| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2012 Regents of the University of California |
| */ |
| |
| #ifndef _ASM_RISCV_PGTABLE_H |
| #define _ASM_RISCV_PGTABLE_H |
| |
| #include <linux/mmzone.h> |
| #include <linux/sizes.h> |
| |
| #include <asm/pgtable-bits.h> |
| |
| #ifndef CONFIG_MMU |
| #define KERNEL_LINK_ADDR PAGE_OFFSET |
| #define KERN_VIRT_SIZE (UL(-1)) |
| #else |
| |
| #define ADDRESS_SPACE_END (UL(-1)) |
| |
| #ifdef CONFIG_64BIT |
| /* Leave 2GB for kernel and BPF at the end of the address space */ |
| #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) |
| #else |
| #define KERNEL_LINK_ADDR PAGE_OFFSET |
| #endif |
| |
| /* Number of entries in the page global directory */ |
| #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) |
| /* Number of entries in the page table */ |
| #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) |
| |
| /* |
| * Half of the kernel address space (half of the entries of the page global |
| * directory) is for the direct mapping. |
| */ |
| #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) |
| |
| #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) |
| #define VMALLOC_END PAGE_OFFSET |
| #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) |
| |
| #define BPF_JIT_REGION_SIZE (SZ_128M) |
| #ifdef CONFIG_64BIT |
| #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) |
| #define BPF_JIT_REGION_END (MODULES_END) |
| #else |
| #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) |
| #define BPF_JIT_REGION_END (VMALLOC_END) |
| #endif |
| |
| /* Modules always live before the kernel */ |
| #ifdef CONFIG_64BIT |
| /* This is used to define the end of the KASAN shadow region */ |
| #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) |
| #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) |
| #define MODULES_END (PFN_ALIGN((unsigned long)&_start)) |
| #endif |
| |
| /* |
| * Roughly size the vmemmap space to be large enough to fit enough |
| * struct pages to map half the virtual address space. Then |
| * position vmemmap directly below the VMALLOC region. |
| */ |
| #ifdef CONFIG_64BIT |
| #define VA_BITS (pgtable_l5_enabled ? \ |
| 57 : (pgtable_l4_enabled ? 48 : 39)) |
| #else |
| #define VA_BITS 32 |
| #endif |
| |
| #define VMEMMAP_SHIFT \ |
| (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) |
| #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) |
| #define VMEMMAP_END VMALLOC_START |
| #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) |
| |
| /* |
| * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel |
| * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. |
| */ |
| #define vmemmap ((struct page *)VMEMMAP_START) |
| |
| #define PCI_IO_SIZE SZ_16M |
| #define PCI_IO_END VMEMMAP_START |
| #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) |
| |
| #define FIXADDR_TOP PCI_IO_START |
| #ifdef CONFIG_64BIT |
| #define FIXADDR_SIZE PMD_SIZE |
| #else |
| #define FIXADDR_SIZE PGDIR_SIZE |
| #endif |
| #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) |
| |
| #endif |
| |
| #ifdef CONFIG_XIP_KERNEL |
| #define XIP_OFFSET SZ_32M |
| #define XIP_OFFSET_MASK (SZ_32M - 1) |
| #else |
| #define XIP_OFFSET 0 |
| #endif |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <asm/page.h> |
| #include <asm/tlbflush.h> |
| #include <linux/mm_types.h> |
| |
| #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) |
| |
| #ifdef CONFIG_64BIT |
| #include <asm/pgtable-64.h> |
| #else |
| #include <asm/pgtable-32.h> |
| #endif /* CONFIG_64BIT */ |
| |
| #include <linux/page_table_check.h> |
| |
| #ifdef CONFIG_XIP_KERNEL |
| #define XIP_FIXUP(addr) ({ \ |
| uintptr_t __a = (uintptr_t)(addr); \ |
| (__a >= CONFIG_XIP_PHYS_ADDR && \ |
| __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ |
| __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ |
| __a; \ |
| }) |
| #else |
| #define XIP_FIXUP(addr) (addr) |
| #endif /* CONFIG_XIP_KERNEL */ |
| |
| struct pt_alloc_ops { |
| pte_t *(*get_pte_virt)(phys_addr_t pa); |
| phys_addr_t (*alloc_pte)(uintptr_t va); |
| #ifndef __PAGETABLE_PMD_FOLDED |
| pmd_t *(*get_pmd_virt)(phys_addr_t pa); |
| phys_addr_t (*alloc_pmd)(uintptr_t va); |
| pud_t *(*get_pud_virt)(phys_addr_t pa); |
| phys_addr_t (*alloc_pud)(uintptr_t va); |
| p4d_t *(*get_p4d_virt)(phys_addr_t pa); |
| phys_addr_t (*alloc_p4d)(uintptr_t va); |
| #endif |
| }; |
| |
| extern struct pt_alloc_ops pt_ops __initdata; |
| |
| #ifdef CONFIG_MMU |
