| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Derived from "arch/i386/kernel/process.c" |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and |
| * Paul Mackerras (paulus@cs.anu.edu.au) |
| * |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/sched/debug.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/user.h> |
| #include <linux/elf.h> |
| #include <linux/prctl.h> |
| #include <linux/init_task.h> |
| #include <linux/export.h> |
| #include <linux/kallsyms.h> |
| #include <linux/mqueue.h> |
| #include <linux/hardirq.h> |
| #include <linux/utsname.h> |
| #include <linux/ftrace.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/personality.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/uaccess.h> |
| #include <linux/pkeys.h> |
| #include <linux/seq_buf.h> |
| |
| #include <asm/interrupt.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/mmu.h> |
| #include <asm/machdep.h> |
| #include <asm/time.h> |
| #include <asm/runlatch.h> |
| #include <asm/syscalls.h> |
| #include <asm/switch_to.h> |
| #include <asm/tm.h> |
| #include <asm/debug.h> |
| #ifdef CONFIG_PPC64 |
| #include <asm/firmware.h> |
| #include <asm/hw_irq.h> |
| #endif |
| #include <asm/code-patching.h> |
| #include <asm/exec.h> |
| #include <asm/livepatch.h> |
| #include <asm/cpu_has_feature.h> |
| #include <asm/asm-prototypes.h> |
| #include <asm/stacktrace.h> |
| #include <asm/hw_breakpoint.h> |
| |
| #include <linux/kprobes.h> |
| #include <linux/kdebug.h> |
| |
| /* Transactional Memory debug */ |
| #ifdef TM_DEBUG_SW |
| #define TM_DEBUG(x...) printk(KERN_INFO x) |
| #else |
| #define TM_DEBUG(x...) do { } while(0) |
| #endif |
| |
| extern unsigned long _get_SP(void); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* |
| * Are we running in "Suspend disabled" mode? If so we have to block any |
| * sigreturn that would get us into suspended state, and we also warn in some |
| * other paths that we should never reach with suspend disabled. |
| */ |
| bool tm_suspend_disabled __ro_after_init = false; |
| |
| static void check_if_tm_restore_required(struct task_struct *tsk) |
| { |
| /* |
| * If we are saving the current thread's registers, and the |
| * thread is in a transactional state, set the TIF_RESTORE_TM |
| * bit so that we know to restore the registers before |
| * returning to userspace. |
| */ |
| if (tsk == current && tsk->thread.regs && |
| MSR_TM_ACTIVE(tsk->thread.regs->msr) && |
| !test_thread_flag(TIF_RESTORE_TM)) { |
| regs_set_return_msr(&tsk->thread.ckpt_regs, |
| tsk->thread.regs->msr); |
| set_thread_flag(TIF_RESTORE_TM); |
| } |
| } |
| |
| #else |
| static inline void check_if_tm_restore_required(struct task_struct *tsk) { } |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| |
| bool strict_msr_control; |
| EXPORT_SYMBOL(strict_msr_control); |
| |
| static int __init enable_strict_msr_control(char *str) |
| { |
| strict_msr_control = true; |
| pr_info("Enabling strict facility control\n"); |
| |
| return 0; |
| } |
| early_param("ppc_strict_facility_enable", enable_strict_msr_control); |
| |
| /* notrace because it's called by restore_math */ |
| unsigned long notrace msr_check_and_set(unsigned long bits) |
| { |
| unsigned long oldmsr = mfmsr(); |
| unsigned long newmsr; |
| |
| newmsr = oldmsr | bits; |
| |
| if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) |
| newmsr |= MSR_VSX; |
| |
| if (oldmsr != newmsr) |
| newmsr = mtmsr_isync_irqsafe(newmsr); |
| |
| return newmsr; |
| } |
| EXPORT_SYMBOL_GPL(msr_check_and_set); |
| |
| /* notrace because it's called by restore_math */ |
| void notrace __msr_check_and_clear(unsigned long bits) |
| { |
| unsigned long oldmsr = mfmsr(); |
| unsigned long newmsr; |
| |
| newmsr = oldmsr & ~bits; |
| |
| if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) |
| newmsr &= ~MSR_VSX; |
| |
| if (oldmsr != newmsr) |
| mtmsr_isync_irqsafe(newmsr); |
| } |
| EXPORT_SYMBOL(__msr_check_and_clear); |
| |
| #ifdef CONFIG_PPC_FPU |
| static void __giveup_fpu(struct task_struct *tsk) |
| { |
| unsigned long msr; |
| |
| save_fpu(tsk); |
| msr = tsk->thread.regs->msr; |
| msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); |
| if (cpu_has_feature(CPU_FTR_VSX)) |
| msr &= ~MSR_VSX; |
| regs_set_return_msr(tsk->thread.regs, msr); |
| } |
| |
| void giveup_fpu(struct task_struct *tsk) |
| { |
| check_if_tm_restore_required(tsk); |
| |
| msr_check_and_set(MSR_FP); |
| __giveup_fpu(tsk); |
| msr_check_and_clear(MSR_FP); |
| } |
| EXPORT_SYMBOL(giveup_fpu); |
| |
| /* |
| * Make sure the floating-point register state in the |
| * the thread_struct is up to date for task tsk. |
| */ |
| void flush_fp_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| /* |
| * We need to disable preemption here because if we didn't, |
| * another process could get scheduled after the regs->msr |
| * test but before we have finished saving the FP registers |
| * to the thread_struct. That process could take over the |
| * FPU, and then when we get scheduled again we would store |
| * bogus values for the remaining FP registers. |
| */ |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_FP) { |
| /* |
| * This should only ever be called for current or |
| * for a stopped child process. Since we save away |
| * the FP register state on context switch, |
| * there is something wrong if a stopped child appears |
| * to still have its FP state in the CPU registers. |
| */ |
| BUG_ON(tsk != current); |
| giveup_fpu(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| EXPORT_SYMBOL_GPL(flush_fp_to_thread); |
| |
| void enable_kernel_fp(void) |
| { |
| unsigned long cpumsr; |
| |
| WARN_ON(preemptible()); |
| |
| cpumsr = msr_check_and_set(MSR_FP); |
| |
| if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { |
| check_if_tm_restore_required(current); |
| /* |
| * If a thread has already been reclaimed then the |
| * checkpointed registers are on the CPU but have definitely |
| * been saved by the reclaim code. Don't need to and *cannot* |
| * giveup as this would save to the 'live' structure not the |
| * checkpointed structure. |
| */ |
| if (!MSR_TM_ACTIVE(cpumsr) && |
| MSR_TM_ACTIVE(current->thread.regs->msr)) |
| return; |
| __giveup_fpu(current); |
| } |
| } |
| EXPORT_SYMBOL(enable_kernel_fp); |
| #else |
| static inline void __giveup_fpu(struct task_struct *tsk) { } |
| #endif /* CONFIG_PPC_FPU */ |
| |
| #ifdef CONFIG_ALTIVEC |
| static void __giveup_altivec(struct task_struct *tsk) |
| { |
| unsigned long msr; |
| |
| save_altivec(tsk); |
| msr = tsk->thread.regs->msr; |
| msr &= ~MSR_VEC; |
| if (cpu_has_feature(CPU_FTR_VSX)) |
| msr &= ~MSR_VSX; |
| regs_set_return_msr(tsk->thread.regs, msr); |
| } |
| |
| void giveup_altivec(struct task_struct *tsk) |
| { |
| check_if_tm_restore_required(tsk); |
| |
| msr_check_and_set(MSR_VEC); |
| __giveup_altivec(tsk); |
| msr_check_and_clear(MSR_VEC); |
| } |
| EXPORT_SYMBOL(giveup_altivec); |
| |
| void enable_kernel_altivec(void) |
| { |
| unsigned long cpumsr; |
| |
| WARN_ON(preemptible()); |
| |
| cpumsr = msr_check_and_set(MSR_VEC); |
| |
| if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { |
| check_if_tm_restore_required(current); |
| /* |
| * If a thread has already been reclaimed then the |
| * checkpointed registers are on the CPU but have definitely |
| * been saved by the reclaim code. Don't need to and *cannot* |
| * giveup as this would save to the 'live' structure not the |
| * checkpointed structure. |
| */ |
| if (!MSR_TM_ACTIVE(cpumsr) && |
| MSR_TM_ACTIVE(current->thread.regs->msr)) |
| return; |
| __giveup_altivec(current); |
| } |
| } |
| EXPORT_SYMBOL(enable_kernel_altivec); |
| |
| /* |
| * Make sure the VMX/Altivec register state in the |
| * the thread_struct is up to date for task tsk. |
| */ |
| void flush_altivec_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_VEC) { |
| BUG_ON(tsk != current); |
| giveup_altivec(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| EXPORT_SYMBOL_GPL(flush_altivec_to_thread); |
| #endif /* CONFIG_ALTIVEC */ |
| |
| #ifdef CONFIG_VSX |
| static void __giveup_vsx(struct task_struct *tsk) |
| { |
| unsigned long msr = tsk->thread.regs->msr; |
| |
| /* |
| * We should never be setting MSR_VSX without also setting |
| * MSR_FP and MSR_VEC |
| */ |
| WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); |
| |
| /* __giveup_fpu will clear MSR_VSX */ |
| if (msr & MSR_FP) |
| __giveup_fpu(tsk); |
| if (msr & MSR_VEC) |
| __giveup_altivec(tsk); |
| } |
| |
| static void giveup_vsx(struct task_struct *tsk) |
