| } |
| |
| static void scalar_min_max_or(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| bool src_known = tnum_is_const(src_reg->var_off); |
| bool dst_known = tnum_is_const(dst_reg->var_off); |
| s64 smin_val = src_reg->smin_value; |
| u64 umin_val = src_reg->umin_value; |
| |
| if (src_known && dst_known) { |
| __mark_reg_known(dst_reg, dst_reg->var_off.value); |
| return; |
| } |
| |
| /* We get our maximum from the var_off, and our minimum is the |
| * maximum of the operands' minima |
| */ |
| dst_reg->umin_value = max(dst_reg->umin_value, umin_val); |
| dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; |
| if (dst_reg->smin_value < 0 || smin_val < 0) { |
| /* Lose signed bounds when ORing negative numbers, |
| * ain't nobody got time for that. |
| */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| /* ORing two positives gives a positive, so safe to |
| * cast result into s64. |
| */ |
| dst_reg->smin_value = dst_reg->umin_value; |
| dst_reg->smax_value = dst_reg->umax_value; |
| } |
| /* We may learn something more from the var_off */ |
| __update_reg_bounds(dst_reg); |
| } |
| |
| static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| bool src_known = tnum_subreg_is_const(src_reg->var_off); |
| bool dst_known = tnum_subreg_is_const(dst_reg->var_off); |
| struct tnum var32_off = tnum_subreg(dst_reg->var_off); |
| s32 smin_val = src_reg->s32_min_value; |
| |
| if (src_known && dst_known) { |
| __mark_reg32_known(dst_reg, var32_off.value); |
| return; |
| } |
| |
| /* We get both minimum and maximum from the var32_off. */ |
| dst_reg->u32_min_value = var32_off.value; |
| dst_reg->u32_max_value = var32_off.value | var32_off.mask; |
| |
| if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { |
| /* XORing two positive sign numbers gives a positive, |
| * so safe to cast u32 result into s32. |
| */ |
| dst_reg->s32_min_value = dst_reg->u32_min_value; |
| dst_reg->s32_max_value = dst_reg->u32_max_value; |
| } else { |
| dst_reg->s32_min_value = S32_MIN; |
| dst_reg->s32_max_value = S32_MAX; |
| } |
| } |
| |
| static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| bool src_known = tnum_is_const(src_reg->var_off); |
| bool dst_known = tnum_is_const(dst_reg->var_off); |
| s64 smin_val = src_reg->smin_value; |
| |
| if (src_known && dst_known) { |
| /* dst_reg->var_off.value has been updated earlier */ |
| __mark_reg_known(dst_reg, dst_reg->var_off.value); |
| return; |
| } |
| |
| /* We get both minimum and maximum from the var_off. */ |
| dst_reg->umin_value = dst_reg->var_off.value; |
| dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; |
| |
| if (dst_reg->smin_value >= 0 && smin_val >= 0) { |
| /* XORing two positive sign numbers gives a positive, |
| * so safe to cast u64 result into s64. |
| */ |
| dst_reg->smin_value = dst_reg->umin_value; |
| dst_reg->smax_value = dst_reg->umax_value; |
| } else { |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } |
| |
| __update_reg_bounds(dst_reg); |
| } |
| |
| static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, |
| u64 umin_val, u64 umax_val) |
| { |
| /* We lose all sign bit information (except what we can pick |
| * up from var_off) |
| */ |
| dst_reg->s32_min_value = S32_MIN; |
| dst_reg->s32_max_value = S32_MAX; |
| /* If we might shift our top bit out, then we know nothing */ |
| if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { |
| dst_reg->u32_min_value = 0; |
| dst_reg->u32_max_value = U32_MAX; |
| } else { |
| dst_reg->u32_min_value <<= umin_val; |
| dst_reg->u32_max_value <<= umax_val; |
| } |
| } |
| |
| static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| u32 umax_val = src_reg->u32_max_value; |
| u32 umin_val = src_reg->u32_min_value; |
| /* u32 alu operation will zext upper bits */ |
| struct tnum subreg = tnum_subreg(dst_reg->var_off); |
| |
| __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); |
| dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); |
| /* Not required but being careful mark reg64 bounds as unknown so |
| * that we are forced to pick them up from tnum and zext later and |
| * if some path skips this step we are still safe. |
| */ |
| __mark_reg64_unbounded(dst_reg); |
| __update_reg32_bounds(dst_reg); |
| } |
| |
| static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, |
| u64 umin_val, u64 umax_val) |
| { |
| /* Special case <<32 because it is a common compiler pattern to sign |
| * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are |
| * positive we know this shift will also be positive so we can track |
| * bounds correctly. Otherwise we lose all sign bit information except |
| * what we can pick up from var_off. Perhaps we can generalize this |
| * later to shifts of any length. |
| */ |
| if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) |
| dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; |
| else |
| dst_reg->smax_value = S64_MAX; |
| |
| if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) |
| dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; |
| else |
| dst_reg->smin_value = S64_MIN; |
| |
| /* If we might shift our top bit out, then we know nothing */ |
| if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| dst_reg->umin_value <<= umin_val; |
| dst_reg->umax_value <<= umax_val; |
| } |
| } |
| |
| static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| u64 umax_val = src_reg->umax_value; |
| u64 umin_val = src_reg->umin_value; |
| |
| /* scalar64 calc uses 32bit unshifted bounds so must be called first */ |
| __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); |
| __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); |
| |
| dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); |
| /* We may learn something more from the var_off */ |
| __update_reg_bounds(dst_reg); |
| } |
| |
| static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| struct tnum subreg = tnum_subreg(dst_reg->var_off); |
| u32 umax_val = src_reg->u32_max_value; |
| u32 umin_val = src_reg->u32_min_value; |
| |
| /* BPF_RSH is an unsigned shift. If the value in dst_reg might |
| * be negative, then either: |
| * 1) src_reg might be zero, so the sign bit of the result is |
| * unknown, so we lose our signed bounds |
| * 2) it's known negative, thus the unsigned bounds capture the |
| * signed bounds |
| * 3) the signed bounds cross zero, so they tell us nothing |
| * about the result |
| * If the value in dst_reg is known nonnegative, then again the |
| * unsigned bounds capture the signed bounds. |
| * Thus, in all cases it suffices to blow away our signed bounds |
| * and rely on inferring new ones from the unsigned bounds and |
| * var_off of the result. |
| */ |
| dst_reg->s32_min_value = S32_MIN; |
| dst_reg->s32_max_value = S32_MAX; |
| |
| dst_reg->var_off = tnum_rshift(subreg, umin_val); |
| dst_reg->u32_min_value >>= umax_val; |
| dst_reg->u32_max_value >>= umin_val; |
| |
| __mark_reg64_unbounded(dst_reg); |
| __update_reg32_bounds(dst_reg); |
| } |
| |
| static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| u64 umax_val = src_reg->umax_value; |
| u64 umin_val = src_reg->umin_value; |
| |
| /* BPF_RSH is an unsigned shift. If the value in dst_reg might |
| * be negative, then either: |
| * 1) src_reg might be zero, so the sign bit of the result is |
| * unknown, so we lose our signed bounds |
| * 2) it's known negative, thus the unsigned bounds capture the |
| * signed bounds |
| * 3) the signed bounds cross zero, so they tell us nothing |
| * about the result |
| * If the value in dst_reg is known nonnegative, then again the |
| * unsigned bounds capture the signed bounds. |
| * Thus, in all cases it suffices to blow away our signed bounds |
| * and rely on inferring new ones from the unsigned bounds and |
| * var_off of the result. |
| */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); |
| dst_reg->umin_value >>= umax_val; |
| dst_reg->umax_value >>= umin_val; |
| |
| /* Its not easy to operate on alu32 bounds here because it depends |
| * on bits being shifted in. Take easy way out and mark unbounded |
| * so we can recalculate later from tnum. |
| */ |
| __mark_reg32_unbounded(dst_reg); |
| __update_reg_bounds(dst_reg); |
| } |
| |
| static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| u64 umin_val = src_reg->u32_min_value; |
| |
| /* Upon reaching here, src_known is true and |
| * umax_val is equal to umin_val. |
| */ |
| dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); |
| dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); |
| |
| dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); |
| |
| /* blow away the dst_reg umin_value/umax_value and rely on |
| * dst_reg var_off to refine the result. |
| */ |
| dst_reg->u32_min_value = 0; |
| dst_reg->u32_max_value = U32_MAX; |
| |
| __mark_reg64_unbounded(dst_reg); |
| __update_reg32_bounds(dst_reg); |
| } |
| |
| static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg) |
| { |
| u64 umin_val = src_reg->umin_value; |
| |
| /* Upon reaching here, src_known is true and umax_val is equal |
| * to umin_val. |
| */ |
| dst_reg->smin_value >>= umin_val; |
| dst_reg->smax_value >>= umin_val; |
| |
| dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); |
| |
| /* blow away the dst_reg umin_value/umax_value and rely on |
| * dst_reg var_off to refine the result. |
| */ |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| |
| /* Its not easy to operate on alu32 bounds here because it depends |
| * on bits being shifted in from upper 32-bits. Take easy way out |
| * and mark unbounded so we can recalculate later from tnum. |
| */ |
| __mark_reg32_unbounded(dst_reg); |
| __update_reg_bounds(dst_reg); |
| } |
| |
| /* WARNING: This function does calculations on 64-bit values, but the actual |
| * execution may occur on 32-bit values. Therefore, things like bitshifts |
| * need extra checks in the 32-bit case. |
| */ |
| static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, |
| struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state src_reg) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| u8 opcode = BPF_OP(insn->code); |
| bool src_known; |
| s64 smin_val, smax_val; |
| u64 umin_val, umax_val; |
| s32 s32_min_val, s32_max_val; |
| u32 u32_min_val, u32_max_val; |
| u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; |
| bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); |
| int ret; |
| |
| smin_val = src_reg.smin_value; |
| smax_val = src_reg.smax_value; |
| umin_val = src_reg.umin_value; |
| umax_val = src_reg.umax_value; |
| |
| s32_min_val = src_reg.s32_min_value; |
| s32_max_val = src_reg.s32_max_value; |
| u32_min_val = src_reg.u32_min_value; |
| u32_max_val = src_reg.u32_max_value; |
| |
| if (alu32) { |
| src_known = tnum_subreg_is_const(src_reg.var_off); |
| if ((src_known && |
| (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || |
| s32_min_val > s32_max_val || u32_min_val > u32_max_val) { |
| /* Taint dst register if offset had invalid bounds |
| * derived from e.g. dead branches. |
| */ |
| __mark_reg_unknown(env, dst_reg); |
| return 0; |
| } |
| } else { |
| src_known = tnum_is_const(src_reg.var_off); |
| if ((src_known && |
| (smin_val != smax_val || umin_val != umax_val)) || |
| smin_val > smax_val || umin_val > umax_val) { |
| /* Taint dst register if offset had invalid bounds |
| * derived from e.g. dead branches. |
| */ |
| __mark_reg_unknown(env, dst_reg); |
| return 0; |
| } |
| } |
| |
| if (!src_known && |
| opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { |
| __mark_reg_unknown(env, dst_reg); |
| return 0; |
| } |
| |
| if (sanitize_needed(opcode)) { |
| ret = sanitize_val_alu(env, insn); |
| if (ret < 0) |
| return sanitize_err(env, insn, ret, NULL, NULL); |
| } |
| |
| /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. |
| * There are two classes of instructions: The first class we track both |
| * alu32 and alu64 sign/unsigned bounds independently this provides the |
| * greatest amount of precision when alu operations are mixed with jmp32 |
| * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, |
| * and BPF_OR. This is possible because these ops have fairly easy to |
| * understand and calculate behavior in both 32-bit and 64-bit alu ops. |
| * See alu32 verifier tests for examples. The second class of |
| * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy |
| * with regards to tracking sign/unsigned bounds because the bits may |
| * cross subreg boundaries in the alu64 case. When this happens we mark |
| * the reg unbounded in the subreg bound space and use the resulting |
| * tnum to calculate an approximation of the sign/unsigned bounds. |
| */ |
| switch (opcode) { |
| case BPF_ADD: |
| scalar32_min_max_add(dst_reg, &src_reg); |
| scalar_min_max_add(dst_reg, &src_reg); |
| dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); |
| break; |
| case BPF_SUB: |
| scalar32_min_max_sub(dst_reg, &src_reg); |
| scalar_min_max_sub(dst_reg, &src_reg); |
| dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); |
| break; |
| case BPF_MUL: |
| dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); |
| scalar32_min_max_mul(dst_reg, &src_reg); |
| scalar_min_max_mul(dst_reg, &src_reg); |
| break; |
| case BPF_AND: |
| dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); |
| scalar32_min_max_and(dst_reg, &src_reg); |
| scalar_min_max_and(dst_reg, &src_reg); |
| break; |
| case BPF_OR: |
| dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); |
| scalar32_min_max_or(dst_reg, &src_reg); |
| scalar_min_max_or(dst_reg, &src_reg); |
| break; |
| case BPF_XOR: |
| dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); |
| scalar32_min_max_xor(dst_reg, &src_reg); |
| scalar_min_max_xor(dst_reg, &src_reg); |
| break; |
| case BPF_LSH: |
| if (umax_val >= insn_bitness) { |
| /* Shifts greater than 31 or 63 are undefined. |
| * This includes shifts by a negative number. |
| */ |
| mark_reg_unknown(env, regs, insn->dst_reg); |
| break; |
| } |
| if (alu32) |
| scalar32_min_max_lsh(dst_reg, &src_reg); |
| else |
| scalar_min_max_lsh(dst_reg, &src_reg); |
| break; |
| case BPF_RSH: |
| if (umax_val >= insn_bitness) { |
| /* Shifts greater than 31 or 63 are undefined. |
| * This includes shifts by a negative number. |
| */ |
| mark_reg_unknown(env, regs, insn->dst_reg); |
| break; |
| } |
| if (alu32) |
| scalar32_min_max_rsh(dst_reg, &src_reg); |
| else |
| scalar_min_max_rsh(dst_reg, &src_reg); |
| break; |
| case BPF_ARSH: |
| if (umax_val >= insn_bitness) { |
| /* Shifts greater than 31 or 63 are undefined. |
| * This includes shifts by a negative number. |
| */ |
| mark_reg_unknown(env, regs, insn->dst_reg); |
| break; |
| } |
| if (alu32) |
| scalar32_min_max_arsh(dst_reg, &src_reg); |
| else |
| scalar_min_max_arsh(dst_reg, &src_reg); |
| break; |
| default: |
| mark_reg_unknown(env, regs, insn->dst_reg); |
| break; |
| } |
| |
| /* ALU32 ops are zero extended into 64bit register */ |
| if (alu32) |
| zext_32_to_64(dst_reg); |
| reg_bounds_sync(dst_reg); |
| return 0; |
| } |
| |
| /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max |
| * and var_off. |
| */ |
| static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, |
| struct bpf_insn *insn) |
| { |
| struct bpf_verifier_state *vstate = env->cur_state; |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; |
| struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; |
| u8 opcode = BPF_OP(insn->code); |
| int err; |
| |
| dst_reg = ®s[insn->dst_reg]; |
| src_reg = NULL; |
| if (dst_reg->type != SCALAR_VALUE) |
| ptr_reg = dst_reg; |
| else |
| /* Make sure ID is cleared otherwise dst_reg min/max could be |
| * incorrectly propagated into other registers by find_equal_scalars() |
| */ |
| dst_reg->id = 0; |
| if (BPF_SRC(insn->code) == BPF_X) { |
| src_reg = ®s[insn->src_reg]; |
| if (src_reg->type != SCALAR_VALUE) { |
| if (dst_reg->type != SCALAR_VALUE) { |
| /* Combining two pointers by any ALU op yields |
| * an arbitrary scalar. Disallow all math except |
| * pointer subtraction |
| */ |
| if (opcode == BPF_SUB && env->allow_ptr_leaks) { |
| mark_reg_unknown(env, regs, insn->dst_reg); |
| return 0; |
| } |
| verbose(env, "R%d pointer %s pointer prohibited\n", |
| insn->dst_reg, |
| bpf_alu_string[opcode >> 4]); |
| return -EACCES; |
| } else { |
| /* scalar += pointer |
| * This is legal, but we have to reverse our |
| * src/dest handling in computing the range |
| */ |
| err = mark_chain_precision(env, insn->dst_reg); |
| if (err) |
| return err; |
| return adjust_ptr_min_max_vals(env, insn, |
| src_reg, dst_reg); |
| } |
| } else if (ptr_reg) { |
| /* pointer += scalar */ |
| err = mark_chain_precision(env, insn->src_reg); |
| if (err) |
| return err; |
| return adjust_ptr_min_max_vals(env, insn, |
| dst_reg, src_reg); |
| } else if (dst_reg->precise) { |
| /* if dst_reg is precise, src_reg should be precise as well */ |
| err = mark_chain_precision(env, insn->src_reg); |
| if (err) |
| return err; |
| } |
| } else { |
| /* Pretend the src is a reg with a known value, since we only |
| * need to be able to read from this state. |
| */ |
| off_reg.type = SCALAR_VALUE; |
| __mark_reg_known(&off_reg, insn->imm); |
| src_reg = &off_reg; |
| if (ptr_reg) /* pointer += K */ |
| return adjust_ptr_min_max_vals(env, insn, |
| ptr_reg, src_reg); |
| } |
| |
| /* Got here implies adding two SCALAR_VALUEs */ |
| if (WARN_ON_ONCE(ptr_reg)) { |
| print_verifier_state(env, state, true); |
| verbose(env, "verifier internal error: unexpected ptr_reg\n"); |
| return -EINVAL; |
| } |
| if (WARN_ON(!src_reg)) { |
| print_verifier_state(env, state, true); |
| verbose(env, "verifier internal error: no src_reg\n"); |
| return -EINVAL; |
| } |
| return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); |
| } |
| |
| /* check validity of 32-bit and 64-bit arithmetic operations */ |
| static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| u8 opcode = BPF_OP(insn->code); |
| int err; |
| |
| if (opcode == BPF_END || opcode == BPF_NEG) { |
| if (opcode == BPF_NEG) { |
| if (BPF_SRC(insn->code) != BPF_K || |
| insn->src_reg != BPF_REG_0 || |
| insn->off != 0 || insn->imm != 0) { |
| verbose(env, "BPF_NEG uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (insn->src_reg != BPF_REG_0 || insn->off != 0 || |
| (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || |
| (BPF_CLASS(insn->code) == BPF_ALU64 && |
| BPF_SRC(insn->code) != BPF_TO_LE)) { |
| verbose(env, "BPF_END uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* check src operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if (is_pointer_value(env, insn->dst_reg)) { |
| verbose(env, "R%d pointer arithmetic prohibited\n", |
| insn->dst_reg); |
| return -EACCES; |
| } |
| |
| /* check dest operand */ |
| err = check_reg_arg(env, insn->dst_reg, DST_OP); |
| if (err) |
| return err; |
| |
| } else if (opcode == BPF_MOV) { |
| |
| if (BPF_SRC(insn->code) == BPF_X) { |
| if (insn->imm != 0) { |
| verbose(env, "BPF_MOV uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| if (BPF_CLASS(insn->code) == BPF_ALU) { |
| if (insn->off != 0 && insn->off != 8 && insn->off != 16) { |
| verbose(env, "BPF_MOV uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (insn->off != 0 && insn->off != 8 && insn->off != 16 && |
| insn->off != 32) { |
| verbose(env, "BPF_MOV uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* check src operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| } else { |
| if (insn->src_reg != BPF_REG_0 || insn->off != 0) { |
| verbose(env, "BPF_MOV uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* check dest operand, mark as required later */ |
| err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); |
| if (err) |
| return err; |
| |
| if (BPF_SRC(insn->code) == BPF_X) { |
| struct bpf_reg_state *src_reg = regs + insn->src_reg; |
| struct bpf_reg_state *dst_reg = regs + insn->dst_reg; |
| |
| if (BPF_CLASS(insn->code) == BPF_ALU64) { |
| if (insn->off == 0) { |
| /* case: R1 = R2 |
| * copy register state to dest reg |
| */ |
| assign_scalar_id_before_mov(env, src_reg); |
| copy_register_state(dst_reg, src_reg); |
| dst_reg->live |= REG_LIVE_WRITTEN; |
| dst_reg->subreg_def = DEF_NOT_SUBREG; |
| } else { |
| /* case: R1 = (s8, s16 s32)R2 */ |
| if (is_pointer_value(env, insn->src_reg)) { |
| verbose(env, |
| "R%d sign-extension part of pointer\n", |
| insn->src_reg); |
| return -EACCES; |
| } else if (src_reg->type == SCALAR_VALUE) { |
| bool no_sext; |
| |
| no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); |
| if (no_sext) |
| assign_scalar_id_before_mov(env, src_reg); |
| copy_register_state(dst_reg, src_reg); |
| if (!no_sext) |
| dst_reg->id = 0; |
| coerce_reg_to_size_sx(dst_reg, insn->off >> 3); |
| dst_reg->live |= REG_LIVE_WRITTEN; |
| dst_reg->subreg_def = DEF_NOT_SUBREG; |
| } else { |
| mark_reg_unknown(env, regs, insn->dst_reg); |
| } |
| } |
| } else { |
| /* R1 = (u32) R2 */ |
| if (is_pointer_value(env, insn->src_reg)) { |
| verbose(env, |
| "R%d partial copy of pointer\n", |
| insn->src_reg); |
| return -EACCES; |
| } else if (src_reg->type == SCALAR_VALUE) { |
| if (insn->off == 0) { |
| bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; |
| |
| if (is_src_reg_u32) |
| assign_scalar_id_before_mov(env, src_reg); |
| copy_register_state(dst_reg, src_reg); |
| /* Make sure ID is cleared if src_reg is not in u32 |
| * range otherwise dst_reg min/max could be incorrectly |
| * propagated into src_reg by find_equal_scalars() |
| */ |
| if (!is_src_reg_u32) |
| dst_reg->id = 0; |
| dst_reg->live |= REG_LIVE_WRITTEN; |
| dst_reg->subreg_def = env->insn_idx + 1; |
| } else { |
| /* case: W1 = (s8, s16)W2 */ |
| bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); |
| |
| if (no_sext) |
| assign_scalar_id_before_mov(env, src_reg); |
| copy_register_state(dst_reg, src_reg); |
| if (!no_sext) |
| dst_reg->id = 0; |
| dst_reg->live |= REG_LIVE_WRITTEN; |
| dst_reg->subreg_def = env->insn_idx + 1; |
| coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); |
| } |
| } else { |
| mark_reg_unknown(env, regs, |
| insn->dst_reg); |
| } |
| zext_32_to_64(dst_reg); |
| reg_bounds_sync(dst_reg); |
| } |
| } else { |
| /* case: R = imm |
| * remember the value we stored into this reg |
| */ |
| /* clear any state __mark_reg_known doesn't set */ |
| mark_reg_unknown(env, regs, insn->dst_reg); |
| regs[insn->dst_reg].type = SCALAR_VALUE; |
| if (BPF_CLASS(insn->code) == BPF_ALU64) { |
| __mark_reg_known(regs + insn->dst_reg, |
| insn->imm); |
| } else { |
| __mark_reg_known(regs + insn->dst_reg, |
| (u32)insn->imm); |
| } |
| } |
| |
| } else if (opcode > BPF_END) { |
| verbose(env, "invalid BPF_ALU opcode %x\n", opcode); |
| return -EINVAL; |
| |
| } else { /* all other ALU ops: and, sub, xor, add, ... */ |
| |
| if (BPF_SRC(insn->code) == BPF_X) { |
| if (insn->imm != 0 || insn->off > 1 || |
| (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { |
| verbose(env, "BPF_ALU uses reserved fields\n"); |
| return -EINVAL; |
| } |
| /* check src1 operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| } else { |
| if (insn->src_reg != BPF_REG_0 || insn->off > 1 || |
| (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { |
| verbose(env, "BPF_ALU uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* check src2 operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if ((opcode == BPF_MOD || opcode == BPF_DIV) && |
| BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { |
| verbose(env, "div by zero\n"); |
| return -EINVAL; |
| } |
| |
| if ((opcode == BPF_LSH || opcode == BPF_RSH || |
| opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { |
| int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; |
| |
| if (insn->imm < 0 || insn->imm >= size) { |
| verbose(env, "invalid shift %d\n", insn->imm); |
| return -EINVAL; |
| } |
| } |
| |
| /* check dest operand */ |
| err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); |
| err = err ?: adjust_reg_min_max_vals(env, insn); |
| if (err) |
| return err; |
| } |
| |
| return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); |
| } |
| |
| static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, |
| struct bpf_reg_state *dst_reg, |
| enum bpf_reg_type type, |
| bool range_right_open) |
| { |
| struct bpf_func_state *state; |
| struct bpf_reg_state *reg; |
| int new_range; |
| |
| if (dst_reg->off < 0 || |
| (dst_reg->off == 0 && range_right_open)) |
| /* This doesn't give us any range */ |
| return; |
| |
| if (dst_reg->umax_value > MAX_PACKET_OFF || |
| dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) |
| /* Risk of overflow. For instance, ptr + (1<<63) may be less |
| * than pkt_end, but that's because it's also less than pkt. |
| */ |
| return; |
| |
| new_range = dst_reg->off; |
| if (range_right_open) |
| new_range++; |
| |
| /* Examples for register markings: |
| * |
| * pkt_data in dst register: |
| * |
| * r2 = r3; |
| * r2 += 8; |
| * if (r2 > pkt_end) goto <handle exception> |
| * <access okay> |
| * |
| * r2 = r3; |
| * r2 += 8; |
| * if (r2 < pkt_end) goto <access okay> |
| * <handle exception> |
| * |
| * Where: |
| * r2 == dst_reg, pkt_end == src_reg |
| * r2=pkt(id=n,off=8,r=0) |
| * r3=pkt(id=n,off=0,r=0) |
| * |
| * pkt_data in src register: |
| * |
| * r2 = r3; |
| * r2 += 8; |
| * if (pkt_end >= r2) goto <access okay> |
| * <handle exception> |
| * |
| * r2 = r3; |
| * r2 += 8; |
| * if (pkt_end <= r2) goto <handle exception> |
| * <access okay> |
| * |
| * Where: |
| * pkt_end == dst_reg, r2 == src_reg |
| * r2=pkt(id=n,off=8,r=0) |
| * r3=pkt(id=n,off=0,r=0) |
| * |
| * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) |
| * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) |
| * and [r3, r3 + 8-1) respectively is safe to access depending on |
| * the check. |
| */ |
| |
| /* If our ids match, then we must have the same max_value. And we |
| * don't care about the other reg's fixed offset, since if it's too big |
| * the range won't allow anything. |
| * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. |
| */ |
| bpf_for_each_reg_in_vstate(vstate, state, reg, ({ |
| if (reg->type == type && reg->id == dst_reg->id) |
| /* keep the maximum range already checked */ |
| reg->range = max(reg->range, new_range); |
| })); |
| } |
| |
| /* |
| * <reg1> <op> <reg2>, currently assuming reg2 is a constant |
| */ |
| static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, |
| u8 opcode, bool is_jmp32) |
| { |
| struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; |
| struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; |
| u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; |
| u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; |
| s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; |
| s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; |
| u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; |
| u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; |
| s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; |
| s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; |
| |
| switch (opcode) { |
| case BPF_JEQ: |
| /* constants, umin/umax and smin/smax checks would be |
| * redundant in this case because they all should match |
| */ |
| if (tnum_is_const(t1) && tnum_is_const(t2)) |
| return t1.value == t2.value; |
| /* non-overlapping ranges */ |
| if (umin1 > umax2 || umax1 < umin2) |
| return 0; |
| if (smin1 > smax2 || smax1 < smin2) |
| return 0; |
| if (!is_jmp32) { |
| /* if 64-bit ranges are inconclusive, see if we can |
| * utilize 32-bit subrange knowledge to eliminate |
| * branches that can't be taken a priori |
| */ |
| if (reg1->u32_min_value > reg2->u32_max_value || |
| reg1->u32_max_value < reg2->u32_min_value) |
| return 0; |
| if (reg1->s32_min_value > reg2->s32_max_value || |
| reg1->s32_max_value < reg2->s32_min_value) |
| return 0; |
| } |
| break; |
| case BPF_JNE: |
| /* constants, umin/umax and smin/smax checks would be |
| * redundant in this case because they all should match |
| */ |
| if (tnum_is_const(t1) && tnum_is_const(t2)) |
| return t1.value != t2.value; |
| /* non-overlapping ranges */ |
| if (umin1 > umax2 || umax1 < umin2) |
| return 1; |
| if (smin1 > smax2 || smax1 < smin2) |
| return 1; |
| if (!is_jmp32) { |
| /* if 64-bit ranges are inconclusive, see if we can |
| * utilize 32-bit subrange knowledge to eliminate |
| * branches that can't be taken a priori |
| */ |
| if (reg1->u32_min_value > reg2->u32_max_value || |
| reg1->u32_max_value < reg2->u32_min_value) |
| return 1; |
| if (reg1->s32_min_value > reg2->s32_max_value || |
| reg1->s32_max_value < reg2->s32_min_value) |
| return 1; |
| } |
| break; |
| case BPF_JSET: |
| if (!is_reg_const(reg2, is_jmp32)) { |
| swap(reg1, reg2); |
| swap(t1, t2); |
| } |
| if (!is_reg_const(reg2, is_jmp32)) |
| return -1; |
| if ((~t1.mask & t1.value) & t2.value) |
| return 1; |
| if (!((t1.mask | t1.value) & t2.value)) |
| return 0; |
| break; |
| case BPF_JGT: |
| if (umin1 > umax2) |
| return 1; |
| else if (umax1 <= umin2) |
| return 0; |
| break; |
| case BPF_JSGT: |
| if (smin1 > smax2) |
| return 1; |
| else if (smax1 <= smin2) |
| return 0; |
| break; |
| case BPF_JLT: |
| if (umax1 < umin2) |
| return 1; |
| else if (umin1 >= umax2) |
| return 0; |
