| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2019 Intel Corporation |
| */ |
| |
| #include <drm/drm_atomic_state_helper.h> |
| |
| #include "intel_atomic.h" |
| #include "intel_bw.h" |
| #include "intel_cdclk.h" |
| #include "intel_display_types.h" |
| #include "intel_pcode.h" |
| #include "intel_pm.h" |
| |
| /* Parameters for Qclk Geyserville (QGV) */ |
| struct intel_qgv_point { |
| u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd; |
| }; |
| |
| struct intel_psf_gv_point { |
| u8 clk; /* clock in multiples of 16.6666 MHz */ |
| }; |
| |
| struct intel_qgv_info { |
| struct intel_qgv_point points[I915_NUM_QGV_POINTS]; |
| struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS]; |
| u8 num_points; |
| u8 num_psf_points; |
| u8 t_bl; |
| }; |
| |
| static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv, |
| struct intel_qgv_point *sp, |
| int point) |
| { |
| u32 dclk_ratio, dclk_reference; |
| u32 val; |
| |
| val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC); |
| dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val); |
| if (val & DG1_QCLK_REFERENCE) |
| dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */ |
| else |
| dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */ |
| sp->dclk = dclk_ratio * dclk_reference; |
| |
| val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU); |
| if (val & DG1_GEAR_TYPE) |
| sp->dclk *= 2; |
| |
| if (sp->dclk == 0) |
| return -EINVAL; |
| |
| val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR); |
| sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val); |
| sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val); |
| |
| val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH); |
| sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val); |
| sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val); |
| |
| sp->t_rc = sp->t_rp + sp->t_ras; |
| |
| return 0; |
| } |
| |
| static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv, |
| struct intel_qgv_point *sp, |
| int point) |
| { |
| u32 val = 0, val2 = 0; |
| int ret; |
| |
| ret = sandybridge_pcode_read(dev_priv, |
| ICL_PCODE_MEM_SUBSYSYSTEM_INFO | |
| ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point), |
| &val, &val2); |
| if (ret) |
| return ret; |
| |
| sp->dclk = val & 0xffff; |
| sp->t_rp = (val & 0xff0000) >> 16; |
| sp->t_rcd = (val & 0xff000000) >> 24; |
| |
| sp->t_rdpre = val2 & 0xff; |
| sp->t_ras = (val2 & 0xff00) >> 8; |
| |
| sp->t_rc = sp->t_rp + sp->t_ras; |
| |
| return 0; |
| } |
| |
| static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv, |
| struct intel_psf_gv_point *points) |
| { |
| u32 val = 0; |
| int ret; |
| int i; |
| |
| ret = sandybridge_pcode_read(dev_priv, |
| ICL_PCODE_MEM_SUBSYSYSTEM_INFO | |
| ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, |
| &val, NULL); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) { |
| points[i].clk = val & 0xff; |
| val >>= 8; |
| } |
| |
| return 0; |
| } |
| |
| int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv, |
| u32 points_mask) |
| { |
| int ret; |
| |
| /* bspec says to keep retrying for at least 1 ms */ |
| ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG, |
| points_mask, |
| ICL_PCODE_POINTS_RESTRICTED_MASK, |
| ICL_PCODE_POINTS_RESTRICTED, |
| 1); |
| |
| if (ret < 0) { |
| drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int icl_get_qgv_points(struct drm_i915_private *dev_priv, |
| struct intel_qgv_info *qi) |
| { |
| const struct dram_info *dram_info = &dev_priv->dram_info; |
| int i, ret; |
| |
| qi->num_points = dram_info->num_qgv_points; |
| qi->num_psf_points = dram_info->num_psf_gv_points; |
| |
| if (DISPLAY_VER(dev_priv) == 12) |
| switch (dram_info->type) { |
| case INTEL_DRAM_DDR4: |
| qi->t_bl = 4; |
| break; |
| case INTEL_DRAM_DDR5: |
| qi->t_bl = 8; |
| break; |
| default: |
| qi->t_bl = 16; |
| break; |
| } |
| else if (DISPLAY_VER(dev_priv) == 11) |
| qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8; |