| { |
| check_if_tm_restore_required(tsk); |
| |
| msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); |
| __giveup_vsx(tsk); |
| msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); |
| } |
| |
| void enable_kernel_vsx(void) |
| { |
| unsigned long cpumsr; |
| |
| WARN_ON(preemptible()); |
| |
| cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); |
| |
| if (current->thread.regs && |
| (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { |
| check_if_tm_restore_required(current); |
| /* |
| * If a thread has already been reclaimed then the |
| * checkpointed registers are on the CPU but have definitely |
| * been saved by the reclaim code. Don't need to and *cannot* |
| * giveup as this would save to the 'live' structure not the |
| * checkpointed structure. |
| */ |
| if (!MSR_TM_ACTIVE(cpumsr) && |
| MSR_TM_ACTIVE(current->thread.regs->msr)) |
| return; |
| __giveup_vsx(current); |
| } |
| } |
| EXPORT_SYMBOL(enable_kernel_vsx); |
| |
| void flush_vsx_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { |
| BUG_ON(tsk != current); |
| giveup_vsx(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| EXPORT_SYMBOL_GPL(flush_vsx_to_thread); |
| #endif /* CONFIG_VSX */ |
| |
| #ifdef CONFIG_SPE |
| void giveup_spe(struct task_struct *tsk) |
| { |
| check_if_tm_restore_required(tsk); |
| |
| msr_check_and_set(MSR_SPE); |
| __giveup_spe(tsk); |
| msr_check_and_clear(MSR_SPE); |
| } |
| EXPORT_SYMBOL(giveup_spe); |
| |
| void enable_kernel_spe(void) |
| { |
| WARN_ON(preemptible()); |
| |
| msr_check_and_set(MSR_SPE); |
| |
| if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { |
| check_if_tm_restore_required(current); |
| __giveup_spe(current); |
| } |
| } |
| EXPORT_SYMBOL(enable_kernel_spe); |
| |
| void flush_spe_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_SPE) { |
| BUG_ON(tsk != current); |
| tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); |
| giveup_spe(tsk); |
| } |
| preempt_enable(); |
| } |
| } |
| #endif /* CONFIG_SPE */ |
| |
| static unsigned long msr_all_available; |
| |
| static int __init init_msr_all_available(void) |
| { |
| if (IS_ENABLED(CONFIG_PPC_FPU)) |
| msr_all_available |= MSR_FP; |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| msr_all_available |= MSR_VEC; |
| if (cpu_has_feature(CPU_FTR_VSX)) |
| msr_all_available |= MSR_VSX; |
| if (cpu_has_feature(CPU_FTR_SPE)) |
| msr_all_available |= MSR_SPE; |
| |
| return 0; |
| } |
| early_initcall(init_msr_all_available); |
| |
| void giveup_all(struct task_struct *tsk) |
| { |
| unsigned long usermsr; |
| |
| if (!tsk->thread.regs) |
| return; |
| |
| check_if_tm_restore_required(tsk); |
| |
| usermsr = tsk->thread.regs->msr; |
| |
| if ((usermsr & msr_all_available) == 0) |
| return; |
| |
| msr_check_and_set(msr_all_available); |
| |
| WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); |
| |
| if (usermsr & MSR_FP) |
| __giveup_fpu(tsk); |
| if (usermsr & MSR_VEC) |
| __giveup_altivec(tsk); |
| if (usermsr & MSR_SPE) |
| __giveup_spe(tsk); |
| |
| msr_check_and_clear(msr_all_available); |
| } |
| EXPORT_SYMBOL(giveup_all); |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| #ifdef CONFIG_PPC_FPU |
| static bool should_restore_fp(void) |
| { |
| if (current->thread.load_fp) { |
| current->thread.load_fp++; |
| return true; |
| } |
| return false; |
| } |
| |
| static void do_restore_fp(void) |
| { |
| load_fp_state(¤t->thread.fp_state); |
| } |
| #else |
| static bool should_restore_fp(void) { return false; } |
| static void do_restore_fp(void) { } |
| #endif /* CONFIG_PPC_FPU */ |
| |
| #ifdef CONFIG_ALTIVEC |
| static bool should_restore_altivec(void) |
| { |
| if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) { |
| current->thread.load_vec++; |
| return true; |
| } |
| return false; |
| } |
| |
| static void do_restore_altivec(void) |
| { |
| load_vr_state(¤t->thread.vr_state); |
| current->thread.used_vr = 1; |
| } |
| #else |
| static bool should_restore_altivec(void) { return false; } |
| static void do_restore_altivec(void) { } |
| #endif /* CONFIG_ALTIVEC */ |
| |
| static bool should_restore_vsx(void) |
| { |
| if (cpu_has_feature(CPU_FTR_VSX)) |
| return true; |
| return false; |
| } |
| #ifdef CONFIG_VSX |
| static void do_restore_vsx(void) |
| { |
| current->thread.used_vsr = 1; |
| } |
| #else |
| static void do_restore_vsx(void) { } |
| #endif /* CONFIG_VSX */ |
| |
| /* |
| * The exception exit path calls restore_math() with interrupts hard disabled |
| * but the soft irq state not "reconciled". ftrace code that calls |
| * local_irq_save/restore causes warnings. |
| * |
| * Rather than complicate the exit path, just don't trace restore_math. This |
| * could be done by having ftrace entry code check for this un-reconciled |
| * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and |
| * temporarily fix it up for the duration of the ftrace call. |
| */ |
| void notrace restore_math(struct pt_regs *regs) |
| { |
| unsigned long msr; |
| unsigned long new_msr = 0; |
| |
| msr = regs->msr; |
| |
| /* |
| * new_msr tracks the facilities that are to be restored. Only reload |
| * if the bit is not set in the user MSR (if it is set, the registers |
| * are live for the user thread). |
| */ |
| if ((!(msr & MSR_FP)) && should_restore_fp()) |
| new_msr |= MSR_FP; |
| |
| if ((!(msr & MSR_VEC)) && should_restore_altivec()) |
| new_msr |= MSR_VEC; |
| |
| if ((!(msr & MSR_VSX)) && should_restore_vsx()) { |
| if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) |
| new_msr |= MSR_VSX; |
| } |
| |
| if (new_msr) { |
| unsigned long fpexc_mode = 0; |
| |
| msr_check_and_set(new_msr); |
| |
| if (new_msr & MSR_FP) { |
| do_restore_fp(); |
| |
| // This also covers VSX, because VSX implies FP |
| fpexc_mode = current->thread.fpexc_mode; |
| } |
| |
| if (new_msr & MSR_VEC) |
| do_restore_altivec(); |
| |
| if (new_msr & MSR_VSX) |
| do_restore_vsx(); |
| |
| msr_check_and_clear(new_msr); |
| |
| regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode); |
| } |
| } |
| #endif /* CONFIG_PPC_BOOK3S_64 */ |
| |
| static void save_all(struct task_struct *tsk) |
| { |
| unsigned long usermsr; |
| |
| if (!tsk->thread.regs) |
| return; |
| |
| usermsr = tsk->thread.regs->msr; |
| |
| if ((usermsr & msr_all_available) == 0) |
| return; |
| |
| msr_check_and_set(msr_all_available); |
| |
| WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); |
| |
| if (usermsr & MSR_FP) |
| save_fpu(tsk); |
| |
| if (usermsr & MSR_VEC) |
| save_altivec(tsk); |
| |
| if (usermsr & MSR_SPE) |
| __giveup_spe(tsk); |
| |
| msr_check_and_clear(msr_all_available); |
| } |
| |
| void flush_all_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| BUG_ON(tsk != current); |
| #ifdef CONFIG_SPE |
| if (tsk->thread.regs->msr & MSR_SPE) |
| tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); |
| #endif |
| save_all(tsk); |
| |
| preempt_enable(); |
| } |
| } |
| EXPORT_SYMBOL(flush_all_to_thread); |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| void do_send_trap(struct pt_regs *regs, unsigned long address, |
| unsigned long error_code, int breakpt) |
| { |
| current->thread.trap_nr = TRAP_HWBKPT; |
| if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, |
| 11, SIGSEGV) == NOTIFY_STOP) |
| return; |
| |
| /* Deliver the signal to userspace */ |
| force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ |
| (void __user *)address); |
| } |
| #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ |
| |
| static void do_break_handler(struct pt_regs *regs) |
| { |
| struct arch_hw_breakpoint null_brk = {0}; |
| struct arch_hw_breakpoint *info; |
| ppc_inst_t instr = ppc_inst(0); |
| int type = 0; |
| int size = 0; |
| unsigned long ea; |
| int i; |
| |
| /* |
| * If underneath hw supports only one watchpoint, we know it |
| * caused exception. 8xx also falls into this category. |
| */ |
| if (nr_wp_slots() == 1) { |
| __set_breakpoint(0, &null_brk); |
| current->thread.hw_brk[0] = null_brk; |
| current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED; |
| return; |
| } |
| |
| /* Otherwise find out which DAWR caused exception and disable it. */ |
| wp_get_instr_detail(regs, &instr, &type, &size, &ea); |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| info = ¤t->thread.hw_brk[i]; |
| if (!info->address) |
| continue; |
| |
| if (wp_check_constraints(regs, instr, ea, type, size, info)) { |
| __set_breakpoint(i, &null_brk); |
| current->thread.hw_brk[i] = null_brk; |
| current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED; |