| break; |
| case BPF_JSLT: |
| if (smax1 < smin2) |
| return 1; |
| else if (smin1 >= smax2) |
| return 0; |
| break; |
| case BPF_JGE: |
| if (umin1 >= umax2) |
| return 1; |
| else if (umax1 < umin2) |
| return 0; |
| break; |
| case BPF_JSGE: |
| if (smin1 >= smax2) |
| return 1; |
| else if (smax1 < smin2) |
| return 0; |
| break; |
| case BPF_JLE: |
| if (umax1 <= umin2) |
| return 1; |
| else if (umin1 > umax2) |
| return 0; |
| break; |
| case BPF_JSLE: |
| if (smax1 <= smin2) |
| return 1; |
| else if (smin1 > smax2) |
| return 0; |
| break; |
| } |
| |
| return -1; |
| } |
| |
| static int flip_opcode(u32 opcode) |
| { |
| /* How can we transform "a <op> b" into "b <op> a"? */ |
| static const u8 opcode_flip[16] = { |
| /* these stay the same */ |
| [BPF_JEQ >> 4] = BPF_JEQ, |
| [BPF_JNE >> 4] = BPF_JNE, |
| [BPF_JSET >> 4] = BPF_JSET, |
| /* these swap "lesser" and "greater" (L and G in the opcodes) */ |
| [BPF_JGE >> 4] = BPF_JLE, |
| [BPF_JGT >> 4] = BPF_JLT, |
| [BPF_JLE >> 4] = BPF_JGE, |
| [BPF_JLT >> 4] = BPF_JGT, |
| [BPF_JSGE >> 4] = BPF_JSLE, |
| [BPF_JSGT >> 4] = BPF_JSLT, |
| [BPF_JSLE >> 4] = BPF_JSGE, |
| [BPF_JSLT >> 4] = BPF_JSGT |
| }; |
| return opcode_flip[opcode >> 4]; |
| } |
| |
| static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg, |
| u8 opcode) |
| { |
| struct bpf_reg_state *pkt; |
| |
| if (src_reg->type == PTR_TO_PACKET_END) { |
| pkt = dst_reg; |
| } else if (dst_reg->type == PTR_TO_PACKET_END) { |
| pkt = src_reg; |
| opcode = flip_opcode(opcode); |
| } else { |
| return -1; |
| } |
| |
| if (pkt->range >= 0) |
| return -1; |
| |
| switch (opcode) { |
| case BPF_JLE: |
| /* pkt <= pkt_end */ |
| fallthrough; |
| case BPF_JGT: |
| /* pkt > pkt_end */ |
| if (pkt->range == BEYOND_PKT_END) |
| /* pkt has at last one extra byte beyond pkt_end */ |
| return opcode == BPF_JGT; |
| break; |
| case BPF_JLT: |
| /* pkt < pkt_end */ |
| fallthrough; |
| case BPF_JGE: |
| /* pkt >= pkt_end */ |
| if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) |
| return opcode == BPF_JGE; |
| break; |
| } |
| return -1; |
| } |
| |
| /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" |
| * and return: |
| * 1 - branch will be taken and "goto target" will be executed |
| * 0 - branch will not be taken and fall-through to next insn |
| * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value |
| * range [0,10] |
| */ |
| static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, |
| u8 opcode, bool is_jmp32) |
| { |
| if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) |
| return is_pkt_ptr_branch_taken(reg1, reg2, opcode); |
| |
| if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { |
| u64 val; |
| |
| /* arrange that reg2 is a scalar, and reg1 is a pointer */ |
| if (!is_reg_const(reg2, is_jmp32)) { |
| opcode = flip_opcode(opcode); |
| swap(reg1, reg2); |
| } |
| /* and ensure that reg2 is a constant */ |
| if (!is_reg_const(reg2, is_jmp32)) |
| return -1; |
| |
| if (!reg_not_null(reg1)) |
| return -1; |
| |
| /* If pointer is valid tests against zero will fail so we can |
| * use this to direct branch taken. |
| */ |
| val = reg_const_value(reg2, is_jmp32); |
| if (val != 0) |
| return -1; |
| |
| switch (opcode) { |
| case BPF_JEQ: |
| return 0; |
| case BPF_JNE: |
| return 1; |
| default: |
| return -1; |
| } |
| } |
| |
| /* now deal with two scalars, but not necessarily constants */ |
| return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); |
| } |
| |
| /* Opcode that corresponds to a *false* branch condition. |
| * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 |
| */ |
| static u8 rev_opcode(u8 opcode) |
| { |
| switch (opcode) { |
| case BPF_JEQ: return BPF_JNE; |
| case BPF_JNE: return BPF_JEQ; |
| /* JSET doesn't have it's reverse opcode in BPF, so add |
| * BPF_X flag to denote the reverse of that operation |
| */ |
| case BPF_JSET: return BPF_JSET | BPF_X; |
| case BPF_JSET | BPF_X: return BPF_JSET; |
| case BPF_JGE: return BPF_JLT; |
| case BPF_JGT: return BPF_JLE; |
| case BPF_JLE: return BPF_JGT; |
| case BPF_JLT: return BPF_JGE; |
| case BPF_JSGE: return BPF_JSLT; |
| case BPF_JSGT: return BPF_JSLE; |
| case BPF_JSLE: return BPF_JSGT; |
| case BPF_JSLT: return BPF_JSGE; |
| default: return 0; |
| } |
| } |
| |
| /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ |
| static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, |
| u8 opcode, bool is_jmp32) |
| { |
| struct tnum t; |
| u64 val; |
| |
| again: |
| switch (opcode) { |
| case BPF_JEQ: |
| if (is_jmp32) { |
| reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); |
| reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); |
| reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); |
| reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); |
| reg2->u32_min_value = reg1->u32_min_value; |
| reg2->u32_max_value = reg1->u32_max_value; |
| reg2->s32_min_value = reg1->s32_min_value; |
| reg2->s32_max_value = reg1->s32_max_value; |
| |
| t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); |
| reg1->var_off = tnum_with_subreg(reg1->var_off, t); |
| reg2->var_off = tnum_with_subreg(reg2->var_off, t); |
| } else { |
| reg1->umin_value = max(reg1->umin_value, reg2->umin_value); |
| reg1->umax_value = min(reg1->umax_value, reg2->umax_value); |
| reg1->smin_value = max(reg1->smin_value, reg2->smin_value); |
| reg1->smax_value = min(reg1->smax_value, reg2->smax_value); |
| reg2->umin_value = reg1->umin_value; |
| reg2->umax_value = reg1->umax_value; |
| reg2->smin_value = reg1->smin_value; |
| reg2->smax_value = reg1->smax_value; |
| |
| reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); |
| reg2->var_off = reg1->var_off; |
| } |
| break; |
| case BPF_JNE: |
| if (!is_reg_const(reg2, is_jmp32)) |
| swap(reg1, reg2); |
| if (!is_reg_const(reg2, is_jmp32)) |
| break; |
| |
| /* try to recompute the bound of reg1 if reg2 is a const and |
| * is exactly the edge of reg1. |
| */ |
| val = reg_const_value(reg2, is_jmp32); |
| if (is_jmp32) { |
| /* u32_min_value is not equal to 0xffffffff at this point, |
| * because otherwise u32_max_value is 0xffffffff as well, |
| * in such a case both reg1 and reg2 would be constants, |
| * jump would be predicted and reg_set_min_max() won't |
| * be called. |
| * |
| * Same reasoning works for all {u,s}{min,max}{32,64} cases |
| * below. |
| */ |
| if (reg1->u32_min_value == (u32)val) |
| reg1->u32_min_value++; |
| if (reg1->u32_max_value == (u32)val) |
| reg1->u32_max_value--; |
| if (reg1->s32_min_value == (s32)val) |
| reg1->s32_min_value++; |
| if (reg1->s32_max_value == (s32)val) |
| reg1->s32_max_value--; |
| } else { |
| if (reg1->umin_value == (u64)val) |
| reg1->umin_value++; |
| if (reg1->umax_value == (u64)val) |
| reg1->umax_value--; |
| if (reg1->smin_value == (s64)val) |
| reg1->smin_value++; |
| if (reg1->smax_value == (s64)val) |
| reg1->smax_value--; |
| } |
| break; |
| case BPF_JSET: |
| if (!is_reg_const(reg2, is_jmp32)) |
| swap(reg1, reg2); |
| if (!is_reg_const(reg2, is_jmp32)) |
| break; |
| val = reg_const_value(reg2, is_jmp32); |
| /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) |
| * requires single bit to learn something useful. E.g., if we |
| * know that `r1 & 0x3` is true, then which bits (0, 1, or both) |
| * are actually set? We can learn something definite only if |
| * it's a single-bit value to begin with. |
| * |
| * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have |
| * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor |
| * bit 1 is set, which we can readily use in adjustments. |
| */ |
| if (!is_power_of_2(val)) |
| break; |
| if (is_jmp32) { |
| t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); |
| reg1->var_off = tnum_with_subreg(reg1->var_off, t); |
| } else { |
| reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); |
| } |
| break; |
| case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ |
| if (!is_reg_const(reg2, is_jmp32)) |
| swap(reg1, reg2); |
| if (!is_reg_const(reg2, is_jmp32)) |
| break; |
| val = reg_const_value(reg2, is_jmp32); |
| if (is_jmp32) { |
| t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); |
| reg1->var_off = tnum_with_subreg(reg1->var_off, t); |
| } else { |
| reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); |
| } |
| break; |
| case BPF_JLE: |
| if (is_jmp32) { |
| reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); |
| reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); |
| } else { |
| reg1->umax_value = min(reg1->umax_value, reg2->umax_value); |
| reg2->umin_value = max(reg1->umin_value, reg2->umin_value); |
| } |
| break; |
| case BPF_JLT: |
| if (is_jmp32) { |
| reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); |
| reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); |
| } else { |
| reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); |
| reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); |
| } |
| break; |
| case BPF_JSLE: |
| if (is_jmp32) { |
| reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); |
| reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); |
| } else { |
| reg1->smax_value = min(reg1->smax_value, reg2->smax_value); |
| reg2->smin_value = max(reg1->smin_value, reg2->smin_value); |
| } |
| break; |
| case BPF_JSLT: |
| if (is_jmp32) { |
| reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); |
| reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); |
| } else { |
| reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); |
| reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); |
| } |
| break; |
| case BPF_JGE: |
| case BPF_JGT: |
| case BPF_JSGE: |
| case BPF_JSGT: |
| /* just reuse LE/LT logic above */ |
| opcode = flip_opcode(opcode); |
| swap(reg1, reg2); |
| goto again; |
| default: |
| return; |
| } |
| } |
| |
| /* Adjusts the register min/max values in the case that the dst_reg and |
| * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K |
| * check, in which case we havea fake SCALAR_VALUE representing insn->imm). |
| * Technically we can do similar adjustments for pointers to the same object, |
| * but we don't support that right now. |
| */ |
| static int reg_set_min_max(struct bpf_verifier_env *env, |
| struct bpf_reg_state *true_reg1, |
| struct bpf_reg_state *true_reg2, |
| struct bpf_reg_state *false_reg1, |
| struct bpf_reg_state *false_reg2, |
| u8 opcode, bool is_jmp32) |
| { |
| int err; |
| |
| /* If either register is a pointer, we can't learn anything about its |
| * variable offset from the compare (unless they were a pointer into |
| * the same object, but we don't bother with that). |
| */ |
| if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) |
| return 0; |
| |
| /* fallthrough (FALSE) branch */ |
| regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); |
| reg_bounds_sync(false_reg1); |
| reg_bounds_sync(false_reg2); |
| |
| /* jump (TRUE) branch */ |
| regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); |
| reg_bounds_sync(true_reg1); |
| reg_bounds_sync(true_reg2); |
| |
| err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); |
| err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); |
| err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); |
| err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); |
| return err; |
| } |
| |
| static void mark_ptr_or_null_reg(struct bpf_func_state *state, |
| struct bpf_reg_state *reg, u32 id, |
| bool is_null) |
| { |
| if (type_may_be_null(reg->type) && reg->id == id && |
| (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { |
| /* Old offset (both fixed and variable parts) should have been |
| * known-zero, because we don't allow pointer arithmetic on |
| * pointers that might be NULL. If we see this happening, don't |
| * convert the register. |
| * |
| * But in some cases, some helpers that return local kptrs |
| * advance offset for the returned pointer. In those cases, it |
| * is fine to expect to see reg->off. |
| */ |
| if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) |
| return; |
| if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && |
| WARN_ON_ONCE(reg->off)) |
| return; |
| |
| if (is_null) { |
| reg->type = SCALAR_VALUE; |
| /* We don't need id and ref_obj_id from this point |
| * onwards anymore, thus we should better reset it, |
| * so that state pruning has chances to take effect. |
| */ |
| reg->id = 0; |
| reg->ref_obj_id = 0; |
| |
| return; |
| } |
| |
| mark_ptr_not_null_reg(reg); |
| |
| if (!reg_may_point_to_spin_lock(reg)) { |
| /* For not-NULL ptr, reg->ref_obj_id will be reset |
| * in release_reference(). |
| * |
| * reg->id is still used by spin_lock ptr. Other |
| * than spin_lock ptr type, reg->id can be reset. |
| */ |
| reg->id = 0; |
| } |
| } |
| } |
| |
| /* The logic is similar to find_good_pkt_pointers(), both could eventually |
| * be folded together at some point. |
| */ |
| static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, |
| bool is_null) |
| { |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| struct bpf_reg_state *regs = state->regs, *reg; |
| u32 ref_obj_id = regs[regno].ref_obj_id; |
| u32 id = regs[regno].id; |
| |
| if (ref_obj_id && ref_obj_id == id && is_null) |
| /* regs[regno] is in the " == NULL" branch. |
| * No one could have freed the reference state before |
| * doing the NULL check. |
| */ |
| WARN_ON_ONCE(release_reference_state(state, id)); |
| |
| bpf_for_each_reg_in_vstate(vstate, state, reg, ({ |
| mark_ptr_or_null_reg(state, reg, id, is_null); |
| })); |
| } |
| |
| static bool try_match_pkt_pointers(const struct bpf_insn *insn, |
| struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state *src_reg, |
| struct bpf_verifier_state *this_branch, |
| struct bpf_verifier_state *other_branch) |
| { |
| if (BPF_SRC(insn->code) != BPF_X) |
| return false; |
| |
| /* Pointers are always 64-bit. */ |
| if (BPF_CLASS(insn->code) == BPF_JMP32) |
| return false; |
| |
| switch (BPF_OP(insn->code)) { |
| case BPF_JGT: |
| if ((dst_reg->type == PTR_TO_PACKET && |
| src_reg->type == PTR_TO_PACKET_END) || |
| (dst_reg->type == PTR_TO_PACKET_META && |
| reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { |
| /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ |
| find_good_pkt_pointers(this_branch, dst_reg, |
| dst_reg->type, false); |
| mark_pkt_end(other_branch, insn->dst_reg, true); |
| } else if ((dst_reg->type == PTR_TO_PACKET_END && |
| src_reg->type == PTR_TO_PACKET) || |
| (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && |
| src_reg->type == PTR_TO_PACKET_META)) { |
| /* pkt_end > pkt_data', pkt_data > pkt_meta' */ |
| find_good_pkt_pointers(other_branch, src_reg, |
| src_reg->type, true); |
| mark_pkt_end(this_branch, insn->src_reg, false); |
| } else { |
| return false; |
| } |
| break; |
| case BPF_JLT: |
| if ((dst_reg->type == PTR_TO_PACKET && |
| src_reg->type == PTR_TO_PACKET_END) || |
| (dst_reg->type == PTR_TO_PACKET_META && |
| reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { |
| /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ |
| find_good_pkt_pointers(other_branch, dst_reg, |
| dst_reg->type, true); |
| mark_pkt_end(this_branch, insn->dst_reg, false); |
| } else if ((dst_reg->type == PTR_TO_PACKET_END && |
| src_reg->type == PTR_TO_PACKET) || |
| (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && |
| src_reg->type == PTR_TO_PACKET_META)) { |
| /* pkt_end < pkt_data', pkt_data > pkt_meta' */ |
| find_good_pkt_pointers(this_branch, src_reg, |
| src_reg->type, false); |
| mark_pkt_end(other_branch, insn->src_reg, true); |
| } else { |
| return false; |
| } |
| break; |
| case BPF_JGE: |
| if ((dst_reg->type == PTR_TO_PACKET && |
| src_reg->type == PTR_TO_PACKET_END) || |
| (dst_reg->type == PTR_TO_PACKET_META && |
| reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { |
| /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ |
| find_good_pkt_pointers(this_branch, dst_reg, |
| dst_reg->type, true); |
| mark_pkt_end(other_branch, insn->dst_reg, false); |
| } else if ((dst_reg->type == PTR_TO_PACKET_END && |
| src_reg->type == PTR_TO_PACKET) || |
| (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && |
| src_reg->type == PTR_TO_PACKET_META)) { |
| /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ |
| find_good_pkt_pointers(other_branch, src_reg, |
| src_reg->type, false); |
| mark_pkt_end(this_branch, insn->src_reg, true); |
| } else { |
| return false; |
| } |
| break; |
| case BPF_JLE: |
| if ((dst_reg->type == PTR_TO_PACKET && |
| src_reg->type == PTR_TO_PACKET_END) || |
| (dst_reg->type == PTR_TO_PACKET_META && |
| reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { |
| /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ |
| find_good_pkt_pointers(other_branch, dst_reg, |
| dst_reg->type, false); |
| mark_pkt_end(this_branch, insn->dst_reg, true); |
| } else if ((dst_reg->type == PTR_TO_PACKET_END && |
| src_reg->type == PTR_TO_PACKET) || |
| (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && |
| src_reg->type == PTR_TO_PACKET_META)) { |
| /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ |
| find_good_pkt_pointers(this_branch, src_reg, |
| src_reg->type, true); |
| mark_pkt_end(other_branch, insn->src_reg, false); |
| } else { |
| return false; |
| } |
| break; |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void find_equal_scalars(struct bpf_verifier_state *vstate, |
| struct bpf_reg_state *known_reg) |
| { |
| struct bpf_func_state *state; |
| struct bpf_reg_state *reg; |
| |
| bpf_for_each_reg_in_vstate(vstate, state, reg, ({ |
| if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) |
| copy_register_state(reg, known_reg); |
| })); |
| } |
| |
| static int check_cond_jmp_op(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, int *insn_idx) |
| { |
| struct bpf_verifier_state *this_branch = env->cur_state; |
| struct bpf_verifier_state *other_branch; |
| struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; |
| struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; |
| struct bpf_reg_state *eq_branch_regs; |
| struct bpf_reg_state fake_reg = {}; |
| u8 opcode = BPF_OP(insn->code); |
| bool is_jmp32; |
| int pred = -1; |
| int err; |
| |
| /* Only conditional jumps are expected to reach here. */ |
| if (opcode == BPF_JA || opcode > BPF_JSLE) { |
| verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); |
| return -EINVAL; |
| } |
| |
| /* check src2 operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| dst_reg = ®s[insn->dst_reg]; |
| if (BPF_SRC(insn->code) == BPF_X) { |
| if (insn->imm != 0) { |
| verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| /* check src1 operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| src_reg = ®s[insn->src_reg]; |
| if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && |
| is_pointer_value(env, insn->src_reg)) { |
| verbose(env, "R%d pointer comparison prohibited\n", |
| insn->src_reg); |
| return -EACCES; |
| } |
| } else { |
| if (insn->src_reg != BPF_REG_0) { |
| verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); |
| return -EINVAL; |
| } |
| src_reg = &fake_reg; |
| src_reg->type = SCALAR_VALUE; |
| __mark_reg_known(src_reg, insn->imm); |
| } |
| |
| is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; |
| pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); |
| if (pred >= 0) { |
| /* If we get here with a dst_reg pointer type it is because |
| * above is_branch_taken() special cased the 0 comparison. |
| */ |
| if (!__is_pointer_value(false, dst_reg)) |
| err = mark_chain_precision(env, insn->dst_reg); |
| if (BPF_SRC(insn->code) == BPF_X && !err && |
| !__is_pointer_value(false, src_reg)) |
| err = mark_chain_precision(env, insn->src_reg); |
| if (err) |
| return err; |
| } |
| |
| if (pred == 1) { |
| /* Only follow the goto, ignore fall-through. If needed, push |
| * the fall-through branch for simulation under speculative |
| * execution. |
| */ |
| if (!env->bypass_spec_v1 && |
| !sanitize_speculative_path(env, insn, *insn_idx + 1, |
| *insn_idx)) |
| return -EFAULT; |
| if (env->log.level & BPF_LOG_LEVEL) |
| print_insn_state(env, this_branch->frame[this_branch->curframe]); |
| *insn_idx += insn->off; |
| return 0; |
| } else if (pred == 0) { |
| /* Only follow the fall-through branch, since that's where the |
| * program will go. If needed, push the goto branch for |
| * simulation under speculative execution. |
| */ |
| if (!env->bypass_spec_v1 && |
| !sanitize_speculative_path(env, insn, |
| *insn_idx + insn->off + 1, |
| *insn_idx)) |
| return -EFAULT; |
| if (env->log.level & BPF_LOG_LEVEL) |
| print_insn_state(env, this_branch->frame[this_branch->curframe]); |
| return 0; |
| } |
| |
| other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, |
| false); |
| if (!other_branch) |
| return -EFAULT; |
| other_branch_regs = other_branch->frame[other_branch->curframe]->regs; |
| |
| if (BPF_SRC(insn->code) == BPF_X) { |
| err = reg_set_min_max(env, |
| &other_branch_regs[insn->dst_reg], |
| &other_branch_regs[insn->src_reg], |
| dst_reg, src_reg, opcode, is_jmp32); |
| } else /* BPF_SRC(insn->code) == BPF_K */ { |
| err = reg_set_min_max(env, |
| &other_branch_regs[insn->dst_reg], |
| src_reg /* fake one */, |
| dst_reg, src_reg /* same fake one */, |
| opcode, is_jmp32); |
| } |
| if (err) |
| return err; |
| |
| if (BPF_SRC(insn->code) == BPF_X && |
| src_reg->type == SCALAR_VALUE && src_reg->id && |
| !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { |
| find_equal_scalars(this_branch, src_reg); |
| find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); |
| } |
| if (dst_reg->type == SCALAR_VALUE && dst_reg->id && |
| !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { |
| find_equal_scalars(this_branch, dst_reg); |
| find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); |
| } |
| |
| /* if one pointer register is compared to another pointer |
| * register check if PTR_MAYBE_NULL could be lifted. |
| * E.g. register A - maybe null |
| * register B - not null |
| * for JNE A, B, ... - A is not null in the false branch; |
| * for JEQ A, B, ... - A is not null in the true branch. |
| * |
| * Since PTR_TO_BTF_ID points to a kernel struct that does |
| * not need to be null checked by the BPF program, i.e., |
| * could be null even without PTR_MAYBE_NULL marking, so |
| * only propagate nullness when neither reg is that type. |
| */ |
| if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && |
| __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && |
| type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && |
| base_type(src_reg->type) != PTR_TO_BTF_ID && |
| base_type(dst_reg->type) != PTR_TO_BTF_ID) { |
| eq_branch_regs = NULL; |
| switch (opcode) { |
| case BPF_JEQ: |
| eq_branch_regs = other_branch_regs; |
| break; |
| case BPF_JNE: |
| eq_branch_regs = regs; |
| break; |
| default: |
| /* do nothing */ |
| break; |
| } |
| if (eq_branch_regs) { |
| if (type_may_be_null(src_reg->type)) |
| mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); |
| else |
| mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); |
| } |
| } |
| |
| /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). |
| * NOTE: these optimizations below are related with pointer comparison |
| * which will never be JMP32. |
| */ |
| if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && |
| insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && |
| type_may_be_null(dst_reg->type)) { |
| /* Mark all identical registers in each branch as either |
| * safe or unknown depending R == 0 or R != 0 conditional. |
| */ |
| mark_ptr_or_null_regs(this_branch, insn->dst_reg, |
| opcode == BPF_JNE); |
| mark_ptr_or_null_regs(other_branch, insn->dst_reg, |
| opcode == BPF_JEQ); |
| } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], |
| this_branch, other_branch) && |
| is_pointer_value(env, insn->dst_reg)) { |
| verbose(env, "R%d pointer comparison prohibited\n", |
| insn->dst_reg); |
| return -EACCES; |
| } |
| if (env->log.level & BPF_LOG_LEVEL) |
| print_insn_state(env, this_branch->frame[this_branch->curframe]); |
| return 0; |
| } |
| |
| /* verify BPF_LD_IMM64 instruction */ |
| static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) |
| { |
| struct bpf_insn_aux_data *aux = cur_aux(env); |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *dst_reg; |
| struct bpf_map *map; |
| int err; |
| |
| if (BPF_SIZE(insn->code) != BPF_DW) { |
| verbose(env, "invalid BPF_LD_IMM insn\n"); |
| return -EINVAL; |
| } |
| if (insn->off != 0) { |
| verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| err = check_reg_arg(env, insn->dst_reg, DST_OP); |
| if (err) |
| return err; |
| |
| dst_reg = ®s[insn->dst_reg]; |
| if (insn->src_reg == 0) { |
| u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; |
| |
| dst_reg->type = SCALAR_VALUE; |
| __mark_reg_known(®s[insn->dst_reg], imm); |
| return 0; |
| } |
| |
| /* All special src_reg cases are listed below. From this point onwards |
| * we either succeed and assign a corresponding dst_reg->type after |
| * zeroing the offset, or fail and reject the program. |
| */ |
| mark_reg_known_zero(env, regs, insn->dst_reg); |
| |
| if (insn->src_reg == BPF_PSEUDO_BTF_ID) { |
| dst_reg->type = aux->btf_var.reg_type; |
| switch (base_type(dst_reg->type)) { |
| case PTR_TO_MEM: |
| dst_reg->mem_size = aux->btf_var.mem_size; |
| break; |
| case PTR_TO_BTF_ID: |
| dst_reg->btf = aux->btf_var.btf; |
| dst_reg->btf_id = aux->btf_var.btf_id; |
| break; |
| default: |
| verbose(env, "bpf verifier is misconfigured\n"); |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| if (insn->src_reg == BPF_PSEUDO_FUNC) { |
| struct bpf_prog_aux *aux = env->prog->aux; |
| u32 subprogno = find_subprog(env, |
| env->insn_idx + insn->imm + 1); |
| |
| if (!aux->func_info) { |
| verbose(env, "missing btf func_info\n"); |
| return -EINVAL; |
| } |
| if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { |
| verbose(env, "callback function not static\n"); |
| return -EINVAL; |
| } |
| |
| dst_reg->type = PTR_TO_FUNC; |
| dst_reg->subprogno = subprogno; |
| return 0; |
| } |
| |
| map = env->used_maps[aux->map_index]; |
| dst_reg->map_ptr = map; |
| |
| if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || |
| insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { |
| dst_reg->type = PTR_TO_MAP_VALUE; |
| dst_reg->off = aux->map_off; |
| WARN_ON_ONCE(map->max_entries != 1); |
| /* We want reg->id to be same (0) as map_value is not distinct */ |
| } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || |
| insn->src_reg == BPF_PSEUDO_MAP_IDX) { |
| dst_reg->type = CONST_PTR_TO_MAP; |
| } else { |
| verbose(env, "bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static bool may_access_skb(enum bpf_prog_type type) |
| { |
| switch (type) { |
| case BPF_PROG_TYPE_SOCKET_FILTER: |
| case BPF_PROG_TYPE_SCHED_CLS: |
| case BPF_PROG_TYPE_SCHED_ACT: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* verify safety of LD_ABS|LD_IND instructions: |
| * - they can only appear in the programs where ctx == skb |
| * - since they are wrappers of function calls, they scratch R1-R5 registers, |
| * preserve R6-R9, and store return value into R0 |
| * |
| * Implicit input: |
| * ctx == skb == R6 == CTX |
| * |
| * Explicit input: |
| * SRC == any register |
| * IMM == 32-bit immediate |
| * |
| * Output: |
| * R0 - 8/16/32-bit skb data converted to cpu endianness |
| */ |
| static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| static const int ctx_reg = BPF_REG_6; |
| u8 mode = BPF_MODE(insn->code); |
| int i, err; |
| |
| if (!may_access_skb(resolve_prog_type(env->prog))) { |
| verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); |
| return -EINVAL; |
| } |
| |
| if (!env->ops->gen_ld_abs) { |
| verbose(env, "bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || |
| BPF_SIZE(insn->code) == BPF_DW || |
| (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { |
| verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| /* check whether implicit source operand (register R6) is readable */ |
| err = check_reg_arg(env, ctx_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as |
| * gen_ld_abs() may terminate the program at runtime, leading to |
| * reference leak. |
| */ |
| err = check_reference_leak(env, false); |
| if (err) { |
| verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); |
| return err; |
| } |
| |
| if (env->cur_state->active_lock.ptr) { |
| verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); |
| return -EINVAL; |
| } |
| |
| if (env->cur_state->active_rcu_lock) { |
| verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); |
| return -EINVAL; |
| } |
| |
| if (regs[ctx_reg].type != PTR_TO_CTX) { |
| verbose(env, |
| "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); |
| return -EINVAL; |
| } |
| |
| if (mode == BPF_IND) { |
| /* check explicit source operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| } |
| |
| err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); |
| if (err < 0) |
| return err; |
| |
| /* reset caller saved regs to unreadable */ |
| for (i = 0; i < CALLER_SAVED_REGS; i++) { |
| mark_reg_not_init(env, regs, caller_saved[i]); |
| check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); |
| } |
| |
| /* mark destination R0 register as readable, since it contains |
