| /* |
| * Copyright (c) 2000-2003 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_format.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_alloc.h" |
| #include "xfs_quota.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_inode.h" |
| #include "xfs_bmap.h" |
| #include "xfs_rtalloc.h" |
| #include "xfs_error.h" |
| #include "xfs_itable.h" |
| #include "xfs_attr.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_trans_space.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_qm.h" |
| #include "xfs_cksum.h" |
| #include "xfs_trace.h" |
| |
| /* |
| * Lock order: |
| * |
| * ip->i_lock |
| * qi->qi_tree_lock |
| * dquot->q_qlock (xfs_dqlock() and friends) |
| * dquot->q_flush (xfs_dqflock() and friends) |
| * qi->qi_lru_lock |
| * |
| * If two dquots need to be locked the order is user before group/project, |
| * otherwise by the lowest id first, see xfs_dqlock2. |
| */ |
| |
| #ifdef DEBUG |
| xfs_buftarg_t *xfs_dqerror_target; |
| int xfs_do_dqerror; |
| int xfs_dqreq_num; |
| int xfs_dqerror_mod = 33; |
| #endif |
| |
| struct kmem_zone *xfs_qm_dqtrxzone; |
| static struct kmem_zone *xfs_qm_dqzone; |
| |
| static struct lock_class_key xfs_dquot_other_class; |
| |
| /* |
| * This is called to free all the memory associated with a dquot |
| */ |
| void |
| xfs_qm_dqdestroy( |
| xfs_dquot_t *dqp) |
| { |
| ASSERT(list_empty(&dqp->q_lru)); |
| |
| mutex_destroy(&dqp->q_qlock); |
| kmem_zone_free(xfs_qm_dqzone, dqp); |
| |
| XFS_STATS_DEC(xs_qm_dquot); |
| } |
| |
| /* |
| * If default limits are in force, push them into the dquot now. |
| * We overwrite the dquot limits only if they are zero and this |
| * is not the root dquot. |
| */ |
| void |
| xfs_qm_adjust_dqlimits( |
| struct xfs_mount *mp, |
| struct xfs_dquot *dq) |
| { |
| struct xfs_quotainfo *q = mp->m_quotainfo; |
| struct xfs_disk_dquot *d = &dq->q_core; |
| int prealloc = 0; |
| |
| ASSERT(d->d_id); |
| |
| if (q->qi_bsoftlimit && !d->d_blk_softlimit) { |
| d->d_blk_softlimit = cpu_to_be64(q->qi_bsoftlimit); |
| prealloc = 1; |
| } |
| if (q->qi_bhardlimit && !d->d_blk_hardlimit) { |
| d->d_blk_hardlimit = cpu_to_be64(q->qi_bhardlimit); |
| prealloc = 1; |
| } |
| if (q->qi_isoftlimit && !d->d_ino_softlimit) |
| d->d_ino_softlimit = cpu_to_be64(q->qi_isoftlimit); |
| if (q->qi_ihardlimit && !d->d_ino_hardlimit) |
| d->d_ino_hardlimit = cpu_to_be64(q->qi_ihardlimit); |
| if (q->qi_rtbsoftlimit && !d->d_rtb_softlimit) |
| d->d_rtb_softlimit = cpu_to_be64(q->qi_rtbsoftlimit); |
| if (q->qi_rtbhardlimit && !d->d_rtb_hardlimit) |
| d->d_rtb_hardlimit = cpu_to_be64(q->qi_rtbhardlimit); |
| |
| if (prealloc) |
| xfs_dquot_set_prealloc_limits(dq); |
| } |
| |
| /* |
| * Check the limits and timers of a dquot and start or reset timers |
| * if necessary. |
| * This gets called even when quota enforcement is OFF, which makes our |
| * life a little less complicated. (We just don't reject any quota |
| * reservations in that case, when enforcement is off). |
| * We also return 0 as the values of the timers in Q_GETQUOTA calls, when |