| } |
| } |
| } |
| |
| DEFINE_INTERRUPT_HANDLER(do_break) |
| { |
| current->thread.trap_nr = TRAP_HWBKPT; |
| if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr, |
| 11, SIGSEGV) == NOTIFY_STOP) |
| return; |
| |
| if (debugger_break_match(regs)) |
| return; |
| |
| /* |
| * We reach here only when watchpoint exception is generated by ptrace |
| * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set, |
| * watchpoint is already handled by hw_breakpoint_handler() so we don't |
| * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set, |
| * we need to manually handle the watchpoint here. |
| */ |
| if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT)) |
| do_break_handler(regs); |
| |
| /* Deliver the signal to userspace */ |
| force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar); |
| } |
| #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| |
| static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]); |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| /* |
| * Set the debug registers back to their default "safe" values. |
| */ |
| static void set_debug_reg_defaults(struct thread_struct *thread) |
| { |
| thread->debug.iac1 = thread->debug.iac2 = 0; |
| #if CONFIG_PPC_ADV_DEBUG_IACS > 2 |
| thread->debug.iac3 = thread->debug.iac4 = 0; |
| #endif |
| thread->debug.dac1 = thread->debug.dac2 = 0; |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| thread->debug.dvc1 = thread->debug.dvc2 = 0; |
| #endif |
| thread->debug.dbcr0 = 0; |
| #ifdef CONFIG_BOOKE |
| /* |
| * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) |
| */ |
| thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | |
| DBCR1_IAC3US | DBCR1_IAC4US; |
| /* |
| * Force Data Address Compare User/Supervisor bits to be User-only |
| * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. |
| */ |
| thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; |
| #else |
| thread->debug.dbcr1 = 0; |
| #endif |
| } |
| |
| static void prime_debug_regs(struct debug_reg *debug) |
| { |
| /* |
| * We could have inherited MSR_DE from userspace, since |
| * it doesn't get cleared on exception entry. Make sure |
| * MSR_DE is clear before we enable any debug events. |
| */ |
| mtmsr(mfmsr() & ~MSR_DE); |
| |
| mtspr(SPRN_IAC1, debug->iac1); |
| mtspr(SPRN_IAC2, debug->iac2); |
| #if CONFIG_PPC_ADV_DEBUG_IACS > 2 |
| mtspr(SPRN_IAC3, debug->iac3); |
| mtspr(SPRN_IAC4, debug->iac4); |
| #endif |
| mtspr(SPRN_DAC1, debug->dac1); |
| mtspr(SPRN_DAC2, debug->dac2); |
| #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 |
| mtspr(SPRN_DVC1, debug->dvc1); |
| mtspr(SPRN_DVC2, debug->dvc2); |
| #endif |
| mtspr(SPRN_DBCR0, debug->dbcr0); |
| mtspr(SPRN_DBCR1, debug->dbcr1); |
| #ifdef CONFIG_BOOKE |
| mtspr(SPRN_DBCR2, debug->dbcr2); |
| #endif |
| } |
| /* |
| * Unless neither the old or new thread are making use of the |
| * debug registers, set the debug registers from the values |
| * stored in the new thread. |
| */ |
| void switch_booke_debug_regs(struct debug_reg *new_debug) |
| { |
| if ((current->thread.debug.dbcr0 & DBCR0_IDM) |
| || (new_debug->dbcr0 & DBCR0_IDM)) |
| prime_debug_regs(new_debug); |
| } |
| EXPORT_SYMBOL_GPL(switch_booke_debug_regs); |
| #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ |
| #ifndef CONFIG_HAVE_HW_BREAKPOINT |
| static void set_breakpoint(int i, struct arch_hw_breakpoint *brk) |
| { |
| preempt_disable(); |
| __set_breakpoint(i, brk); |
| preempt_enable(); |
| } |
| |
| static void set_debug_reg_defaults(struct thread_struct *thread) |
| { |
| int i; |
| struct arch_hw_breakpoint null_brk = {0}; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| thread->hw_brk[i] = null_brk; |
| if (ppc_breakpoint_available()) |
| set_breakpoint(i, &thread->hw_brk[i]); |
| } |
| } |
| |
| static inline bool hw_brk_match(struct arch_hw_breakpoint *a, |
| struct arch_hw_breakpoint *b) |
| { |
| if (a->address != b->address) |
| return false; |
| if (a->type != b->type) |
| return false; |
| if (a->len != b->len) |
| return false; |
| /* no need to check hw_len. it's calculated from address and len */ |
| return true; |
| } |
| |
| static void switch_hw_breakpoint(struct task_struct *new) |
| { |
| int i; |
| |
| for (i = 0; i < nr_wp_slots(); i++) { |
| if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]), |
| &new->thread.hw_brk[i]))) |
| continue; |
| |
| __set_breakpoint(i, &new->thread.hw_brk[i]); |
| } |
| } |
| #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ |
| #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ |
| |
| static inline int set_dabr(struct arch_hw_breakpoint *brk) |
| { |
| unsigned long dabr, dabrx; |
| |
| dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); |
| dabrx = ((brk->type >> 3) & 0x7); |
| |
| if (ppc_md.set_dabr) |
| return ppc_md.set_dabr(dabr, dabrx); |
| |
| if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) { |
| mtspr(SPRN_DAC1, dabr); |
| if (IS_ENABLED(CONFIG_PPC_47x)) |
| isync(); |
| return 0; |
| } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { |
| mtspr(SPRN_DABR, dabr); |
| if (cpu_has_feature(CPU_FTR_DABRX)) |
| mtspr(SPRN_DABRX, dabrx); |
| return 0; |
| } else { |
| return -EINVAL; |
| } |
| } |
| |
| static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) |
| { |
| unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | |
| LCTRL1_CRWF_RW; |
| unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; |
| unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE); |
| unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE); |
| |
| if (start_addr == 0) |
| lctrl2 |= LCTRL2_LW0LA_F; |
| else if (end_addr == 0) |
| lctrl2 |= LCTRL2_LW0LA_E; |
| else |
| lctrl2 |= LCTRL2_LW0LA_EandF; |
| |
| mtspr(SPRN_LCTRL2, 0); |
| |
| if ((brk->type & HW_BRK_TYPE_RDWR) == 0) |
| return 0; |
| |
| if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) |
| lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; |
| if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) |
| lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; |
| |
| mtspr(SPRN_CMPE, start_addr - 1); |
| mtspr(SPRN_CMPF, end_addr); |
| mtspr(SPRN_LCTRL1, lctrl1); |
| mtspr(SPRN_LCTRL2, lctrl2); |
| |
| return 0; |
| } |
| |
| static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk) |
| { |
| if (dawr_enabled()) |
| // Power8 or later |
| set_dawr(nr, brk); |
| else if (IS_ENABLED(CONFIG_PPC_8xx)) |
| set_breakpoint_8xx(brk); |
| else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) |
| // Power7 or earlier |
| set_dabr(brk); |
| else |
| // Shouldn't happen due to higher level checks |
| WARN_ON_ONCE(1); |
| } |
| |
| void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk) |
| { |
| memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk)); |
| set_hw_breakpoint(nr, brk); |
| } |
| |
| /* Check if we have DAWR or DABR hardware */ |
| bool ppc_breakpoint_available(void) |
| { |
| if (dawr_enabled()) |
| return true; /* POWER8 DAWR or POWER9 forced DAWR */ |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| return false; /* POWER9 with DAWR disabled */ |
| /* DABR: Everything but POWER8 and POWER9 */ |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(ppc_breakpoint_available); |
| |
| /* Disable the breakpoint in hardware without touching current_brk[] */ |
| void suspend_breakpoints(void) |
| { |
| struct arch_hw_breakpoint brk = {0}; |
| int i; |
| |
| if (!ppc_breakpoint_available()) |
| return; |
| |
| for (i = 0; i < nr_wp_slots(); i++) |
| set_hw_breakpoint(i, &brk); |
| } |
| |
| /* |
| * Re-enable breakpoints suspended by suspend_breakpoints() in hardware |
| * from current_brk[] |
| */ |
| void restore_breakpoints(void) |
| { |
| int i; |
| |
| if (!ppc_breakpoint_available()) |
| return; |
| |
| for (i = 0; i < nr_wp_slots(); i++) |
| set_hw_breakpoint(i, this_cpu_ptr(¤t_brk[i])); |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| |
| static inline bool tm_enabled(struct task_struct *tsk) |
| { |
| return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); |
| } |
| |
| static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) |
| { |
| /* |
| * Use the current MSR TM suspended bit to track if we have |
| * checkpointed state outstanding. |
| * On signal delivery, we'd normally reclaim the checkpointed |
| * state to obtain stack pointer (see:get_tm_stackpointer()). |
| * This will then directly return to userspace without going |
| * through __switch_to(). However, if the stack frame is bad, |
| * we need to exit this thread which calls __switch_to() which |