| * the value fetched from the packet. |
| * Already marked as written above. |
| */ |
| mark_reg_unknown(env, regs, BPF_REG_0); |
| /* ld_abs load up to 32-bit skb data. */ |
| regs[BPF_REG_0].subreg_def = env->insn_idx + 1; |
| return 0; |
| } |
| |
| static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) |
| { |
| const char *exit_ctx = "At program exit"; |
| struct tnum enforce_attach_type_range = tnum_unknown; |
| const struct bpf_prog *prog = env->prog; |
| struct bpf_reg_state *reg; |
| struct bpf_retval_range range = retval_range(0, 1); |
| enum bpf_prog_type prog_type = resolve_prog_type(env->prog); |
| int err; |
| struct bpf_func_state *frame = env->cur_state->frame[0]; |
| const bool is_subprog = frame->subprogno; |
| |
| /* LSM and struct_ops func-ptr's return type could be "void" */ |
| if (!is_subprog || frame->in_exception_callback_fn) { |
| switch (prog_type) { |
| case BPF_PROG_TYPE_LSM: |
| if (prog->expected_attach_type == BPF_LSM_CGROUP) |
| /* See below, can be 0 or 0-1 depending on hook. */ |
| break; |
| fallthrough; |
| case BPF_PROG_TYPE_STRUCT_OPS: |
| if (!prog->aux->attach_func_proto->type) |
| return 0; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* eBPF calling convention is such that R0 is used |
| * to return the value from eBPF program. |
| * Make sure that it's readable at this time |
| * of bpf_exit, which means that program wrote |
| * something into it earlier |
| */ |
| err = check_reg_arg(env, regno, SRC_OP); |
| if (err) |
| return err; |
| |
| if (is_pointer_value(env, regno)) { |
| verbose(env, "R%d leaks addr as return value\n", regno); |
| return -EACCES; |
| } |
| |
| reg = cur_regs(env) + regno; |
| |
| if (frame->in_async_callback_fn) { |
| /* enforce return zero from async callbacks like timer */ |
| exit_ctx = "At async callback return"; |
| range = retval_range(0, 0); |
| goto enforce_retval; |
| } |
| |
| if (is_subprog && !frame->in_exception_callback_fn) { |
| if (reg->type != SCALAR_VALUE) { |
| verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", |
| regno, reg_type_str(env, reg->type)); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| switch (prog_type) { |
| case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: |
| if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || |
| env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || |
| env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || |
| env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || |
| env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || |
| env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || |
| env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || |
| env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || |
| env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) |
| range = retval_range(1, 1); |
| if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || |
| env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) |
| range = retval_range(0, 3); |
| break; |
| case BPF_PROG_TYPE_CGROUP_SKB: |
| if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { |
| range = retval_range(0, 3); |
| enforce_attach_type_range = tnum_range(2, 3); |
| } |
| break; |
| case BPF_PROG_TYPE_CGROUP_SOCK: |
| case BPF_PROG_TYPE_SOCK_OPS: |
| case BPF_PROG_TYPE_CGROUP_DEVICE: |
| case BPF_PROG_TYPE_CGROUP_SYSCTL: |
| case BPF_PROG_TYPE_CGROUP_SOCKOPT: |
| break; |
| case BPF_PROG_TYPE_RAW_TRACEPOINT: |
| if (!env->prog->aux->attach_btf_id) |
| return 0; |
| range = retval_range(0, 0); |
| break; |
| case BPF_PROG_TYPE_TRACING: |
| switch (env->prog->expected_attach_type) { |
| case BPF_TRACE_FENTRY: |
| case BPF_TRACE_FEXIT: |
| range = retval_range(0, 0); |
| break; |
| case BPF_TRACE_RAW_TP: |
| case BPF_MODIFY_RETURN: |
| return 0; |
| case BPF_TRACE_ITER: |
| break; |
| default: |
| return -ENOTSUPP; |
| } |
| break; |
| case BPF_PROG_TYPE_SK_LOOKUP: |
| range = retval_range(SK_DROP, SK_PASS); |
| break; |
| |
| case BPF_PROG_TYPE_LSM: |
| if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { |
| /* Regular BPF_PROG_TYPE_LSM programs can return |
| * any value. |
| */ |
| return 0; |
| } |
| if (!env->prog->aux->attach_func_proto->type) { |
| /* Make sure programs that attach to void |
| * hooks don't try to modify return value. |
| */ |
| range = retval_range(1, 1); |
| } |
| break; |
| |
| case BPF_PROG_TYPE_NETFILTER: |
| range = retval_range(NF_DROP, NF_ACCEPT); |
| break; |
| case BPF_PROG_TYPE_EXT: |
| /* freplace program can return anything as its return value |
| * depends on the to-be-replaced kernel func or bpf program. |
| */ |
| default: |
| return 0; |
| } |
| |
| enforce_retval: |
| if (reg->type != SCALAR_VALUE) { |
| verbose(env, "%s the register R%d is not a known value (%s)\n", |
| exit_ctx, regno, reg_type_str(env, reg->type)); |
| return -EINVAL; |
| } |
| |
| err = mark_chain_precision(env, regno); |
| if (err) |
| return err; |
| |
| if (!retval_range_within(range, reg)) { |
| verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); |
| if (!is_subprog && |
| prog->expected_attach_type == BPF_LSM_CGROUP && |
| prog_type == BPF_PROG_TYPE_LSM && |
| !prog->aux->attach_func_proto->type) |
| verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); |
| return -EINVAL; |
| } |
| |
| if (!tnum_is_unknown(enforce_attach_type_range) && |
| tnum_in(enforce_attach_type_range, reg->var_off)) |
| env->prog->enforce_expected_attach_type = 1; |
| return 0; |
| } |
| |
| /* non-recursive DFS pseudo code |
| * 1 procedure DFS-iterative(G,v): |
| * 2 label v as discovered |
| * 3 let S be a stack |
| * 4 S.push(v) |
| * 5 while S is not empty |
| * 6 t <- S.peek() |
| * 7 if t is what we're looking for: |
| * 8 return t |
| * 9 for all edges e in G.adjacentEdges(t) do |
| * 10 if edge e is already labelled |
| * 11 continue with the next edge |
| * 12 w <- G.adjacentVertex(t,e) |
| * 13 if vertex w is not discovered and not explored |
| * 14 label e as tree-edge |
| * 15 label w as discovered |
| * 16 S.push(w) |
| * 17 continue at 5 |
| * 18 else if vertex w is discovered |
| * 19 label e as back-edge |
| * 20 else |
| * 21 // vertex w is explored |
| * 22 label e as forward- or cross-edge |
| * 23 label t as explored |
| * 24 S.pop() |
| * |
| * convention: |
| * 0x10 - discovered |
| * 0x11 - discovered and fall-through edge labelled |
| * 0x12 - discovered and fall-through and branch edges labelled |
| * 0x20 - explored |
| */ |
| |
| enum { |
| DISCOVERED = 0x10, |
| EXPLORED = 0x20, |
| FALLTHROUGH = 1, |
| BRANCH = 2, |
| }; |
| |
| static void mark_prune_point(struct bpf_verifier_env *env, int idx) |
| { |
| env->insn_aux_data[idx].prune_point = true; |
| } |
| |
| static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) |
| { |
| return env->insn_aux_data[insn_idx].prune_point; |
| } |
| |
| static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) |
| { |
| env->insn_aux_data[idx].force_checkpoint = true; |
| } |
| |
| static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) |
| { |
| return env->insn_aux_data[insn_idx].force_checkpoint; |
| } |
| |
| static void mark_calls_callback(struct bpf_verifier_env *env, int idx) |
| { |
| env->insn_aux_data[idx].calls_callback = true; |
| } |
| |
| static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) |
| { |
| return env->insn_aux_data[insn_idx].calls_callback; |
| } |
| |
| enum { |
| DONE_EXPLORING = 0, |
| KEEP_EXPLORING = 1, |
| }; |
| |
| /* t, w, e - match pseudo-code above: |
| * t - index of current instruction |
| * w - next instruction |
| * e - edge |
| */ |
| static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) |
| { |
| int *insn_stack = env->cfg.insn_stack; |
| int *insn_state = env->cfg.insn_state; |
| |
| if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) |
| return DONE_EXPLORING; |
| |
| if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) |
| return DONE_EXPLORING; |
| |
| if (w < 0 || w >= env->prog->len) { |
| verbose_linfo(env, t, "%d: ", t); |
| verbose(env, "jump out of range from insn %d to %d\n", t, w); |
| return -EINVAL; |
| } |
| |
| if (e == BRANCH) { |
| /* mark branch target for state pruning */ |
| mark_prune_point(env, w); |
| mark_jmp_point(env, w); |
| } |
| |
| if (insn_state[w] == 0) { |
| /* tree-edge */ |
| insn_state[t] = DISCOVERED | e; |
| insn_state[w] = DISCOVERED; |
| if (env->cfg.cur_stack >= env->prog->len) |
| return -E2BIG; |
| insn_stack[env->cfg.cur_stack++] = w; |
| return KEEP_EXPLORING; |
| } else if ((insn_state[w] & 0xF0) == DISCOVERED) { |
| if (env->bpf_capable) |
| return DONE_EXPLORING; |
| verbose_linfo(env, t, "%d: ", t); |
| verbose_linfo(env, w, "%d: ", w); |
| verbose(env, "back-edge from insn %d to %d\n", t, w); |
| return -EINVAL; |
| } else if (insn_state[w] == EXPLORED) { |
| /* forward- or cross-edge */ |
| insn_state[t] = DISCOVERED | e; |
| } else { |
| verbose(env, "insn state internal bug\n"); |
| return -EFAULT; |
| } |
| return DONE_EXPLORING; |
| } |
| |
| static int visit_func_call_insn(int t, struct bpf_insn *insns, |
| struct bpf_verifier_env *env, |
| bool visit_callee) |
| { |
| int ret, insn_sz; |
| |
| insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; |
| ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); |
| if (ret) |
| return ret; |
| |
| mark_prune_point(env, t + insn_sz); |
| /* when we exit from subprog, we need to record non-linear history */ |
| mark_jmp_point(env, t + insn_sz); |
| |
| if (visit_callee) { |
| mark_prune_point(env, t); |
| ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); |
| } |
| return ret; |
| } |
| |
| /* Visits the instruction at index t and returns one of the following: |
| * < 0 - an error occurred |
| * DONE_EXPLORING - the instruction was fully explored |
| * KEEP_EXPLORING - there is still work to be done before it is fully explored |
| */ |
| static int visit_insn(int t, struct bpf_verifier_env *env) |
| { |
| struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; |
| int ret, off, insn_sz; |
| |
| if (bpf_pseudo_func(insn)) |
| return visit_func_call_insn(t, insns, env, true); |
| |
| /* All non-branch instructions have a single fall-through edge. */ |
| if (BPF_CLASS(insn->code) != BPF_JMP && |
| BPF_CLASS(insn->code) != BPF_JMP32) { |
| insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; |
| return push_insn(t, t + insn_sz, FALLTHROUGH, env); |
| } |
| |
| switch (BPF_OP(insn->code)) { |
| case BPF_EXIT: |
| return DONE_EXPLORING; |
| |
| case BPF_CALL: |
| if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) |
| /* Mark this call insn as a prune point to trigger |
| * is_state_visited() check before call itself is |
| * processed by __check_func_call(). Otherwise new |
| * async state will be pushed for further exploration. |
| */ |
| mark_prune_point(env, t); |
| /* For functions that invoke callbacks it is not known how many times |
| * callback would be called. Verifier models callback calling functions |
| * by repeatedly visiting callback bodies and returning to origin call |
| * instruction. |
| * In order to stop such iteration verifier needs to identify when a |
| * state identical some state from a previous iteration is reached. |
| * Check below forces creation of checkpoint before callback calling |
| * instruction to allow search for such identical states. |
| */ |
| if (is_sync_callback_calling_insn(insn)) { |
| mark_calls_callback(env, t); |
| mark_force_checkpoint(env, t); |
| mark_prune_point(env, t); |
| mark_jmp_point(env, t); |
| } |
| if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { |
| struct bpf_kfunc_call_arg_meta meta; |
| |
| ret = fetch_kfunc_meta(env, insn, &meta, NULL); |
| if (ret == 0 && is_iter_next_kfunc(&meta)) { |
| mark_prune_point(env, t); |
| /* Checking and saving state checkpoints at iter_next() call |
| * is crucial for fast convergence of open-coded iterator loop |
| * logic, so we need to force it. If we don't do that, |
| * is_state_visited() might skip saving a checkpoint, causing |
| * unnecessarily long sequence of not checkpointed |
| * instructions and jumps, leading to exhaustion of jump |
| * history buffer, and potentially other undesired outcomes. |
| * It is expected that with correct open-coded iterators |
| * convergence will happen quickly, so we don't run a risk of |
| * exhausting memory. |
| */ |
| mark_force_checkpoint(env, t); |
| } |
| } |
| return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); |
| |
| case BPF_JA: |
| if (BPF_SRC(insn->code) != BPF_K) |
| return -EINVAL; |
| |
| if (BPF_CLASS(insn->code) == BPF_JMP) |
| off = insn->off; |
| else |
| off = insn->imm; |
| |
| /* unconditional jump with single edge */ |
| ret = push_insn(t, t + off + 1, FALLTHROUGH, env); |
| if (ret) |
| return ret; |
| |
| mark_prune_point(env, t + off + 1); |
| mark_jmp_point(env, t + off + 1); |
| |
| return ret; |
| |
| default: |
| /* conditional jump with two edges */ |
| mark_prune_point(env, t); |
| |
| ret = push_insn(t, t + 1, FALLTHROUGH, env); |
| if (ret) |
| return ret; |
| |
| return push_insn(t, t + insn->off + 1, BRANCH, env); |
| } |
| } |
| |
| /* non-recursive depth-first-search to detect loops in BPF program |
| * loop == back-edge in directed graph |
| */ |
| static int check_cfg(struct bpf_verifier_env *env) |
| { |
| int insn_cnt = env->prog->len; |
| int *insn_stack, *insn_state; |
| int ex_insn_beg, i, ret = 0; |
| bool ex_done = false; |
| |
| insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); |
| if (!insn_state) |
| return -ENOMEM; |
| |
| insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); |
| if (!insn_stack) { |
| kvfree(insn_state); |
| return -ENOMEM; |
| } |
| |
| insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ |
| insn_stack[0] = 0; /* 0 is the first instruction */ |
| env->cfg.cur_stack = 1; |
| |
| walk_cfg: |
| while (env->cfg.cur_stack > 0) { |
| int t = insn_stack[env->cfg.cur_stack - 1]; |
| |
| ret = visit_insn(t, env); |
| switch (ret) { |
| case DONE_EXPLORING: |
| insn_state[t] = EXPLORED; |
| env->cfg.cur_stack--; |
| break; |
| case KEEP_EXPLORING: |
| break; |
| default: |
| if (ret > 0) { |
| verbose(env, "visit_insn internal bug\n"); |
| ret = -EFAULT; |
| } |
| goto err_free; |
| } |
| } |
| |
| if (env->cfg.cur_stack < 0) { |
| verbose(env, "pop stack internal bug\n"); |
| ret = -EFAULT; |
| goto err_free; |
| } |
| |
| if (env->exception_callback_subprog && !ex_done) { |
| ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; |
| |
| insn_state[ex_insn_beg] = DISCOVERED; |
| insn_stack[0] = ex_insn_beg; |
| env->cfg.cur_stack = 1; |
| ex_done = true; |
| goto walk_cfg; |
| } |
| |
| for (i = 0; i < insn_cnt; i++) { |
| struct bpf_insn *insn = &env->prog->insnsi[i]; |
| |
| if (insn_state[i] != EXPLORED) { |
| verbose(env, "unreachable insn %d\n", i); |
| ret = -EINVAL; |
| goto err_free; |
| } |
| if (bpf_is_ldimm64(insn)) { |
| if (insn_state[i + 1] != 0) { |
| verbose(env, "jump into the middle of ldimm64 insn %d\n", i); |
| ret = -EINVAL; |
| goto err_free; |
| } |
| i++; /* skip second half of ldimm64 */ |
| } |
| } |
| ret = 0; /* cfg looks good */ |
| |
| err_free: |
| kvfree(insn_state); |
| kvfree(insn_stack); |
| env->cfg.insn_state = env->cfg.insn_stack = NULL; |
| return ret; |
| } |
| |
| static int check_abnormal_return(struct bpf_verifier_env *env) |
| { |
| int i; |
| |
| for (i = 1; i < env->subprog_cnt; i++) { |
| if (env->subprog_info[i].has_ld_abs) { |
| verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); |
| return -EINVAL; |
| } |
| if (env->subprog_info[i].has_tail_call) { |
| verbose(env, "tail_call is not allowed in subprogs without BTF\n"); |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| /* The minimum supported BTF func info size */ |
| #define MIN_BPF_FUNCINFO_SIZE 8 |
| #define MAX_FUNCINFO_REC_SIZE 252 |
| |
| static int check_btf_func_early(struct bpf_verifier_env *env, |
| const union bpf_attr *attr, |
| bpfptr_t uattr) |
| { |
| u32 krec_size = sizeof(struct bpf_func_info); |
| const struct btf_type *type, *func_proto; |
| u32 i, nfuncs, urec_size, min_size; |
| struct bpf_func_info *krecord; |
| struct bpf_prog *prog; |
| const struct btf *btf; |
| u32 prev_offset = 0; |
| bpfptr_t urecord; |
| int ret = -ENOMEM; |
| |
| nfuncs = attr->func_info_cnt; |
| if (!nfuncs) { |
| if (check_abnormal_return(env)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| urec_size = attr->func_info_rec_size; |
| if (urec_size < MIN_BPF_FUNCINFO_SIZE || |
| urec_size > MAX_FUNCINFO_REC_SIZE || |
| urec_size % sizeof(u32)) { |
| verbose(env, "invalid func info rec size %u\n", urec_size); |
| return -EINVAL; |
| } |
| |
| prog = env->prog; |
| btf = prog->aux->btf; |
| |
| urecord = make_bpfptr(attr->func_info, uattr.is_kernel); |
| min_size = min_t(u32, krec_size, urec_size); |
| |
| krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); |
| if (!krecord) |
| return -ENOMEM; |
| |
| for (i = 0; i < nfuncs; i++) { |
| ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); |
| if (ret) { |
| if (ret == -E2BIG) { |
| verbose(env, "nonzero tailing record in func info"); |
| /* set the size kernel expects so loader can zero |
| * out the rest of the record. |
| */ |
| if (copy_to_bpfptr_offset(uattr, |
| offsetof(union bpf_attr, func_info_rec_size), |
| &min_size, sizeof(min_size))) |
| ret = -EFAULT; |
| } |
| goto err_free; |
| } |
| |
| if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { |
| ret = -EFAULT; |
| goto err_free; |
| } |
| |
| /* check insn_off */ |
| ret = -EINVAL; |
| if (i == 0) { |
| if (krecord[i].insn_off) { |
| verbose(env, |
| "nonzero insn_off %u for the first func info record", |
| krecord[i].insn_off); |
| goto err_free; |
| } |
| } else if (krecord[i].insn_off <= prev_offset) { |
| verbose(env, |
| "same or smaller insn offset (%u) than previous func info record (%u)", |
| krecord[i].insn_off, prev_offset); |
| goto err_free; |
| } |
| |
| /* check type_id */ |
| type = btf_type_by_id(btf, krecord[i].type_id); |
| if (!type || !btf_type_is_func(type)) { |
| verbose(env, "invalid type id %d in func info", |
| krecord[i].type_id); |
| goto err_free; |
| } |
| |
| func_proto = btf_type_by_id(btf, type->type); |
| if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) |
| /* btf_func_check() already verified it during BTF load */ |
| goto err_free; |
| |
| prev_offset = krecord[i].insn_off; |
| bpfptr_add(&urecord, urec_size); |
| } |
| |
| prog->aux->func_info = krecord; |
| prog->aux->func_info_cnt = nfuncs; |
| return 0; |
| |
| err_free: |
| kvfree(krecord); |
| return ret; |
| } |
| |
| static int check_btf_func(struct bpf_verifier_env *env, |
| const union bpf_attr *attr, |
| bpfptr_t uattr) |
| { |
| const struct btf_type *type, *func_proto, *ret_type; |
| u32 i, nfuncs, urec_size; |
| struct bpf_func_info *krecord; |
| struct bpf_func_info_aux *info_aux = NULL; |
| struct bpf_prog *prog; |
| const struct btf *btf; |
| bpfptr_t urecord; |
| bool scalar_return; |
| int ret = -ENOMEM; |
| |
| nfuncs = attr->func_info_cnt; |
| if (!nfuncs) { |
| if (check_abnormal_return(env)) |
| return -EINVAL; |
| return 0; |
| } |
| if (nfuncs != env->subprog_cnt) { |
| verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); |
| return -EINVAL; |
| } |
| |
| urec_size = attr->func_info_rec_size; |
| |
| prog = env->prog; |
| btf = prog->aux->btf; |
| |
| urecord = make_bpfptr(attr->func_info, uattr.is_kernel); |
| |
| krecord = prog->aux->func_info; |
| info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); |
| if (!info_aux) |
| return -ENOMEM; |
| |
| for (i = 0; i < nfuncs; i++) { |
| /* check insn_off */ |
| ret = -EINVAL; |
| |
| if (env->subprog_info[i].start != krecord[i].insn_off) { |
| verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); |
| goto err_free; |
| } |
| |
| /* Already checked type_id */ |
| type = btf_type_by_id(btf, krecord[i].type_id); |
| info_aux[i].linkage = BTF_INFO_VLEN(type->info); |
| /* Already checked func_proto */ |
| func_proto = btf_type_by_id(btf, type->type); |
| |
| ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); |
| scalar_return = |
| btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); |
| if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { |
| verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); |
| goto err_free; |
| } |
| if (i && !scalar_return && env->subprog_info[i].has_tail_call) { |
| verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); |
| goto err_free; |
| } |
| |
| bpfptr_add(&urecord, urec_size); |
| } |
| |
| prog->aux->func_info_aux = info_aux; |
| return 0; |
| |
| err_free: |
| kfree(info_aux); |
| return ret; |
| } |
| |
| static void adjust_btf_func(struct bpf_verifier_env *env) |
| { |
| struct bpf_prog_aux *aux = env->prog->aux; |
| int i; |
| |
| if (!aux->func_info) |
| return; |
| |
| /* func_info is not available for hidden subprogs */ |
| for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) |
| aux->func_info[i].insn_off = env->subprog_info[i].start; |
| } |
| |
| #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) |
| #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE |
| |
| static int check_btf_line(struct bpf_verifier_env *env, |
| const union bpf_attr *attr, |
| bpfptr_t uattr) |
| { |
| u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; |
| struct bpf_subprog_info *sub; |
| struct bpf_line_info *linfo; |
| struct bpf_prog *prog; |
| const struct btf *btf; |
| bpfptr_t ulinfo; |
| int err; |
| |
| nr_linfo = attr->line_info_cnt; |
| if (!nr_linfo) |
| return 0; |
| if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) |
| return -EINVAL; |
| |
| rec_size = attr->line_info_rec_size; |
| if (rec_size < MIN_BPF_LINEINFO_SIZE || |
| rec_size > MAX_LINEINFO_REC_SIZE || |
| rec_size & (sizeof(u32) - 1)) |
| return -EINVAL; |
| |
| /* Need to zero it in case the userspace may |
| * pass in a smaller bpf_line_info object. |
| */ |
| linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!linfo) |
| return -ENOMEM; |
| |
| prog = env->prog; |
| btf = prog->aux->btf; |
| |
| s = 0; |
| sub = env->subprog_info; |
| ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); |
| expected_size = sizeof(struct bpf_line_info); |
| ncopy = min_t(u32, expected_size, rec_size); |
| for (i = 0; i < nr_linfo; i++) { |
| err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); |
| if (err) { |
| if (err == -E2BIG) { |
| verbose(env, "nonzero tailing record in line_info"); |
| if (copy_to_bpfptr_offset(uattr, |
| offsetof(union bpf_attr, line_info_rec_size), |
| &expected_size, sizeof(expected_size))) |
| err = -EFAULT; |
| } |
| goto err_free; |
| } |
| |
| if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { |
| err = -EFAULT; |
| goto err_free; |
| } |
| |
| /* |
| * Check insn_off to ensure |
| * 1) strictly increasing AND |
| * 2) bounded by prog->len |
| * |
| * The linfo[0].insn_off == 0 check logically falls into |
| * the later "missing bpf_line_info for func..." case |
| * because the first linfo[0].insn_off must be the |
| * first sub also and the first sub must have |
| * subprog_info[0].start == 0. |
| */ |
| if ((i && linfo[i].insn_off <= prev_offset) || |
| linfo[i].insn_off >= prog->len) { |
| verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", |
| i, linfo[i].insn_off, prev_offset, |
| prog->len); |
| err = -EINVAL; |
| goto err_free; |
| } |
| |
| if (!prog->insnsi[linfo[i].insn_off].code) { |
| verbose(env, |
| "Invalid insn code at line_info[%u].insn_off\n", |
| i); |
| err = -EINVAL; |
| goto err_free; |
| } |
| |
| if (!btf_name_by_offset(btf, linfo[i].line_off) || |
| !btf_name_by_offset(btf, linfo[i].file_name_off)) { |
| verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); |
| err = -EINVAL; |
| goto err_free; |
| } |
| |
| if (s != env->subprog_cnt) { |
| if (linfo[i].insn_off == sub[s].start) { |
| sub[s].linfo_idx = i; |
| s++; |
| } else if (sub[s].start < linfo[i].insn_off) { |
| verbose(env, "missing bpf_line_info for func#%u\n", s); |
| err = -EINVAL; |
| goto err_free; |
| } |
| } |
| |
| prev_offset = linfo[i].insn_off; |
| bpfptr_add(&ulinfo, rec_size); |
| } |
| |
| if (s != env->subprog_cnt) { |
| verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", |
| env->subprog_cnt - s, s); |
| err = -EINVAL; |
| goto err_free; |
| } |
| |
| prog->aux->linfo = linfo; |
| prog->aux->nr_linfo = nr_linfo; |
| |
| return 0; |
| |
| err_free: |
| kvfree(linfo); |
| return err; |
| } |
| |
| #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) |
| #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE |
| |
| static int check_core_relo(struct bpf_verifier_env *env, |
| const union bpf_attr *attr, |
| bpfptr_t uattr) |
| { |
| u32 i, nr_core_relo, ncopy, expected_size, rec_size; |
| struct bpf_core_relo core_relo = {}; |
| struct bpf_prog *prog = env->prog; |
| const struct btf *btf = prog->aux->btf; |
| struct bpf_core_ctx ctx = { |
| .log = &env->log, |
| .btf = btf, |
| }; |
| bpfptr_t u_core_relo; |
| int err; |
| |
| nr_core_relo = attr->core_relo_cnt; |
| if (!nr_core_relo) |
| return 0; |
| if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) |
| return -EINVAL; |
| |
| rec_size = attr->core_relo_rec_size; |
| if (rec_size < MIN_CORE_RELO_SIZE || |
| rec_size > MAX_CORE_RELO_SIZE || |
| rec_size % sizeof(u32)) |
| return -EINVAL; |
| |
| u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); |
| expected_size = sizeof(struct bpf_core_relo); |
| ncopy = min_t(u32, expected_size, rec_size); |
| |
| /* Unlike func_info and line_info, copy and apply each CO-RE |
| * relocation record one at a time. |
| */ |
| for (i = 0; i < nr_core_relo; i++) { |
| /* future proofing when sizeof(bpf_core_relo) changes */ |
| err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); |
| if (err) { |
| if (err == -E2BIG) { |
| verbose(env, "nonzero tailing record in core_relo"); |
| if (copy_to_bpfptr_offset(uattr, |
| offsetof(union bpf_attr, core_relo_rec_size), |
| &expected_size, sizeof(expected_size))) |
| err = -EFAULT; |
| } |
| break; |
| } |
| |
| if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { |
| err = -EFAULT; |
| break; |
| } |
| |
| if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { |
| verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", |
| i, core_relo.insn_off, prog->len); |
| err = -EINVAL; |
| break; |
| } |
| |
| err = bpf_core_apply(&ctx, &core_relo, i, |
| &prog->insnsi[core_relo.insn_off / 8]); |
| if (err) |
| break; |
| bpfptr_add(&u_core_relo, rec_size); |
| } |
| return err; |
| } |
| |
| static int check_btf_info_early(struct bpf_verifier_env *env, |
| const union bpf_attr *attr, |
| bpfptr_t uattr) |
| { |
| struct btf *btf; |
| int err; |
| |
| if (!attr->func_info_cnt && !attr->line_info_cnt) { |
| if (check_abnormal_return(env)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| btf = btf_get_by_fd(attr->prog_btf_fd); |
| if (IS_ERR(btf)) |
| return PTR_ERR(btf); |
| if (btf_is_kernel(btf)) { |
| btf_put(btf); |
| return -EACCES; |
| } |
| env->prog->aux->btf = btf; |
| |
| err = check_btf_func_early(env, attr, uattr); |
| if (err) |
| return err; |
| return 0; |
| } |
| |
| static int check_btf_info(struct bpf_verifier_env *env, |
| const union bpf_attr *attr, |
| bpfptr_t uattr) |
| { |
| int err; |
| |
| if (!attr->func_info_cnt && !attr->line_info_cnt) { |
| if (check_abnormal_return(env)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| err = check_btf_func(env, attr, uattr); |
| if (err) |
| return err; |
| |
| err = check_btf_line(env, attr, uattr); |
| if (err) |
| return err; |
| |
| err = check_core_relo(env, attr, uattr); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| /* check %cur's range satisfies %old's */ |
| static bool range_within(struct bpf_reg_state *old, |
| struct bpf_reg_state *cur) |
| { |
| return old->umin_value <= cur->umin_value && |
| old->umax_value >= cur->umax_value && |
| old->smin_value <= cur->smin_value && |
| old->smax_value >= cur->smax_value && |
| old->u32_min_value <= cur->u32_min_value && |
| old->u32_max_value >= cur->u32_max_value && |
| old->s32_min_value <= cur->s32_min_value && |
| old->s32_max_value >= cur->s32_max_value; |
| } |
| |
| /* If in the old state two registers had the same id, then they need to have |
| * the same id in the new state as well. But that id could be different from |
| * the old state, so we need to track the mapping from old to new ids. |
| * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent |
| * regs with old id 5 must also have new id 9 for the new state to be safe. But |
| * regs with a different old id could still have new id 9, we don't care about |
| * that. |
| * So we look through our idmap to see if this old id has been seen before. If |
| * so, we require the new id to match; otherwise, we add the id pair to the map. |
| */ |
| static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) |
| { |
| struct bpf_id_pair *map = idmap->map; |
| unsigned int i; |
| |
| /* either both IDs should be set or both should be zero */ |
| if (!!old_id != !!cur_id) |
| return false; |
| |
| if (old_id == 0) /* cur_id == 0 as well */ |
| return true; |
| |
| for (i = 0; i < BPF_ID_MAP_SIZE; i++) { |
| if (!map[i].old) { |
| /* Reached an empty slot; haven't seen this id before */ |