| * enforcement's off. |
| * In contrast, warnings are a little different in that they don't |
| * 'automatically' get started when limits get exceeded. They do |
| * get reset to zero, however, when we find the count to be under |
| * the soft limit (they are only ever set non-zero via userspace). |
| */ |
| void |
| xfs_qm_adjust_dqtimers( |
| xfs_mount_t *mp, |
| xfs_disk_dquot_t *d) |
| { |
| ASSERT(d->d_id); |
| |
| #ifdef DEBUG |
| if (d->d_blk_hardlimit) |
| ASSERT(be64_to_cpu(d->d_blk_softlimit) <= |
| be64_to_cpu(d->d_blk_hardlimit)); |
| if (d->d_ino_hardlimit) |
| ASSERT(be64_to_cpu(d->d_ino_softlimit) <= |
| be64_to_cpu(d->d_ino_hardlimit)); |
| if (d->d_rtb_hardlimit) |
| ASSERT(be64_to_cpu(d->d_rtb_softlimit) <= |
| be64_to_cpu(d->d_rtb_hardlimit)); |
| #endif |
| |
| if (!d->d_btimer) { |
| if ((d->d_blk_softlimit && |
| (be64_to_cpu(d->d_bcount) > |
| be64_to_cpu(d->d_blk_softlimit))) || |
| (d->d_blk_hardlimit && |
| (be64_to_cpu(d->d_bcount) > |
| be64_to_cpu(d->d_blk_hardlimit)))) { |
| d->d_btimer = cpu_to_be32(get_seconds() + |
| mp->m_quotainfo->qi_btimelimit); |
| } else { |
| d->d_bwarns = 0; |
| } |
| } else { |
| if ((!d->d_blk_softlimit || |
| (be64_to_cpu(d->d_bcount) <= |
| be64_to_cpu(d->d_blk_softlimit))) && |
| (!d->d_blk_hardlimit || |
| (be64_to_cpu(d->d_bcount) <= |
| be64_to_cpu(d->d_blk_hardlimit)))) { |
| d->d_btimer = 0; |
| } |
| } |
| |
| if (!d->d_itimer) { |
| if ((d->d_ino_softlimit && |
| (be64_to_cpu(d->d_icount) > |
| be64_to_cpu(d->d_ino_softlimit))) || |
| (d->d_ino_hardlimit && |
| (be64_to_cpu(d->d_icount) > |
| be64_to_cpu(d->d_ino_hardlimit)))) { |
| d->d_itimer = cpu_to_be32(get_seconds() + |
| mp->m_quotainfo->qi_itimelimit); |
| } else { |
| d->d_iwarns = 0; |
| } |
| } else { |
| if ((!d->d_ino_softlimit || |
| (be64_to_cpu(d->d_icount) <= |
| be64_to_cpu(d->d_ino_softlimit))) && |
| (!d->d_ino_hardlimit || |
| (be64_to_cpu(d->d_icount) <= |
| be64_to_cpu(d->d_ino_hardlimit)))) { |
| d->d_itimer = 0; |
| } |
| } |
| |
| if (!d->d_rtbtimer) { |
| if ((d->d_rtb_softlimit && |
| (be64_to_cpu(d->d_rtbcount) > |
| be64_to_cpu(d->d_rtb_softlimit))) || |
| (d->d_rtb_hardlimit && |
| (be64_to_cpu(d->d_rtbcount) > |
| be64_to_cpu(d->d_rtb_hardlimit)))) { |
| d->d_rtbtimer = cpu_to_be32(get_seconds() + |
| mp->m_quotainfo->qi_rtbtimelimit); |
| } else { |
| d->d_rtbwarns = 0; |
| } |
| } else { |
| if ((!d->d_rtb_softlimit || |
| (be64_to_cpu(d->d_rtbcount) <= |
| be64_to_cpu(d->d_rtb_softlimit))) && |
| (!d->d_rtb_hardlimit || |
| (be64_to_cpu(d->d_rtbcount) <= |
| be64_to_cpu(d->d_rtb_hardlimit)))) { |
| d->d_rtbtimer = 0; |
| } |
| } |
| } |
| |
| /* |
| * initialize a buffer full of dquots and log the whole thing |
| */ |
| STATIC void |
| xfs_qm_init_dquot_blk( |
| xfs_trans_t *tp, |
| xfs_mount_t *mp, |
| xfs_dqid_t id, |
| uint type, |
| xfs_buf_t *bp) |
| { |
| struct xfs_quotainfo *q = mp->m_quotainfo; |
| xfs_dqblk_t *d; |
| int curid, i; |
| |
| ASSERT(tp); |
| ASSERT(xfs_buf_islocked(bp)); |
| |
| d = bp->b_addr; |
| |
| /* |