| * will again attempt to reclaim the already saved tm state. |
| * Hence we need to check that we've not already reclaimed |
| * this state. |
| * We do this using the current MSR, rather tracking it in |
| * some specific thread_struct bit, as it has the additional |
| * benefit of checking for a potential TM bad thing exception. |
| */ |
| if (!MSR_TM_SUSPENDED(mfmsr())) |
| return; |
| |
| giveup_all(container_of(thr, struct task_struct, thread)); |
| |
| tm_reclaim(thr, cause); |
| |
| /* |
| * If we are in a transaction and FP is off then we can't have |
| * used FP inside that transaction. Hence the checkpointed |
| * state is the same as the live state. We need to copy the |
| * live state to the checkpointed state so that when the |
| * transaction is restored, the checkpointed state is correct |
| * and the aborted transaction sees the correct state. We use |
| * ckpt_regs.msr here as that's what tm_reclaim will use to |
| * determine if it's going to write the checkpointed state or |
| * not. So either this will write the checkpointed registers, |
| * or reclaim will. Similarly for VMX. |
| */ |
| if ((thr->ckpt_regs.msr & MSR_FP) == 0) |
| memcpy(&thr->ckfp_state, &thr->fp_state, |
| sizeof(struct thread_fp_state)); |
| if ((thr->ckpt_regs.msr & MSR_VEC) == 0) |
| memcpy(&thr->ckvr_state, &thr->vr_state, |
| sizeof(struct thread_vr_state)); |
| } |
| |
| void tm_reclaim_current(uint8_t cause) |
| { |
| tm_enable(); |
| tm_reclaim_thread(¤t->thread, cause); |
| } |
| |
| static inline void tm_reclaim_task(struct task_struct *tsk) |
| { |
| /* We have to work out if we're switching from/to a task that's in the |
| * middle of a transaction. |
| * |
| * In switching we need to maintain a 2nd register state as |
| * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the |
| * checkpointed (tbegin) state in ckpt_regs, ckfp_state and |
| * ckvr_state |
| * |
| * We also context switch (save) TFHAR/TEXASR/TFIAR in here. |
| */ |
| struct thread_struct *thr = &tsk->thread; |
| |
| if (!thr->regs) |
| return; |
| |
| if (!MSR_TM_ACTIVE(thr->regs->msr)) |
| goto out_and_saveregs; |
| |
| WARN_ON(tm_suspend_disabled); |
| |
| TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " |
| "ccr=%lx, msr=%lx, trap=%lx)\n", |
| tsk->pid, thr->regs->nip, |
| thr->regs->ccr, thr->regs->msr, |
| thr->regs->trap); |
| |
| tm_reclaim_thread(thr, TM_CAUSE_RESCHED); |
| |
| TM_DEBUG("--- tm_reclaim on pid %d complete\n", |
| tsk->pid); |
| |
| out_and_saveregs: |
| /* Always save the regs here, even if a transaction's not active. |
| * This context-switches a thread's TM info SPRs. We do it here to |
| * be consistent with the restore path (in recheckpoint) which |
| * cannot happen later in _switch(). |
| */ |
| tm_save_sprs(thr); |
| } |
| |
| extern void __tm_recheckpoint(struct thread_struct *thread); |
| |
| void tm_recheckpoint(struct thread_struct *thread) |
| { |
| unsigned long flags; |
| |
| if (!(thread->regs->msr & MSR_TM)) |
| return; |
| |
| /* We really can't be interrupted here as the TEXASR registers can't |
| * change and later in the trecheckpoint code, we have a userspace R1. |
| * So let's hard disable over this region. |
| */ |
| local_irq_save(flags); |
| hard_irq_disable(); |
| |
| /* The TM SPRs are restored here, so that TEXASR.FS can be set |
| * before the trecheckpoint and no explosion occurs. |
| */ |
| tm_restore_sprs(thread); |
| |
| __tm_recheckpoint(thread); |
| |
| local_irq_restore(flags); |
| } |
| |
| static inline void tm_recheckpoint_new_task(struct task_struct *new) |
| { |
| if (!cpu_has_feature(CPU_FTR_TM)) |
| return; |
| |
| /* Recheckpoint the registers of the thread we're about to switch to. |
| * |
| * If the task was using FP, we non-lazily reload both the original and |
| * the speculative FP register states. This is because the kernel |
| * doesn't see if/when a TM rollback occurs, so if we take an FP |
| * unavailable later, we are unable to determine which set of FP regs |
| * need to be restored. |
| */ |
| if (!tm_enabled(new)) |
| return; |
| |
| if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ |
| tm_restore_sprs(&new->thread); |
| return; |
| } |
| /* Recheckpoint to restore original checkpointed register state. */ |
| TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", |
| new->pid, new->thread.regs->msr); |
| |
| tm_recheckpoint(&new->thread); |
| |
| /* |
| * The checkpointed state has been restored but the live state has |
| * not, ensure all the math functionality is turned off to trigger |
| * restore_math() to reload. |
| */ |
| new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); |
| |
| TM_DEBUG("*** tm_recheckpoint of pid %d complete " |
| "(kernel msr 0x%lx)\n", |
| new->pid, mfmsr()); |
| } |
| |
| static inline void __switch_to_tm(struct task_struct *prev, |
| struct task_struct *new) |
| { |
| if (cpu_has_feature(CPU_FTR_TM)) { |
| if (tm_enabled(prev) || tm_enabled(new)) |
| tm_enable(); |
| |
| if (tm_enabled(prev)) { |
| prev->thread.load_tm++; |
| tm_reclaim_task(prev); |
| if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) |
| prev->thread.regs->msr &= ~MSR_TM; |
| } |
| |
| tm_recheckpoint_new_task(new); |
| } |
| } |
| |
| /* |
| * This is called if we are on the way out to userspace and the |
| * TIF_RESTORE_TM flag is set. It checks if we need to reload |
| * FP and/or vector state and does so if necessary. |
| * If userspace is inside a transaction (whether active or |
| * suspended) and FP/VMX/VSX instructions have ever been enabled |
| * inside that transaction, then we have to keep them enabled |
| * and keep the FP/VMX/VSX state loaded while ever the transaction |
| * continues. The reason is that if we didn't, and subsequently |
| * got a FP/VMX/VSX unavailable interrupt inside a transaction, |
| * we don't know whether it's the same transaction, and thus we |
| * don't know which of the checkpointed state and the transactional |
| * state to use. |
| */ |
| void restore_tm_state(struct pt_regs *regs) |
| { |
| unsigned long msr_diff; |
| |
| /* |
| * This is the only moment we should clear TIF_RESTORE_TM as |
| * it is here that ckpt_regs.msr and pt_regs.msr become the same |
| * again, anything else could lead to an incorrect ckpt_msr being |
| * saved and therefore incorrect signal contexts. |
| */ |
| clear_thread_flag(TIF_RESTORE_TM); |
| if (!MSR_TM_ACTIVE(regs->msr)) |
| return; |
| |
| msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; |
| msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; |
| |
| /* Ensure that restore_math() will restore */ |
| if (msr_diff & MSR_FP) |
| current->thread.load_fp = 1; |
| #ifdef CONFIG_ALTIVEC |
| if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) |
| current->thread.load_vec = 1; |
| #endif |
| restore_math(regs); |
| |
| regs_set_return_msr(regs, regs->msr | msr_diff); |
| } |
| |
| #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */ |
| #define tm_recheckpoint_new_task(new) |
| #define __switch_to_tm(prev, new) |
| void tm_reclaim_current(uint8_t cause) {} |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| |
| static inline void save_sprs(struct thread_struct *t) |
| { |
| #ifdef CONFIG_ALTIVEC |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| t->vrsave = mfspr(SPRN_VRSAVE); |
| #endif |
| #ifdef CONFIG_SPE |
| if (cpu_has_feature(CPU_FTR_SPE)) |
| t->spefscr = mfspr(SPRN_SPEFSCR); |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (cpu_has_feature(CPU_FTR_DSCR)) |
| t->dscr = mfspr(SPRN_DSCR); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) { |
| t->bescr = mfspr(SPRN_BESCR); |
| t->ebbhr = mfspr(SPRN_EBBHR); |
| t->ebbrr = mfspr(SPRN_EBBRR); |
| |
| t->fscr = mfspr(SPRN_FSCR); |
| |
| /* |
| * Note that the TAR is not available for use in the kernel. |
| * (To provide this, the TAR should be backed up/restored on |
| * exception entry/exit instead, and be in pt_regs. FIXME, |
| * this should be in pt_regs anyway (for debug).) |
| */ |
| t->tar = mfspr(SPRN_TAR); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) |
| t->hashkeyr = mfspr(SPRN_HASHKEYR); |
| #endif |
| } |
| |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| void kvmppc_save_user_regs(void) |
| { |
| unsigned long usermsr; |
| |
| if (!current->thread.regs) |
| return; |
| |
| usermsr = current->thread.regs->msr; |
| |
| if (usermsr & MSR_FP) |
| save_fpu(current); |
| |
| if (usermsr & MSR_VEC) |
| save_altivec(current); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (usermsr & MSR_TM) { |