| map[i].old = old_id; |
| map[i].cur = cur_id; |
| return true; |
| } |
| if (map[i].old == old_id) |
| return map[i].cur == cur_id; |
| if (map[i].cur == cur_id) |
| return false; |
| } |
| /* We ran out of idmap slots, which should be impossible */ |
| WARN_ON_ONCE(1); |
| return false; |
| } |
| |
| /* Similar to check_ids(), but allocate a unique temporary ID |
| * for 'old_id' or 'cur_id' of zero. |
| * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. |
| */ |
| static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) |
| { |
| old_id = old_id ? old_id : ++idmap->tmp_id_gen; |
| cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; |
| |
| return check_ids(old_id, cur_id, idmap); |
| } |
| |
| static void clean_func_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *st) |
| { |
| enum bpf_reg_liveness live; |
| int i, j; |
| |
| for (i = 0; i < BPF_REG_FP; i++) { |
| live = st->regs[i].live; |
| /* liveness must not touch this register anymore */ |
| st->regs[i].live |= REG_LIVE_DONE; |
| if (!(live & REG_LIVE_READ)) |
| /* since the register is unused, clear its state |
| * to make further comparison simpler |
| */ |
| __mark_reg_not_init(env, &st->regs[i]); |
| } |
| |
| for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { |
| live = st->stack[i].spilled_ptr.live; |
| /* liveness must not touch this stack slot anymore */ |
| st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; |
| if (!(live & REG_LIVE_READ)) { |
| __mark_reg_not_init(env, &st->stack[i].spilled_ptr); |
| for (j = 0; j < BPF_REG_SIZE; j++) |
| st->stack[i].slot_type[j] = STACK_INVALID; |
| } |
| } |
| } |
| |
| static void clean_verifier_state(struct bpf_verifier_env *env, |
| struct bpf_verifier_state *st) |
| { |
| int i; |
| |
| if (st->frame[0]->regs[0].live & REG_LIVE_DONE) |
| /* all regs in this state in all frames were already marked */ |
| return; |
| |
| for (i = 0; i <= st->curframe; i++) |
| clean_func_state(env, st->frame[i]); |
| } |
| |
| /* the parentage chains form a tree. |
| * the verifier states are added to state lists at given insn and |
| * pushed into state stack for future exploration. |
| * when the verifier reaches bpf_exit insn some of the verifer states |
| * stored in the state lists have their final liveness state already, |
| * but a lot of states will get revised from liveness point of view when |
| * the verifier explores other branches. |
| * Example: |
| * 1: r0 = 1 |
| * 2: if r1 == 100 goto pc+1 |
| * 3: r0 = 2 |
| * 4: exit |
| * when the verifier reaches exit insn the register r0 in the state list of |
| * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch |
| * of insn 2 and goes exploring further. At the insn 4 it will walk the |
| * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. |
| * |
| * Since the verifier pushes the branch states as it sees them while exploring |
| * the program the condition of walking the branch instruction for the second |
| * time means that all states below this branch were already explored and |
| * their final liveness marks are already propagated. |
| * Hence when the verifier completes the search of state list in is_state_visited() |
| * we can call this clean_live_states() function to mark all liveness states |
| * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' |
| * will not be used. |
| * This function also clears the registers and stack for states that !READ |
| * to simplify state merging. |
| * |
| * Important note here that walking the same branch instruction in the callee |
| * doesn't meant that the states are DONE. The verifier has to compare |
| * the callsites |
| */ |
| static void clean_live_states(struct bpf_verifier_env *env, int insn, |
| struct bpf_verifier_state *cur) |
| { |
| struct bpf_verifier_state_list *sl; |
| |
| sl = *explored_state(env, insn); |
| while (sl) { |
| if (sl->state.branches) |
| goto next; |
| if (sl->state.insn_idx != insn || |
| !same_callsites(&sl->state, cur)) |
| goto next; |
| clean_verifier_state(env, &sl->state); |
| next: |
| sl = sl->next; |
| } |
| } |
| |
| static bool regs_exact(const struct bpf_reg_state *rold, |
| const struct bpf_reg_state *rcur, |
| struct bpf_idmap *idmap) |
| { |
| return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && |
| check_ids(rold->id, rcur->id, idmap) && |
| check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); |
| } |
| |
| /* Returns true if (rold safe implies rcur safe) */ |
| static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, |
| struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) |
| { |
| if (exact) |
| return regs_exact(rold, rcur, idmap); |
| |
| if (!(rold->live & REG_LIVE_READ)) |
| /* explored state didn't use this */ |
| return true; |
| if (rold->type == NOT_INIT) |
| /* explored state can't have used this */ |
| return true; |
| if (rcur->type == NOT_INIT) |
| return false; |
| |
| /* Enforce that register types have to match exactly, including their |
| * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general |
| * rule. |
| * |
| * One can make a point that using a pointer register as unbounded |
| * SCALAR would be technically acceptable, but this could lead to |
| * pointer leaks because scalars are allowed to leak while pointers |
| * are not. We could make this safe in special cases if root is |
| * calling us, but it's probably not worth the hassle. |
| * |
| * Also, register types that are *not* MAYBE_NULL could technically be |
| * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE |
| * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point |
| * to the same map). |
| * However, if the old MAYBE_NULL register then got NULL checked, |
| * doing so could have affected others with the same id, and we can't |
| * check for that because we lost the id when we converted to |
| * a non-MAYBE_NULL variant. |
| * So, as a general rule we don't allow mixing MAYBE_NULL and |
| * non-MAYBE_NULL registers as well. |
| */ |
| if (rold->type != rcur->type) |
| return false; |
| |
| switch (base_type(rold->type)) { |
| case SCALAR_VALUE: |
| if (env->explore_alu_limits) { |
| /* explore_alu_limits disables tnum_in() and range_within() |
| * logic and requires everything to be strict |
| */ |
| return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && |
| check_scalar_ids(rold->id, rcur->id, idmap); |
| } |
| if (!rold->precise) |
| return true; |
| /* Why check_ids() for scalar registers? |
| * |
| * Consider the following BPF code: |
| * 1: r6 = ... unbound scalar, ID=a ... |
| * 2: r7 = ... unbound scalar, ID=b ... |
| * 3: if (r6 > r7) goto +1 |
| * 4: r6 = r7 |
| * 5: if (r6 > X) goto ... |
| * 6: ... memory operation using r7 ... |
| * |
| * First verification path is [1-6]: |
| * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; |
| * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark |
| * r7 <= X, because r6 and r7 share same id. |
| * Next verification path is [1-4, 6]. |
| * |
| * Instruction (6) would be reached in two states: |
| * I. r6{.id=b}, r7{.id=b} via path 1-6; |
| * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. |
| * |
| * Use check_ids() to distinguish these states. |
| * --- |
| * Also verify that new value satisfies old value range knowledge. |
| */ |
| return range_within(rold, rcur) && |
| tnum_in(rold->var_off, rcur->var_off) && |
| check_scalar_ids(rold->id, rcur->id, idmap); |
| case PTR_TO_MAP_KEY: |
| case PTR_TO_MAP_VALUE: |
| case PTR_TO_MEM: |
| case PTR_TO_BUF: |
| case PTR_TO_TP_BUFFER: |
| /* If the new min/max/var_off satisfy the old ones and |
| * everything else matches, we are OK. |
| */ |
| return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && |
| range_within(rold, rcur) && |
| tnum_in(rold->var_off, rcur->var_off) && |
| check_ids(rold->id, rcur->id, idmap) && |
| check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); |
| case PTR_TO_PACKET_META: |
| case PTR_TO_PACKET: |
| /* We must have at least as much range as the old ptr |
| * did, so that any accesses which were safe before are |
| * still safe. This is true even if old range < old off, |
| * since someone could have accessed through (ptr - k), or |
| * even done ptr -= k in a register, to get a safe access. |
| */ |
| if (rold->range > rcur->range) |
| return false; |
| /* If the offsets don't match, we can't trust our alignment; |
| * nor can we be sure that we won't fall out of range. |
| */ |
| if (rold->off != rcur->off) |
| return false; |
| /* id relations must be preserved */ |
| if (!check_ids(rold->id, rcur->id, idmap)) |
| return false; |
| /* new val must satisfy old val knowledge */ |
| return range_within(rold, rcur) && |
| tnum_in(rold->var_off, rcur->var_off); |
| case PTR_TO_STACK: |
| /* two stack pointers are equal only if they're pointing to |
| * the same stack frame, since fp-8 in foo != fp-8 in bar |
| */ |
| return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; |
| default: |
| return regs_exact(rold, rcur, idmap); |
| } |
| } |
| |
| static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, |
| struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) |
| { |
| int i, spi; |
| |
| /* walk slots of the explored stack and ignore any additional |
| * slots in the current stack, since explored(safe) state |
| * didn't use them |
| */ |
| for (i = 0; i < old->allocated_stack; i++) { |
| struct bpf_reg_state *old_reg, *cur_reg; |
| |
| spi = i / BPF_REG_SIZE; |
| |
| if (exact && |
| old->stack[spi].slot_type[i % BPF_REG_SIZE] != |
| cur->stack[spi].slot_type[i % BPF_REG_SIZE]) |
| return false; |
| |
| if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { |
| i += BPF_REG_SIZE - 1; |
| /* explored state didn't use this */ |
| continue; |
| } |
| |
| if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) |
| continue; |
| |
| if (env->allow_uninit_stack && |
| old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) |
| continue; |
| |
| /* explored stack has more populated slots than current stack |
| * and these slots were used |
| */ |
| if (i >= cur->allocated_stack) |
| return false; |
| |
| /* if old state was safe with misc data in the stack |
| * it will be safe with zero-initialized stack. |
| * The opposite is not true |
| */ |
| if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && |
| cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) |
| continue; |
| if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != |
| cur->stack[spi].slot_type[i % BPF_REG_SIZE]) |
| /* Ex: old explored (safe) state has STACK_SPILL in |
| * this stack slot, but current has STACK_MISC -> |
| * this verifier states are not equivalent, |
| * return false to continue verification of this path |
| */ |
| return false; |
| if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) |
| continue; |
| /* Both old and cur are having same slot_type */ |
| switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { |
| case STACK_SPILL: |
| /* when explored and current stack slot are both storing |
| * spilled registers, check that stored pointers types |
| * are the same as well. |
| * Ex: explored safe path could have stored |
| * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} |
| * but current path has stored: |
| * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} |
| * such verifier states are not equivalent. |
| * return false to continue verification of this path |
| */ |
| if (!regsafe(env, &old->stack[spi].spilled_ptr, |
| &cur->stack[spi].spilled_ptr, idmap, exact)) |
| return false; |
| break; |
| case STACK_DYNPTR: |
| old_reg = &old->stack[spi].spilled_ptr; |
| cur_reg = &cur->stack[spi].spilled_ptr; |
| if (old_reg->dynptr.type != cur_reg->dynptr.type || |
| old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || |
| !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) |
| return false; |
| break; |
| case STACK_ITER: |
| old_reg = &old->stack[spi].spilled_ptr; |
| cur_reg = &cur->stack[spi].spilled_ptr; |
| /* iter.depth is not compared between states as it |
| * doesn't matter for correctness and would otherwise |
| * prevent convergence; we maintain it only to prevent |
| * infinite loop check triggering, see |
| * iter_active_depths_differ() |
| */ |
| if (old_reg->iter.btf != cur_reg->iter.btf || |
| old_reg->iter.btf_id != cur_reg->iter.btf_id || |
| old_reg->iter.state != cur_reg->iter.state || |
| /* ignore {old_reg,cur_reg}->iter.depth, see above */ |
| !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) |
| return false; |
| break; |
| case STACK_MISC: |
| case STACK_ZERO: |
| case STACK_INVALID: |
| continue; |
| /* Ensure that new unhandled slot types return false by default */ |
| default: |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, |
| struct bpf_idmap *idmap) |
| { |
| int i; |
| |
| if (old->acquired_refs != cur->acquired_refs) |
| return false; |
| |
| for (i = 0; i < old->acquired_refs; i++) { |
| if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* compare two verifier states |
| * |
| * all states stored in state_list are known to be valid, since |
| * verifier reached 'bpf_exit' instruction through them |
| * |
| * this function is called when verifier exploring different branches of |
| * execution popped from the state stack. If it sees an old state that has |
| * more strict register state and more strict stack state then this execution |
| * branch doesn't need to be explored further, since verifier already |
| * concluded that more strict state leads to valid finish. |
| * |
| * Therefore two states are equivalent if register state is more conservative |
| * and explored stack state is more conservative than the current one. |
| * Example: |
| * explored current |
| * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) |
| * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) |
| * |
| * In other words if current stack state (one being explored) has more |
| * valid slots than old one that already passed validation, it means |
| * the verifier can stop exploring and conclude that current state is valid too |
| * |
| * Similarly with registers. If explored state has register type as invalid |
| * whereas register type in current state is meaningful, it means that |
| * the current state will reach 'bpf_exit' instruction safely |
| */ |
| static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, |
| struct bpf_func_state *cur, bool exact) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_BPF_REG; i++) |
| if (!regsafe(env, &old->regs[i], &cur->regs[i], |
| &env->idmap_scratch, exact)) |
| return false; |
| |
| if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) |
| return false; |
| |
| if (!refsafe(old, cur, &env->idmap_scratch)) |
| return false; |
| |
| return true; |
| } |
| |
| static void reset_idmap_scratch(struct bpf_verifier_env *env) |
| { |
| env->idmap_scratch.tmp_id_gen = env->id_gen; |
| memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); |
| } |
| |
| static bool states_equal(struct bpf_verifier_env *env, |
| struct bpf_verifier_state *old, |
| struct bpf_verifier_state *cur, |
| bool exact) |
| { |
| int i; |
| |
| if (old->curframe != cur->curframe) |
| return false; |
| |
| reset_idmap_scratch(env); |
| |
| /* Verification state from speculative execution simulation |
| * must never prune a non-speculative execution one. |
| */ |
| if (old->speculative && !cur->speculative) |
| return false; |
| |
| if (old->active_lock.ptr != cur->active_lock.ptr) |
| return false; |
| |
| /* Old and cur active_lock's have to be either both present |
| * or both absent. |
| */ |
| if (!!old->active_lock.id != !!cur->active_lock.id) |
| return false; |
| |
| if (old->active_lock.id && |
| !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) |
| return false; |
| |
| if (old->active_rcu_lock != cur->active_rcu_lock) |
| return false; |
| |
| /* for states to be equal callsites have to be the same |
| * and all frame states need to be equivalent |
| */ |
| for (i = 0; i <= old->curframe; i++) { |
| if (old->frame[i]->callsite != cur->frame[i]->callsite) |
| return false; |
| if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Return 0 if no propagation happened. Return negative error code if error |
| * happened. Otherwise, return the propagated bit. |
| */ |
| static int propagate_liveness_reg(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, |
| struct bpf_reg_state *parent_reg) |
| { |
| u8 parent_flag = parent_reg->live & REG_LIVE_READ; |
| u8 flag = reg->live & REG_LIVE_READ; |
| int err; |
| |
| /* When comes here, read flags of PARENT_REG or REG could be any of |
| * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need |
| * of propagation if PARENT_REG has strongest REG_LIVE_READ64. |
| */ |
| if (parent_flag == REG_LIVE_READ64 || |
| /* Or if there is no read flag from REG. */ |
| !flag || |
| /* Or if the read flag from REG is the same as PARENT_REG. */ |
| parent_flag == flag) |
| return 0; |
| |
| err = mark_reg_read(env, reg, parent_reg, flag); |
| if (err) |
| return err; |
| |
| return flag; |
| } |
| |
| /* A write screens off any subsequent reads; but write marks come from the |
| * straight-line code between a state and its parent. When we arrive at an |
| * equivalent state (jump target or such) we didn't arrive by the straight-line |
| * code, so read marks in the state must propagate to the parent regardless |
| * of the state's write marks. That's what 'parent == state->parent' comparison |
| * in mark_reg_read() is for. |
| */ |
| static int propagate_liveness(struct bpf_verifier_env *env, |
| const struct bpf_verifier_state *vstate, |
| struct bpf_verifier_state *vparent) |
| { |
| struct bpf_reg_state *state_reg, *parent_reg; |
| struct bpf_func_state *state, *parent; |
| int i, frame, err = 0; |
| |
| if (vparent->curframe != vstate->curframe) { |
| WARN(1, "propagate_live: parent frame %d current frame %d\n", |
| vparent->curframe, vstate->curframe); |
| return -EFAULT; |
| } |
| /* Propagate read liveness of registers... */ |
| BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); |
| for (frame = 0; frame <= vstate->curframe; frame++) { |
| parent = vparent->frame[frame]; |
| state = vstate->frame[frame]; |
| parent_reg = parent->regs; |
| state_reg = state->regs; |
| /* We don't need to worry about FP liveness, it's read-only */ |
| for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { |
| err = propagate_liveness_reg(env, &state_reg[i], |
| &parent_reg[i]); |
| if (err < 0) |
| return err; |
| if (err == REG_LIVE_READ64) |
| mark_insn_zext(env, &parent_reg[i]); |
| } |
| |
| /* Propagate stack slots. */ |
| for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && |
| i < parent->allocated_stack / BPF_REG_SIZE; i++) { |
| parent_reg = &parent->stack[i].spilled_ptr; |
| state_reg = &state->stack[i].spilled_ptr; |
| err = propagate_liveness_reg(env, state_reg, |
| parent_reg); |
| if (err < 0) |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| /* find precise scalars in the previous equivalent state and |
| * propagate them into the current state |
| */ |
| static int propagate_precision(struct bpf_verifier_env *env, |
| const struct bpf_verifier_state *old) |
| { |
| struct bpf_reg_state *state_reg; |
| struct bpf_func_state *state; |
| int i, err = 0, fr; |
| bool first; |
| |
| for (fr = old->curframe; fr >= 0; fr--) { |
| state = old->frame[fr]; |
| state_reg = state->regs; |
| first = true; |
| for (i = 0; i < BPF_REG_FP; i++, state_reg++) { |
| if (state_reg->type != SCALAR_VALUE || |
| !state_reg->precise || |
| !(state_reg->live & REG_LIVE_READ)) |
| continue; |
| if (env->log.level & BPF_LOG_LEVEL2) { |
| if (first) |
| verbose(env, "frame %d: propagating r%d", fr, i); |
| else |
| verbose(env, ",r%d", i); |
| } |
| bt_set_frame_reg(&env->bt, fr, i); |
| first = false; |
| } |
| |
| for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { |
| if (!is_spilled_reg(&state->stack[i])) |
| continue; |
| state_reg = &state->stack[i].spilled_ptr; |
| if (state_reg->type != SCALAR_VALUE || |
| !state_reg->precise || |
| !(state_reg->live & REG_LIVE_READ)) |
| continue; |
| if (env->log.level & BPF_LOG_LEVEL2) { |
| if (first) |
| verbose(env, "frame %d: propagating fp%d", |
| fr, (-i - 1) * BPF_REG_SIZE); |
| else |
| verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); |
| } |
| bt_set_frame_slot(&env->bt, fr, i); |
| first = false; |
| } |
| if (!first) |
| verbose(env, "\n"); |
| } |
| |
| err = mark_chain_precision_batch(env); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| static bool states_maybe_looping(struct bpf_verifier_state *old, |
| struct bpf_verifier_state *cur) |
| { |
| struct bpf_func_state *fold, *fcur; |
| int i, fr = cur->curframe; |
| |
| if (old->curframe != fr) |
| return false; |
| |
| fold = old->frame[fr]; |
| fcur = cur->frame[fr]; |
| for (i = 0; i < MAX_BPF_REG; i++) |
| if (memcmp(&fold->regs[i], &fcur->regs[i], |
| offsetof(struct bpf_reg_state, parent))) |
| return false; |
| return true; |
| } |
| |
| static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) |
| { |
| return env->insn_aux_data[insn_idx].is_iter_next; |
| } |
| |
| /* is_state_visited() handles iter_next() (see process_iter_next_call() for |
| * terminology) calls specially: as opposed to bounded BPF loops, it *expects* |
| * states to match, which otherwise would look like an infinite loop. So while |
| * iter_next() calls are taken care of, we still need to be careful and |
| * prevent erroneous and too eager declaration of "ininite loop", when |
| * iterators are involved. |
| * |
| * Here's a situation in pseudo-BPF assembly form: |
| * |
| * 0: again: ; set up iter_next() call args |
| * 1: r1 = &it ; <CHECKPOINT HERE> |
| * 2: call bpf_iter_num_next ; this is iter_next() call |
| * 3: if r0 == 0 goto done |
| * 4: ... something useful here ... |
| * 5: goto again ; another iteration |
| * 6: done: |
| * 7: r1 = &it |
| * 8: call bpf_iter_num_destroy ; clean up iter state |
| * 9: exit |
| * |
| * This is a typical loop. Let's assume that we have a prune point at 1:, |
| * before we get to `call bpf_iter_num_next` (e.g., because of that `goto |
| * again`, assuming other heuristics don't get in a way). |
| * |
| * When we first time come to 1:, let's say we have some state X. We proceed |
| * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. |
| * Now we come back to validate that forked ACTIVE state. We proceed through |
| * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we |
| * are converging. But the problem is that we don't know that yet, as this |
| * convergence has to happen at iter_next() call site only. So if nothing is |
| * done, at 1: verifier will use bounded loop logic and declare infinite |
| * looping (and would be *technically* correct, if not for iterator's |
| * "eventual sticky NULL" contract, see process_iter_next_call()). But we |
| * don't want that. So what we do in process_iter_next_call() when we go on |
| * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's |
| * a different iteration. So when we suspect an infinite loop, we additionally |
| * check if any of the *ACTIVE* iterator states depths differ. If yes, we |
| * pretend we are not looping and wait for next iter_next() call. |
| * |
| * This only applies to ACTIVE state. In DRAINED state we don't expect to |
| * loop, because that would actually mean infinite loop, as DRAINED state is |
| * "sticky", and so we'll keep returning into the same instruction with the |
| * same state (at least in one of possible code paths). |
| * |
| * This approach allows to keep infinite loop heuristic even in the face of |
| * active iterator. E.g., C snippet below is and will be detected as |
| * inifintely looping: |
| * |
| * struct bpf_iter_num it; |
| * int *p, x; |
| * |
| * bpf_iter_num_new(&it, 0, 10); |
| * while ((p = bpf_iter_num_next(&t))) { |
| * x = p; |
| * while (x--) {} // <<-- infinite loop here |
| * } |
| * |
| */ |
| static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) |
| { |
| struct bpf_reg_state *slot, *cur_slot; |
| struct bpf_func_state *state; |
| int i, fr; |
| |
| for (fr = old->curframe; fr >= 0; fr--) { |
| state = old->frame[fr]; |
| for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { |
| if (state->stack[i].slot_type[0] != STACK_ITER) |
| continue; |
| |
| slot = &state->stack[i].spilled_ptr; |
| if (slot->iter.state != BPF_ITER_STATE_ACTIVE) |
| continue; |
| |
| cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; |
| if (cur_slot->iter.depth != slot->iter.depth) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) |
| { |
| struct bpf_verifier_state_list *new_sl; |
| struct bpf_verifier_state_list *sl, **pprev; |
| struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; |
| int i, j, n, err, states_cnt = 0; |
| bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); |
| bool add_new_state = force_new_state; |
| bool force_exact; |
| |
| /* bpf progs typically have pruning point every 4 instructions |
| * http://vger.kernel.org/bpfconf2019.html#session-1 |
| * Do not add new state for future pruning if the verifier hasn't seen |
| * at least 2 jumps and at least 8 instructions. |
| * This heuristics helps decrease 'total_states' and 'peak_states' metric. |
| * In tests that amounts to up to 50% reduction into total verifier |
| * memory consumption and 20% verifier time speedup. |
| */ |
| if (env->jmps_processed - env->prev_jmps_processed >= 2 && |
| env->insn_processed - env->prev_insn_processed >= 8) |
| add_new_state = true; |
| |
| pprev = explored_state(env, insn_idx); |
| sl = *pprev; |
| |
| clean_live_states(env, insn_idx, cur); |
| |
| while (sl) { |
| states_cnt++; |
| if (sl->state.insn_idx != insn_idx) |
| goto next; |
| |
| if (sl->state.branches) { |
| struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; |
| |
| if (frame->in_async_callback_fn && |
| frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { |
| /* Different async_entry_cnt means that the verifier is |
| * processing another entry into async callback. |
| * Seeing the same state is not an indication of infinite |
| * loop or infinite recursion. |
| * But finding the same state doesn't mean that it's safe |
| * to stop processing the current state. The previous state |
| * hasn't yet reached bpf_exit, since state.branches > 0. |
| * Checking in_async_callback_fn alone is not enough either. |
| * Since the verifier still needs to catch infinite loops |
| * inside async callbacks. |
| */ |
| goto skip_inf_loop_check; |
| } |
| /* BPF open-coded iterators loop detection is special. |
| * states_maybe_looping() logic is too simplistic in detecting |
| * states that *might* be equivalent, because it doesn't know |
| * about ID remapping, so don't even perform it. |
| * See process_iter_next_call() and iter_active_depths_differ() |
| * for overview of the logic. When current and one of parent |
| * states are detected as equivalent, it's a good thing: we prove |
| * convergence and can stop simulating further iterations. |
| * It's safe to assume that iterator loop will finish, taking into |
| * account iter_next() contract of eventually returning |
| * sticky NULL result. |
| * |
| * Note, that states have to be compared exactly in this case because |
| * read and precision marks might not be finalized inside the loop. |
| * E.g. as in the program below: |
| * |
| * 1. r7 = -16 |
| * 2. r6 = bpf_get_prandom_u32() |
| * 3. while (bpf_iter_num_next(&fp[-8])) { |
| * 4. if (r6 != 42) { |
| * 5. r7 = -32 |
| * 6. r6 = bpf_get_prandom_u32() |
| * 7. continue |
| * 8. } |
| * 9. r0 = r10 |
| * 10. r0 += r7 |
| * 11. r8 = *(u64 *)(r0 + 0) |
| * 12. r6 = bpf_get_prandom_u32() |
| * 13. } |
| * |
| * Here verifier would first visit path 1-3, create a checkpoint at 3 |
| * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does |
| * not have read or precision mark for r7 yet, thus inexact states |
| * comparison would discard current state with r7=-32 |
| * => unsafe memory access at 11 would not be caught. |
| */ |
| if (is_iter_next_insn(env, insn_idx)) { |
| if (states_equal(env, &sl->state, cur, true)) { |
| struct bpf_func_state *cur_frame; |
| struct bpf_reg_state *iter_state, *iter_reg; |
| int spi; |
| |
| cur_frame = cur->frame[cur->curframe]; |
| /* btf_check_iter_kfuncs() enforces that |
| * iter state pointer is always the first arg |
| */ |
| iter_reg = &cur_frame->regs[BPF_REG_1]; |
| /* current state is valid due to states_equal(), |
| * so we can assume valid iter and reg state, |
| * no need for extra (re-)validations |
| */ |
| spi = __get_spi(iter_reg->off + iter_reg->var_off.value); |
| iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; |
| if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { |
| update_loop_entry(cur, &sl->state); |
| goto hit; |
| } |
| } |
| goto skip_inf_loop_check; |
| } |
| if (calls_callback(env, insn_idx)) { |
| if (states_equal(env, &sl->state, cur, true)) |
| goto hit; |
| goto skip_inf_loop_check; |
| } |
| /* attempt to detect infinite loop to avoid unnecessary doomed work */ |
| if (states_maybe_looping(&sl->state, cur) && |
| states_equal(env, &sl->state, cur, true) && |
| !iter_active_depths_differ(&sl->state, cur) && |
| sl->state.callback_unroll_depth == cur->callback_unroll_depth) { |