| /* Number of PGD entries that a user-mode program can use */ |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| |
| /* Page protection bits */ |
| #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) |
| |
| #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) |
| #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) |
| #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) |
| #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) |
| #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) |
| #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ |
| _PAGE_EXEC | _PAGE_WRITE) |
| |
| #define PAGE_COPY PAGE_READ |
| #define PAGE_COPY_EXEC PAGE_EXEC |
| #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC |
| #define PAGE_SHARED PAGE_WRITE |
| #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC |
| |
| #define _PAGE_KERNEL (_PAGE_READ \ |
| | _PAGE_WRITE \ |
| | _PAGE_PRESENT \ |
| | _PAGE_ACCESSED \ |
| | _PAGE_DIRTY \ |
| | _PAGE_GLOBAL) |
| |
| #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) |
| #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) |
| #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) |
| #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ |
| | _PAGE_EXEC) |
| |
| #define PAGE_TABLE __pgprot(_PAGE_TABLE) |
| |
| #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) |
| #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) |
| |
| extern pgd_t swapper_pg_dir[]; |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline int pmd_present(pmd_t pmd) |
| { |
| /* |
| * Checking for _PAGE_LEAF is needed too because: |
| * When splitting a THP, split_huge_page() will temporarily clear |
| * the present bit, in this situation, pmd_present() and |
| * pmd_trans_huge() still needs to return true. |
| */ |
| return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); |
| } |
| #else |
| static inline int pmd_present(pmd_t pmd) |
| { |
| return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); |
| } |
| #endif |
| |
| static inline int pmd_none(pmd_t pmd) |
| { |
| return (pmd_val(pmd) == 0); |
| } |
| |
| static inline int pmd_bad(pmd_t pmd) |
| { |
| return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); |
| } |
| |
| #define pmd_leaf pmd_leaf |
| static inline int pmd_leaf(pmd_t pmd) |
| { |
| return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); |
| } |
| |
| static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) |
| { |
| *pmdp = pmd; |
| } |
| |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| set_pmd(pmdp, __pmd(0)); |
| } |
| |
| static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) |
| { |
| unsigned long prot_val = pgprot_val(prot); |
| |
| ALT_THEAD_PMA(prot_val); |
| |
| return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); |
| } |
| |
| static inline unsigned long _pgd_pfn(pgd_t pgd) |
| { |
| return __page_val_to_pfn(pgd_val(pgd)); |
| } |
| |
| static inline struct page *pmd_page(pmd_t pmd) |
| { |
| return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); |
| } |
| |
| static inline unsigned long pmd_page_vaddr(pmd_t pmd) |
| { |
| return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); |
| } |
| |
| static inline pte_t pmd_pte(pmd_t pmd) |
| { |
| return __pte(pmd_val(pmd)); |
| } |
| |
| static inline pte_t pud_pte(pud_t pud) |
| { |
| return __pte(pud_val(pud)); |
| } |
| |
| /* Yields the page frame number (PFN) of a page table entry */ |
| static inline unsigned long pte_pfn(pte_t pte) |
| { |
| return __page_val_to_pfn(pte_val(pte)); |
| } |
| |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| |
| /* Constructs a page table entry */ |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) |
| { |
| unsigned long prot_val = pgprot_val(prot); |
| |
| ALT_THEAD_PMA(prot_val); |
| |
| return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); |
| } |
| |
| #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) |
| |
| static inline int pte_present(pte_t pte) |
| { |
| return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); |
| } |
| |
| static inline int pte_none(pte_t pte) |
| { |
| return (pte_val(pte) == 0); |
| } |
| |
| static inline int pte_write(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_WRITE; |
| } |
| |
| static inline int pte_exec(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_EXEC; |
| } |
| |
| static inline int pte_user(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_USER; |
| } |
| |