| current->thread.tm_tfhar = mfspr(SPRN_TFHAR); |
| current->thread.tm_tfiar = mfspr(SPRN_TFIAR); |
| current->thread.tm_texasr = mfspr(SPRN_TEXASR); |
| current->thread.regs->msr &= ~MSR_TM; |
| } |
| #endif |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_save_user_regs); |
| |
| void kvmppc_save_current_sprs(void) |
| { |
| save_sprs(¤t->thread); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs); |
| #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ |
| |
| static inline void restore_sprs(struct thread_struct *old_thread, |
| struct thread_struct *new_thread) |
| { |
| #ifdef CONFIG_ALTIVEC |
| if (cpu_has_feature(CPU_FTR_ALTIVEC) && |
| old_thread->vrsave != new_thread->vrsave) |
| mtspr(SPRN_VRSAVE, new_thread->vrsave); |
| #endif |
| #ifdef CONFIG_SPE |
| if (cpu_has_feature(CPU_FTR_SPE) && |
| old_thread->spefscr != new_thread->spefscr) |
| mtspr(SPRN_SPEFSCR, new_thread->spefscr); |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (cpu_has_feature(CPU_FTR_DSCR)) { |
| u64 dscr = get_paca()->dscr_default; |
| if (new_thread->dscr_inherit) |
| dscr = new_thread->dscr; |
| |
| if (old_thread->dscr != dscr) |
| mtspr(SPRN_DSCR, dscr); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) { |
| if (old_thread->bescr != new_thread->bescr) |
| mtspr(SPRN_BESCR, new_thread->bescr); |
| if (old_thread->ebbhr != new_thread->ebbhr) |
| mtspr(SPRN_EBBHR, new_thread->ebbhr); |
| if (old_thread->ebbrr != new_thread->ebbrr) |
| mtspr(SPRN_EBBRR, new_thread->ebbrr); |
| |
| if (old_thread->fscr != new_thread->fscr) |
| mtspr(SPRN_FSCR, new_thread->fscr); |
| |
| if (old_thread->tar != new_thread->tar) |
| mtspr(SPRN_TAR, new_thread->tar); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_P9_TIDR) && |
| old_thread->tidr != new_thread->tidr) |
| mtspr(SPRN_TIDR, new_thread->tidr); |
| |
| if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) && |
| old_thread->hashkeyr != new_thread->hashkeyr) |
| mtspr(SPRN_HASHKEYR, new_thread->hashkeyr); |
| #endif |
| |
| } |
| |
| struct task_struct *__switch_to(struct task_struct *prev, |
| struct task_struct *new) |
| { |
| struct thread_struct *new_thread, *old_thread; |
| struct task_struct *last; |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| struct ppc64_tlb_batch *batch; |
| #endif |
| |
| new_thread = &new->thread; |
| old_thread = ¤t->thread; |
| |
| WARN_ON(!irqs_disabled()); |
| |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| batch = this_cpu_ptr(&ppc64_tlb_batch); |
| if (batch->active) { |
| current_thread_info()->local_flags |= _TLF_LAZY_MMU; |
| if (batch->index) |
| __flush_tlb_pending(batch); |
| batch->active = 0; |
| } |
| |
| /* |
| * On POWER9 the copy-paste buffer can only paste into |
| * foreign real addresses, so unprivileged processes can not |
| * see the data or use it in any way unless they have |
| * foreign real mappings. If the new process has the foreign |
| * real address mappings, we must issue a cp_abort to clear |
| * any state and prevent snooping, corruption or a covert |
| * channel. ISA v3.1 supports paste into local memory. |
| */ |
| if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) || |
| atomic_read(&new->mm->context.vas_windows))) |
| asm volatile(PPC_CP_ABORT); |
| #endif /* CONFIG_PPC_BOOK3S_64 */ |
| |
| #ifdef CONFIG_PPC_ADV_DEBUG_REGS |
| switch_booke_debug_regs(&new->thread.debug); |
| #else |
| /* |
| * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would |
| * schedule DABR |
| */ |
| #ifndef CONFIG_HAVE_HW_BREAKPOINT |
| switch_hw_breakpoint(new); |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| #endif |
| |
| /* |
| * We need to save SPRs before treclaim/trecheckpoint as these will |
| * change a number of them. |
| */ |
| save_sprs(&prev->thread); |
| |
| /* Save FPU, Altivec, VSX and SPE state */ |
| giveup_all(prev); |
| |
| __switch_to_tm(prev, new); |
| |
| if (!radix_enabled()) { |
| /* |
| * We can't take a PMU exception inside _switch() since there |
| * is a window where the kernel stack SLB and the kernel stack |
| * are out of sync. Hard disable here. |
| */ |
| hard_irq_disable(); |
| } |
| |
| /* |
| * Call restore_sprs() and set_return_regs_changed() before calling |
| * _switch(). If we move it after _switch() then we miss out on calling |
| * it for new tasks. The reason for this is we manually create a stack |
| * frame for new tasks that directly returns through ret_from_fork() or |
| * ret_from_kernel_thread(). See copy_thread() for details. |
| */ |
| restore_sprs(old_thread, new_thread); |
| |
| set_return_regs_changed(); /* _switch changes stack (and regs) */ |
| |
| if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64)) |
| kuap_assert_locked(); |
| |
| last = _switch(old_thread, new_thread); |
| |
| /* |
| * Nothing after _switch will be run for newly created tasks, |
| * because they switch directly to ret_from_fork/ret_from_kernel_thread |
| * etc. Code added here should have a comment explaining why that is |
| * okay. |
| */ |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| /* |
| * This applies to a process that was context switched while inside |
| * arch_enter_lazy_mmu_mode(), to re-activate the batch that was |
| * deactivated above, before _switch(). This will never be the case |
| * for new tasks. |
| */ |
| if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { |
| current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; |
| batch = this_cpu_ptr(&ppc64_tlb_batch); |
| batch->active = 1; |
| } |
| #endif |
| |
| /* |
| * Math facilities are masked out of the child MSR in copy_thread. |
| * A new task does not need to restore_math because it will |
| * demand fault them. |
| */ |
| if (current->thread.regs) |
| restore_math(current->thread.regs); |
| #endif /* CONFIG_PPC_BOOK3S_64 */ |
| |
| return last; |
| } |
| |
| #define NR_INSN_TO_PRINT 16 |
| |
| static void show_instructions(struct pt_regs *regs) |
| { |
| int i; |
| unsigned long nip = regs->nip; |
| unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); |
| |
| printk("Code: "); |
| |
| /* |
| * If we were executing with the MMU off for instructions, adjust pc |
| * rather than printing XXXXXXXX. |
| */ |
| if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) { |
| pc = (unsigned long)phys_to_virt(pc); |
| nip = (unsigned long)phys_to_virt(regs->nip); |
| } |
| |
| for (i = 0; i < NR_INSN_TO_PRINT; i++) { |
| int instr; |
| |
| if (get_kernel_nofault(instr, (const void *)pc)) { |
| pr_cont("XXXXXXXX "); |
| } else { |
| if (nip == pc) |
| pr_cont("<%08x> ", instr); |
| else |
| pr_cont("%08x ", instr); |
| } |
| |
| pc += sizeof(int); |
| } |
| |
| pr_cont("\n"); |
| } |
| |
| void show_user_instructions(struct pt_regs *regs) |
| { |
| unsigned long pc; |
| int n = NR_INSN_TO_PRINT; |
| struct seq_buf s; |
| char buf[96]; /* enough for 8 times 9 + 2 chars */ |
| |
| pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); |
| |
| seq_buf_init(&s, buf, sizeof(buf)); |
| |
| while (n) { |
| int i; |
| |
| seq_buf_clear(&s); |
| |
| for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { |
| int instr; |
| |
| if (copy_from_user_nofault(&instr, (void __user *)pc, |
| sizeof(instr))) { |
| seq_buf_printf(&s, "XXXXXXXX "); |
| continue; |
| } |
| seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); |
| } |
| |
| if (!seq_buf_has_overflowed(&s)) |
| pr_info("%s[%d]: code: %s\n", current->comm, |
| current->pid, s.buffer); |
| } |
| } |
| |
| struct regbit { |
| unsigned long bit; |
| const char *name; |
| }; |
| |
| static struct regbit msr_bits[] = { |
| #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) |
| {MSR_SF, "SF"}, |
| {MSR_HV, "HV"}, |
| #endif |
| {MSR_VEC, "VEC"}, |
| {MSR_VSX, "VSX"}, |
| #ifdef CONFIG_BOOKE |
| {MSR_CE, "CE"}, |
| #endif |
| {MSR_EE, "EE"}, |
| {MSR_PR, "PR"}, |
| {MSR_FP, "FP"}, |
| {MSR_ME, "ME"}, |
| #ifdef CONFIG_BOOKE |
| {MSR_DE, "DE"}, |
| #else |
| {MSR_SE, "SE"}, |
| {MSR_BE, "BE"}, |
| #endif |
| {MSR_IR, "IR"}, |
| {MSR_DR, "DR"}, |
| {MSR_PMM, "PMM"}, |
| #ifndef CONFIG_BOOKE |
| {MSR_RI, "RI"}, |
| {MSR_LE, "LE"}, |
| #endif |
| {0, NULL} |
| }; |
| |
| static void print_bits(unsigned long val, struct regbit *bits, const char *sep) |
| { |
| const char *s = ""; |
| |
| for (; bits->bit; ++bits) |
| if (val & bits->bit) { |
| pr_cont("%s%s", s, bits->name); |
| s = sep; |
| } |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| static struct regbit msr_tm_bits[] = { |
| {MSR_TS_T, "T"}, |
| {MSR_TS_S, "S"}, |
| {MSR_TM, "E"}, |