| * ID of the first dquot in the block - id's are zero based. |
| */ |
| curid = id - (id % q->qi_dqperchunk); |
| ASSERT(curid >= 0); |
| memset(d, 0, BBTOB(q->qi_dqchunklen)); |
| for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) { |
| d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); |
| d->dd_diskdq.d_version = XFS_DQUOT_VERSION; |
| d->dd_diskdq.d_id = cpu_to_be32(curid); |
| d->dd_diskdq.d_flags = type; |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid); |
| xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk), |
| XFS_DQUOT_CRC_OFF); |
| } |
| } |
| |
| xfs_trans_dquot_buf(tp, bp, |
| (type & XFS_DQ_USER ? XFS_BLF_UDQUOT_BUF : |
| ((type & XFS_DQ_PROJ) ? XFS_BLF_PDQUOT_BUF : |
| XFS_BLF_GDQUOT_BUF))); |
| xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1); |
| } |
| |
| /* |
| * Initialize the dynamic speculative preallocation thresholds. The lo/hi |
| * watermarks correspond to the soft and hard limits by default. If a soft limit |
| * is not specified, we use 95% of the hard limit. |
| */ |
| void |
| xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp) |
| { |
| __uint64_t space; |
| |
| dqp->q_prealloc_hi_wmark = be64_to_cpu(dqp->q_core.d_blk_hardlimit); |
| dqp->q_prealloc_lo_wmark = be64_to_cpu(dqp->q_core.d_blk_softlimit); |
| if (!dqp->q_prealloc_lo_wmark) { |
| dqp->q_prealloc_lo_wmark = dqp->q_prealloc_hi_wmark; |
| do_div(dqp->q_prealloc_lo_wmark, 100); |
| dqp->q_prealloc_lo_wmark *= 95; |
| } |
| |
| space = dqp->q_prealloc_hi_wmark; |
| |
| do_div(space, 100); |
| dqp->q_low_space[XFS_QLOWSP_1_PCNT] = space; |
| dqp->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3; |
| dqp->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5; |
| } |
| |
| STATIC bool |
| xfs_dquot_buf_verify_crc( |
| struct xfs_mount *mp, |
| struct xfs_buf *bp) |
| { |
| struct xfs_dqblk *d = (struct xfs_dqblk *)bp->b_addr; |
| int ndquots; |
| int i; |
| |
| if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| return true; |
| |
| /* |
| * if we are in log recovery, the quota subsystem has not been |
| * initialised so we have no quotainfo structure. In that case, we need |
| * to manually calculate the number of dquots in the buffer. |
| */ |
| if (mp->m_quotainfo) |
| ndquots = mp->m_quotainfo->qi_dqperchunk; |
| else |
| ndquots = xfs_qm_calc_dquots_per_chunk(mp, |
| XFS_BB_TO_FSB(mp, bp->b_length)); |
| |
| for (i = 0; i < ndquots; i++, d++) { |
| if (!xfs_verify_cksum((char *)d, sizeof(struct xfs_dqblk), |
| XFS_DQUOT_CRC_OFF)) |
| return false; |
| if (!uuid_equal(&d->dd_uuid, &mp->m_sb.sb_uuid)) |
| return false; |
| } |
| return true; |
| } |
| |
| STATIC bool |
| xfs_dquot_buf_verify( |
| struct xfs_mount *mp, |
| struct xfs_buf *bp) |
| { |
| struct xfs_dqblk *d = (struct xfs_dqblk *)bp->b_addr; |
| xfs_dqid_t id = 0; |
| int ndquots; |
| int i; |
| |
| /* |
| * if we are in log recovery, the quota subsystem has not been |
| * initialised so we have no quotainfo structure. In that case, we need |
| * to manually calculate the number of dquots in the buffer. |
| */ |