| verbose_linfo(env, insn_idx, "; "); |
| verbose(env, "infinite loop detected at insn %d\n", insn_idx); |
| verbose(env, "cur state:"); |
| print_verifier_state(env, cur->frame[cur->curframe], true); |
| verbose(env, "old state:"); |
| print_verifier_state(env, sl->state.frame[cur->curframe], true); |
| return -EINVAL; |
| } |
| /* if the verifier is processing a loop, avoid adding new state |
| * too often, since different loop iterations have distinct |
| * states and may not help future pruning. |
| * This threshold shouldn't be too low to make sure that |
| * a loop with large bound will be rejected quickly. |
| * The most abusive loop will be: |
| * r1 += 1 |
| * if r1 < 1000000 goto pc-2 |
| * 1M insn_procssed limit / 100 == 10k peak states. |
| * This threshold shouldn't be too high either, since states |
| * at the end of the loop are likely to be useful in pruning. |
| */ |
| skip_inf_loop_check: |
| if (!force_new_state && |
| env->jmps_processed - env->prev_jmps_processed < 20 && |
| env->insn_processed - env->prev_insn_processed < 100) |
| add_new_state = false; |
| goto miss; |
| } |
| /* If sl->state is a part of a loop and this loop's entry is a part of |
| * current verification path then states have to be compared exactly. |
| * 'force_exact' is needed to catch the following case: |
| * |
| * initial Here state 'succ' was processed first, |
| * | it was eventually tracked to produce a |
| * V state identical to 'hdr'. |
| * .---------> hdr All branches from 'succ' had been explored |
| * | | and thus 'succ' has its .branches == 0. |
| * | V |
| * | .------... Suppose states 'cur' and 'succ' correspond |
| * | | | to the same instruction + callsites. |
| * | V V In such case it is necessary to check |
| * | ... ... if 'succ' and 'cur' are states_equal(). |
| * | | | If 'succ' and 'cur' are a part of the |
| * | V V same loop exact flag has to be set. |
| * | succ <- cur To check if that is the case, verify |
| * | | if loop entry of 'succ' is in current |
| * | V DFS path. |
| * | ... |
| * | | |
| * '----' |
| * |
| * Additional details are in the comment before get_loop_entry(). |
| */ |
| loop_entry = get_loop_entry(&sl->state); |
| force_exact = loop_entry && loop_entry->branches > 0; |
| if (states_equal(env, &sl->state, cur, force_exact)) { |
| if (force_exact) |
| update_loop_entry(cur, loop_entry); |
| hit: |
| sl->hit_cnt++; |
| /* reached equivalent register/stack state, |
| * prune the search. |
| * Registers read by the continuation are read by us. |
| * If we have any write marks in env->cur_state, they |
| * will prevent corresponding reads in the continuation |
| * from reaching our parent (an explored_state). Our |
| * own state will get the read marks recorded, but |
| * they'll be immediately forgotten as we're pruning |
| * this state and will pop a new one. |
| */ |
| err = propagate_liveness(env, &sl->state, cur); |
| |
| /* if previous state reached the exit with precision and |
| * current state is equivalent to it (except precsion marks) |
| * the precision needs to be propagated back in |
| * the current state. |
| */ |
| if (is_jmp_point(env, env->insn_idx)) |
| err = err ? : push_jmp_history(env, cur, 0); |
| err = err ? : propagate_precision(env, &sl->state); |
| if (err) |
| return err; |
| return 1; |
| } |
| miss: |
| /* when new state is not going to be added do not increase miss count. |
| * Otherwise several loop iterations will remove the state |
| * recorded earlier. The goal of these heuristics is to have |
| * states from some iterations of the loop (some in the beginning |
| * and some at the end) to help pruning. |
| */ |
| if (add_new_state) |
| sl->miss_cnt++; |
| /* heuristic to determine whether this state is beneficial |
| * to keep checking from state equivalence point of view. |
| * Higher numbers increase max_states_per_insn and verification time, |
| * but do not meaningfully decrease insn_processed. |
| * 'n' controls how many times state could miss before eviction. |
| * Use bigger 'n' for checkpoints because evicting checkpoint states |
| * too early would hinder iterator convergence. |
| */ |
| n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; |
| if (sl->miss_cnt > sl->hit_cnt * n + n) { |
| /* the state is unlikely to be useful. Remove it to |
| * speed up verification |
| */ |
| *pprev = sl->next; |
| if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && |
| !sl->state.used_as_loop_entry) { |
| u32 br = sl->state.branches; |
| |
| WARN_ONCE(br, |
| "BUG live_done but branches_to_explore %d\n", |
| br); |
| free_verifier_state(&sl->state, false); |
| kfree(sl); |
| env->peak_states--; |
| } else { |
| /* cannot free this state, since parentage chain may |
| * walk it later. Add it for free_list instead to |
| * be freed at the end of verification |
| */ |
| sl->next = env->free_list; |
| env->free_list = sl; |
| } |
| sl = *pprev; |
| continue; |
| } |
| next: |
| pprev = &sl->next; |
| sl = *pprev; |
| } |
| |
| if (env->max_states_per_insn < states_cnt) |
| env->max_states_per_insn = states_cnt; |
| |
| if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) |
| return 0; |
| |
| if (!add_new_state) |
| return 0; |
| |
| /* There were no equivalent states, remember the current one. |
| * Technically the current state is not proven to be safe yet, |
| * but it will either reach outer most bpf_exit (which means it's safe) |
| * or it will be rejected. When there are no loops the verifier won't be |
| * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) |
| * again on the way to bpf_exit. |
| * When looping the sl->state.branches will be > 0 and this state |
| * will not be considered for equivalence until branches == 0. |
| */ |
| new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); |
| if (!new_sl) |
| return -ENOMEM; |
| env->total_states++; |
| env->peak_states++; |
| env->prev_jmps_processed = env->jmps_processed; |
| env->prev_insn_processed = env->insn_processed; |
| |
| /* forget precise markings we inherited, see __mark_chain_precision */ |
| if (env->bpf_capable) |
| mark_all_scalars_imprecise(env, cur); |
| |
| /* add new state to the head of linked list */ |
| new = &new_sl->state; |
| err = copy_verifier_state(new, cur); |
| if (err) { |
| free_verifier_state(new, false); |
| kfree(new_sl); |
| return err; |
| } |
| new->insn_idx = insn_idx; |
| WARN_ONCE(new->branches != 1, |
| "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); |
| |
| cur->parent = new; |
| cur->first_insn_idx = insn_idx; |
| cur->dfs_depth = new->dfs_depth + 1; |
| clear_jmp_history(cur); |
| new_sl->next = *explored_state(env, insn_idx); |
| *explored_state(env, insn_idx) = new_sl; |
| /* connect new state to parentage chain. Current frame needs all |
| * registers connected. Only r6 - r9 of the callers are alive (pushed |
| * to the stack implicitly by JITs) so in callers' frames connect just |
| * r6 - r9 as an optimization. Callers will have r1 - r5 connected to |
| * the state of the call instruction (with WRITTEN set), and r0 comes |
| * from callee with its full parentage chain, anyway. |
| */ |
| /* clear write marks in current state: the writes we did are not writes |
| * our child did, so they don't screen off its reads from us. |
| * (There are no read marks in current state, because reads always mark |
| * their parent and current state never has children yet. Only |
| * explored_states can get read marks.) |
| */ |
| for (j = 0; j <= cur->curframe; j++) { |
| for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) |
| cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; |
| for (i = 0; i < BPF_REG_FP; i++) |
| cur->frame[j]->regs[i].live = REG_LIVE_NONE; |
| } |
| |
| /* all stack frames are accessible from callee, clear them all */ |
| for (j = 0; j <= cur->curframe; j++) { |
| struct bpf_func_state *frame = cur->frame[j]; |
| struct bpf_func_state *newframe = new->frame[j]; |
| |
| for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { |
| frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; |
| frame->stack[i].spilled_ptr.parent = |
| &newframe->stack[i].spilled_ptr; |
| } |
| } |
| return 0; |
| } |
| |
| /* Return true if it's OK to have the same insn return a different type. */ |
| static bool reg_type_mismatch_ok(enum bpf_reg_type type) |
| { |
| switch (base_type(type)) { |
| case PTR_TO_CTX: |
| case PTR_TO_SOCKET: |
| case PTR_TO_SOCK_COMMON: |
| case PTR_TO_TCP_SOCK: |
| case PTR_TO_XDP_SOCK: |
| case PTR_TO_BTF_ID: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| /* If an instruction was previously used with particular pointer types, then we |
| * need to be careful to avoid cases such as the below, where it may be ok |
| * for one branch accessing the pointer, but not ok for the other branch: |
| * |
| * R1 = sock_ptr |
| * goto X; |
| * ... |
| * R1 = some_other_valid_ptr; |
| * goto X; |
| * ... |
| * R2 = *(u32 *)(R1 + 0); |
| */ |
| static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) |
| { |
| return src != prev && (!reg_type_mismatch_ok(src) || |
| !reg_type_mismatch_ok(prev)); |
| } |
| |
| static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, |
| bool allow_trust_missmatch) |
| { |
| enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; |
| |
| if (*prev_type == NOT_INIT) { |
| /* Saw a valid insn |
| * dst_reg = *(u32 *)(src_reg + off) |
| * save type to validate intersecting paths |
| */ |
| *prev_type = type; |
| } else if (reg_type_mismatch(type, *prev_type)) { |
| /* Abuser program is trying to use the same insn |
| * dst_reg = *(u32*) (src_reg + off) |
| * with different pointer types: |
| * src_reg == ctx in one branch and |
| * src_reg == stack|map in some other branch. |
| * Reject it. |
| */ |
| if (allow_trust_missmatch && |
| base_type(type) == PTR_TO_BTF_ID && |
| base_type(*prev_type) == PTR_TO_BTF_ID) { |
| /* |
| * Have to support a use case when one path through |
| * the program yields TRUSTED pointer while another |
| * is UNTRUSTED. Fallback to UNTRUSTED to generate |
| * BPF_PROBE_MEM/BPF_PROBE_MEMSX. |
| */ |
| *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; |
| } else { |
| verbose(env, "same insn cannot be used with different pointers\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int do_check(struct bpf_verifier_env *env) |
| { |
| bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); |
| struct bpf_verifier_state *state = env->cur_state; |
| struct bpf_insn *insns = env->prog->insnsi; |
| struct bpf_reg_state *regs; |
| int insn_cnt = env->prog->len; |
| bool do_print_state = false; |
| int prev_insn_idx = -1; |
| |
| for (;;) { |
| bool exception_exit = false; |
| struct bpf_insn *insn; |
| u8 class; |
| int err; |
| |
| /* reset current history entry on each new instruction */ |
| env->cur_hist_ent = NULL; |
| |
| env->prev_insn_idx = prev_insn_idx; |
| if (env->insn_idx >= insn_cnt) { |
| verbose(env, "invalid insn idx %d insn_cnt %d\n", |
| env->insn_idx, insn_cnt); |
| return -EFAULT; |
| } |
| |
| insn = &insns[env->insn_idx]; |
| class = BPF_CLASS(insn->code); |
| |
| if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { |
| verbose(env, |
| "BPF program is too large. Processed %d insn\n", |
| env->insn_processed); |
| return -E2BIG; |
| } |
| |
| state->last_insn_idx = env->prev_insn_idx; |
| |
| if (is_prune_point(env, env->insn_idx)) { |
| err = is_state_visited(env, env->insn_idx); |
| if (err < 0) |
| return err; |
| if (err == 1) { |
| /* found equivalent state, can prune the search */ |
| if (env->log.level & BPF_LOG_LEVEL) { |
| if (do_print_state) |
| verbose(env, "\nfrom %d to %d%s: safe\n", |
| env->prev_insn_idx, env->insn_idx, |
| env->cur_state->speculative ? |
| " (speculative execution)" : ""); |
| else |
| verbose(env, "%d: safe\n", env->insn_idx); |
| } |
| goto process_bpf_exit; |
| } |
| } |
| |
| if (is_jmp_point(env, env->insn_idx)) { |
| err = push_jmp_history(env, state, 0); |
| if (err) |
| return err; |
| } |
| |
| if (signal_pending(current)) |
| return -EAGAIN; |
| |
| if (need_resched()) |
| cond_resched(); |
| |
| if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { |
| verbose(env, "\nfrom %d to %d%s:", |
| env->prev_insn_idx, env->insn_idx, |
| env->cur_state->speculative ? |
| " (speculative execution)" : ""); |
| print_verifier_state(env, state->frame[state->curframe], true); |
| do_print_state = false; |
| } |
| |
| if (env->log.level & BPF_LOG_LEVEL) { |
| const struct bpf_insn_cbs cbs = { |
| .cb_call = disasm_kfunc_name, |
| .cb_print = verbose, |
| .private_data = env, |
| }; |
| |
| if (verifier_state_scratched(env)) |
| print_insn_state(env, state->frame[state->curframe]); |
| |
| verbose_linfo(env, env->insn_idx, "; "); |
| env->prev_log_pos = env->log.end_pos; |
| verbose(env, "%d: ", env->insn_idx); |
| print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); |
| env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; |
| env->prev_log_pos = env->log.end_pos; |
| } |
| |
| if (bpf_prog_is_offloaded(env->prog->aux)) { |
| err = bpf_prog_offload_verify_insn(env, env->insn_idx, |
| env->prev_insn_idx); |
| if (err) |
| return err; |
| } |
| |
| regs = cur_regs(env); |
| sanitize_mark_insn_seen(env); |
| prev_insn_idx = env->insn_idx; |
| |
| if (class == BPF_ALU || class == BPF_ALU64) { |
| err = check_alu_op(env, insn); |
| if (err) |
| return err; |
| |
| } else if (class == BPF_LDX) { |
| enum bpf_reg_type src_reg_type; |
| |
| /* check for reserved fields is already done */ |
| |
| /* check src operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); |
| if (err) |
| return err; |
| |
| src_reg_type = regs[insn->src_reg].type; |
| |
| /* check that memory (src_reg + off) is readable, |
| * the state of dst_reg will be updated by this func |
| */ |
| err = check_mem_access(env, env->insn_idx, insn->src_reg, |
| insn->off, BPF_SIZE(insn->code), |
| BPF_READ, insn->dst_reg, false, |
| BPF_MODE(insn->code) == BPF_MEMSX); |
| err = err ?: save_aux_ptr_type(env, src_reg_type, true); |
| err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); |
| if (err) |
| return err; |
| } else if (class == BPF_STX) { |
| enum bpf_reg_type dst_reg_type; |
| |
| if (BPF_MODE(insn->code) == BPF_ATOMIC) { |
| err = check_atomic(env, env->insn_idx, insn); |
| if (err) |
| return err; |
| env->insn_idx++; |
| continue; |
| } |
| |
| if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { |
| verbose(env, "BPF_STX uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| /* check src1 operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| /* check src2 operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| dst_reg_type = regs[insn->dst_reg].type; |
| |
| /* check that memory (dst_reg + off) is writeable */ |
| err = check_mem_access(env, env->insn_idx, insn->dst_reg, |
| insn->off, BPF_SIZE(insn->code), |
| BPF_WRITE, insn->src_reg, false, false); |
| if (err) |
| return err; |
| |
| err = save_aux_ptr_type(env, dst_reg_type, false); |
| if (err) |
| return err; |
| } else if (class == BPF_ST) { |
| enum bpf_reg_type dst_reg_type; |
| |
| if (BPF_MODE(insn->code) != BPF_MEM || |
| insn->src_reg != BPF_REG_0) { |
| verbose(env, "BPF_ST uses reserved fields\n"); |
| return -EINVAL; |
| } |
| /* check src operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| dst_reg_type = regs[insn->dst_reg].type; |
| |
| /* check that memory (dst_reg + off) is writeable */ |
| err = check_mem_access(env, env->insn_idx, insn->dst_reg, |
| insn->off, BPF_SIZE(insn->code), |
| BPF_WRITE, -1, false, false); |
| if (err) |
| return err; |
| |
| err = save_aux_ptr_type(env, dst_reg_type, false); |
| if (err) |
| return err; |
| } else if (class == BPF_JMP || class == BPF_JMP32) { |
| u8 opcode = BPF_OP(insn->code); |
| |
| env->jmps_processed++; |
| if (opcode == BPF_CALL) { |
| if (BPF_SRC(insn->code) != BPF_K || |
| (insn->src_reg != BPF_PSEUDO_KFUNC_CALL |
| && insn->off != 0) || |
| (insn->src_reg != BPF_REG_0 && |
| insn->src_reg != BPF_PSEUDO_CALL && |
| insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || |
| insn->dst_reg != BPF_REG_0 || |
| class == BPF_JMP32) { |
| verbose(env, "BPF_CALL uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| if (env->cur_state->active_lock.ptr) { |
| if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || |
| (insn->src_reg == BPF_PSEUDO_CALL) || |
| (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && |
| (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { |
| verbose(env, "function calls are not allowed while holding a lock\n"); |
| return -EINVAL; |
| } |
| } |
| if (insn->src_reg == BPF_PSEUDO_CALL) { |
| err = check_func_call(env, insn, &env->insn_idx); |
| } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { |
| err = check_kfunc_call(env, insn, &env->insn_idx); |
| if (!err && is_bpf_throw_kfunc(insn)) { |
| exception_exit = true; |
| goto process_bpf_exit_full; |
| } |
| } else { |
| err = check_helper_call(env, insn, &env->insn_idx); |
| } |
| if (err) |
| return err; |
| |
| mark_reg_scratched(env, BPF_REG_0); |
| } else if (opcode == BPF_JA) { |
| if (BPF_SRC(insn->code) != BPF_K || |
| insn->src_reg != BPF_REG_0 || |
| insn->dst_reg != BPF_REG_0 || |
| (class == BPF_JMP && insn->imm != 0) || |
| (class == BPF_JMP32 && insn->off != 0)) { |
| verbose(env, "BPF_JA uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| if (class == BPF_JMP) |
| env->insn_idx += insn->off + 1; |
| else |
| env->insn_idx += insn->imm + 1; |
| continue; |
| |
| } else if (opcode == BPF_EXIT) { |
| if (BPF_SRC(insn->code) != BPF_K || |
| insn->imm != 0 || |
| insn->src_reg != BPF_REG_0 || |
| insn->dst_reg != BPF_REG_0 || |
| class == BPF_JMP32) { |
| verbose(env, "BPF_EXIT uses reserved fields\n"); |
| return -EINVAL; |
| } |
| process_bpf_exit_full: |
| if (env->cur_state->active_lock.ptr && |
| !in_rbtree_lock_required_cb(env)) { |
| verbose(env, "bpf_spin_unlock is missing\n"); |
| return -EINVAL; |
| } |
| |
| if (env->cur_state->active_rcu_lock && |
| !in_rbtree_lock_required_cb(env)) { |
| verbose(env, "bpf_rcu_read_unlock is missing\n"); |
| return -EINVAL; |
| } |
| |
| /* We must do check_reference_leak here before |
| * prepare_func_exit to handle the case when |
| * state->curframe > 0, it may be a callback |
| * function, for which reference_state must |
| * match caller reference state when it exits. |
| */ |
| err = check_reference_leak(env, exception_exit); |
| if (err) |
| return err; |
| |
| /* The side effect of the prepare_func_exit |
| * which is being skipped is that it frees |
| * bpf_func_state. Typically, process_bpf_exit |
| * will only be hit with outermost exit. |
| * copy_verifier_state in pop_stack will handle |
| * freeing of any extra bpf_func_state left over |
| * from not processing all nested function |
| * exits. We also skip return code checks as |
| * they are not needed for exceptional exits. |
| */ |
| if (exception_exit) |
| goto process_bpf_exit; |
| |
| if (state->curframe) { |
| /* exit from nested function */ |
| err = prepare_func_exit(env, &env->insn_idx); |
| if (err) |
| return err; |
| do_print_state = true; |
| continue; |
| } |
| |
| err = check_return_code(env, BPF_REG_0, "R0"); |
| if (err) |
| return err; |
| process_bpf_exit: |
| mark_verifier_state_scratched(env); |
| update_branch_counts(env, env->cur_state); |
| err = pop_stack(env, &prev_insn_idx, |
| &env->insn_idx, pop_log); |
| if (err < 0) { |
| if (err != -ENOENT) |
| return err; |
| break; |
| } else { |
| do_print_state = true; |
| continue; |
| } |
| } else { |
| err = check_cond_jmp_op(env, insn, &env->insn_idx); |
| if (err) |
| return err; |
| } |
| } else if (class == BPF_LD) { |
| u8 mode = BPF_MODE(insn->code); |
| |
| if (mode == BPF_ABS || mode == BPF_IND) { |
| err = check_ld_abs(env, insn); |
| if (err) |
| return err; |
| |
| } else if (mode == BPF_IMM) { |
| err = check_ld_imm(env, insn); |
| if (err) |
| return err; |
| |
| env->insn_idx++; |
| sanitize_mark_insn_seen(env); |
| } else { |
| verbose(env, "invalid BPF_LD mode\n"); |
| return -EINVAL; |
| } |
| } else { |
| verbose(env, "unknown insn class %d\n", class); |
| return -EINVAL; |
| } |
| |
| env->insn_idx++; |
| } |
| |
| return 0; |
| } |
| |
| static int find_btf_percpu_datasec(struct btf *btf) |
| { |
| const struct btf_type *t; |
| const char *tname; |
| int i, n; |
| |
| /* |
| * Both vmlinux and module each have their own ".data..percpu" |
| * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF |
| * types to look at only module's own BTF types. |
| */ |
| n = btf_nr_types(btf); |
| if (btf_is_module(btf)) |
| i = btf_nr_types(btf_vmlinux); |
| else |
| i = 1; |
| |
| for(; i < n; i++) { |
| t = btf_type_by_id(btf, i); |
| if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) |
| continue; |
| |
| tname = btf_name_by_offset(btf, t->name_off); |
| if (!strcmp(tname, ".data..percpu")) |
| return i; |
| } |
| |
| return -ENOENT; |
| } |
| |
| /* replace pseudo btf_id with kernel symbol address */ |
| static int check_pseudo_btf_id(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, |
| struct bpf_insn_aux_data *aux) |
| { |
| const struct btf_var_secinfo *vsi; |
| const struct btf_type *datasec; |
| struct btf_mod_pair *btf_mod; |
| const struct btf_type *t; |
| const char *sym_name; |
| bool percpu = false; |
| u32 type, id = insn->imm; |
| struct btf *btf; |
| s32 datasec_id; |
| u64 addr; |
| int i, btf_fd, err; |
| |
| btf_fd = insn[1].imm; |
| if (btf_fd) { |
| btf = btf_get_by_fd(btf_fd); |
| if (IS_ERR(btf)) { |
| verbose(env, "invalid module BTF object FD specified.\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (!btf_vmlinux) { |
| verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); |
| return -EINVAL; |
| } |
| btf = btf_vmlinux; |
| btf_get(btf); |
| } |
| |
| t = btf_type_by_id(btf, id); |
| if (!t) { |
| verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); |
| err = -ENOENT; |
| goto err_put; |
| } |
| |
| if (!btf_type_is_var(t) && !btf_type_is_func(t)) { |
| verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); |
| err = -EINVAL; |
| goto err_put; |
| } |
| |
| sym_name = btf_name_by_offset(btf, t->name_off); |
| addr = kallsyms_lookup_name(sym_name); |
| if (!addr) { |
| verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", |
| sym_name); |
| err = -ENOENT; |
| goto err_put; |
| } |
| insn[0].imm = (u32)addr; |
| insn[1].imm = addr >> 32; |
| |
| if (btf_type_is_func(t)) { |
| aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; |
| aux->btf_var.mem_size = 0; |
| goto check_btf; |
| } |
| |
| datasec_id = find_btf_percpu_datasec(btf); |
| if (datasec_id > 0) { |
| datasec = btf_type_by_id(btf, datasec_id); |
| for_each_vsi(i, datasec, vsi) { |
| if (vsi->type == id) { |
| percpu = true; |
| break; |
| } |
| } |
| } |
| |
| type = t->type; |
| t = btf_type_skip_modifiers(btf, type, NULL); |
| if (percpu) { |
| aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; |
| aux->btf_var.btf = btf; |
| aux->btf_var.btf_id = type; |
| } else if (!btf_type_is_struct(t)) { |
| const struct btf_type *ret; |
| const char *tname; |
| u32 tsize; |
| |
| /* resolve the type size of ksym. */ |
| ret = btf_resolve_size(btf, t, &tsize); |
| if (IS_ERR(ret)) { |
| tname = btf_name_by_offset(btf, t->name_off); |
| verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", |
| tname, PTR_ERR(ret)); |
| err = -EINVAL; |
| goto err_put; |
| } |
| aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; |
| aux->btf_var.mem_size = tsize; |
| } else { |
| aux->btf_var.reg_type = PTR_TO_BTF_ID; |
| aux->btf_var.btf = btf; |
| aux->btf_var.btf_id = type; |
| } |
| check_btf: |
| /* check whether we recorded this BTF (and maybe module) already */ |
| for (i = 0; i < env->used_btf_cnt; i++) { |
| if (env->used_btfs[i].btf == btf) { |
| btf_put(btf); |
| return 0; |
| } |
| } |
| |
| if (env->used_btf_cnt >= MAX_USED_BTFS) { |
| err = -E2BIG; |
| goto err_put; |
| } |
| |
| btf_mod = &env->used_btfs[env->used_btf_cnt]; |
| btf_mod->btf = btf; |
| btf_mod->module = NULL; |
| |
| /* if we reference variables from kernel module, bump its refcount */ |
| if (btf_is_module(btf)) { |
| btf_mod->module = btf_try_get_module(btf); |
| if (!btf_mod->module) { |
| err = -ENXIO; |
| goto err_put; |
| } |
| } |
| |
| env->used_btf_cnt++; |
| |
| return 0; |
| err_put: |
| btf_put(btf); |
| return err; |
| } |
| |
| static bool is_tracing_prog_type(enum bpf_prog_type type) |
| { |
| switch (type) { |
| case BPF_PROG_TYPE_KPROBE: |
| case BPF_PROG_TYPE_TRACEPOINT: |
| case BPF_PROG_TYPE_PERF_EVENT: |
| case BPF_PROG_TYPE_RAW_TRACEPOINT: |
| case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static int check_map_prog_compatibility(struct bpf_verifier_env *env, |
| struct bpf_map *map, |
| struct bpf_prog *prog) |
| |
| { |
| enum bpf_prog_type prog_type = resolve_prog_type(prog); |
| |
| if (btf_record_has_field(map->record, BPF_LIST_HEAD) || |
| btf_record_has_field(map->record, BPF_RB_ROOT)) { |
| if (is_tracing_prog_type(prog_type)) { |
| verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { |
| if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { |
| verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); |
| return -EINVAL; |
| } |
| |
| if (is_tracing_prog_type(prog_type)) { |
| verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (btf_record_has_field(map->record, BPF_TIMER)) { |
| if (is_tracing_prog_type(prog_type)) { |
| verbose(env, "tracing progs cannot use bpf_timer yet\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && |
| !bpf_offload_prog_map_match(prog, map)) { |
| verbose(env, "offload device mismatch between prog and map\n"); |
| return -EINVAL; |
| } |
| |
| if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { |
| verbose(env, "bpf_struct_ops map cannot be used in prog\n"); |
| return -EINVAL; |
| } |
| |
| if (prog->aux->sleepable) |
| switch (map->map_type) { |
| case BPF_MAP_TYPE_HASH: |
| case BPF_MAP_TYPE_LRU_HASH: |
| case BPF_MAP_TYPE_ARRAY: |
| case BPF_MAP_TYPE_PERCPU_HASH: |
| case BPF_MAP_TYPE_PERCPU_ARRAY: |
| case BPF_MAP_TYPE_LRU_PERCPU_HASH: |
| case BPF_MAP_TYPE_ARRAY_OF_MAPS: |
| case BPF_MAP_TYPE_HASH_OF_MAPS: |
| case BPF_MAP_TYPE_RINGBUF: |
| case BPF_MAP_TYPE_USER_RINGBUF: |
| case BPF_MAP_TYPE_INODE_STORAGE: |
| case BPF_MAP_TYPE_SK_STORAGE: |
| case BPF_MAP_TYPE_TASK_STORAGE: |
| case BPF_MAP_TYPE_CGRP_STORAGE: |
| break; |
| default: |
| verbose(env, |
| "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static bool bpf_map_is_cgroup_storage(struct bpf_map *map) |
| { |
| return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || |
| map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); |
| } |
| |
| /* find and rewrite pseudo imm in ld_imm64 instructions: |
| * |
| * 1. if it accesses map FD, replace it with actual map pointer. |
| * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. |
| * |
| * NOTE: btf_vmlinux is required for converting pseudo btf_id. |
| */ |
| static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) |
| { |
| struct bpf_insn *insn = env->prog->insnsi; |
| int insn_cnt = env->prog->len; |
| int i, j, err; |
| |
| err = bpf_prog_calc_tag(env->prog); |
| if (err) |
| return err; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| if (BPF_CLASS(insn->code) == BPF_LDX && |
| ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || |
| insn->imm != 0)) { |
| verbose(env, "BPF_LDX uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { |
| struct bpf_insn_aux_data *aux; |
| struct bpf_map *map; |
| struct fd f; |
| u64 addr; |
| u32 fd; |
| |
| if (i == insn_cnt - 1 || insn[1].code != 0 || |
| insn[1].dst_reg != 0 || insn[1].src_reg != 0 || |
| insn[1].off != 0) { |
| verbose(env, "invalid bpf_ld_imm64 insn\n"); |
| return -EINVAL; |
| } |
| |
| if (insn[0].src_reg == 0) |
| /* valid generic load 64-bit imm */ |
| goto next_insn; |
| |
| if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { |
| aux = &env->insn_aux_data[i]; |
| err = check_pseudo_btf_id(env, insn, aux); |
| if (err) |
| return err; |
| goto next_insn; |
| } |
| |
| if (insn[0].src_reg == BPF_PSEUDO_FUNC) { |
| aux = &env->insn_aux_data[i]; |
| aux->ptr_type = PTR_TO_FUNC; |
| goto next_insn; |
| } |
| |
| /* In final convert_pseudo_ld_imm64() step, this is |
| * converted into regular 64-bit imm load insn. |
| */ |
| switch (insn[0].src_reg) { |
| case BPF_PSEUDO_MAP_VALUE: |
| case BPF_PSEUDO_MAP_IDX_VALUE: |
| break; |
| case BPF_PSEUDO_MAP_FD: |
| case BPF_PSEUDO_MAP_IDX: |
| if (insn[1].imm == 0) |
| break; |
| fallthrough; |
| default: |
| verbose(env, "unrecognized bpf_ld_imm64 insn\n"); |
| return -EINVAL; |
| } |
| |
| switch (insn[0].src_reg) { |
| case BPF_PSEUDO_MAP_IDX_VALUE: |
| case BPF_PSEUDO_MAP_IDX: |
| if (bpfptr_is_null(env->fd_array)) { |
| verbose(env, "fd_idx without fd_array is invalid\n"); |
| return -EPROTO; |
| } |
| if (copy_from_bpfptr_offset(&fd, env->fd_array, |
| insn[0].imm * sizeof(fd), |
| sizeof(fd))) |
| return -EFAULT; |
| break; |
| default: |
| fd = insn[0].imm; |
| break; |
| } |
| |
| f = fdget(fd); |
| map = __bpf_map_get(f); |
| if (IS_ERR(map)) { |
| verbose(env, "fd %d is not pointing to valid bpf_map\n", |
| insn[0].imm); |
| return PTR_ERR(map); |
| } |
| |
| err = check_map_prog_compatibility(env, map, env->prog); |