| {0, NULL} |
| }; |
| |
| static void print_tm_bits(unsigned long val) |
| { |
| /* |
| * This only prints something if at least one of the TM bit is set. |
| * Inside the TM[], the output means: |
| * E: Enabled (bit 32) |
| * S: Suspended (bit 33) |
| * T: Transactional (bit 34) |
| */ |
| if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { |
| pr_cont(",TM["); |
| print_bits(val, msr_tm_bits, ""); |
| pr_cont("]"); |
| } |
| } |
| #else |
| static void print_tm_bits(unsigned long val) {} |
| #endif |
| |
| static void print_msr_bits(unsigned long val) |
| { |
| pr_cont("<"); |
| print_bits(val, msr_bits, ","); |
| print_tm_bits(val); |
| pr_cont(">"); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| #define REG "%016lx" |
| #define REGS_PER_LINE 4 |
| #else |
| #define REG "%08lx" |
| #define REGS_PER_LINE 8 |
| #endif |
| |
| static void __show_regs(struct pt_regs *regs) |
| { |
| int i, trap; |
| |
| printk("NIP: "REG" LR: "REG" CTR: "REG"\n", |
| regs->nip, regs->link, regs->ctr); |
| printk("REGS: %px TRAP: %04lx %s (%s)\n", |
| regs, regs->trap, print_tainted(), init_utsname()->release); |
| printk("MSR: "REG" ", regs->msr); |
| print_msr_bits(regs->msr); |
| pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); |
| trap = TRAP(regs); |
| if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR)) |
| pr_cont("CFAR: "REG" ", regs->orig_gpr3); |
| if (trap == INTERRUPT_MACHINE_CHECK || |
| trap == INTERRUPT_DATA_STORAGE || |
| trap == INTERRUPT_ALIGNMENT) { |
| if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE)) |
| pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr); |
| else |
| pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| pr_cont("IRQMASK: %lx ", regs->softe); |
| #endif |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (MSR_TM_ACTIVE(regs->msr)) |
| pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); |
| #endif |
| |
| for (i = 0; i < 32; i++) { |
| if ((i % REGS_PER_LINE) == 0) |
| pr_cont("\nGPR%02d: ", i); |
| pr_cont(REG " ", regs->gpr[i]); |
| } |
| pr_cont("\n"); |
| /* |
| * Lookup NIP late so we have the best change of getting the |
| * above info out without failing |
| */ |
| if (IS_ENABLED(CONFIG_KALLSYMS)) { |
| printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); |
| printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); |
| } |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| show_regs_print_info(KERN_DEFAULT); |
| __show_regs(regs); |
| show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT); |
| if (!user_mode(regs)) |
| show_instructions(regs); |
| } |
| |
| void flush_thread(void) |
| { |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| flush_ptrace_hw_breakpoint(current); |
| #else /* CONFIG_HAVE_HW_BREAKPOINT */ |
| set_debug_reg_defaults(¤t->thread); |
| #endif /* CONFIG_HAVE_HW_BREAKPOINT */ |
| } |
| |
| void arch_setup_new_exec(void) |
| { |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (!radix_enabled()) |
| hash__setup_new_exec(); |
| #endif |
| /* |
| * If we exec out of a kernel thread then thread.regs will not be |
| * set. Do it now. |
| */ |
| if (!current->thread.regs) { |
| struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; |
| current->thread.regs = regs - 1; |
| } |
| |
| #ifdef CONFIG_PPC_MEM_KEYS |
| current->thread.regs->amr = default_amr; |
| current->thread.regs->iamr = default_iamr; |
| #endif |
| } |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * Assign a TIDR (thread ID) for task @t and set it in the thread |
| * structure. For now, we only support setting TIDR for 'current' task. |
| * |
| * Since the TID value is a truncated form of it PID, it is possible |
| * (but unlikely) for 2 threads to have the same TID. In the unlikely event |
| * that 2 threads share the same TID and are waiting, one of the following |
| * cases will happen: |
| * |
| * 1. The correct thread is running, the wrong thread is not |
| * In this situation, the correct thread is woken and proceeds to pass it's |
| * condition check. |
| * |
| * 2. Neither threads are running |
| * In this situation, neither thread will be woken. When scheduled, the waiting |
| * threads will execute either a wait, which will return immediately, followed |
| * by a condition check, which will pass for the correct thread and fail |
| * for the wrong thread, or they will execute the condition check immediately. |
| * |
| * 3. The wrong thread is running, the correct thread is not |
| * The wrong thread will be woken, but will fail it's condition check and |
| * re-execute wait. The correct thread, when scheduled, will execute either |
| * it's condition check (which will pass), or wait, which returns immediately |
| * when called the first time after the thread is scheduled, followed by it's |
| * condition check (which will pass). |
| * |
| * 4. Both threads are running |
| * Both threads will be woken. The wrong thread will fail it's condition check |
| * and execute another wait, while the correct thread will pass it's condition |
| * check. |
| * |
| * @t: the task to set the thread ID for |
| */ |
| int set_thread_tidr(struct task_struct *t) |
| { |
| if (!cpu_has_feature(CPU_FTR_P9_TIDR)) |
| return -EINVAL; |
| |
| if (t != current) |
| return -EINVAL; |
| |
| if (t->thread.tidr) |
| return 0; |
| |
| t->thread.tidr = (u16)task_pid_nr(t); |
| mtspr(SPRN_TIDR, t->thread.tidr); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(set_thread_tidr); |
| |
| #endif /* CONFIG_PPC64 */ |
| |
| /* |
| * this gets called so that we can store coprocessor state into memory and |
| * copy the current task into the new thread. |
| */ |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| { |
| flush_all_to_thread(src); |
| /* |
| * Flush TM state out so we can copy it. __switch_to_tm() does this |
| * flush but it removes the checkpointed state from the current CPU and |
| * transitions the CPU out of TM mode. Hence we need to call |
| * tm_recheckpoint_new_task() (on the same task) to restore the |
| * checkpointed state back and the TM mode. |
| * |
| * Can't pass dst because it isn't ready. Doesn't matter, passing |
| * dst is only important for __switch_to() |
| */ |
| __switch_to_tm(src, src); |
| |
| *dst = *src; |
| |
| clear_task_ebb(dst); |
| |
| return 0; |
| } |
| |
| static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) |
| { |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| unsigned long sp_vsid; |
| unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; |
| |
| if (radix_enabled()) |
| return; |
| |
| if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) |
| << SLB_VSID_SHIFT_1T; |
| else |
| sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) |
| << SLB_VSID_SHIFT; |
| sp_vsid |= SLB_VSID_KERNEL | llp; |
| p->thread.ksp_vsid = sp_vsid; |
| #endif |
| } |
| |
| /* |
| * Copy a thread.. |
| */ |
| |
| /* |
| * Copy architecture-specific thread state |
| */ |
| int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) |
| { |
| struct pt_regs *kregs; /* Switch frame regs */ |
| extern void ret_from_fork(void); |
| extern void ret_from_fork_scv(void); |
| extern void ret_from_kernel_user_thread(void); |
| extern void start_kernel_thread(void); |
| void (*f)(void); |
| unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| int i; |
| #endif |
| |
| klp_init_thread_info(p); |
| |
| if (unlikely(p->flags & PF_KTHREAD)) { |
| /* kernel thread */ |
| |
| /* Create initial minimum stack frame. */ |
| sp -= STACK_FRAME_MIN_SIZE; |
| ((unsigned long *)sp)[0] = 0; |
| |
| f = start_kernel_thread; |
| p->thread.regs = NULL; /* no user register state */ |
| clear_tsk_compat_task(p); |
| } else { |
| /* user thread */ |
| struct pt_regs *childregs; |
| |
| /* Create initial user return stack frame. */ |
| sp -= STACK_USER_INT_FRAME_SIZE; |
| *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER; |
| |
| childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS); |
| |
| if (unlikely(args->fn)) { |
| /* |
| * A user space thread, but it first runs a kernel |
| * thread, and then returns as though it had called |
| * execve rather than fork, so user regs will be |
| * filled in (e.g., by kernel_execve()). |
| */ |
| ((unsigned long *)sp)[0] = 0; |
| memset(childregs, 0, sizeof(struct pt_regs)); |
| #ifdef CONFIG_PPC64 |
| childregs->softe = IRQS_ENABLED; |
| #endif |
| f = ret_from_kernel_user_thread; |
| } else { |
| struct pt_regs *regs = current_pt_regs(); |
| unsigned long clone_flags = args->flags; |
| unsigned long usp = args->stack; |
| |