| if (mp->m_quotainfo) |
| ndquots = mp->m_quotainfo->qi_dqperchunk; |
| else |
| ndquots = xfs_qm_calc_dquots_per_chunk(mp, bp->b_length); |
| |
| /* |
| * On the first read of the buffer, verify that each dquot is valid. |
| * We don't know what the id of the dquot is supposed to be, just that |
| * they should be increasing monotonically within the buffer. If the |
| * first id is corrupt, then it will fail on the second dquot in the |
| * buffer so corruptions could point to the wrong dquot in this case. |
| */ |
| for (i = 0; i < ndquots; i++) { |
| struct xfs_disk_dquot *ddq; |
| int error; |
| |
| ddq = &d[i].dd_diskdq; |
| |
| if (i == 0) |
| id = be32_to_cpu(ddq->d_id); |
| |
| error = xfs_qm_dqcheck(mp, ddq, id + i, 0, XFS_QMOPT_DOWARN, |
| "xfs_dquot_buf_verify"); |
| if (error) |
| return false; |
| } |
| return true; |
| } |
| |
| static void |
| xfs_dquot_buf_read_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_target->bt_mount; |
| |
| if (!xfs_dquot_buf_verify_crc(mp, bp) || !xfs_dquot_buf_verify(mp, bp)) { |
| XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr); |
| xfs_buf_ioerror(bp, EFSCORRUPTED); |
| } |
| } |
| |
| /* |
| * we don't calculate the CRC here as that is done when the dquot is flushed to |
| * the buffer after the update is done. This ensures that the dquot in the |
| * buffer always has an up-to-date CRC value. |
| */ |
| void |
| xfs_dquot_buf_write_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_target->bt_mount; |
| |
| if (!xfs_dquot_buf_verify(mp, bp)) { |
| XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr); |
| xfs_buf_ioerror(bp, EFSCORRUPTED); |
| return; |
| } |
| } |
| |
| const struct xfs_buf_ops xfs_dquot_buf_ops = { |
| .verify_read = xfs_dquot_buf_read_verify, |
| .verify_write = xfs_dquot_buf_write_verify, |
| }; |
| |
| /* |
| * Allocate a block and fill it with dquots. |
| * This is called when the bmapi finds a hole. |
| */ |
| STATIC int |
| xfs_qm_dqalloc( |
| xfs_trans_t **tpp, |
| xfs_mount_t *mp, |
| xfs_dquot_t *dqp, |
| xfs_inode_t *quotip, |
| xfs_fileoff_t offset_fsb, |
| xfs_buf_t **O_bpp) |
| { |
| xfs_fsblock_t firstblock; |
| xfs_bmap_free_t flist; |
| xfs_bmbt_irec_t map; |
| int nmaps, error, committed; |
| xfs_buf_t *bp; |
| xfs_trans_t *tp = *tpp; |
| |
| ASSERT(tp != NULL); |
| |
| trace_xfs_dqalloc(dqp); |
| |
| /* |
| * Initialize the bmap freelist prior to calling bmapi code. |
| */ |
| xfs_bmap_init(&flist, &firstblock); |
| xfs_ilock(quotip, XFS_ILOCK_EXCL); |
| /* |
| * Return if this type of quotas is turned off while we didn't |
| * have an inode lock |
| */ |
| if (!xfs_this_quota_on(dqp->q_mount, dqp->dq_flags)) { |
| xfs_iunlock(quotip, XFS_ILOCK_EXCL); |
| return (ESRCH); |
| } |
| |
| xfs_trans_ijoin(tp, quotip, XFS_ILOCK_EXCL); |
| nmaps = 1; |
| error = xfs_bmapi_write(tp, quotip, offset_fsb, |
| XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA, |
| &firstblock, XFS_QM_DQALLOC_SPACE_RES(mp), |
| &map, &nmaps, &flist); |
| if (error) |
| goto error0; |
| ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB); |