| if (err) { |
| fdput(f); |
| return err; |
| } |
| |
| aux = &env->insn_aux_data[i]; |
| if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || |
| insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { |
| addr = (unsigned long)map; |
| } else { |
| u32 off = insn[1].imm; |
| |
| if (off >= BPF_MAX_VAR_OFF) { |
| verbose(env, "direct value offset of %u is not allowed\n", off); |
| fdput(f); |
| return -EINVAL; |
| } |
| |
| if (!map->ops->map_direct_value_addr) { |
| verbose(env, "no direct value access support for this map type\n"); |
| fdput(f); |
| return -EINVAL; |
| } |
| |
| err = map->ops->map_direct_value_addr(map, &addr, off); |
| if (err) { |
| verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", |
| map->value_size, off); |
| fdput(f); |
| return err; |
| } |
| |
| aux->map_off = off; |
| addr += off; |
| } |
| |
| insn[0].imm = (u32)addr; |
| insn[1].imm = addr >> 32; |
| |
| /* check whether we recorded this map already */ |
| for (j = 0; j < env->used_map_cnt; j++) { |
| if (env->used_maps[j] == map) { |
| aux->map_index = j; |
| fdput(f); |
| goto next_insn; |
| } |
| } |
| |
| if (env->used_map_cnt >= MAX_USED_MAPS) { |
| fdput(f); |
| return -E2BIG; |
| } |
| |
| if (env->prog->aux->sleepable) |
| atomic64_inc(&map->sleepable_refcnt); |
| /* hold the map. If the program is rejected by verifier, |
| * the map will be released by release_maps() or it |
| * will be used by the valid program until it's unloaded |
| * and all maps are released in bpf_free_used_maps() |
| */ |
| bpf_map_inc(map); |
| |
| aux->map_index = env->used_map_cnt; |
| env->used_maps[env->used_map_cnt++] = map; |
| |
| if (bpf_map_is_cgroup_storage(map) && |
| bpf_cgroup_storage_assign(env->prog->aux, map)) { |
| verbose(env, "only one cgroup storage of each type is allowed\n"); |
| fdput(f); |
| return -EBUSY; |
| } |
| |
| fdput(f); |
| next_insn: |
| insn++; |
| i++; |
| continue; |
| } |
| |
| /* Basic sanity check before we invest more work here. */ |
| if (!bpf_opcode_in_insntable(insn->code)) { |
| verbose(env, "unknown opcode %02x\n", insn->code); |
| return -EINVAL; |
| } |
| } |
| |
| /* now all pseudo BPF_LD_IMM64 instructions load valid |
| * 'struct bpf_map *' into a register instead of user map_fd. |
| * These pointers will be used later by verifier to validate map access. |
| */ |
| return 0; |
| } |
| |
| /* drop refcnt of maps used by the rejected program */ |
| static void release_maps(struct bpf_verifier_env *env) |
| { |
| __bpf_free_used_maps(env->prog->aux, env->used_maps, |
| env->used_map_cnt); |
| } |
| |
| /* drop refcnt of maps used by the rejected program */ |
| static void release_btfs(struct bpf_verifier_env *env) |
| { |
| __bpf_free_used_btfs(env->prog->aux, env->used_btfs, |
| env->used_btf_cnt); |
| } |
| |
| /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ |
| static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) |
| { |
| struct bpf_insn *insn = env->prog->insnsi; |
| int insn_cnt = env->prog->len; |
| int i; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) |
| continue; |
| if (insn->src_reg == BPF_PSEUDO_FUNC) |
| continue; |
| insn->src_reg = 0; |
| } |
| } |
| |
| /* single env->prog->insni[off] instruction was replaced with the range |
| * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying |
| * [0, off) and [off, end) to new locations, so the patched range stays zero |
| */ |
| static void adjust_insn_aux_data(struct bpf_verifier_env *env, |
| struct bpf_insn_aux_data *new_data, |
| struct bpf_prog *new_prog, u32 off, u32 cnt) |
| { |
| struct bpf_insn_aux_data *old_data = env->insn_aux_data; |
| struct bpf_insn *insn = new_prog->insnsi; |
| u32 old_seen = old_data[off].seen; |
| u32 prog_len; |
| int i; |
| |
| /* aux info at OFF always needs adjustment, no matter fast path |
| * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the |
| * original insn at old prog. |
| */ |
| old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); |
| |
| if (cnt == 1) |
| return; |
| prog_len = new_prog->len; |
| |
| memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); |
| memcpy(new_data + off + cnt - 1, old_data + off, |
| sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); |
| for (i = off; i < off + cnt - 1; i++) { |
| /* Expand insni[off]'s seen count to the patched range. */ |
| new_data[i].seen = old_seen; |
| new_data[i].zext_dst = insn_has_def32(env, insn + i); |
| } |
| env->insn_aux_data = new_data; |
| vfree(old_data); |
| } |
| |
| static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) |
| { |
| int i; |
| |
| if (len == 1) |
| return; |
| /* NOTE: fake 'exit' subprog should be updated as well. */ |
| for (i = 0; i <= env->subprog_cnt; i++) { |
| if (env->subprog_info[i].start <= off) |
| continue; |
| env->subprog_info[i].start += len - 1; |
| } |
| } |
| |
| static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) |
| { |
| struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; |
| int i, sz = prog->aux->size_poke_tab; |
| struct bpf_jit_poke_descriptor *desc; |
| |
| for (i = 0; i < sz; i++) { |
| desc = &tab[i]; |
| if (desc->insn_idx <= off) |
| continue; |
| desc->insn_idx += len - 1; |
| } |
| } |
| |
| static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, |
| const struct bpf_insn *patch, u32 len) |
| { |
| struct bpf_prog *new_prog; |
| struct bpf_insn_aux_data *new_data = NULL; |
| |
| if (len > 1) { |
| new_data = vzalloc(array_size(env->prog->len + len - 1, |
| sizeof(struct bpf_insn_aux_data))); |
| if (!new_data) |
| return NULL; |
| } |
| |
| new_prog = bpf_patch_insn_single(env->prog, off, patch, len); |
| if (IS_ERR(new_prog)) { |
| if (PTR_ERR(new_prog) == -ERANGE) |
| verbose(env, |
| "insn %d cannot be patched due to 16-bit range\n", |
| env->insn_aux_data[off].orig_idx); |
| vfree(new_data); |
| return NULL; |
| } |
| adjust_insn_aux_data(env, new_data, new_prog, off, len); |
| adjust_subprog_starts(env, off, len); |
| adjust_poke_descs(new_prog, off, len); |
| return new_prog; |
| } |
| |
| static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, |
| u32 off, u32 cnt) |
| { |
| int i, j; |
| |
| /* find first prog starting at or after off (first to remove) */ |
| for (i = 0; i < env->subprog_cnt; i++) |
| if (env->subprog_info[i].start >= off) |
| break; |
| /* find first prog starting at or after off + cnt (first to stay) */ |
| for (j = i; j < env->subprog_cnt; j++) |
| if (env->subprog_info[j].start >= off + cnt) |
| break; |
| /* if j doesn't start exactly at off + cnt, we are just removing |
| * the front of previous prog |
| */ |
| if (env->subprog_info[j].start != off + cnt) |
| j--; |
| |
| if (j > i) { |
| struct bpf_prog_aux *aux = env->prog->aux; |
| int move; |
| |
| /* move fake 'exit' subprog as well */ |
| move = env->subprog_cnt + 1 - j; |
| |
| memmove(env->subprog_info + i, |
| env->subprog_info + j, |
| sizeof(*env->subprog_info) * move); |
| env->subprog_cnt -= j - i; |
| |
| /* remove func_info */ |
| if (aux->func_info) { |
| move = aux->func_info_cnt - j; |
| |
| memmove(aux->func_info + i, |
| aux->func_info + j, |
| sizeof(*aux->func_info) * move); |
| aux->func_info_cnt -= j - i; |
| /* func_info->insn_off is set after all code rewrites, |
| * in adjust_btf_func() - no need to adjust |
| */ |
| } |
| } else { |
| /* convert i from "first prog to remove" to "first to adjust" */ |
| if (env->subprog_info[i].start == off) |
| i++; |
| } |
| |
| /* update fake 'exit' subprog as well */ |
| for (; i <= env->subprog_cnt; i++) |
| env->subprog_info[i].start -= cnt; |
| |
| return 0; |
| } |
| |
| static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, |
| u32 cnt) |
| { |
| struct bpf_prog *prog = env->prog; |
| u32 i, l_off, l_cnt, nr_linfo; |
| struct bpf_line_info *linfo; |
| |
| nr_linfo = prog->aux->nr_linfo; |
| if (!nr_linfo) |
| return 0; |
| |
| linfo = prog->aux->linfo; |
| |
| /* find first line info to remove, count lines to be removed */ |
| for (i = 0; i < nr_linfo; i++) |
| if (linfo[i].insn_off >= off) |
| break; |
| |
| l_off = i; |
| l_cnt = 0; |
| for (; i < nr_linfo; i++) |
| if (linfo[i].insn_off < off + cnt) |
| l_cnt++; |
| else |
| break; |
| |
| /* First live insn doesn't match first live linfo, it needs to "inherit" |
| * last removed linfo. prog is already modified, so prog->len == off |
| * means no live instructions after (tail of the program was removed). |
| */ |
| if (prog->len != off && l_cnt && |
| (i == nr_linfo || linfo[i].insn_off != off + cnt)) { |
| l_cnt--; |
| linfo[--i].insn_off = off + cnt; |
| } |
| |
| /* remove the line info which refer to the removed instructions */ |
| if (l_cnt) { |
| memmove(linfo + l_off, linfo + i, |
| sizeof(*linfo) * (nr_linfo - i)); |
| |
| prog->aux->nr_linfo -= l_cnt; |
| nr_linfo = prog->aux->nr_linfo; |
| } |
| |
| /* pull all linfo[i].insn_off >= off + cnt in by cnt */ |
| for (i = l_off; i < nr_linfo; i++) |
| linfo[i].insn_off -= cnt; |
| |
| /* fix up all subprogs (incl. 'exit') which start >= off */ |
| for (i = 0; i <= env->subprog_cnt; i++) |
| if (env->subprog_info[i].linfo_idx > l_off) { |
| /* program may have started in the removed region but |
| * may not be fully removed |
| */ |
| if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) |
| env->subprog_info[i].linfo_idx -= l_cnt; |
| else |
| env->subprog_info[i].linfo_idx = l_off; |
| } |
| |
| return 0; |
| } |
| |
| static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) |
| { |
| struct bpf_insn_aux_data *aux_data = env->insn_aux_data; |
| unsigned int orig_prog_len = env->prog->len; |
| int err; |
| |
| if (bpf_prog_is_offloaded(env->prog->aux)) |
| bpf_prog_offload_remove_insns(env, off, cnt); |
| |
| err = bpf_remove_insns(env->prog, off, cnt); |
| if (err) |
| return err; |
| |
| err = adjust_subprog_starts_after_remove(env, off, cnt); |
| if (err) |
| return err; |
| |
| err = bpf_adj_linfo_after_remove(env, off, cnt); |
| if (err) |
| return err; |
| |
| memmove(aux_data + off, aux_data + off + cnt, |
| sizeof(*aux_data) * (orig_prog_len - off - cnt)); |
| |
| return 0; |
| } |
| |
| /* The verifier does more data flow analysis than llvm and will not |
| * explore branches that are dead at run time. Malicious programs can |
| * have dead code too. Therefore replace all dead at-run-time code |
| * with 'ja -1'. |
| * |
| * Just nops are not optimal, e.g. if they would sit at the end of the |
| * program and through another bug we would manage to jump there, then |
| * we'd execute beyond program memory otherwise. Returning exception |
| * code also wouldn't work since we can have subprogs where the dead |
| * code could be located. |
| */ |
| static void sanitize_dead_code(struct bpf_verifier_env *env) |
| { |
| struct bpf_insn_aux_data *aux_data = env->insn_aux_data; |
| struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); |
| struct bpf_insn *insn = env->prog->insnsi; |
| const int insn_cnt = env->prog->len; |
| int i; |
| |
| for (i = 0; i < insn_cnt; i++) { |
| if (aux_data[i].seen) |
| continue; |
| memcpy(insn + i, &trap, sizeof(trap)); |
| aux_data[i].zext_dst = false; |
| } |
| } |
| |
| static bool insn_is_cond_jump(u8 code) |
| { |
| u8 op; |
| |
| op = BPF_OP(code); |
| if (BPF_CLASS(code) == BPF_JMP32) |
| return op != BPF_JA; |
| |
| if (BPF_CLASS(code) != BPF_JMP) |
| return false; |
| |
| return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; |
| } |
| |
| static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) |
| { |
| struct bpf_insn_aux_data *aux_data = env->insn_aux_data; |
| struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); |
| struct bpf_insn *insn = env->prog->insnsi; |
| const int insn_cnt = env->prog->len; |
| int i; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| if (!insn_is_cond_jump(insn->code)) |
| continue; |
| |
| if (!aux_data[i + 1].seen) |
| ja.off = insn->off; |
| else if (!aux_data[i + 1 + insn->off].seen) |
| ja.off = 0; |
| else |
| continue; |
| |
| if (bpf_prog_is_offloaded(env->prog->aux)) |
| bpf_prog_offload_replace_insn(env, i, &ja); |
| |
| memcpy(insn, &ja, sizeof(ja)); |
| } |
| } |
| |
| static int opt_remove_dead_code(struct bpf_verifier_env *env) |
| { |
| struct bpf_insn_aux_data *aux_data = env->insn_aux_data; |
| int insn_cnt = env->prog->len; |
| int i, err; |
| |
| for (i = 0; i < insn_cnt; i++) { |
| int j; |
| |
| j = 0; |
| while (i + j < insn_cnt && !aux_data[i + j].seen) |
| j++; |
| if (!j) |
| continue; |
| |
| err = verifier_remove_insns(env, i, j); |
| if (err) |
| return err; |
| insn_cnt = env->prog->len; |
| } |
| |
| return 0; |
| } |
| |
| static int opt_remove_nops(struct bpf_verifier_env *env) |
| { |
| const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); |
| struct bpf_insn *insn = env->prog->insnsi; |
| int insn_cnt = env->prog->len; |
| int i, err; |
| |
| for (i = 0; i < insn_cnt; i++) { |
| if (memcmp(&insn[i], &ja, sizeof(ja))) |
| continue; |
| |
| err = verifier_remove_insns(env, i, 1); |
| if (err) |
| return err; |
| insn_cnt--; |
| i--; |
| } |
| |
| return 0; |
| } |
| |
| static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, |
| const union bpf_attr *attr) |
| { |
| struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; |
| struct bpf_insn_aux_data *aux = env->insn_aux_data; |
| int i, patch_len, delta = 0, len = env->prog->len; |
| struct bpf_insn *insns = env->prog->insnsi; |
| struct bpf_prog *new_prog; |
| bool rnd_hi32; |
| |
| rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; |
| zext_patch[1] = BPF_ZEXT_REG(0); |
| rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); |
| rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); |
| rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); |
| for (i = 0; i < len; i++) { |
| int adj_idx = i + delta; |
| struct bpf_insn insn; |
| int load_reg; |
| |
| insn = insns[adj_idx]; |
| load_reg = insn_def_regno(&insn); |
| if (!aux[adj_idx].zext_dst) { |
| u8 code, class; |
| u32 imm_rnd; |
| |
| if (!rnd_hi32) |
| continue; |
| |
| code = insn.code; |
| class = BPF_CLASS(code); |
| if (load_reg == -1) |
| continue; |
| |
| /* NOTE: arg "reg" (the fourth one) is only used for |
| * BPF_STX + SRC_OP, so it is safe to pass NULL |
| * here. |
| */ |
| if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { |
| if (class == BPF_LD && |
| BPF_MODE(code) == BPF_IMM) |
| i++; |
| continue; |
| } |
| |
| /* ctx load could be transformed into wider load. */ |
| if (class == BPF_LDX && |
| aux[adj_idx].ptr_type == PTR_TO_CTX) |
| continue; |
| |
| imm_rnd = get_random_u32(); |
| rnd_hi32_patch[0] = insn; |
| rnd_hi32_patch[1].imm = imm_rnd; |
| rnd_hi32_patch[3].dst_reg = load_reg; |
| patch = rnd_hi32_patch; |
| patch_len = 4; |
| goto apply_patch_buffer; |
| } |
| |
| /* Add in an zero-extend instruction if a) the JIT has requested |
| * it or b) it's a CMPXCHG. |
| * |
| * The latter is because: BPF_CMPXCHG always loads a value into |
| * R0, therefore always zero-extends. However some archs' |
| * equivalent instruction only does this load when the |
| * comparison is successful. This detail of CMPXCHG is |
| * orthogonal to the general zero-extension behaviour of the |
| * CPU, so it's treated independently of bpf_jit_needs_zext. |
| */ |
| if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) |
| continue; |
| |
| /* Zero-extension is done by the caller. */ |
| if (bpf_pseudo_kfunc_call(&insn)) |
| continue; |
| |
| if (WARN_ON(load_reg == -1)) { |
| verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); |
| return -EFAULT; |
| } |
| |
| zext_patch[0] = insn; |
| zext_patch[1].dst_reg = load_reg; |
| zext_patch[1].src_reg = load_reg; |
| patch = zext_patch; |
| patch_len = 2; |
| apply_patch_buffer: |
| new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); |
| if (!new_prog) |
| return -ENOMEM; |
| env->prog = new_prog; |
| insns = new_prog->insnsi; |
| aux = env->insn_aux_data; |
| delta += patch_len - 1; |
| } |
| |
| return 0; |
| } |
| |
| /* convert load instructions that access fields of a context type into a |
| * sequence of instructions that access fields of the underlying structure: |
| * struct __sk_buff -> struct sk_buff |
| * struct bpf_sock_ops -> struct sock |
| */ |
| static int convert_ctx_accesses(struct bpf_verifier_env *env) |
| { |
| const struct bpf_verifier_ops *ops = env->ops; |
| int i, cnt, size, ctx_field_size, delta = 0; |
| const int insn_cnt = env->prog->len; |
| struct bpf_insn insn_buf[16], *insn; |
| u32 target_size, size_default, off; |
| struct bpf_prog *new_prog; |
| enum bpf_access_type type; |
| bool is_narrower_load; |
| |
| if (ops->gen_prologue || env->seen_direct_write) { |
| if (!ops->gen_prologue) { |
| verbose(env, "bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } |
| cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, |
| env->prog); |
| if (cnt >= ARRAY_SIZE(insn_buf)) { |
| verbose(env, "bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } else if (cnt) { |
| new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| env->prog = new_prog; |
| delta += cnt - 1; |
| } |
| } |
| |
| if (bpf_prog_is_offloaded(env->prog->aux)) |
| return 0; |
| |
| insn = env->prog->insnsi + delta; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| bpf_convert_ctx_access_t convert_ctx_access; |
| u8 mode; |
| |
| if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || |
| insn->code == (BPF_LDX | BPF_MEM | BPF_H) || |
| insn->code == (BPF_LDX | BPF_MEM | BPF_W) || |
| insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || |
| insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || |
| insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || |
| insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { |
| type = BPF_READ; |
| } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || |
| insn->code == (BPF_STX | BPF_MEM | BPF_H) || |
| insn->code == (BPF_STX | BPF_MEM | BPF_W) || |
| insn->code == (BPF_STX | BPF_MEM | BPF_DW) || |
| insn->code == (BPF_ST | BPF_MEM | BPF_B) || |
| insn->code == (BPF_ST | BPF_MEM | BPF_H) || |
| insn->code == (BPF_ST | BPF_MEM | BPF_W) || |
| insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { |
| type = BPF_WRITE; |
| } else { |
| continue; |
| } |
| |
| if (type == BPF_WRITE && |
| env->insn_aux_data[i + delta].sanitize_stack_spill) { |
| struct bpf_insn patch[] = { |
| *insn, |
| BPF_ST_NOSPEC(), |
| }; |
| |
| cnt = ARRAY_SIZE(patch); |
| new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| switch ((int)env->insn_aux_data[i + delta].ptr_type) { |
| case PTR_TO_CTX: |
| if (!ops->convert_ctx_access) |
| continue; |
| convert_ctx_access = ops->convert_ctx_access; |
| break; |
| case PTR_TO_SOCKET: |
| case PTR_TO_SOCK_COMMON: |
| convert_ctx_access = bpf_sock_convert_ctx_access; |
| break; |
| case PTR_TO_TCP_SOCK: |
| convert_ctx_access = bpf_tcp_sock_convert_ctx_access; |
| break; |
| case PTR_TO_XDP_SOCK: |
| convert_ctx_access = bpf_xdp_sock_convert_ctx_access; |
| break; |
| case PTR_TO_BTF_ID: |
| case PTR_TO_BTF_ID | PTR_UNTRUSTED: |
| /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike |
| * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot |
| * be said once it is marked PTR_UNTRUSTED, hence we must handle |
| * any faults for loads into such types. BPF_WRITE is disallowed |
| * for this case. |
| */ |
| case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: |
| if (type == BPF_READ) { |
| if (BPF_MODE(insn->code) == BPF_MEM) |
| insn->code = BPF_LDX | BPF_PROBE_MEM | |
| BPF_SIZE((insn)->code); |
| else |
| insn->code = BPF_LDX | BPF_PROBE_MEMSX | |
| BPF_SIZE((insn)->code); |
| env->prog->aux->num_exentries++; |
| } |
| continue; |
| default: |
| continue; |
| } |
| |
| ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; |
| size = BPF_LDST_BYTES(insn); |
| mode = BPF_MODE(insn->code); |
| |
| /* If the read access is a narrower load of the field, |
| * convert to a 4/8-byte load, to minimum program type specific |
| * convert_ctx_access changes. If conversion is successful, |
| * we will apply proper mask to the result. |
| */ |
| is_narrower_load = size < ctx_field_size; |
| size_default = bpf_ctx_off_adjust_machine(ctx_field_size); |
| off = insn->off; |
| if (is_narrower_load) { |
| u8 size_code; |
| |
| if (type == BPF_WRITE) { |
| verbose(env, "bpf verifier narrow ctx access misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| size_code = BPF_H; |
| if (ctx_field_size == 4) |
| size_code = BPF_W; |
| else if (ctx_field_size == 8) |
| size_code = BPF_DW; |
| |
| insn->off = off & ~(size_default - 1); |
| insn->code = BPF_LDX | BPF_MEM | size_code; |
| } |
| |
| target_size = 0; |
| cnt = convert_ctx_access(type, insn, insn_buf, env->prog, |
| &target_size); |
| if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || |
| (ctx_field_size && !target_size)) { |
| verbose(env, "bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| if (is_narrower_load && size < target_size) { |
| u8 shift = bpf_ctx_narrow_access_offset( |
| off, size, size_default) * 8; |
| if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { |
| verbose(env, "bpf verifier narrow ctx load misconfigured\n"); |
| return -EINVAL; |
| } |
| if (ctx_field_size <= 4) { |
| if (shift) |
| insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, |
| insn->dst_reg, |
| shift); |
| insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, |
| (1 << size * 8) - 1); |
| } else { |
| if (shift) |
| insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, |
| insn->dst_reg, |
| shift); |
| insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, |
| (1ULL << size * 8) - 1); |
| } |
| } |
| if (mode == BPF_MEMSX) |
| insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, |
| insn->dst_reg, insn->dst_reg, |
| size * 8, 0); |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| |
| /* keep walking new program and skip insns we just inserted */ |
| env->prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| } |
| |
| return 0; |
| } |
| |
| static int jit_subprogs(struct bpf_verifier_env *env) |
| { |
| struct bpf_prog *prog = env->prog, **func, *tmp; |
| int i, j, subprog_start, subprog_end = 0, len, subprog; |
| struct bpf_map *map_ptr; |
| struct bpf_insn *insn; |
| void *old_bpf_func; |
| int err, num_exentries; |
| |
| if (env->subprog_cnt <= 1) |
| return 0; |
| |
| for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { |
| if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) |
| continue; |
| |
| /* Upon error here we cannot fall back to interpreter but |
| * need a hard reject of the program. Thus -EFAULT is |
| * propagated in any case. |
| */ |
| subprog = find_subprog(env, i + insn->imm + 1); |
| if (subprog < 0) { |
| WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", |
| i + insn->imm + 1); |
| return -EFAULT; |
| } |
| /* temporarily remember subprog id inside insn instead of |
| * aux_data, since next loop will split up all insns into funcs |
| */ |
| insn->off = subprog; |
| /* remember original imm in case JIT fails and fallback |
| * to interpreter will be needed |
| */ |
| env->insn_aux_data[i].call_imm = insn->imm; |
| /* point imm to __bpf_call_base+1 from JITs point of view */ |
| insn->imm = 1; |
| if (bpf_pseudo_func(insn)) |
| /* jit (e.g. x86_64) may emit fewer instructions |
| * if it learns a u32 imm is the same as a u64 imm. |
| * Force a non zero here. |
| */ |
| insn[1].imm = 1; |
| } |
| |
| err = bpf_prog_alloc_jited_linfo(prog); |
| if (err) |
| goto out_undo_insn; |
| |
| err = -ENOMEM; |
| func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); |
| if (!func) |
| goto out_undo_insn; |
| |
| for (i = 0; i < env->subprog_cnt; i++) { |
| subprog_start = subprog_end; |
| subprog_end = env->subprog_info[i + 1].start; |
| |
| len = subprog_end - subprog_start; |
| /* bpf_prog_run() doesn't call subprogs directly, |
| * hence main prog stats include the runtime of subprogs. |
| * subprogs don't have IDs and not reachable via prog_get_next_id |
| * func[i]->stats will never be accessed and stays NULL |
| */ |
| func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); |
| if (!func[i]) |
| goto out_free; |
| memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], |
| len * sizeof(struct bpf_insn)); |
| func[i]->type = prog->type; |
| func[i]->len = len; |
| if (bpf_prog_calc_tag(func[i])) |
| goto out_free; |
| func[i]->is_func = 1; |
| func[i]->aux->func_idx = i; |
| /* Below members will be freed only at prog->aux */ |
| func[i]->aux->btf = prog->aux->btf; |
| func[i]->aux->func_info = prog->aux->func_info; |
| func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; |
| func[i]->aux->poke_tab = prog->aux->poke_tab; |
| func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; |
| |
| for (j = 0; j < prog->aux->size_poke_tab; j++) { |
| struct bpf_jit_poke_descriptor *poke; |
| |
| poke = &prog->aux->poke_tab[j]; |
| if (poke->insn_idx < subprog_end && |
| poke->insn_idx >= subprog_start) |
| poke->aux = func[i]->aux; |
| } |
| |
| func[i]->aux->name[0] = 'F'; |
| func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; |
| func[i]->jit_requested = 1; |
| func[i]->blinding_requested = prog->blinding_requested; |
| func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; |
| func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; |
| func[i]->aux->linfo = prog->aux->linfo; |
| func[i]->aux->nr_linfo = prog->aux->nr_linfo; |
| func[i]->aux->jited_linfo = prog->aux->jited_linfo; |
| func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; |
| num_exentries = 0; |
| insn = func[i]->insnsi; |
| for (j = 0; j < func[i]->len; j++, insn++) { |
| if (BPF_CLASS(insn->code) == BPF_LDX && |
| (BPF_MODE(insn->code) == BPF_PROBE_MEM || |
| BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) |
| num_exentries++; |
| } |
| func[i]->aux->num_exentries = num_exentries; |
| func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; |
| func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; |
| if (!i) |
| func[i]->aux->exception_boundary = env->seen_exception; |
| func[i] = bpf_int_jit_compile(func[i]); |
| if (!func[i]->jited) { |
| err = -ENOTSUPP; |
| goto out_free; |
| } |
| cond_resched(); |
| } |
| |
| /* at this point all bpf functions were successfully JITed |
| * now populate all bpf_calls with correct addresses and |
| * run last pass of JIT |
| */ |
| for (i = 0; i < env->subprog_cnt; i++) { |
| insn = func[i]->insnsi; |
| for (j = 0; j < func[i]->len; j++, insn++) { |
| if (bpf_pseudo_func(insn)) { |
| subprog = insn->off; |
| insn[0].imm = (u32)(long)func[subprog]->bpf_func; |
| insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; |
| continue; |
| } |
| if (!bpf_pseudo_call(insn)) |
| continue; |
| subprog = insn->off; |
| insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); |
| } |
| |
| /* we use the aux data to keep a list of the start addresses |
| * of the JITed images for each function in the program |
| * |
| * for some architectures, such as powerpc64, the imm field |
| * might not be large enough to hold the offset of the start |
| * address of the callee's JITed image from __bpf_call_base |
| * |
| * in such cases, we can lookup the start address of a callee |
| * by using its subprog id, available from the off field of |
| * the call instruction, as an index for this list |
| */ |
| func[i]->aux->func = func; |
| func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; |
| func[i]->aux->real_func_cnt = env->subprog_cnt; |
| } |
| for (i = 0; i < env->subprog_cnt; i++) { |
| old_bpf_func = func[i]->bpf_func; |
| tmp = bpf_int_jit_compile(func[i]); |
| if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { |
| verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); |
| err = -ENOTSUPP; |
| goto out_free; |
| } |
| cond_resched(); |
| } |
| |
| /* finally lock prog and jit images for all functions and |
| * populate kallsysm. Begin at the first subprogram, since |
| * bpf_prog_load will add the kallsyms for the main program. |
| */ |
| for (i = 1; i < env->subprog_cnt; i++) { |
| bpf_prog_lock_ro(func[i]); |
| bpf_prog_kallsyms_add(func[i]); |
| } |
| |
| /* Last step: make now unused interpreter insns from main |
| * prog consistent for later dump requests, so they can |
| * later look the same as if they were interpreted only. |
| */ |
| for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { |
| if (bpf_pseudo_func(insn)) { |
| insn[0].imm = env->insn_aux_data[i].call_imm; |
| insn[1].imm = insn->off; |
| insn->off = 0; |
| continue; |
| } |
| if (!bpf_pseudo_call(insn)) |
| continue; |
| insn->off = env->insn_aux_data[i].call_imm; |
| subprog = find_subprog(env, i + insn->off + 1); |
| insn->imm = subprog; |
| } |
| |
| prog->jited = 1; |
| prog->bpf_func = func[0]->bpf_func; |
| prog->jited_len = func[0]->jited_len; |
| prog->aux->extable = func[0]->aux->extable; |
| prog->aux->num_exentries = func[0]->aux->num_exentries; |
| prog->aux->func = func; |
| prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; |
| prog->aux->real_func_cnt = env->subprog_cnt; |
| prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; |
| prog->aux->exception_boundary = func[0]->aux->exception_boundary; |
| bpf_prog_jit_attempt_done(prog); |
| return 0; |
| out_free: |
| /* We failed JIT'ing, so at this point we need to unregister poke |