| /* Copy registers */ |
| *childregs = *regs; |
| if (usp) |
| childregs->gpr[1] = usp; |
| ((unsigned long *)sp)[0] = childregs->gpr[1]; |
| #ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG |
| WARN_ON_ONCE(childregs->softe != IRQS_ENABLED); |
| #endif |
| if (clone_flags & CLONE_SETTLS) { |
| unsigned long tls = args->tls; |
| |
| if (!is_32bit_task()) |
| childregs->gpr[13] = tls; |
| else |
| childregs->gpr[2] = tls; |
| } |
| |
| if (trap_is_scv(regs)) |
| f = ret_from_fork_scv; |
| else |
| f = ret_from_fork; |
| } |
| |
| childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); |
| p->thread.regs = childregs; |
| } |
| |
| /* |
| * The way this works is that at some point in the future |
| * some task will call _switch to switch to the new task. |
| * That will pop off the stack frame created below and start |
| * the new task running at ret_from_fork. The new task will |
| * do some house keeping and then return from the fork or clone |
| * system call, using the stack frame created above. |
| */ |
| ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f; |
| sp -= STACK_SWITCH_FRAME_SIZE; |
| ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE; |
| kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS); |
| kregs->nip = ppc_function_entry(f); |
| if (unlikely(args->fn)) { |
| /* |
| * Put kthread fn, arg parameters in non-volatile GPRs in the |
| * switch frame so they are loaded by _switch before it returns |
| * to ret_from_kernel_thread. |
| */ |
| kregs->gpr[14] = ppc_function_entry((void *)args->fn); |
| kregs->gpr[15] = (unsigned long)args->fn_arg; |
| } |
| p->thread.ksp = sp; |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| for (i = 0; i < nr_wp_slots(); i++) |
| p->thread.ptrace_bps[i] = NULL; |
| #endif |
| |
| #ifdef CONFIG_PPC_FPU_REGS |
| p->thread.fp_save_area = NULL; |
| #endif |
| #ifdef CONFIG_ALTIVEC |
| p->thread.vr_save_area = NULL; |
| #endif |
| #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP) |
| p->thread.kuap = KUAP_NONE; |
| #endif |
| #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP) |
| p->thread.pid = MMU_NO_CONTEXT; |
| #endif |
| |
| setup_ksp_vsid(p, sp); |
| |
| #ifdef CONFIG_PPC64 |
| if (cpu_has_feature(CPU_FTR_DSCR)) { |
| p->thread.dscr_inherit = current->thread.dscr_inherit; |
| p->thread.dscr = mfspr(SPRN_DSCR); |
| } |
| |
| p->thread.tidr = 0; |
| #endif |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) |
| p->thread.hashkeyr = current->thread.hashkeyr; |
| #endif |
| return 0; |
| } |
| |
| void preload_new_slb_context(unsigned long start, unsigned long sp); |
| |
| /* |
| * Set up a thread for executing a new program |
| */ |
| void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) |
| { |
| #ifdef CONFIG_PPC64 |
| unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ |
| |
| if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled()) |
| preload_new_slb_context(start, sp); |
| #endif |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* |
| * Clear any transactional state, we're exec()ing. The cause is |
| * not important as there will never be a recheckpoint so it's not |
| * user visible. |
| */ |
| if (MSR_TM_SUSPENDED(mfmsr())) |
| tm_reclaim_current(0); |
| #endif |
| |
| memset(®s->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0])); |
| regs->ctr = 0; |
| regs->link = 0; |
| regs->xer = 0; |
| regs->ccr = 0; |
| regs->gpr[1] = sp; |
| |
| #ifdef CONFIG_PPC32 |
| regs->mq = 0; |
| regs->nip = start; |
| regs->msr = MSR_USER; |
| #else |
| if (!is_32bit_task()) { |
| unsigned long entry; |
| |
| if (is_elf2_task()) { |
| /* Look ma, no function descriptors! */ |
| entry = start; |
| |
| /* |
| * Ulrich says: |
| * The latest iteration of the ABI requires that when |
| * calling a function (at its global entry point), |
| * the caller must ensure r12 holds the entry point |
| * address (so that the function can quickly |
| * establish addressability). |
| */ |
| regs->gpr[12] = start; |
| /* Make sure that's restored on entry to userspace. */ |
| set_thread_flag(TIF_RESTOREALL); |
| } else { |
| unsigned long toc; |
| |
| /* start is a relocated pointer to the function |
| * descriptor for the elf _start routine. The first |
| * entry in the function descriptor is the entry |
| * address of _start and the second entry is the TOC |
| * value we need to use. |
| */ |
| __get_user(entry, (unsigned long __user *)start); |
| __get_user(toc, (unsigned long __user *)start+1); |
| |
| /* Check whether the e_entry function descriptor entries |
| * need to be relocated before we can use them. |
| */ |
| if (load_addr != 0) { |
| entry += load_addr; |
| toc += load_addr; |
| } |
| regs->gpr[2] = toc; |
| } |
| regs_set_return_ip(regs, entry); |
| regs_set_return_msr(regs, MSR_USER64); |
| } else { |
| regs->gpr[2] = 0; |
| regs_set_return_ip(regs, start); |
| regs_set_return_msr(regs, MSR_USER32); |
| } |
| |
| #endif |
| #ifdef CONFIG_VSX |
| current->thread.used_vsr = 0; |
| #endif |
| current->thread.load_slb = 0; |
| current->thread.load_fp = 0; |
| #ifdef CONFIG_PPC_FPU_REGS |
| memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); |
| current->thread.fp_save_area = NULL; |
| #endif |
| #ifdef CONFIG_ALTIVEC |
| memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); |
| current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ |
| current->thread.vr_save_area = NULL; |
| current->thread.vrsave = 0; |
| current->thread.used_vr = 0; |
| current->thread.load_vec = 0; |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_SPE |
| memset(current->thread.evr, 0, sizeof(current->thread.evr)); |
| current->thread.acc = 0; |
| current->thread.spefscr = 0; |
| current->thread.used_spe = 0; |
| #endif /* CONFIG_SPE */ |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| current->thread.tm_tfhar = 0; |
| current->thread.tm_texasr = 0; |
| current->thread.tm_tfiar = 0; |
| current->thread.load_tm = 0; |
| #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) { |
| current->thread.hashkeyr = get_random_long(); |
| mtspr(SPRN_HASHKEYR, current->thread.hashkeyr); |
| } |
| #endif /* CONFIG_PPC_BOOK3S_64 */ |
| } |
| EXPORT_SYMBOL(start_thread); |
| |
| #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ |
| | PR_FP_EXC_RES | PR_FP_EXC_INV) |
| |
| int set_fpexc_mode(struct task_struct *tsk, unsigned int val) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| |
| /* This is a bit hairy. If we are an SPE enabled processor |
| * (have embedded fp) we store the IEEE exception enable flags in |
| * fpexc_mode. fpexc_mode is also used for setting FP exception |
| * mode (asyn, precise, disabled) for 'Classic' FP. */ |
| if (val & PR_FP_EXC_SW_ENABLE) { |
| if (cpu_has_feature(CPU_FTR_SPE)) { |
| /* |
| * When the sticky exception bits are set |
| * directly by userspace, it must call prctl |
| * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE |
| * in the existing prctl settings) or |
| * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in |
| * the bits being set). <fenv.h> functions |
| * saving and restoring the whole |
| * floating-point environment need to do so |
| * anyway to restore the prctl settings from |
| * the saved environment. |
| */ |
| #ifdef CONFIG_SPE |
| tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); |
| tsk->thread.fpexc_mode = val & |
| (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); |
| #endif |
| return 0; |
| } else { |
| return -EINVAL; |
| } |
| } |
| |
| /* on a CONFIG_SPE this does not hurt us. The bits that |
| * __pack_fe01 use do not overlap with bits used for |
| * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits |
| * on CONFIG_SPE implementations are reserved so writing to |
| * them does not change anything */ |
| if (val > PR_FP_EXC_PRECISE) |
| return -EINVAL; |
| tsk->thread.fpexc_mode = __pack_fe01(val); |
| if (regs != NULL && (regs->msr & MSR_FP) != 0) { |
| regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1)) |
| | tsk->thread.fpexc_mode); |
| } |
| return 0; |
| } |
| |
| int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) |
| { |
| unsigned int val = 0; |
| |
| if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) { |
| if (cpu_has_feature(CPU_FTR_SPE)) { |
| /* |
| * When the sticky exception bits are set |
| * directly by userspace, it must call prctl |
| * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE |
| * in the existing prctl settings) or |
| * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in |
| * the bits being set). <fenv.h> functions |