| static inline int pte_huge(pte_t pte) |
| { |
| return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); |
| } |
| |
| static inline int pte_dirty(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_DIRTY; |
| } |
| |
| static inline int pte_young(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_ACCESSED; |
| } |
| |
| static inline int pte_special(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_SPECIAL; |
| } |
| |
| /* static inline pte_t pte_rdprotect(pte_t pte) */ |
| |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~(_PAGE_WRITE)); |
| } |
| |
| /* static inline pte_t pte_mkread(pte_t pte) */ |
| |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_WRITE); |
| } |
| |
| /* static inline pte_t pte_mkexec(pte_t pte) */ |
| |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_DIRTY); |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); |
| } |
| |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_ACCESSED); |
| } |
| |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_SPECIAL); |
| } |
| |
| static inline pte_t pte_mkhuge(pte_t pte) |
| { |
| return pte; |
| } |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| /* |
| * See the comment in include/asm-generic/pgtable.h |
| */ |
| static inline int pte_protnone(pte_t pte) |
| { |
| return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; |
| } |
| |
| static inline int pmd_protnone(pmd_t pmd) |
| { |
| return pte_protnone(pmd_pte(pmd)); |
| } |
| #endif |
| |
| /* Modify page protection bits */ |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| unsigned long newprot_val = pgprot_val(newprot); |
| |
| ALT_THEAD_PMA(newprot_val); |
| |
| return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); |
| } |
| |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| |
| /* Commit new configuration to MMU hardware */ |
| static inline void update_mmu_cache(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| /* |
| * The kernel assumes that TLBs don't cache invalid entries, but |
| * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a |
| * cache flush; it is necessary even after writing invalid entries. |
| * Relying on flush_tlb_fix_spurious_fault would suffice, but |
| * the extra traps reduce performance. So, eagerly SFENCE.VMA. |
| */ |
| local_flush_tlb_page(address); |
| } |
| |
| static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp) |
| { |
| pte_t *ptep = (pte_t *)pmdp; |
| |
| update_mmu_cache(vma, address, ptep); |
| } |
| |
| #define __HAVE_ARCH_PTE_SAME |
| static inline int pte_same(pte_t pte_a, pte_t pte_b) |
| { |
| return pte_val(pte_a) == pte_val(pte_b); |
| } |
| |
| /* |
| * Certain architectures need to do special things when PTEs within |
| * a page table are directly modified. Thus, the following hook is |
| * made available. |
| */ |
| static inline void set_pte(pte_t *ptep, pte_t pteval) |
| { |
| *ptep = pteval; |
| } |
| |
| void flush_icache_pte(pte_t pte); |
| |
| static inline void __set_pte_at(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep, pte_t pteval) |
| { |
| if (pte_present(pteval) && pte_exec(pteval)) |
| flush_icache_pte(pteval); |
| |
| set_pte(ptep, pteval); |
| } |
| |
| static inline void set_pte_at(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep, pte_t pteval) |
| { |
| page_table_check_pte_set(mm, addr, ptep, pteval); |
| __set_pte_at(mm, addr, ptep, pteval); |
| } |
| |
| static inline void pte_clear(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| __set_pte_at(mm, addr, ptep, __pte(0)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| static inline int ptep_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep, |
| pte_t entry, int dirty) |
| { |
| if (!pte_same(*ptep, entry)) |
| set_pte_at(vma->vm_mm, address, ptep, entry); |
| /* |
| * update_mmu_cache will unconditionally execute, handling both |
| * the case that the PTE changed and the spurious fault case. |
| */ |
| return true; |
| } |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); |
| |
| page_table_check_pte_clear(mm, address, pte); |
| |
| return pte; |
| } |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, |
| pte_t *ptep) |
| { |
| if (!pte_young(*ptep)) |
| return 0; |
| return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pte_t *ptep) |
| { |
| atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); |
| } |
| |
| #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| static inline int ptep_clear_flush_young(struct vm_area_struct *vma, |