| ASSERT(nmaps == 1); |
| ASSERT((map.br_startblock != DELAYSTARTBLOCK) && |
| (map.br_startblock != HOLESTARTBLOCK)); |
| |
| /* |
| * Keep track of the blkno to save a lookup later |
| */ |
| dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); |
| |
| /* now we can just get the buffer (there's nothing to read yet) */ |
| bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, |
| dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, |
| 0); |
| |
| error = xfs_buf_geterror(bp); |
| if (error) |
| goto error1; |
| bp->b_ops = &xfs_dquot_buf_ops; |
| |
| /* |
| * Make a chunk of dquots out of this buffer and log |
| * the entire thing. |
| */ |
| xfs_qm_init_dquot_blk(tp, mp, be32_to_cpu(dqp->q_core.d_id), |
| dqp->dq_flags & XFS_DQ_ALLTYPES, bp); |
| |
| /* |
| * xfs_bmap_finish() may commit the current transaction and |
| * start a second transaction if the freelist is not empty. |
| * |
| * Since we still want to modify this buffer, we need to |
| * ensure that the buffer is not released on commit of |
| * the first transaction and ensure the buffer is added to the |
| * second transaction. |
| * |
| * If there is only one transaction then don't stop the buffer |
| * from being released when it commits later on. |
| */ |
| |
| xfs_trans_bhold(tp, bp); |
| |
| if ((error = xfs_bmap_finish(tpp, &flist, &committed))) { |
| goto error1; |
| } |
| |
| if (committed) { |
| tp = *tpp; |
| xfs_trans_bjoin(tp, bp); |
| } else { |
| xfs_trans_bhold_release(tp, bp); |
| } |
| |
| *O_bpp = bp; |
| return 0; |
| |
| error1: |
| xfs_bmap_cancel(&flist); |
| error0: |
| xfs_iunlock(quotip, XFS_ILOCK_EXCL); |
| |
| return (error); |
| } |
| STATIC int |
| xfs_qm_dqrepair( |
| struct xfs_mount *mp, |
| struct xfs_trans *tp, |
| struct xfs_dquot *dqp, |
| xfs_dqid_t firstid, |
| struct xfs_buf **bpp) |
| { |
| int error; |
| struct xfs_disk_dquot *ddq; |
| struct xfs_dqblk *d; |
| int i; |
| |
| /* |
| * Read the buffer without verification so we get the corrupted |
| * buffer returned to us. make sure we verify it on write, though. |
| */ |
| error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, |
| 0, bpp, NULL); |
| |
| if (error) { |
| ASSERT(*bpp == NULL); |
| return XFS_ERROR(error); |
| } |
| (*bpp)->b_ops = &xfs_dquot_buf_ops; |
| |
| ASSERT(xfs_buf_islocked(*bpp)); |
| d = (struct xfs_dqblk *)(*bpp)->b_addr; |
| |
| /* Do the actual repair of dquots in this buffer */ |
| for (i = 0; i < mp->m_quotainfo->qi_dqperchunk; i++) { |
| ddq = &d[i].dd_diskdq; |
| error = xfs_qm_dqcheck(mp, ddq, firstid + i, |
| dqp->dq_flags & XFS_DQ_ALLTYPES, |
| XFS_QMOPT_DQREPAIR, "xfs_qm_dqrepair"); |
| if (error) { |
| /* repair failed, we're screwed */ |
| xfs_trans_brelse(tp, *bpp); |
| return XFS_ERROR(EIO); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Maps a dquot to the buffer containing its on-disk version. |
| * This returns a ptr to the buffer containing the on-disk dquot |
| * in the bpp param, and a ptr to the on-disk dquot within that buffer |
| */ |
| STATIC int |
| xfs_qm_dqtobp( |