| * descriptors from subprogs, so that kernel is not attempting to |
| * patch it anymore as we're freeing the subprog JIT memory. |
| */ |
| for (i = 0; i < prog->aux->size_poke_tab; i++) { |
| map_ptr = prog->aux->poke_tab[i].tail_call.map; |
| map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); |
| } |
| /* At this point we're guaranteed that poke descriptors are not |
| * live anymore. We can just unlink its descriptor table as it's |
| * released with the main prog. |
| */ |
| for (i = 0; i < env->subprog_cnt; i++) { |
| if (!func[i]) |
| continue; |
| func[i]->aux->poke_tab = NULL; |
| bpf_jit_free(func[i]); |
| } |
| kfree(func); |
| out_undo_insn: |
| /* cleanup main prog to be interpreted */ |
| prog->jit_requested = 0; |
| prog->blinding_requested = 0; |
| for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { |
| if (!bpf_pseudo_call(insn)) |
| continue; |
| insn->off = 0; |
| insn->imm = env->insn_aux_data[i].call_imm; |
| } |
| bpf_prog_jit_attempt_done(prog); |
| return err; |
| } |
| |
| static int fixup_call_args(struct bpf_verifier_env *env) |
| { |
| #ifndef CONFIG_BPF_JIT_ALWAYS_ON |
| struct bpf_prog *prog = env->prog; |
| struct bpf_insn *insn = prog->insnsi; |
| bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); |
| int i, depth; |
| #endif |
| int err = 0; |
| |
| if (env->prog->jit_requested && |
| !bpf_prog_is_offloaded(env->prog->aux)) { |
| err = jit_subprogs(env); |
| if (err == 0) |
| return 0; |
| if (err == -EFAULT) |
| return err; |
| } |
| #ifndef CONFIG_BPF_JIT_ALWAYS_ON |
| if (has_kfunc_call) { |
| verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); |
| return -EINVAL; |
| } |
| if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { |
| /* When JIT fails the progs with bpf2bpf calls and tail_calls |
| * have to be rejected, since interpreter doesn't support them yet. |
| */ |
| verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); |
| return -EINVAL; |
| } |
| for (i = 0; i < prog->len; i++, insn++) { |
| if (bpf_pseudo_func(insn)) { |
| /* When JIT fails the progs with callback calls |
| * have to be rejected, since interpreter doesn't support them yet. |
| */ |
| verbose(env, "callbacks are not allowed in non-JITed programs\n"); |
| return -EINVAL; |
| } |
| |
| if (!bpf_pseudo_call(insn)) |
| continue; |
| depth = get_callee_stack_depth(env, insn, i); |
| if (depth < 0) |
| return depth; |
| bpf_patch_call_args(insn, depth); |
| } |
| err = 0; |
| #endif |
| return err; |
| } |
| |
| /* replace a generic kfunc with a specialized version if necessary */ |
| static void specialize_kfunc(struct bpf_verifier_env *env, |
| u32 func_id, u16 offset, unsigned long *addr) |
| { |
| struct bpf_prog *prog = env->prog; |
| bool seen_direct_write; |
| void *xdp_kfunc; |
| bool is_rdonly; |
| |
| if (bpf_dev_bound_kfunc_id(func_id)) { |
| xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); |
| if (xdp_kfunc) { |
| *addr = (unsigned long)xdp_kfunc; |
| return; |
| } |
| /* fallback to default kfunc when not supported by netdev */ |
| } |
| |
| if (offset) |
| return; |
| |
| if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { |
| seen_direct_write = env->seen_direct_write; |
| is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); |
| |
| if (is_rdonly) |
| *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; |
| |
| /* restore env->seen_direct_write to its original value, since |
| * may_access_direct_pkt_data mutates it |
| */ |
| env->seen_direct_write = seen_direct_write; |
| } |
| } |
| |
| static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, |
| u16 struct_meta_reg, |
| u16 node_offset_reg, |
| struct bpf_insn *insn, |
| struct bpf_insn *insn_buf, |
| int *cnt) |
| { |
| struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; |
| struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; |
| |
| insn_buf[0] = addr[0]; |
| insn_buf[1] = addr[1]; |
| insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); |
| insn_buf[3] = *insn; |
| *cnt = 4; |
| } |
| |
| static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, |
| struct bpf_insn *insn_buf, int insn_idx, int *cnt) |
| { |
| const struct bpf_kfunc_desc *desc; |
| |
| if (!insn->imm) { |
| verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); |
| return -EINVAL; |
| } |
| |
| *cnt = 0; |
| |
| /* insn->imm has the btf func_id. Replace it with an offset relative to |
| * __bpf_call_base, unless the JIT needs to call functions that are |
| * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). |
| */ |
| desc = find_kfunc_desc(env->prog, insn->imm, insn->off); |
| if (!desc) { |
| verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", |
| insn->imm); |
| return -EFAULT; |
| } |
| |
| if (!bpf_jit_supports_far_kfunc_call()) |
| insn->imm = BPF_CALL_IMM(desc->addr); |
| if (insn->off) |
| return 0; |
| if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || |
| desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { |
| struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; |
| struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; |
| u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; |
| |
| if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { |
| verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", |
| insn_idx); |
| return -EFAULT; |
| } |
| |
| insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); |
| insn_buf[1] = addr[0]; |
| insn_buf[2] = addr[1]; |
| insn_buf[3] = *insn; |
| *cnt = 4; |
| } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || |
| desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || |
| desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { |
| struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; |
| struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; |
| |
| if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { |
| verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", |
| insn_idx); |
| return -EFAULT; |
| } |
| |
| if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && |
| !kptr_struct_meta) { |
| verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", |
| insn_idx); |
| return -EFAULT; |
| } |
| |
| insn_buf[0] = addr[0]; |
| insn_buf[1] = addr[1]; |
| insn_buf[2] = *insn; |
| *cnt = 3; |
| } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || |
| desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || |
| desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { |
| struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; |
| int struct_meta_reg = BPF_REG_3; |
| int node_offset_reg = BPF_REG_4; |
| |
| /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ |
| if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { |
| struct_meta_reg = BPF_REG_4; |
| node_offset_reg = BPF_REG_5; |
| } |
| |
| if (!kptr_struct_meta) { |
| verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", |
| insn_idx); |
| return -EFAULT; |
| } |
| |
| __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, |
| node_offset_reg, insn, insn_buf, cnt); |
| } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || |
| desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { |
| insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); |
| *cnt = 1; |
| } |
| return 0; |
| } |
| |
| /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ |
| static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) |
| { |
| struct bpf_subprog_info *info = env->subprog_info; |
| int cnt = env->subprog_cnt; |
| struct bpf_prog *prog; |
| |
| /* We only reserve one slot for hidden subprogs in subprog_info. */ |
| if (env->hidden_subprog_cnt) { |
| verbose(env, "verifier internal error: only one hidden subprog supported\n"); |
| return -EFAULT; |
| } |
| /* We're not patching any existing instruction, just appending the new |
| * ones for the hidden subprog. Hence all of the adjustment operations |
| * in bpf_patch_insn_data are no-ops. |
| */ |
| prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); |
| if (!prog) |
| return -ENOMEM; |
| env->prog = prog; |
| info[cnt + 1].start = info[cnt].start; |
| info[cnt].start = prog->len - len + 1; |
| env->subprog_cnt++; |
| env->hidden_subprog_cnt++; |
| return 0; |
| } |
| |
| /* Do various post-verification rewrites in a single program pass. |
| * These rewrites simplify JIT and interpreter implementations. |
| */ |
| static int do_misc_fixups(struct bpf_verifier_env *env) |
| { |
| struct bpf_prog *prog = env->prog; |
| enum bpf_attach_type eatype = prog->expected_attach_type; |
| enum bpf_prog_type prog_type = resolve_prog_type(prog); |
| struct bpf_insn *insn = prog->insnsi; |
| const struct bpf_func_proto *fn; |
| const int insn_cnt = prog->len; |
| const struct bpf_map_ops *ops; |
| struct bpf_insn_aux_data *aux; |
| struct bpf_insn insn_buf[16]; |
| struct bpf_prog *new_prog; |
| struct bpf_map *map_ptr; |
| int i, ret, cnt, delta = 0; |
| |
| if (env->seen_exception && !env->exception_callback_subprog) { |
| struct bpf_insn patch[] = { |
| env->prog->insnsi[insn_cnt - 1], |
| BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), |
| BPF_EXIT_INSN(), |
| }; |
| |
| ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); |
| if (ret < 0) |
| return ret; |
| prog = env->prog; |
| insn = prog->insnsi; |
| |
| env->exception_callback_subprog = env->subprog_cnt - 1; |
| /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ |
| mark_subprog_exc_cb(env, env->exception_callback_subprog); |
| } |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| /* Make divide-by-zero exceptions impossible. */ |
| if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || |
| insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || |
| insn->code == (BPF_ALU | BPF_MOD | BPF_X) || |
| insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { |
| bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; |
| bool isdiv = BPF_OP(insn->code) == BPF_DIV; |
| struct bpf_insn *patchlet; |
| struct bpf_insn chk_and_div[] = { |
| /* [R,W]x div 0 -> 0 */ |
| BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | |
| BPF_JNE | BPF_K, insn->src_reg, |
| 0, 2, 0), |
| BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), |
| BPF_JMP_IMM(BPF_JA, 0, 0, 1), |
| *insn, |
| }; |
| struct bpf_insn chk_and_mod[] = { |
| /* [R,W]x mod 0 -> [R,W]x */ |
| BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | |
| BPF_JEQ | BPF_K, insn->src_reg, |
| 0, 1 + (is64 ? 0 : 1), 0), |
| *insn, |
| BPF_JMP_IMM(BPF_JA, 0, 0, 1), |
| BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), |
| }; |
| |
| patchlet = isdiv ? chk_and_div : chk_and_mod; |
| cnt = isdiv ? ARRAY_SIZE(chk_and_div) : |
| ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ |
| if (BPF_CLASS(insn->code) == BPF_LD && |
| (BPF_MODE(insn->code) == BPF_ABS || |
| BPF_MODE(insn->code) == BPF_IND)) { |
| cnt = env->ops->gen_ld_abs(insn, insn_buf); |
| if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { |
| verbose(env, "bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| /* Rewrite pointer arithmetic to mitigate speculation attacks. */ |
| if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || |
| insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { |
| const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; |
| const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; |
| struct bpf_insn *patch = &insn_buf[0]; |
| bool issrc, isneg, isimm; |
| u32 off_reg; |
| |
| aux = &env->insn_aux_data[i + delta]; |
| if (!aux->alu_state || |
| aux->alu_state == BPF_ALU_NON_POINTER) |
| continue; |
| |
| isneg = aux->alu_state & BPF_ALU_NEG_VALUE; |
| issrc = (aux->alu_state & BPF_ALU_SANITIZE) == |
| BPF_ALU_SANITIZE_SRC; |
| isimm = aux->alu_state & BPF_ALU_IMMEDIATE; |
| |
| off_reg = issrc ? insn->src_reg : insn->dst_reg; |
| if (isimm) { |
| *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); |
| } else { |
| if (isneg) |
| *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); |
| *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); |
| *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); |
| *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); |
| *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); |
| *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); |
| *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); |
| } |
| if (!issrc) |
| *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); |
| insn->src_reg = BPF_REG_AX; |
| if (isneg) |
| insn->code = insn->code == code_add ? |
| code_sub : code_add; |
| *patch++ = *insn; |
| if (issrc && isneg && !isimm) |
| *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); |
| cnt = patch - insn_buf; |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| if (insn->code != (BPF_JMP | BPF_CALL)) |
| continue; |
| if (insn->src_reg == BPF_PSEUDO_CALL) |
| continue; |
| if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { |
| ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); |
| if (ret) |
| return ret; |
| if (cnt == 0) |
| continue; |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| if (insn->imm == BPF_FUNC_get_route_realm) |
| prog->dst_needed = 1; |
| if (insn->imm == BPF_FUNC_get_prandom_u32) |
| bpf_user_rnd_init_once(); |
| if (insn->imm == BPF_FUNC_override_return) |
| prog->kprobe_override = 1; |
| if (insn->imm == BPF_FUNC_tail_call) { |
| /* If we tail call into other programs, we |
| * cannot make any assumptions since they can |
| * be replaced dynamically during runtime in |
| * the program array. |
| */ |
| prog->cb_access = 1; |
| if (!allow_tail_call_in_subprogs(env)) |
| prog->aux->stack_depth = MAX_BPF_STACK; |
| prog->aux->max_pkt_offset = MAX_PACKET_OFF; |
| |
| /* mark bpf_tail_call as different opcode to avoid |
| * conditional branch in the interpreter for every normal |
| * call and to prevent accidental JITing by JIT compiler |
| * that doesn't support bpf_tail_call yet |
| */ |
| insn->imm = 0; |
| insn->code = BPF_JMP | BPF_TAIL_CALL; |
| |
| aux = &env->insn_aux_data[i + delta]; |
| if (env->bpf_capable && !prog->blinding_requested && |
| prog->jit_requested && |
| !bpf_map_key_poisoned(aux) && |
| !bpf_map_ptr_poisoned(aux) && |
| !bpf_map_ptr_unpriv(aux)) { |
| struct bpf_jit_poke_descriptor desc = { |
| .reason = BPF_POKE_REASON_TAIL_CALL, |
| .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), |
| .tail_call.key = bpf_map_key_immediate(aux), |
| .insn_idx = i + delta, |
| }; |
| |
| ret = bpf_jit_add_poke_descriptor(prog, &desc); |
| if (ret < 0) { |
| verbose(env, "adding tail call poke descriptor failed\n"); |
| return ret; |
| } |
| |
| insn->imm = ret + 1; |
| continue; |
| } |
| |
| if (!bpf_map_ptr_unpriv(aux)) |
| continue; |
| |
| /* instead of changing every JIT dealing with tail_call |
| * emit two extra insns: |
| * if (index >= max_entries) goto out; |
| * index &= array->index_mask; |
| * to avoid out-of-bounds cpu speculation |
| */ |
| if (bpf_map_ptr_poisoned(aux)) { |
| verbose(env, "tail_call abusing map_ptr\n"); |
| return -EINVAL; |
| } |
| |
| map_ptr = BPF_MAP_PTR(aux->map_ptr_state); |
| insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, |
| map_ptr->max_entries, 2); |
| insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, |
| container_of(map_ptr, |
| struct bpf_array, |
| map)->index_mask); |
| insn_buf[2] = *insn; |
| cnt = 3; |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| if (insn->imm == BPF_FUNC_timer_set_callback) { |
| /* The verifier will process callback_fn as many times as necessary |
| * with different maps and the register states prepared by |
| * set_timer_callback_state will be accurate. |
| * |
| * The following use case is valid: |
| * map1 is shared by prog1, prog2, prog3. |
| * prog1 calls bpf_timer_init for some map1 elements |
| * prog2 calls bpf_timer_set_callback for some map1 elements. |
| * Those that were not bpf_timer_init-ed will return -EINVAL. |
| * prog3 calls bpf_timer_start for some map1 elements. |
| * Those that were not both bpf_timer_init-ed and |
| * bpf_timer_set_callback-ed will return -EINVAL. |
| */ |
| struct bpf_insn ld_addrs[2] = { |
| BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), |
| }; |
| |
| insn_buf[0] = ld_addrs[0]; |
| insn_buf[1] = ld_addrs[1]; |
| insn_buf[2] = *insn; |
| cnt = 3; |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| goto patch_call_imm; |
| } |
| |
| if (is_storage_get_function(insn->imm)) { |
| if (!env->prog->aux->sleepable || |
| env->insn_aux_data[i + delta].storage_get_func_atomic) |
| insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); |
| else |
| insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); |
| insn_buf[1] = *insn; |
| cnt = 2; |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| goto patch_call_imm; |
| } |
| |
| /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ |
| if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { |
| /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, |
| * bpf_mem_alloc() returns a ptr to the percpu data ptr. |
| */ |
| insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); |
| insn_buf[1] = *insn; |
| cnt = 2; |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| goto patch_call_imm; |
| } |
| |
| /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup |
| * and other inlining handlers are currently limited to 64 bit |
| * only. |
| */ |
| if (prog->jit_requested && BITS_PER_LONG == 64 && |
| (insn->imm == BPF_FUNC_map_lookup_elem || |
| insn->imm == BPF_FUNC_map_update_elem || |
| insn->imm == BPF_FUNC_map_delete_elem || |
| insn->imm == BPF_FUNC_map_push_elem || |
| insn->imm == BPF_FUNC_map_pop_elem || |
| insn->imm == BPF_FUNC_map_peek_elem || |
| insn->imm == BPF_FUNC_redirect_map || |
| insn->imm == BPF_FUNC_for_each_map_elem || |
| insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { |
| aux = &env->insn_aux_data[i + delta]; |
| if (bpf_map_ptr_poisoned(aux)) |
| goto patch_call_imm; |
| |
| map_ptr = BPF_MAP_PTR(aux->map_ptr_state); |
| ops = map_ptr->ops; |
| if (insn->imm == BPF_FUNC_map_lookup_elem && |
| ops->map_gen_lookup) { |
| cnt = ops->map_gen_lookup(map_ptr, insn_buf); |
| if (cnt == -EOPNOTSUPP) |
| goto patch_map_ops_generic; |
| if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { |
| verbose(env, "bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, |
| insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, |
| (void *(*)(struct bpf_map *map, void *key))NULL)); |
| BUILD_BUG_ON(!__same_type(ops->map_delete_elem, |
| (long (*)(struct bpf_map *map, void *key))NULL)); |
| BUILD_BUG_ON(!__same_type(ops->map_update_elem, |
| (long (*)(struct bpf_map *map, void *key, void *value, |
| u64 flags))NULL)); |
| BUILD_BUG_ON(!__same_type(ops->map_push_elem, |
| (long (*)(struct bpf_map *map, void *value, |
| u64 flags))NULL)); |
| BUILD_BUG_ON(!__same_type(ops->map_pop_elem, |
| (long (*)(struct bpf_map *map, void *value))NULL)); |
| BUILD_BUG_ON(!__same_type(ops->map_peek_elem, |
| (long (*)(struct bpf_map *map, void *value))NULL)); |
| BUILD_BUG_ON(!__same_type(ops->map_redirect, |
| (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); |
| BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, |
| (long (*)(struct bpf_map *map, |
| bpf_callback_t callback_fn, |
| void *callback_ctx, |
| u64 flags))NULL)); |
| BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, |
| (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); |
| |
| patch_map_ops_generic: |
| switch (insn->imm) { |
| case BPF_FUNC_map_lookup_elem: |
| insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); |
| continue; |
| case BPF_FUNC_map_update_elem: |
| insn->imm = BPF_CALL_IMM(ops->map_update_elem); |
| continue; |
| case BPF_FUNC_map_delete_elem: |
| insn->imm = BPF_CALL_IMM(ops->map_delete_elem); |
| continue; |
| case BPF_FUNC_map_push_elem: |
| insn->imm = BPF_CALL_IMM(ops->map_push_elem); |
| continue; |
| case BPF_FUNC_map_pop_elem: |
| insn->imm = BPF_CALL_IMM(ops->map_pop_elem); |
| continue; |
| case BPF_FUNC_map_peek_elem: |
| insn->imm = BPF_CALL_IMM(ops->map_peek_elem); |
| continue; |
| case BPF_FUNC_redirect_map: |
| insn->imm = BPF_CALL_IMM(ops->map_redirect); |
| continue; |
| case BPF_FUNC_for_each_map_elem: |
| insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); |
| continue; |
| case BPF_FUNC_map_lookup_percpu_elem: |
| insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); |
| continue; |
| } |
| |
| goto patch_call_imm; |
| } |
| |
| /* Implement bpf_jiffies64 inline. */ |
| if (prog->jit_requested && BITS_PER_LONG == 64 && |
| insn->imm == BPF_FUNC_jiffies64) { |
| struct bpf_insn ld_jiffies_addr[2] = { |
| BPF_LD_IMM64(BPF_REG_0, |
| (unsigned long)&jiffies), |
| }; |
| |
| insn_buf[0] = ld_jiffies_addr[0]; |
| insn_buf[1] = ld_jiffies_addr[1]; |
| insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, |
| BPF_REG_0, 0); |
| cnt = 3; |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, |
| cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| /* Implement bpf_get_func_arg inline. */ |
| if (prog_type == BPF_PROG_TYPE_TRACING && |
| insn->imm == BPF_FUNC_get_func_arg) { |
| /* Load nr_args from ctx - 8 */ |
| insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); |
| insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); |
| insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); |
| insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); |
| insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); |
| insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); |
| insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); |
| insn_buf[7] = BPF_JMP_A(1); |
| insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); |
| cnt = 9; |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| /* Implement bpf_get_func_ret inline. */ |
| if (prog_type == BPF_PROG_TYPE_TRACING && |
| insn->imm == BPF_FUNC_get_func_ret) { |
| if (eatype == BPF_TRACE_FEXIT || |
| eatype == BPF_MODIFY_RETURN) { |
| /* Load nr_args from ctx - 8 */ |
| insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); |
| insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); |
| insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); |
| insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); |
| insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); |
| insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); |
| cnt = 6; |
| } else { |
| insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); |
| cnt = 1; |
| } |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| /* Implement get_func_arg_cnt inline. */ |
| if (prog_type == BPF_PROG_TYPE_TRACING && |
| insn->imm == BPF_FUNC_get_func_arg_cnt) { |
| /* Load nr_args from ctx - 8 */ |
| insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| /* Implement bpf_get_func_ip inline. */ |
| if (prog_type == BPF_PROG_TYPE_TRACING && |
| insn->imm == BPF_FUNC_get_func_ip) { |
| /* Load IP address from ctx - 16 */ |
| insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| /* Implement bpf_kptr_xchg inline */ |
| if (prog->jit_requested && BITS_PER_LONG == 64 && |
| insn->imm == BPF_FUNC_kptr_xchg && |
| bpf_jit_supports_ptr_xchg()) { |
| insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); |
| insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); |
| cnt = 2; |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| patch_call_imm: |
| fn = env->ops->get_func_proto(insn->imm, env->prog); |
| /* all functions that have prototype and verifier allowed |
| * programs to call them, must be real in-kernel functions |
| */ |
| if (!fn->func) { |
| verbose(env, |
| "kernel subsystem misconfigured func %s#%d\n", |
| func_id_name(insn->imm), insn->imm); |
| return -EFAULT; |
| } |
| insn->imm = fn->func - __bpf_call_base; |
| } |
| |
| /* Since poke tab is now finalized, publish aux to tracker. */ |
| for (i = 0; i < prog->aux->size_poke_tab; i++) { |
| map_ptr = prog->aux->poke_tab[i].tail_call.map; |
| if (!map_ptr->ops->map_poke_track || |
| !map_ptr->ops->map_poke_untrack || |
| !map_ptr->ops->map_poke_run) { |
| verbose(env, "bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); |
| if (ret < 0) { |
| verbose(env, "tracking tail call prog failed\n"); |
| return ret; |
| } |
| } |
| |
| sort_kfunc_descs_by_imm_off(env->prog); |
| |
| return 0; |
| } |
| |
| static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, |
| int position, |
| s32 stack_base, |
| u32 callback_subprogno, |
| u32 *cnt) |
| { |
| s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; |
| s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; |
| s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; |
| int reg_loop_max = BPF_REG_6; |
| int reg_loop_cnt = BPF_REG_7; |
| int reg_loop_ctx = BPF_REG_8; |
| |
| struct bpf_prog *new_prog; |
| u32 callback_start; |
| u32 call_insn_offset; |
| s32 callback_offset; |
| |
| /* This represents an inlined version of bpf_iter.c:bpf_loop, |
| * be careful to modify this code in sync. |
| */ |
| struct bpf_insn insn_buf[] = { |
| /* Return error and jump to the end of the patch if |
| * expected number of iterations is too big. |
| */ |
| BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), |
| BPF_MOV32_IMM(BPF_REG_0, -E2BIG), |
| BPF_JMP_IMM(BPF_JA, 0, 0, 16), |
| /* spill R6, R7, R8 to use these as loop vars */ |
| BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), |
| BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), |
| BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), |
| /* initialize loop vars */ |
| BPF_MOV64_REG(reg_loop_max, BPF_REG_1), |
| BPF_MOV32_IMM(reg_loop_cnt, 0), |
| BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), |
| /* loop header, |
| * if reg_loop_cnt >= reg_loop_max skip the loop body |
| */ |
| BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), |
| /* callback call, |
| * correct callback offset would be set after patching |
| */ |
| BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), |
| BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), |
| BPF_CALL_REL(0), |
| /* increment loop counter */ |
| BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), |
| /* jump to loop header if callback returned 0 */ |
| BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), |
| /* return value of bpf_loop, |
| * set R0 to the number of iterations |
| */ |
| BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), |
| /* restore original values of R6, R7, R8 */ |
| BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), |
| BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), |
| BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), |
| }; |
| |
| *cnt = ARRAY_SIZE(insn_buf); |
| new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); |
| if (!new_prog) |
| return new_prog; |
| |
| /* callback start is known only after patching */ |
| callback_start = env->subprog_info[callback_subprogno].start; |
| /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ |
| call_insn_offset = position + 12; |
| callback_offset = callback_start - call_insn_offset - 1; |
| new_prog->insnsi[call_insn_offset].imm = callback_offset; |
| |
| return new_prog; |
| } |
| |
| static bool is_bpf_loop_call(struct bpf_insn *insn) |
| { |
| return insn->code == (BPF_JMP | BPF_CALL) && |
| insn->src_reg == 0 && |
| insn->imm == BPF_FUNC_loop; |
| } |
| |
| /* For all sub-programs in the program (including main) check |
| * insn_aux_data to see if there are bpf_loop calls that require |
| * inlining. If such calls are found the calls are replaced with a |
| * sequence of instructions produced by `inline_bpf_loop` function and |
| * subprog stack_depth is increased by the size of 3 registers. |
| * This stack space is used to spill values of the R6, R7, R8. These |
| * registers are used to store the loop bound, counter and context |
| * variables. |
| */ |
| static int optimize_bpf_loop(struct bpf_verifier_env *env) |
| { |
| struct bpf_subprog_info *subprogs = env->subprog_info; |
| int i, cur_subprog = 0, cnt, delta = 0; |
| struct bpf_insn *insn = env->prog->insnsi; |
| int insn_cnt = env->prog->len; |
| u16 stack_depth = subprogs[cur_subprog].stack_depth; |
| u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; |
| u16 stack_depth_extra = 0; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| struct bpf_loop_inline_state *inline_state = |
| &env->insn_aux_data[i + delta].loop_inline_state; |
| |
| if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { |
| struct bpf_prog *new_prog; |
| |
| stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; |
| new_prog = inline_bpf_loop(env, |
| i + delta, |
| -(stack_depth + stack_depth_extra), |
| inline_state->callback_subprogno, |
| &cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| } |
| |
| if (subprogs[cur_subprog + 1].start == i + delta + 1) { |
| subprogs[cur_subprog].stack_depth += stack_depth_extra; |
| cur_subprog++; |
| stack_depth = subprogs[cur_subprog].stack_depth; |
| stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; |
| stack_depth_extra = 0; |
| } |
| } |
| |
| env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; |
| |
| return 0; |
| } |
| |
| static void free_states(struct bpf_verifier_env *env) |
| { |
| struct bpf_verifier_state_list *sl, *sln; |
| int i; |
| |
| sl = env->free_list; |
| while (sl) { |