| |
| if (drm_WARN_ON(&dev_priv->drm, |
| qi->num_points > ARRAY_SIZE(qi->points))) |
| qi->num_points = ARRAY_SIZE(qi->points); |
| |
| for (i = 0; i < qi->num_points; i++) { |
| struct intel_qgv_point *sp = &qi->points[i]; |
| |
| if (IS_DG1(dev_priv)) |
| ret = dg1_mchbar_read_qgv_point_info(dev_priv, sp, i); |
| else |
| ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i); |
| |
| if (ret) |
| return ret; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n", |
| i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras, |
| sp->t_rcd, sp->t_rc); |
| } |
| |
| if (qi->num_psf_points > 0) { |
| ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points); |
| if (ret) { |
| drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n"); |
| qi->num_psf_points = 0; |
| } |
| |
| for (i = 0; i < qi->num_psf_points; i++) |
| drm_dbg_kms(&dev_priv->drm, |
| "PSF GV %d: CLK=%d \n", |
| i, qi->psf_points[i].clk); |
| } |
| |
| return 0; |
| } |
| |
| static int icl_calc_bw(int dclk, int num, int den) |
| { |
| /* multiples of 16.666MHz (100/6) */ |
| return DIV_ROUND_CLOSEST(num * dclk * 100, den * 6); |
| } |
| |
| static int adl_calc_psf_bw(int clk) |
| { |
| /* |
| * clk is multiples of 16.666MHz (100/6) |
| * According to BSpec PSF GV bandwidth is |
| * calculated as BW = 64 * clk * 16.666Mhz |
| */ |
| return DIV_ROUND_CLOSEST(64 * clk * 100, 6); |
| } |
| |
| static int icl_sagv_max_dclk(const struct intel_qgv_info *qi) |
| { |
| u16 dclk = 0; |
| int i; |
| |
| for (i = 0; i < qi->num_points; i++) |
| dclk = max(dclk, qi->points[i].dclk); |
| |
| return dclk; |
| } |
| |
| struct intel_sa_info { |
| u16 displayrtids; |
| u8 deburst, deprogbwlimit, derating; |
| }; |
| |
| static const struct intel_sa_info icl_sa_info = { |
| .deburst = 8, |
| .deprogbwlimit = 25, /* GB/s */ |
| .displayrtids = 128, |
| .derating = 10, |
| }; |
| |
| static const struct intel_sa_info tgl_sa_info = { |
| .deburst = 16, |
| .deprogbwlimit = 34, /* GB/s */ |
| .displayrtids = 256, |
| .derating = 10, |
| }; |
| |
| static const struct intel_sa_info rkl_sa_info = { |
| .deburst = 16, |
| .deprogbwlimit = 20, /* GB/s */ |
| .displayrtids = 128, |
| .derating = 10, |
| }; |
| |
| static const struct intel_sa_info adls_sa_info = { |
| .deburst = 16, |
| .deprogbwlimit = 38, /* GB/s */ |
| .displayrtids = 256, |
| .derating = 10, |
| }; |
| |
| static const struct intel_sa_info adlp_sa_info = { |
| .deburst = 16, |
| .deprogbwlimit = 38, /* GB/s */ |
| .displayrtids = 256, |
| .derating = 20, |
| }; |
| |
| static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa) |
| { |
| struct intel_qgv_info qi = {}; |
| bool is_y_tile = true; /* assume y tile may be used */ |
| int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels); |
| int deinterleave; |
| int ipqdepth, ipqdepthpch; |
| int dclk_max; |
| int maxdebw; |
| int i, ret; |
| |
| ret = icl_get_qgv_points(dev_priv, &qi); |
| if (ret) { |
| drm_dbg_kms(&dev_priv->drm, |
| "Failed to get memory subsystem information, ignoring bandwidth limits"); |
| return ret; |
| } |
| |
| deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); |
| dclk_max = icl_sagv_max_dclk(&qi); |
| |
| ipqdepthpch = 16; |
| |
| maxdebw = min(sa->deprogbwlimit * 1000, |
| icl_calc_bw(dclk_max, 16, 1) * 6 / 10); /* 60% */ |
| ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); |
| |
| for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) { |
| struct intel_bw_info *bi = &dev_priv->max_bw[i]; |
| int clpchgroup; |
| int j; |
| |
| clpchgroup = (sa->deburst * deinterleave / num_channels) << i; |
| bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1; |
| |
| bi->num_qgv_points = qi.num_points; |
| bi->num_psf_gv_points = qi.num_psf_points; |
| |
| for (j = 0; j < qi.num_points; j++) { |
| const struct intel_qgv_point *sp = &qi.points[j]; |
| int ct, bw; |
| |
| /* |
| * Max row cycle time |
| * |
| * FIXME what is the logic behind the |