| unsigned long address, pte_t *ptep) |
| { |
| /* |
| * This comment is borrowed from x86, but applies equally to RISC-V: |
| * |
| * Clearing the accessed bit without a TLB flush |
| * doesn't cause data corruption. [ It could cause incorrect |
| * page aging and the (mistaken) reclaim of hot pages, but the |
| * chance of that should be relatively low. ] |
| * |
| * So as a performance optimization don't flush the TLB when |
| * clearing the accessed bit, it will eventually be flushed by |
| * a context switch or a VM operation anyway. [ In the rare |
| * event of it not getting flushed for a long time the delay |
| * shouldn't really matter because there's no real memory |
| * pressure for swapout to react to. ] |
| */ |
| return ptep_test_and_clear_young(vma, address, ptep); |
| } |
| |
| #define pgprot_noncached pgprot_noncached |
| static inline pgprot_t pgprot_noncached(pgprot_t _prot) |
| { |
| unsigned long prot = pgprot_val(_prot); |
| |
| prot &= ~_PAGE_MTMASK; |
| prot |= _PAGE_IO; |
| |
| return __pgprot(prot); |
| } |
| |
| #define pgprot_writecombine pgprot_writecombine |
| static inline pgprot_t pgprot_writecombine(pgprot_t _prot) |
| { |
| unsigned long prot = pgprot_val(_prot); |
| |
| prot &= ~_PAGE_MTMASK; |
| prot |= _PAGE_NOCACHE; |
| |
| return __pgprot(prot); |
| } |
| |
| /* |
| * THP functions |
| */ |
| static inline pmd_t pte_pmd(pte_t pte) |
| { |
| return __pmd(pte_val(pte)); |
| } |
| |
| static inline pmd_t pmd_mkhuge(pmd_t pmd) |
| { |
| return pmd; |
| } |
| |
| static inline pmd_t pmd_mkinvalid(pmd_t pmd) |
| { |
| return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); |
| } |
| |
| #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) |
| |
| static inline unsigned long pmd_pfn(pmd_t pmd) |
| { |
| return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); |
| } |
| |
| #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) |
| |
| static inline unsigned long pud_pfn(pud_t pud) |
| { |
| return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); |
| } |
| |
| static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) |
| { |
| return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); |
| } |
| |
| #define pmd_write pmd_write |
| static inline int pmd_write(pmd_t pmd) |
| { |
| return pte_write(pmd_pte(pmd)); |
| } |
| |
| static inline int pmd_dirty(pmd_t pmd) |
| { |
| return pte_dirty(pmd_pte(pmd)); |
| } |
| |
| static inline int pmd_young(pmd_t pmd) |
| { |
| return pte_young(pmd_pte(pmd)); |
| } |
| |
| static inline int pmd_user(pmd_t pmd) |
| { |
| return pte_user(pmd_pte(pmd)); |
| } |
| |
| static inline pmd_t pmd_mkold(pmd_t pmd) |
| { |
| return pte_pmd(pte_mkold(pmd_pte(pmd))); |
| } |
| |
| static inline pmd_t pmd_mkyoung(pmd_t pmd) |
| { |
| return pte_pmd(pte_mkyoung(pmd_pte(pmd))); |
| } |
| |
| static inline pmd_t pmd_mkwrite(pmd_t pmd) |
| { |
| return pte_pmd(pte_mkwrite(pmd_pte(pmd))); |
| } |
| |
| static inline pmd_t pmd_wrprotect(pmd_t pmd) |
| { |
| return pte_pmd(pte_wrprotect(pmd_pte(pmd))); |
| } |
| |
| static inline pmd_t pmd_mkclean(pmd_t pmd) |
| { |
| return pte_pmd(pte_mkclean(pmd_pte(pmd))); |
| } |
| |
| static inline pmd_t pmd_mkdirty(pmd_t pmd) |
| { |
| return pte_pmd(pte_mkdirty(pmd_pte(pmd))); |
| } |
| |
| static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, pmd_t pmd) |
| { |
| page_table_check_pmd_set(mm, addr, pmdp, pmd); |
| return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)); |
| } |
| |
| static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, |
| pud_t *pudp, pud_t pud) |
| { |
| page_table_check_pud_set(mm, addr, pudp, pud); |
| return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)); |
| } |
| |
| #ifdef CONFIG_PAGE_TABLE_CHECK |
| static inline bool pte_user_accessible_page(pte_t pte) |
| { |
| return pte_present(pte) && pte_user(pte); |
| } |
| |
| static inline bool pmd_user_accessible_page(pmd_t pmd) |
| { |
| return pmd_leaf(pmd) && pmd_user(pmd); |
| } |
| |
| static inline bool pud_user_accessible_page(pud_t pud) |
| { |
| return pud_leaf(pud) && pud_user(pud); |
| } |
| #endif |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline int pmd_trans_huge(pmd_t pmd) |
| { |
| return pmd_leaf(pmd); |
| } |
| |
| #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS |
| static inline int pmdp_set_access_flags(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, |
| pmd_t entry, int dirty) |