| sln = sl->next; |
| free_verifier_state(&sl->state, false); |
| kfree(sl); |
| sl = sln; |
| } |
| env->free_list = NULL; |
| |
| if (!env->explored_states) |
| return; |
| |
| for (i = 0; i < state_htab_size(env); i++) { |
| sl = env->explored_states[i]; |
| |
| while (sl) { |
| sln = sl->next; |
| free_verifier_state(&sl->state, false); |
| kfree(sl); |
| sl = sln; |
| } |
| env->explored_states[i] = NULL; |
| } |
| } |
| |
| static int do_check_common(struct bpf_verifier_env *env, int subprog) |
| { |
| bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); |
| struct bpf_subprog_info *sub = subprog_info(env, subprog); |
| struct bpf_verifier_state *state; |
| struct bpf_reg_state *regs; |
| int ret, i; |
| |
| env->prev_linfo = NULL; |
| env->pass_cnt++; |
| |
| state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); |
| if (!state) |
| return -ENOMEM; |
| state->curframe = 0; |
| state->speculative = false; |
| state->branches = 1; |
| state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); |
| if (!state->frame[0]) { |
| kfree(state); |
| return -ENOMEM; |
| } |
| env->cur_state = state; |
| init_func_state(env, state->frame[0], |
| BPF_MAIN_FUNC /* callsite */, |
| 0 /* frameno */, |
| subprog); |
| state->first_insn_idx = env->subprog_info[subprog].start; |
| state->last_insn_idx = -1; |
| |
| regs = state->frame[state->curframe]->regs; |
| if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { |
| const char *sub_name = subprog_name(env, subprog); |
| struct bpf_subprog_arg_info *arg; |
| struct bpf_reg_state *reg; |
| |
| verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); |
| ret = btf_prepare_func_args(env, subprog); |
| if (ret) |
| goto out; |
| |
| if (subprog_is_exc_cb(env, subprog)) { |
| state->frame[0]->in_exception_callback_fn = true; |
| /* We have already ensured that the callback returns an integer, just |
| * like all global subprogs. We need to determine it only has a single |
| * scalar argument. |
| */ |
| if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { |
| verbose(env, "exception cb only supports single integer argument\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { |
| arg = &sub->args[i - BPF_REG_1]; |
| reg = ®s[i]; |
| |
| if (arg->arg_type == ARG_PTR_TO_CTX) { |
| reg->type = PTR_TO_CTX; |
| mark_reg_known_zero(env, regs, i); |
| } else if (arg->arg_type == ARG_ANYTHING) { |
| reg->type = SCALAR_VALUE; |
| mark_reg_unknown(env, regs, i); |
| } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { |
| /* assume unspecial LOCAL dynptr type */ |
| __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); |
| } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { |
| reg->type = PTR_TO_MEM; |
| if (arg->arg_type & PTR_MAYBE_NULL) |
| reg->type |= PTR_MAYBE_NULL; |
| mark_reg_known_zero(env, regs, i); |
| reg->mem_size = arg->mem_size; |
| reg->id = ++env->id_gen; |
| } else { |
| WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", |
| i - BPF_REG_1, arg->arg_type); |
| ret = -EFAULT; |
| goto out; |
| } |
| } |
| } else { |
| /* if main BPF program has associated BTF info, validate that |
| * it's matching expected signature, and otherwise mark BTF |
| * info for main program as unreliable |
| */ |
| if (env->prog->aux->func_info_aux) { |
| ret = btf_prepare_func_args(env, 0); |
| if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) |
| env->prog->aux->func_info_aux[0].unreliable = true; |
| } |
| |
| /* 1st arg to a function */ |
| regs[BPF_REG_1].type = PTR_TO_CTX; |
| mark_reg_known_zero(env, regs, BPF_REG_1); |
| } |
| |
| ret = do_check(env); |
| out: |
| /* check for NULL is necessary, since cur_state can be freed inside |
| * do_check() under memory pressure. |
| */ |
| if (env->cur_state) { |
| free_verifier_state(env->cur_state, true); |
| env->cur_state = NULL; |
| } |
| while (!pop_stack(env, NULL, NULL, false)); |
| if (!ret && pop_log) |
| bpf_vlog_reset(&env->log, 0); |
| free_states(env); |
| return ret; |
| } |
| |
| /* Lazily verify all global functions based on their BTF, if they are called |
| * from main BPF program or any of subprograms transitively. |
| * BPF global subprogs called from dead code are not validated. |
| * All callable global functions must pass verification. |
| * Otherwise the whole program is rejected. |
| * Consider: |
| * int bar(int); |
| * int foo(int f) |
| * { |
| * return bar(f); |
| * } |
| * int bar(int b) |
| * { |
| * ... |
| * } |
| * foo() will be verified first for R1=any_scalar_value. During verification it |
| * will be assumed that bar() already verified successfully and call to bar() |
| * from foo() will be checked for type match only. Later bar() will be verified |
| * independently to check that it's safe for R1=any_scalar_value. |
| */ |
| static int do_check_subprogs(struct bpf_verifier_env *env) |
| { |
| struct bpf_prog_aux *aux = env->prog->aux; |
| struct bpf_func_info_aux *sub_aux; |
| int i, ret, new_cnt; |
| |
| if (!aux->func_info) |
| return 0; |
| |
| /* exception callback is presumed to be always called */ |
| if (env->exception_callback_subprog) |
| subprog_aux(env, env->exception_callback_subprog)->called = true; |
| |
| again: |
| new_cnt = 0; |
| for (i = 1; i < env->subprog_cnt; i++) { |
| if (!subprog_is_global(env, i)) |
| continue; |
| |
| sub_aux = subprog_aux(env, i); |
| if (!sub_aux->called || sub_aux->verified) |
| continue; |
| |
| env->insn_idx = env->subprog_info[i].start; |
| WARN_ON_ONCE(env->insn_idx == 0); |
| ret = do_check_common(env, i); |
| if (ret) { |
| return ret; |
| } else if (env->log.level & BPF_LOG_LEVEL) { |
| verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", |
| i, subprog_name(env, i)); |
| } |
| |
| /* We verified new global subprog, it might have called some |
| * more global subprogs that we haven't verified yet, so we |
| * need to do another pass over subprogs to verify those. |
| */ |
| sub_aux->verified = true; |
| new_cnt++; |
| } |
| |
| /* We can't loop forever as we verify at least one global subprog on |
| * each pass. |
| */ |
| if (new_cnt) |
| goto again; |
| |
| return 0; |
| } |
| |
| static int do_check_main(struct bpf_verifier_env *env) |
| { |
| int ret; |
| |
| env->insn_idx = 0; |
| ret = do_check_common(env, 0); |
| if (!ret) |
| env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; |
| return ret; |
| } |
| |
| |
| static void print_verification_stats(struct bpf_verifier_env *env) |
| { |
| int i; |
| |
| if (env->log.level & BPF_LOG_STATS) { |
| verbose(env, "verification time %lld usec\n", |
| div_u64(env->verification_time, 1000)); |
| verbose(env, "stack depth "); |
| for (i = 0; i < env->subprog_cnt; i++) { |
| u32 depth = env->subprog_info[i].stack_depth; |
| |
| verbose(env, "%d", depth); |
| if (i + 1 < env->subprog_cnt) |
| verbose(env, "+"); |
| } |
| verbose(env, "\n"); |
| } |
| verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " |
| "total_states %d peak_states %d mark_read %d\n", |
| env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, |
| env->max_states_per_insn, env->total_states, |
| env->peak_states, env->longest_mark_read_walk); |
| } |
| |
| static int check_struct_ops_btf_id(struct bpf_verifier_env *env) |
| { |
| const struct btf_type *t, *func_proto; |
| const struct bpf_struct_ops_desc *st_ops_desc; |
| const struct bpf_struct_ops *st_ops; |
| const struct btf_member *member; |
| struct bpf_prog *prog = env->prog; |
| u32 btf_id, member_idx; |
| struct btf *btf; |
| const char *mname; |
| |
| if (!prog->gpl_compatible) { |
| verbose(env, "struct ops programs must have a GPL compatible license\n"); |
| return -EINVAL; |
| } |
| |
| if (!prog->aux->attach_btf_id) |
| return -ENOTSUPP; |
| |
| btf = prog->aux->attach_btf; |
| if (btf_is_module(btf)) { |
| /* Make sure st_ops is valid through the lifetime of env */ |
| env->attach_btf_mod = btf_try_get_module(btf); |
| if (!env->attach_btf_mod) { |
| verbose(env, "struct_ops module %s is not found\n", |
| btf_get_name(btf)); |
| return -ENOTSUPP; |
| } |
| } |
| |
| btf_id = prog->aux->attach_btf_id; |
| st_ops_desc = bpf_struct_ops_find(btf, btf_id); |
| if (!st_ops_desc) { |
| verbose(env, "attach_btf_id %u is not a supported struct\n", |
| btf_id); |
| return -ENOTSUPP; |
| } |
| st_ops = st_ops_desc->st_ops; |
| |
| t = st_ops_desc->type; |
| member_idx = prog->expected_attach_type; |
| if (member_idx >= btf_type_vlen(t)) { |
| verbose(env, "attach to invalid member idx %u of struct %s\n", |
| member_idx, st_ops->name); |
| return -EINVAL; |
| } |
| |
| member = &btf_type_member(t)[member_idx]; |
| mname = btf_name_by_offset(btf, member->name_off); |
| func_proto = btf_type_resolve_func_ptr(btf, member->type, |
| NULL); |
| if (!func_proto) { |
| verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", |
| mname, member_idx, st_ops->name); |
| return -EINVAL; |
| } |
| |
| if (st_ops->check_member) { |
| int err = st_ops->check_member(t, member, prog); |
| |
| if (err) { |
| verbose(env, "attach to unsupported member %s of struct %s\n", |
| mname, st_ops->name); |
| return err; |
| } |
| } |
| |
| prog->aux->attach_func_proto = func_proto; |
| prog->aux->attach_func_name = mname; |
| env->ops = st_ops->verifier_ops; |
| |
| return 0; |
| } |
| #define SECURITY_PREFIX "security_" |
| |
| static int check_attach_modify_return(unsigned long addr, const char *func_name) |
| { |
| if (within_error_injection_list(addr) || |
| !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) |
| return 0; |
| |
| return -EINVAL; |
| } |
| |
| /* list of non-sleepable functions that are otherwise on |
| * ALLOW_ERROR_INJECTION list |
| */ |
| BTF_SET_START(btf_non_sleepable_error_inject) |
| /* Three functions below can be called from sleepable and non-sleepable context. |
| * Assume non-sleepable from bpf safety point of view. |
| */ |
| BTF_ID(func, __filemap_add_folio) |
| BTF_ID(func, should_fail_alloc_page) |
| BTF_ID(func, should_failslab) |
| BTF_SET_END(btf_non_sleepable_error_inject) |
| |
| static int check_non_sleepable_error_inject(u32 btf_id) |
| { |
| return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); |
| } |
| |
| int bpf_check_attach_target(struct bpf_verifier_log *log, |
| const struct bpf_prog *prog, |
| const struct bpf_prog *tgt_prog, |
| u32 btf_id, |
| struct bpf_attach_target_info *tgt_info) |
| { |
| bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; |
| bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; |
| const char prefix[] = "btf_trace_"; |
| int ret = 0, subprog = -1, i; |
| const struct btf_type *t; |
| bool conservative = true; |
| const char *tname; |
| struct btf *btf; |
| long addr = 0; |
| struct module *mod = NULL; |
| |
| if (!btf_id) { |
| bpf_log(log, "Tracing programs must provide btf_id\n"); |
| return -EINVAL; |
| } |
| btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; |
| if (!btf) { |
| bpf_log(log, |
| "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); |
| return -EINVAL; |
| } |
| t = btf_type_by_id(btf, btf_id); |
| if (!t) { |
| bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); |
| return -EINVAL; |
| } |
| tname = btf_name_by_offset(btf, t->name_off); |
| if (!tname) { |
| bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); |
| return -EINVAL; |
| } |
| if (tgt_prog) { |
| struct bpf_prog_aux *aux = tgt_prog->aux; |
| |
| if (bpf_prog_is_dev_bound(prog->aux) && |
| !bpf_prog_dev_bound_match(prog, tgt_prog)) { |
| bpf_log(log, "Target program bound device mismatch"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < aux->func_info_cnt; i++) |
| if (aux->func_info[i].type_id == btf_id) { |
| subprog = i; |
| break; |
| } |
| if (subprog == -1) { |
| bpf_log(log, "Subprog %s doesn't exist\n", tname); |
| return -EINVAL; |
| } |
| if (aux->func && aux->func[subprog]->aux->exception_cb) { |
| bpf_log(log, |
| "%s programs cannot attach to exception callback\n", |
| prog_extension ? "Extension" : "FENTRY/FEXIT"); |
| return -EINVAL; |
| } |
| conservative = aux->func_info_aux[subprog].unreliable; |
| if (prog_extension) { |
| if (conservative) { |
| bpf_log(log, |
| "Cannot replace static functions\n"); |
| return -EINVAL; |
| } |
| if (!prog->jit_requested) { |
| bpf_log(log, |
| "Extension programs should be JITed\n"); |
| return -EINVAL; |
| } |
| } |
| if (!tgt_prog->jited) { |
| bpf_log(log, "Can attach to only JITed progs\n"); |
| return -EINVAL; |
| } |
| if (prog_tracing) { |
| if (aux->attach_tracing_prog) { |
| /* |
| * Target program is an fentry/fexit which is already attached |
| * to another tracing program. More levels of nesting |
| * attachment are not allowed. |
| */ |
| bpf_log(log, "Cannot nest tracing program attach more than once\n"); |
| return -EINVAL; |
| } |
| } else if (tgt_prog->type == prog->type) { |
| /* |
| * To avoid potential call chain cycles, prevent attaching of a |
| * program extension to another extension. It's ok to attach |
| * fentry/fexit to extension program. |
| */ |
| bpf_log(log, "Cannot recursively attach\n"); |
| return -EINVAL; |
| } |
| if (tgt_prog->type == BPF_PROG_TYPE_TRACING && |
| prog_extension && |
| (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || |
| tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { |
| /* Program extensions can extend all program types |
| * except fentry/fexit. The reason is the following. |
| * The fentry/fexit programs are used for performance |
| * analysis, stats and can be attached to any program |
| * type. When extension program is replacing XDP function |
| * it is necessary to allow performance analysis of all |
| * functions. Both original XDP program and its program |
| * extension. Hence attaching fentry/fexit to |
| * BPF_PROG_TYPE_EXT is allowed. If extending of |
| * fentry/fexit was allowed it would be possible to create |
| * long call chain fentry->extension->fentry->extension |
| * beyond reasonable stack size. Hence extending fentry |
| * is not allowed. |
| */ |
| bpf_log(log, "Cannot extend fentry/fexit\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (prog_extension) { |
| bpf_log(log, "Cannot replace kernel functions\n"); |
| return -EINVAL; |
| } |
| } |
| |
| switch (prog->expected_attach_type) { |
| case BPF_TRACE_RAW_TP: |
| if (tgt_prog) { |
| bpf_log(log, |
| "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); |
| return -EINVAL; |
| } |
| if (!btf_type_is_typedef(t)) { |
| bpf_log(log, "attach_btf_id %u is not a typedef\n", |
| btf_id); |
| return -EINVAL; |
| } |
| if (strncmp(prefix, tname, sizeof(prefix) - 1)) { |
| bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", |
| btf_id, tname); |
| return -EINVAL; |
| } |
| tname += sizeof(prefix) - 1; |
| t = btf_type_by_id(btf, t->type); |
| if (!btf_type_is_ptr(t)) |
| /* should never happen in valid vmlinux build */ |
| return -EINVAL; |
| t = btf_type_by_id(btf, t->type); |
| if (!btf_type_is_func_proto(t)) |
| /* should never happen in valid vmlinux build */ |
| return -EINVAL; |
| |
| break; |
| case BPF_TRACE_ITER: |
| if (!btf_type_is_func(t)) { |
| bpf_log(log, "attach_btf_id %u is not a function\n", |
| btf_id); |
| return -EINVAL; |
| } |
| t = btf_type_by_id(btf, t->type); |
| if (!btf_type_is_func_proto(t)) |
| return -EINVAL; |
| ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); |
| if (ret) |
| return ret; |
| break; |
| default: |
| if (!prog_extension) |
| return -EINVAL; |
| fallthrough; |
| case BPF_MODIFY_RETURN: |
| case BPF_LSM_MAC: |
| case BPF_LSM_CGROUP: |
| case BPF_TRACE_FENTRY: |
| case BPF_TRACE_FEXIT: |
| if (!btf_type_is_func(t)) { |
| bpf_log(log, "attach_btf_id %u is not a function\n", |
| btf_id); |
| return -EINVAL; |
| } |
| if (prog_extension && |
| btf_check_type_match(log, prog, btf, t)) |
| return -EINVAL; |
| t = btf_type_by_id(btf, t->type); |
| if (!btf_type_is_func_proto(t)) |
| return -EINVAL; |
| |
| if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && |
| (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || |
| prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) |
| return -EINVAL; |
| |
| if (tgt_prog && conservative) |
| t = NULL; |
| |
| ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); |
| if (ret < 0) |
| return ret; |
| |
| if (tgt_prog) { |
| if (subprog == 0) |
| addr = (long) tgt_prog->bpf_func; |
| else |
| addr = (long) tgt_prog->aux->func[subprog]->bpf_func; |
| } else { |
| if (btf_is_module(btf)) { |
| mod = btf_try_get_module(btf); |
| if (mod) |
| addr = find_kallsyms_symbol_value(mod, tname); |
| else |
| addr = 0; |
| } else { |
| addr = kallsyms_lookup_name(tname); |
| } |
| if (!addr) { |
| module_put(mod); |
| bpf_log(log, |
| "The address of function %s cannot be found\n", |
| tname); |
| return -ENOENT; |
| } |
| } |
| |
| if (prog->aux->sleepable) { |
| ret = -EINVAL; |
| switch (prog->type) { |
| case BPF_PROG_TYPE_TRACING: |
| |
| /* fentry/fexit/fmod_ret progs can be sleepable if they are |
| * attached to ALLOW_ERROR_INJECTION and are not in denylist. |
| */ |
| if (!check_non_sleepable_error_inject(btf_id) && |
| within_error_injection_list(addr)) |
| ret = 0; |
| /* fentry/fexit/fmod_ret progs can also be sleepable if they are |
| * in the fmodret id set with the KF_SLEEPABLE flag. |
| */ |
| else { |
| u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, |
| prog); |
| |
| if (flags && (*flags & KF_SLEEPABLE)) |
| ret = 0; |
| } |
| break; |
| case BPF_PROG_TYPE_LSM: |
| /* LSM progs check that they are attached to bpf_lsm_*() funcs. |
| * Only some of them are sleepable. |
| */ |
| if (bpf_lsm_is_sleepable_hook(btf_id)) |
| ret = 0; |
| break; |
| default: |
| break; |
| } |
| if (ret) { |
| module_put(mod); |
| bpf_log(log, "%s is not sleepable\n", tname); |
| return ret; |
| } |
| } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { |
| if (tgt_prog) { |
| module_put(mod); |
| bpf_log(log, "can't modify return codes of BPF programs\n"); |
| return -EINVAL; |
| } |
| ret = -EINVAL; |
| if (btf_kfunc_is_modify_return(btf, btf_id, prog) || |
| !check_attach_modify_return(addr, tname)) |
| ret = 0; |
| if (ret) { |
| module_put(mod); |
| bpf_log(log, "%s() is not modifiable\n", tname); |
| return ret; |
| } |
| } |
| |
| break; |
| } |
| tgt_info->tgt_addr = addr; |
| tgt_info->tgt_name = tname; |
| tgt_info->tgt_type = t; |
| tgt_info->tgt_mod = mod; |
| return 0; |
| } |
| |
| BTF_SET_START(btf_id_deny) |
| BTF_ID_UNUSED |
| #ifdef CONFIG_SMP |
| BTF_ID(func, migrate_disable) |
| BTF_ID(func, migrate_enable) |
| #endif |
| #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU |
| BTF_ID(func, rcu_read_unlock_strict) |
| #endif |
| #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) |
| BTF_ID(func, preempt_count_add) |
| BTF_ID(func, preempt_count_sub) |
| #endif |
| #ifdef CONFIG_PREEMPT_RCU |
| BTF_ID(func, __rcu_read_lock) |
| BTF_ID(func, __rcu_read_unlock) |
| #endif |
| BTF_SET_END(btf_id_deny) |
| |
| static bool can_be_sleepable(struct bpf_prog *prog) |
| { |
| if (prog->type == BPF_PROG_TYPE_TRACING) { |
| switch (prog->expected_attach_type) { |
| case BPF_TRACE_FENTRY: |
| case BPF_TRACE_FEXIT: |
| case BPF_MODIFY_RETURN: |
| case BPF_TRACE_ITER: |
| return true; |
| default: |
| return false; |
| } |
| } |
| return prog->type == BPF_PROG_TYPE_LSM || |
| prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || |
| prog->type == BPF_PROG_TYPE_STRUCT_OPS; |
| } |
| |
| static int check_attach_btf_id(struct bpf_verifier_env *env) |
| { |
| struct bpf_prog *prog = env->prog; |
| struct bpf_prog *tgt_prog = prog->aux->dst_prog; |
| struct bpf_attach_target_info tgt_info = {}; |
| u32 btf_id = prog->aux->attach_btf_id; |
| struct bpf_trampoline *tr; |
| int ret; |
| u64 key; |
| |
| if (prog->type == BPF_PROG_TYPE_SYSCALL) { |
| if (prog->aux->sleepable) |
| /* attach_btf_id checked to be zero already */ |
| return 0; |
| verbose(env, "Syscall programs can only be sleepable\n"); |
| return -EINVAL; |
| } |
| |
| if (prog->aux->sleepable && !can_be_sleepable(prog)) { |
| verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); |
| return -EINVAL; |
| } |
| |
| if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) |
| return check_struct_ops_btf_id(env); |
| |
| if (prog->type != BPF_PROG_TYPE_TRACING && |
| prog->type != BPF_PROG_TYPE_LSM && |
| prog->type != BPF_PROG_TYPE_EXT) |
| return 0; |
| |
| ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); |
| if (ret) |
| return ret; |
| |
| if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { |
| /* to make freplace equivalent to their targets, they need to |
| * inherit env->ops and expected_attach_type for the rest of the |
| * verification |
| */ |
| env->ops = bpf_verifier_ops[tgt_prog->type]; |
| prog->expected_attach_type = tgt_prog->expected_attach_type; |
| } |
| |
| /* store info about the attachment target that will be used later */ |
| prog->aux->attach_func_proto = tgt_info.tgt_type; |
| prog->aux->attach_func_name = tgt_info.tgt_name; |
| prog->aux->mod = tgt_info.tgt_mod; |
| |
| if (tgt_prog) { |
| prog->aux->saved_dst_prog_type = tgt_prog->type; |
| prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; |
| } |
| |
| if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { |
| prog->aux->attach_btf_trace = true; |
| return 0; |
| } else if (prog->expected_attach_type == BPF_TRACE_ITER) { |
| if (!bpf_iter_prog_supported(prog)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| if (prog->type == BPF_PROG_TYPE_LSM) { |
| ret = bpf_lsm_verify_prog(&env->log, prog); |
| if (ret < 0) |
| return ret; |
| } else if (prog->type == BPF_PROG_TYPE_TRACING && |
| btf_id_set_contains(&btf_id_deny, btf_id)) { |
| return -EINVAL; |
| } |
| |
| key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); |
| tr = bpf_trampoline_get(key, &tgt_info); |
| if (!tr) |
| return -ENOMEM; |
| |
| if (tgt_prog && tgt_prog->aux->tail_call_reachable) |
| tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; |
| |
| prog->aux->dst_trampoline = tr; |
| return 0; |
| } |
| |
| struct btf *bpf_get_btf_vmlinux(void) |
| { |
| if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { |
| mutex_lock(&bpf_verifier_lock); |
| if (!btf_vmlinux) |
| btf_vmlinux = btf_parse_vmlinux(); |
| mutex_unlock(&bpf_verifier_lock); |
| } |
| return btf_vmlinux; |
| } |
| |
| int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) |
| { |
| u64 start_time = ktime_get_ns(); |
| struct bpf_verifier_env *env; |
| int i, len, ret = -EINVAL, err; |
| u32 log_true_size; |
| bool is_priv; |
| |
| /* no program is valid */ |
| if (ARRAY_SIZE(bpf_verifier_ops) == 0) |
| return -EINVAL; |
| |
| /* 'struct bpf_verifier_env' can be global, but since it's not small, |
| * allocate/free it every time bpf_check() is called |
| */ |
| env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); |
| if (!env) |
| return -ENOMEM; |
| |
| env->bt.env = env; |
| |
| len = (*prog)->len; |
| env->insn_aux_data = |
| vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); |
| ret = -ENOMEM; |
| if (!env->insn_aux_data) |
| goto err_free_env; |
| for (i = 0; i < len; i++) |
| env->insn_aux_data[i].orig_idx = i; |
| env->prog = *prog; |
| env->ops = bpf_verifier_ops[env->prog->type]; |
| env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); |
| |
| env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); |
| env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); |
| env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); |
| env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); |
| env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); |
| |
| bpf_get_btf_vmlinux(); |
| |
| /* grab the mutex to protect few globals used by verifier */ |
| if (!is_priv) |
| mutex_lock(&bpf_verifier_lock); |
| |
| /* user could have requested verbose verifier output |
| * and supplied buffer to store the verification trace |
| */ |
| ret = bpf_vlog_init(&env->log, attr->log_level, |
| (char __user *) (unsigned long) attr->log_buf, |
| attr->log_size); |
| if (ret) |
| goto err_unlock; |
| |
| mark_verifier_state_clean(env); |
| |
| if (IS_ERR(btf_vmlinux)) { |
| /* Either gcc or pahole or kernel are broken. */ |
| verbose(env, "in-kernel BTF is malformed\n"); |
| ret = PTR_ERR(btf_vmlinux); |
| goto skip_full_check; |
| } |
| |
| env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); |
| if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) |
| env->strict_alignment = true; |
| if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) |
| env->strict_alignment = false; |
| |
| if (is_priv) |
| env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; |
| env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; |
| |
| env->explored_states = kvcalloc(state_htab_size(env), |
| sizeof(struct bpf_verifier_state_list *), |
| GFP_USER); |
| ret = -ENOMEM; |
| if (!env->explored_states) |
| goto skip_full_check; |
| |
| ret = check_btf_info_early(env, attr, uattr); |
| if (ret < 0) |
| goto skip_full_check; |
| |
| ret = add_subprog_and_kfunc(env); |
| if (ret < 0) |
| goto skip_full_check; |
| |
| ret = check_subprogs(env); |
| if (ret < 0) |
| goto skip_full_check; |
| |
| ret = check_btf_info(env, attr, uattr); |
| if (ret < 0) |
| goto skip_full_check; |
| |
| ret = check_attach_btf_id(env); |
| if (ret) |
| goto skip_full_check; |
| |
| ret = resolve_pseudo_ldimm64(env); |
| if (ret < 0) |
| goto skip_full_check; |
| |
| if (bpf_prog_is_offloaded(env->prog->aux)) { |
| ret = bpf_prog_offload_verifier_prep(env->prog); |
| if (ret) |
| goto skip_full_check; |
| } |
| |
| ret = check_cfg(env); |
| if (ret < 0) |
| goto skip_full_check; |
| |
| ret = do_check_main(env); |
| ret = ret ?: do_check_subprogs(env); |
| |
| if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) |
| ret = bpf_prog_offload_finalize(env); |
| |
| skip_full_check: |
| kvfree(env->explored_states); |
| |
| if (ret == 0) |
| ret = check_max_stack_depth(env); |
| |
| /* instruction rewrites happen after this point */ |
| if (ret == 0) |
| ret = optimize_bpf_loop(env); |
| |
| if (is_priv) { |
| if (ret == 0) |
| opt_hard_wire_dead_code_branches(env); |
| if (ret == 0) |
| ret = opt_remove_dead_code(env); |
| if (ret == 0) |
| ret = opt_remove_nops(env); |
| } else { |
| if (ret == 0) |
| sanitize_dead_code(env); |
| } |
| |
| if (ret == 0) |
| /* program is valid, convert *(u32*)(ctx + off) accesses */ |
| ret = convert_ctx_accesses(env); |
| |
| if (ret == 0) |
| ret = do_misc_fixups(env); |
| |
| /* do 32-bit optimization after insn patching has done so those patched |
| * insns could be handled correctly. |
| */ |
| if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { |
| ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); |
| env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret |
| : false; |
| } |
| |
| if (ret == 0) |
| ret = fixup_call_args(env); |
| |
| env->verification_time = ktime_get_ns() - start_time; |
| print_verification_stats(env); |
| env->prog->aux->verified_insns = env->insn_processed; |
| |
| /* preserve original error even if log finalization is successful */ |
| err = bpf_vlog_finalize(&env->log, &log_true_size); |
| if (err) |
| ret = err; |
| |
| if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && |
| copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), |
| &log_true_size, sizeof(log_true_size))) { |
| ret = -EFAULT; |
| goto err_release_maps; |
| } |
| |
| if (ret) |
| goto err_release_maps; |
| |
| if (env->used_map_cnt) { |
| /* if program passed verifier, update used_maps in bpf_prog_info */ |
| env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, |
| sizeof(env->used_maps[0]), |
| GFP_KERNEL); |
| |
| if (!env->prog->aux->used_maps) { |
| ret = -ENOMEM; |
| goto err_release_maps; |
| } |
| |
| memcpy(env->prog->aux->used_maps, env->used_maps, |
| sizeof(env->used_maps[0]) * env->used_map_cnt); |
| env->prog->aux->used_map_cnt = env->used_map_cnt; |
| } |
| if (env->used_btf_cnt) { |
| /* if program passed verifier, update used_btfs in bpf_prog_aux */ |
| env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, |
| sizeof(env->used_btfs[0]), |
| GFP_KERNEL); |
| if (!env->prog->aux->used_btfs) { |
| ret = -ENOMEM; |
| goto err_release_maps; |
| } |
| |
| memcpy(env->prog->aux->used_btfs, env->used_btfs, |
| sizeof(env->used_btfs[0]) * env->used_btf_cnt); |
| env->prog->aux->used_btf_cnt = env->used_btf_cnt; |
| } |
| if (env->used_map_cnt || env->used_btf_cnt) { |
| /* program is valid. Convert pseudo bpf_ld_imm64 into generic |
| * bpf_ld_imm64 instructions |
| */ |
| convert_pseudo_ld_imm64(env); |
| } |
| |
| adjust_btf_func(env); |
| |
| err_release_maps: |
| if (!env->prog->aux->used_maps) |
| /* if we didn't copy map pointers into bpf_prog_info, release |
| * them now. Otherwise free_used_maps() will release them. |
| */ |
| release_maps(env); |
| if (!env->prog->aux->used_btfs) |
| release_btfs(env); |
| |
| /* extension progs temporarily inherit the attach_type of their targets |
| for verification purposes, so set it back to zero before returning |
| */ |
| if (env->prog->type == BPF_PROG_TYPE_EXT) |
| env->prog->expected_attach_type = 0; |
| |
| *prog = env->prog; |
| |
| module_put(env->attach_btf_mod); |
| err_unlock: |
| if (!is_priv) |
| mutex_unlock(&bpf_verifier_lock); |
| vfree(env->insn_aux_data); |
| err_free_env: |
| kfree(env); |
| return ret; |
| } |