| * assumed burst length? |
| */ |
| ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + |
| (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); |
| bw = icl_calc_bw(sp->dclk, clpchgroup * 32 * num_channels, ct); |
| |
| bi->deratedbw[j] = min(maxdebw, |
| bw * (100 - sa->derating) / 100); |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "BW%d / QGV %d: num_planes=%d deratedbw=%u\n", |
| i, j, bi->num_planes, bi->deratedbw[j]); |
| } |
| |
| for (j = 0; j < qi.num_psf_points; j++) { |
| const struct intel_psf_gv_point *sp = &qi.psf_points[j]; |
| |
| bi->psf_bw[j] = adl_calc_psf_bw(sp->clk); |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "BW%d / PSF GV %d: num_planes=%d bw=%u\n", |
| i, j, bi->num_planes, bi->psf_bw[j]); |
| } |
| |
| if (bi->num_planes == 1) |
| break; |
| } |
| |
| /* |
| * In case if SAGV is disabled in BIOS, we always get 1 |
| * SAGV point, but we can't send PCode commands to restrict it |
| * as it will fail and pointless anyway. |
| */ |
| if (qi.num_points == 1) |
| dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; |
| else |
| dev_priv->sagv_status = I915_SAGV_ENABLED; |
| |
| return 0; |
| } |
| |
| static void dg2_get_bw_info(struct drm_i915_private *i915) |
| { |
| struct intel_bw_info *bi = &i915->max_bw[0]; |
| |
| /* |
| * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth |
| * that doesn't depend on the number of planes enabled. Create a |
| * single dummy QGV point to reflect that. DG2-G10 platforms have a |
| * constant 50 GB/s bandwidth, whereas DG2-G11 platforms have 38 GB/s. |
| */ |
| bi->num_planes = 1; |
| bi->num_qgv_points = 1; |
| if (IS_DG2_G11(i915)) |
| bi->deratedbw[0] = 38000; |
| else |
| bi->deratedbw[0] = 50000; |
| |
| i915->sagv_status = I915_SAGV_NOT_CONTROLLED; |
| } |
| |
| static unsigned int icl_max_bw(struct drm_i915_private *dev_priv, |
| int num_planes, int qgv_point) |
| { |
| int i; |
| |
| /* |
| * Let's return max bw for 0 planes |
| */ |
| num_planes = max(1, num_planes); |
| |
| for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) { |
| const struct intel_bw_info *bi = |
| &dev_priv->max_bw[i]; |
| |
| /* |
| * Pcode will not expose all QGV points when |
| * SAGV is forced to off/min/med/max. |
| */ |
| if (qgv_point >= bi->num_qgv_points) |
| return UINT_MAX; |
| |
| if (num_planes >= bi->num_planes) |
| return bi->deratedbw[qgv_point]; |
| } |
| |
| return 0; |
| } |
| |
| static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv, |
| int psf_gv_point) |
| { |
| const struct intel_bw_info *bi = |
| &dev_priv->max_bw[0]; |
| |
| return bi->psf_bw[psf_gv_point]; |
| } |
| |
| void intel_bw_init_hw(struct drm_i915_private *dev_priv) |
| { |
| if (!HAS_DISPLAY(dev_priv)) |
| return; |
| |
| if (IS_DG2(dev_priv)) |
| dg2_get_bw_info(dev_priv); |
| else if (IS_ALDERLAKE_P(dev_priv)) |
| icl_get_bw_info(dev_priv, &adlp_sa_info); |
| else if (IS_ALDERLAKE_S(dev_priv)) |
| icl_get_bw_info(dev_priv, &adls_sa_info); |
| else if (IS_ROCKETLAKE(dev_priv)) |
| icl_get_bw_info(dev_priv, &rkl_sa_info); |
| else if (DISPLAY_VER(dev_priv) == 12) |
| icl_get_bw_info(dev_priv, &tgl_sa_info); |
| else if (DISPLAY_VER(dev_priv) == 11) |
| icl_get_bw_info(dev_priv, &icl_sa_info); |
| } |
| |
| static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state) |
| { |
| /* |
| * We assume cursors are small enough |
| * to not not cause bandwidth problems. |
| */ |
| return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR)); |
| } |
| |
| static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| unsigned int data_rate = 0; |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| /* |
| * We assume cursors are small enough |
| * to not not cause bandwidth problems. |
| */ |
| if (plane_id == PLANE_CURSOR) |
| continue; |
| |
| data_rate += crtc_state->data_rate[plane_id]; |
| } |
| |
| return data_rate; |
| } |
| |
| void intel_bw_crtc_update(struct intel_bw_state *bw_state, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *i915 = to_i915(crtc->base.dev); |