| { |
| return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); |
| } |
| |
| #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG |
| static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp) |
| { |
| return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); |
| } |
| |
| #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
| static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); |
| |
| page_table_check_pmd_clear(mm, address, pmd); |
| |
| return pmd; |
| } |
| |
| #define __HAVE_ARCH_PMDP_SET_WRPROTECT |
| static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
| unsigned long address, pmd_t *pmdp) |
| { |
| ptep_set_wrprotect(mm, address, (pte_t *)pmdp); |
| } |
| |
| #define pmdp_establish pmdp_establish |
| static inline pmd_t pmdp_establish(struct vm_area_struct *vma, |
| unsigned long address, pmd_t *pmdp, pmd_t pmd) |
| { |
| page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd); |
| return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| /* |
| * Encode and decode a swap entry |
| * |
| * Format of swap PTE: |
| * bit 0: _PAGE_PRESENT (zero) |
| * bit 1 to 3: _PAGE_LEAF (zero) |
| * bit 5: _PAGE_PROT_NONE (zero) |
| * bits 6 to 10: swap type |
| * bits 10 to XLEN-1: swap offset |
| */ |
| #define __SWP_TYPE_SHIFT 6 |
| #define __SWP_TYPE_BITS 5 |
| #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) |
| #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) |
| |
| #define MAX_SWAPFILES_CHECK() \ |
| BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) |
| |
| #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) |
| #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) |
| #define __swp_entry(type, offset) ((swp_entry_t) \ |
| { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) |
| |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
| #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) |
| #define __swp_entry_to_pmd(swp) __pmd((swp).val) |
| #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ |
| |
| /* |
| * In the RV64 Linux scheme, we give the user half of the virtual-address space |
| * and give the kernel the other (upper) half. |
| */ |
| #ifdef CONFIG_64BIT |
| #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) |
| #else |
| #define KERN_VIRT_START FIXADDR_START |
| #endif |
| |
| /* |
| * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. |
| * Note that PGDIR_SIZE must evenly divide TASK_SIZE. |
| * Task size is: |
| * - 0x9fc00000 (~2.5GB) for RV32. |
| * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu |
| * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu |
| * |
| * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V |
| * Instruction Set Manual Volume II: Privileged Architecture" states that |
| * "load and store effective addresses, which are 64bits, must have bits |
| * 63–48 all equal to bit 47, or else a page-fault exception will occur." |
| */ |
| #ifdef CONFIG_64BIT |
| #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) |
| #define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2) |
| |
| #ifdef CONFIG_COMPAT |
| #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) |
| #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ |
| TASK_SIZE_32 : TASK_SIZE_64) |
| #else |
| #define TASK_SIZE TASK_SIZE_64 |
| #endif |
| |
| #else |
| #define TASK_SIZE FIXADDR_START |
| #define TASK_SIZE_MIN TASK_SIZE |
| #endif |
| |
| #else /* CONFIG_MMU */ |
| |
| #define PAGE_SHARED __pgprot(0) |
| #define PAGE_KERNEL __pgprot(0) |
| #define swapper_pg_dir NULL |
| #define TASK_SIZE 0xffffffffUL |
| #define VMALLOC_START 0 |
| #define VMALLOC_END TASK_SIZE |
| |
| #endif /* !CONFIG_MMU */ |
| |
| #define kern_addr_valid(addr) (1) /* FIXME */ |
| |
| extern char _start[]; |
| extern void *_dtb_early_va; |
| extern uintptr_t _dtb_early_pa; |
| #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) |
| #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) |
| #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) |
| #else |
| #define dtb_early_va _dtb_early_va |
| #define dtb_early_pa _dtb_early_pa |
| #endif /* CONFIG_XIP_KERNEL */ |
| extern u64 satp_mode; |
| extern bool pgtable_l4_enabled; |
| |
| void paging_init(void); |
| void misc_mem_init(void); |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero, |
| * used for zero-mapped memory areas, etc. |
| */ |
| extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASM_RISCV_PGTABLE_H */ |