| * saving and restoring the whole |
| * floating-point environment need to do so |
| * anyway to restore the prctl settings from |
| * the saved environment. |
| */ |
| #ifdef CONFIG_SPE |
| tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); |
| val = tsk->thread.fpexc_mode; |
| #endif |
| } else |
| return -EINVAL; |
| } else { |
| val = __unpack_fe01(tsk->thread.fpexc_mode); |
| } |
| return put_user(val, (unsigned int __user *) adr); |
| } |
| |
| int set_endian(struct task_struct *tsk, unsigned int val) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| |
| if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || |
| (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) |
| return -EINVAL; |
| |
| if (regs == NULL) |
| return -EINVAL; |
| |
| if (val == PR_ENDIAN_BIG) |
| regs_set_return_msr(regs, regs->msr & ~MSR_LE); |
| else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) |
| regs_set_return_msr(regs, regs->msr | MSR_LE); |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int get_endian(struct task_struct *tsk, unsigned long adr) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| unsigned int val; |
| |
| if (!cpu_has_feature(CPU_FTR_PPC_LE) && |
| !cpu_has_feature(CPU_FTR_REAL_LE)) |
| return -EINVAL; |
| |
| if (regs == NULL) |
| return -EINVAL; |
| |
| if (regs->msr & MSR_LE) { |
| if (cpu_has_feature(CPU_FTR_REAL_LE)) |
| val = PR_ENDIAN_LITTLE; |
| else |
| val = PR_ENDIAN_PPC_LITTLE; |
| } else |
| val = PR_ENDIAN_BIG; |
| |
| return put_user(val, (unsigned int __user *)adr); |
| } |
| |
| int set_unalign_ctl(struct task_struct *tsk, unsigned int val) |
| { |
| tsk->thread.align_ctl = val; |
| return 0; |
| } |
| |
| int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) |
| { |
| return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); |
| } |
| |
| static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, |
| unsigned long nbytes) |
| { |
| unsigned long stack_page; |
| unsigned long cpu = task_cpu(p); |
| |
| if (!hardirq_ctx[cpu] || !softirq_ctx[cpu]) |
| return 0; |
| |
| stack_page = (unsigned long)hardirq_ctx[cpu]; |
| if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| |
| stack_page = (unsigned long)softirq_ctx[cpu]; |
| if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| |
| return 0; |
| } |
| |
| static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, |
| unsigned long nbytes) |
| { |
| #ifdef CONFIG_PPC64 |
| unsigned long stack_page; |
| unsigned long cpu = task_cpu(p); |
| |
| if (!paca_ptrs) |
| return 0; |
| |
| if (!paca_ptrs[cpu]->emergency_sp) |
| return 0; |
| |
| # ifdef CONFIG_PPC_BOOK3S_64 |
| if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp) |
| return 0; |
| #endif |
| |
| stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; |
| if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| |
| # ifdef CONFIG_PPC_BOOK3S_64 |
| stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; |
| if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| |
| stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; |
| if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| # endif |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * validate the stack frame of a particular minimum size, used for when we are |
| * looking at a certain object in the stack beyond the minimum. |
| */ |
| int validate_sp_size(unsigned long sp, struct task_struct *p, |
| unsigned long nbytes) |
| { |
| unsigned long stack_page = (unsigned long)task_stack_page(p); |
| |
| if (sp < THREAD_SIZE) |
| return 0; |
| |
| if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) |
| return 1; |
| |
| if (valid_irq_stack(sp, p, nbytes)) |
| return 1; |
| |
| return valid_emergency_stack(sp, p, nbytes); |
| } |
| |
| int validate_sp(unsigned long sp, struct task_struct *p) |
| { |
| return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE); |
| } |
| |
| static unsigned long ___get_wchan(struct task_struct *p) |
| { |
| unsigned long ip, sp; |
| int count = 0; |
| |
| sp = p->thread.ksp; |
| if (!validate_sp(sp, p)) |
| return 0; |
| |
| do { |
| sp = READ_ONCE_NOCHECK(*(unsigned long *)sp); |
| if (!validate_sp(sp, p) || task_is_running(p)) |
| return 0; |
| if (count > 0) { |
| ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]); |
| if (!in_sched_functions(ip)) |
| return ip; |
| } |
| } while (count++ < 16); |
| return 0; |
| } |
| |
| unsigned long __get_wchan(struct task_struct *p) |
| { |
| unsigned long ret; |
| |
| if (!try_get_task_stack(p)) |
| return 0; |
| |
| ret = ___get_wchan(p); |
| |
| put_task_stack(p); |
| |
| return ret; |
| } |
| |
| static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk) |
| { |
| unsigned long stack_page; |
| |
| // A non-empty pt_regs should never have a zero MSR or TRAP value. |
| if (regs->msr || regs->trap) |
| return false; |
| |
| // Check it sits at the very base of the stack |
| stack_page = (unsigned long)task_stack_page(tsk); |
| if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE) |
| return false; |
| |
| return true; |
| } |
| |
| static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; |
| |
| void __no_sanitize_address show_stack(struct task_struct *tsk, |
| unsigned long *stack, |
| const char *loglvl) |
| { |
| unsigned long sp, ip, lr, newsp; |
| int count = 0; |
| int firstframe = 1; |
| unsigned long ret_addr; |
| int ftrace_idx = 0; |
| |
| if (tsk == NULL) |
| tsk = current; |
| |
| if (!try_get_task_stack(tsk)) |
| return; |
| |
| sp = (unsigned long) stack; |
| if (sp == 0) { |
| if (tsk == current) |
| sp = current_stack_frame(); |
| else |
| sp = tsk->thread.ksp; |
| } |
| |
| lr = 0; |
| printk("%sCall Trace:\n", loglvl); |
| do { |
| if (!validate_sp(sp, tsk)) |
| break; |
| |
| stack = (unsigned long *) sp; |
| newsp = stack[0]; |
| ip = stack[STACK_FRAME_LR_SAVE]; |
| if (!firstframe || ip != lr) { |
| printk("%s["REG"] ["REG"] %pS", |
| loglvl, sp, ip, (void *)ip); |
| ret_addr = ftrace_graph_ret_addr(current, |
| &ftrace_idx, ip, stack); |
| if (ret_addr != ip) |
| pr_cont(" (%pS)", (void *)ret_addr); |
| if (firstframe) |
| pr_cont(" (unreliable)"); |
| pr_cont("\n"); |
| } |
| firstframe = 0; |
| |
| /* |
| * See if this is an exception frame. |
| * We look for the "regs" marker in the current frame. |
| * |
| * STACK_SWITCH_FRAME_SIZE being the smallest frame that |
| * could hold a pt_regs, if that does not fit then it can't |
| * have regs. |
| */ |
| if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE) |
| && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) { |
| struct pt_regs *regs = (struct pt_regs *) |
| (sp + STACK_INT_FRAME_REGS); |
| |
| lr = regs->link; |
| printk("%s--- interrupt: %lx at %pS\n", |
| loglvl, regs->trap, (void *)regs->nip); |
| |
| // Detect the case of an empty pt_regs at the very base |
| // of the stack and suppress showing it in full. |
| if (!empty_user_regs(regs, tsk)) { |
| __show_regs(regs); |
| printk("%s--- interrupt: %lx\n", loglvl, regs->trap); |
| } |
| |
| firstframe = 1; |
| } |
| |
| sp = newsp; |
| } while (count++ < kstack_depth_to_print); |
| |
| put_task_stack(tsk); |
| } |
| |
| #ifdef CONFIG_PPC64 |
| /* Called with hard IRQs off */ |
| void notrace __ppc64_runlatch_on(void) |
| { |
| struct thread_info *ti = current_thread_info(); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_206)) { |
| /* |
| * Least significant bit (RUN) is the only writable bit of |
| * the CTRL register, so we can avoid mfspr. 2.06 is not the |
| * earliest ISA where this is the case, but it's convenient. |
| */ |
| mtspr(SPRN_CTRLT, CTRL_RUNLATCH); |
| } else { |
| unsigned long ctrl; |
| |
| /* |
| * Some architectures (e.g., Cell) have writable fields other |
| * than RUN, so do the read-modify-write. |
| */ |
| ctrl = mfspr(SPRN_CTRLF); |
| ctrl |= CTRL_RUNLATCH; |
| mtspr(SPRN_CTRLT, ctrl); |
| } |
| |
| ti->local_flags |= _TLF_RUNLATCH; |
| } |
| |
| /* Called with hard IRQs off */ |
| void notrace __ppc64_runlatch_off(void) |
| { |
| struct thread_info *ti = current_thread_info(); |
| |
| ti->local_flags &= ~_TLF_RUNLATCH; |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_206)) { |
| mtspr(SPRN_CTRLT, 0); |
| } else { |
| unsigned long ctrl; |
| |
| ctrl = mfspr(SPRN_CTRLF); |
| ctrl &= ~CTRL_RUNLATCH; |
| mtspr(SPRN_CTRLT, ctrl); |
| } |
| } |
| #endif /* CONFIG_PPC64 */ |
| |
| unsigned long arch_align_stack(unsigned long sp) |
| { |
| if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| sp -= get_random_u32_below(PAGE_SIZE); |
| return sp & ~0xf; |
| } |