| |
| bw_state->data_rate[crtc->pipe] = |
| intel_bw_crtc_data_rate(crtc_state); |
| bw_state->num_active_planes[crtc->pipe] = |
| intel_bw_crtc_num_active_planes(crtc_state); |
| |
| drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n", |
| pipe_name(crtc->pipe), |
| bw_state->data_rate[crtc->pipe], |
| bw_state->num_active_planes[crtc->pipe]); |
| } |
| |
| static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv, |
| const struct intel_bw_state *bw_state) |
| { |
| unsigned int num_active_planes = 0; |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) |
| num_active_planes += bw_state->num_active_planes[pipe]; |
| |
| return num_active_planes; |
| } |
| |
| static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv, |
| const struct intel_bw_state *bw_state) |
| { |
| unsigned int data_rate = 0; |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) |
| data_rate += bw_state->data_rate[pipe]; |
| |
| if (DISPLAY_VER(dev_priv) >= 13 && intel_vtd_active(dev_priv)) |
| data_rate = data_rate * 105 / 100; |
| |
| return data_rate; |
| } |
| |
| struct intel_bw_state * |
| intel_atomic_get_old_bw_state(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_global_state *bw_state; |
| |
| bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj); |
| |
| return to_intel_bw_state(bw_state); |
| } |
| |
| struct intel_bw_state * |
| intel_atomic_get_new_bw_state(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_global_state *bw_state; |
| |
| bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj); |
| |
| return to_intel_bw_state(bw_state); |
| } |
| |
| struct intel_bw_state * |
| intel_atomic_get_bw_state(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_global_state *bw_state; |
| |
| bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj); |
| if (IS_ERR(bw_state)) |
| return ERR_CAST(bw_state); |
| |
| return to_intel_bw_state(bw_state); |
| } |
| |
| int skl_bw_calc_min_cdclk(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_bw_state *new_bw_state = NULL; |
| struct intel_bw_state *old_bw_state = NULL; |
| const struct intel_crtc_state *crtc_state; |
| struct intel_crtc *crtc; |
| int max_bw = 0; |
| enum pipe pipe; |
| int i; |
| |
| for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { |
| enum plane_id plane_id; |
| struct intel_dbuf_bw *crtc_bw; |
| |
| new_bw_state = intel_atomic_get_bw_state(state); |
| if (IS_ERR(new_bw_state)) |
| return PTR_ERR(new_bw_state); |
| |
| old_bw_state = intel_atomic_get_old_bw_state(state); |
| |
| crtc_bw = &new_bw_state->dbuf_bw[crtc->pipe]; |
| |
| memset(&crtc_bw->used_bw, 0, sizeof(crtc_bw->used_bw)); |
| |
| if (!crtc_state->hw.active) |
| continue; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| const struct skl_ddb_entry *plane_alloc = |
| &crtc_state->wm.skl.plane_ddb_y[plane_id]; |
| const struct skl_ddb_entry *uv_plane_alloc = |
| &crtc_state->wm.skl.plane_ddb_uv[plane_id]; |
| unsigned int data_rate = crtc_state->data_rate[plane_id]; |
| unsigned int dbuf_mask = 0; |
| enum dbuf_slice slice; |
| |
| dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, plane_alloc); |
| dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, uv_plane_alloc); |
| |
| /* |
| * FIXME: To calculate that more properly we probably |
| * need to to split per plane data_rate into data_rate_y |
| * and data_rate_uv for multiplanar formats in order not |
| * to get accounted those twice if they happen to reside |
| * on different slices. |
| * However for pre-icl this would work anyway because |
| * we have only single slice and for icl+ uv plane has |
| * non-zero data rate. |
| * So in worst case those calculation are a bit |
| * pessimistic, which shouldn't pose any significant |
| * problem anyway. |
| */ |
| for_each_dbuf_slice_in_mask(dev_priv, slice, dbuf_mask) |
| crtc_bw->used_bw[slice] += data_rate; |
| } |
| } |
| |
| if (!old_bw_state) |
| return 0; |
| |
| for_each_pipe(dev_priv, pipe) { |
| struct intel_dbuf_bw *crtc_bw; |
| enum dbuf_slice slice; |
| |
| crtc_bw = &new_bw_state->dbuf_bw[pipe]; |
| |
| for_each_dbuf_slice(dev_priv, slice) { |
| /* |
| * Current experimental observations show that contrary |
| * to BSpec we get underruns once we exceed 64 * CDCLK |
| * for slices in total. |
| * As a temporary measure in order not to keep CDCLK |
| * bumped up all the time we calculate CDCLK according |
| * to this formula for overall bw consumed by slices. |
| */ |
| max_bw += crtc_bw->used_bw[slice]; |
| } |
| } |
| |
| new_bw_state->min_cdclk = max_bw / 64; |
| |
| if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) { |
| int ret = intel_atomic_lock_global_state(&new_bw_state->base); |
| |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int intel_bw_calc_min_cdclk(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_bw_state *new_bw_state = NULL; |
| struct intel_bw_state *old_bw_state = NULL; |
| const struct intel_crtc_state *crtc_state; |
| struct intel_crtc *crtc; |
| int min_cdclk = 0; |
| enum pipe pipe; |
| int i; |
| |
| for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { |
| new_bw_state = intel_atomic_get_bw_state(state); |
| if (IS_ERR(new_bw_state)) |
| return PTR_ERR(new_bw_state); |
| |
| old_bw_state = intel_atomic_get_old_bw_state(state); |
| } |
| |
| if (!old_bw_state) |
| return 0; |
| |
| for_each_pipe(dev_priv, pipe) { |
| struct intel_cdclk_state *cdclk_state; |
| |
| cdclk_state = intel_atomic_get_new_cdclk_state(state); |
| if (!cdclk_state) |
| return 0; |
| |
| min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk); |
| } |
| |
| new_bw_state->min_cdclk = min_cdclk; |
| |
| if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) { |
| int ret = intel_atomic_lock_global_state(&new_bw_state->base); |
| |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int intel_bw_atomic_check(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_crtc_state *new_crtc_state, *old_crtc_state; |
| struct intel_bw_state *new_bw_state = NULL; |
| const struct intel_bw_state *old_bw_state = NULL; |
| unsigned int data_rate; |
| unsigned int num_active_planes; |
| struct intel_crtc *crtc; |
| int i, ret; |
| u32 allowed_points = 0; |
| unsigned int max_bw_point = 0, max_bw = 0; |
| unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points; |
| unsigned int num_psf_gv_points = dev_priv->max_bw[0].num_psf_gv_points; |
| u32 mask = 0; |
| |
| /* FIXME earlier gens need some checks too */ |
| if (DISPLAY_VER(dev_priv) < 11) |
| return 0; |
| |
| /* |
| * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects |
| * it with failure if we try masking any unadvertised points. |
| * So need to operate only with those returned from PCode. |
| */ |
| if (num_qgv_points > 0) |
| mask |= REG_GENMASK(num_qgv_points - 1, 0); |
| |
| if (num_psf_gv_points > 0) |
| mask |= REG_GENMASK(num_psf_gv_points - 1, 0) << ADLS_PSF_PT_SHIFT; |
| |
| for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, |
| new_crtc_state, i) { |
| unsigned int old_data_rate = |
| intel_bw_crtc_data_rate(old_crtc_state); |
| unsigned int new_data_rate = |
| intel_bw_crtc_data_rate(new_crtc_state); |
| unsigned int old_active_planes = |
| intel_bw_crtc_num_active_planes(old_crtc_state); |
| unsigned int new_active_planes = |
| intel_bw_crtc_num_active_planes(new_crtc_state); |
| |
| /* |
| * Avoid locking the bw state when |
| * nothing significant has changed. |
| */ |
| if (old_data_rate == new_data_rate && |
| old_active_planes == new_active_planes) |
| continue; |
| |
| new_bw_state = intel_atomic_get_bw_state(state); |
| if (IS_ERR(new_bw_state)) |
| return PTR_ERR(new_bw_state); |
| |
| new_bw_state->data_rate[crtc->pipe] = new_data_rate; |
| new_bw_state->num_active_planes[crtc->pipe] = new_active_planes; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "pipe %c data rate %u num active planes %u\n", |
| pipe_name(crtc->pipe), |
| new_bw_state->data_rate[crtc->pipe], |
| new_bw_state->num_active_planes[crtc->pipe]); |
| } |
| |
| if (!new_bw_state) |
| return 0; |
| |
| ret = intel_atomic_lock_global_state(&new_bw_state->base); |
| if (ret) |
| return ret; |
| |
| data_rate = intel_bw_data_rate(dev_priv, new_bw_state); |
| data_rate = DIV_ROUND_UP(data_rate, 1000); |
| |
| num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state); |
| |
| for (i = 0; i < num_qgv_points; i++) { |
| unsigned int max_data_rate; |
| |
| max_data_rate = icl_max_bw(dev_priv, num_active_planes, i); |
| /* |
| * We need to know which qgv point gives us |
| * maximum bandwidth in order to disable SAGV |
| * if we find that we exceed SAGV block time |
| * with watermarks. By that moment we already |
| * have those, as it is calculated earlier in |
| * intel_atomic_check, |
| */ |
| if (max_data_rate > max_bw) { |
| max_bw_point = i; |
| max_bw = max_data_rate; |
| } |
| if (max_data_rate >= data_rate) |
| allowed_points |= REG_FIELD_PREP(ADLS_QGV_PT_MASK, BIT(i)); |
| |
| drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n", |
| i, max_data_rate, data_rate); |
| } |
| |
| for (i = 0; i < num_psf_gv_points; i++) { |
| unsigned int max_data_rate = adl_psf_bw(dev_priv, i); |
| |
| if (max_data_rate >= data_rate) |
| allowed_points |= REG_FIELD_PREP(ADLS_PSF_PT_MASK, BIT(i)); |
| |
| drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d" |
| " required %d\n", |
| i, max_data_rate, data_rate); |
| } |
| |
| /* |
| * BSpec states that we always should have at least one allowed point |
| * left, so if we couldn't - simply reject the configuration for obvious |
| * reasons. |
| */ |
| if ((allowed_points & ADLS_QGV_PT_MASK) == 0) { |
| drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory" |
| " bandwidth %d for display configuration(%d active planes).\n", |
| data_rate, num_active_planes); |
| return -EINVAL; |
| } |
| |
| if (num_psf_gv_points > 0) { |
| if ((allowed_points & ADLS_PSF_PT_MASK) == 0) { |
| drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory" |
| " bandwidth %d for display configuration(%d active planes).\n", |
| data_rate, num_active_planes); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Leave only single point with highest bandwidth, if |
| * we can't enable SAGV due to the increased memory latency it may |
| * cause. |
| */ |
| if (!intel_can_enable_sagv(dev_priv, new_bw_state)) { |
| allowed_points = BIT(max_bw_point); |
| drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n", |
| max_bw_point); |
| } |
| /* |
| * We store the ones which need to be masked as that is what PCode |
| * actually accepts as a parameter. |
| */ |
| new_bw_state->qgv_points_mask = ~allowed_points & mask; |
| |
| old_bw_state = intel_atomic_get_old_bw_state(state); |
| /* |
| * If the actual mask had changed we need to make sure that |
| * the commits are serialized(in case this is a nomodeset, nonblocking) |
| */ |
| if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) { |
| ret = intel_atomic_serialize_global_state(&new_bw_state->base); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static struct intel_global_state * |
| intel_bw_duplicate_state(struct intel_global_obj *obj) |
| { |
| struct intel_bw_state *state; |
| |
| state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| return &state->base; |
| } |
| |
| static void intel_bw_destroy_state(struct intel_global_obj *obj, |
| struct intel_global_state *state) |
| { |
| kfree(state); |
| } |
| |
| static const struct intel_global_state_funcs intel_bw_funcs = { |
| .atomic_duplicate_state = intel_bw_duplicate_state, |
| .atomic_destroy_state = intel_bw_destroy_state, |
| }; |
| |
| int intel_bw_init(struct drm_i915_private *dev_priv) |
| { |
| struct intel_bw_state *state; |
| |
| state = kzalloc(sizeof(*state), GFP_KERNEL); |
| if (!state) |
| return -ENOMEM; |
| |
| intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj, |
| &state->base, &intel_bw_funcs); |
| |
| return 0; |
| } |