| xfs_trans_t **tpp, |
| xfs_dquot_t *dqp, |
| xfs_disk_dquot_t **O_ddpp, |
| xfs_buf_t **O_bpp, |
| uint flags) |
| { |
| struct xfs_bmbt_irec map; |
| int nmaps = 1, error; |
| struct xfs_buf *bp; |
| struct xfs_inode *quotip = xfs_dq_to_quota_inode(dqp); |
| struct xfs_mount *mp = dqp->q_mount; |
| xfs_dqid_t id = be32_to_cpu(dqp->q_core.d_id); |
| struct xfs_trans *tp = (tpp ? *tpp : NULL); |
| |
| dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk; |
| |
| xfs_ilock(quotip, XFS_ILOCK_SHARED); |
| if (!xfs_this_quota_on(dqp->q_mount, dqp->dq_flags)) { |
| /* |
| * Return if this type of quotas is turned off while we |
| * didn't have the quota inode lock. |
| */ |
| xfs_iunlock(quotip, XFS_ILOCK_SHARED); |
| return ESRCH; |
| } |
| |
| /* |
| * Find the block map; no allocations yet |
| */ |
| error = xfs_bmapi_read(quotip, dqp->q_fileoffset, |
| XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0); |
| |
| xfs_iunlock(quotip, XFS_ILOCK_SHARED); |
| if (error) |
| return error; |
| |
| ASSERT(nmaps == 1); |
| ASSERT(map.br_blockcount == 1); |
| |
| /* |
| * Offset of dquot in the (fixed sized) dquot chunk. |
| */ |
| dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) * |
| sizeof(xfs_dqblk_t); |
| |
| ASSERT(map.br_startblock != DELAYSTARTBLOCK); |
| if (map.br_startblock == HOLESTARTBLOCK) { |
| /* |
| * We don't allocate unless we're asked to |
| */ |
| if (!(flags & XFS_QMOPT_DQALLOC)) |
| return ENOENT; |
| |
| ASSERT(tp); |
| error = xfs_qm_dqalloc(tpp, mp, dqp, quotip, |
| dqp->q_fileoffset, &bp); |
| if (error) |
| return error; |
| tp = *tpp; |
| } else { |
| trace_xfs_dqtobp_read(dqp); |
| |
| /* |
| * store the blkno etc so that we don't have to do the |
| * mapping all the time |
| */ |
| dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); |
| |
| error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, |
| dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, |
| 0, &bp, &xfs_dquot_buf_ops); |
| |
| if (error == EFSCORRUPTED && (flags & XFS_QMOPT_DQREPAIR)) { |
| xfs_dqid_t firstid = (xfs_dqid_t)map.br_startoff * |
| mp->m_quotainfo->qi_dqperchunk; |
| ASSERT(bp == NULL); |
| error = xfs_qm_dqrepair(mp, tp, dqp, firstid, &bp); |
| } |
| |
| if (error) { |
| ASSERT(bp == NULL); |
| return XFS_ERROR(error); |
| } |
| } |
| |
| ASSERT(xfs_buf_islocked(bp)); |
| *O_bpp = bp; |
| *O_ddpp = bp->b_addr + dqp->q_bufoffset; |
| |
| return (0); |
| } |
| |
| |
| /* |
| * Read in the ondisk dquot using dqtobp() then copy it to an incore version, |
| * and release the buffer immediately. |
| * |
| * If XFS_QMOPT_DQALLOC is set, allocate a dquot on disk if it needed. |
| */ |
| int |
| xfs_qm_dqread( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| uint type, |
| uint flags, |
| struct xfs_dquot **O_dqpp) |
| { |
| struct xfs_dquot *dqp; |
| struct xfs_disk_dquot *ddqp; |
| struct xfs_buf *bp; |
| struct xfs_trans *tp = NULL; |
| int error; |
| int cancelflags = 0; |
| |
| |
| dqp = kmem_zone_zalloc(xfs_qm_dqzone, KM_SLEEP); |
| |
| dqp->dq_flags = type; |
| dqp->q_core.d_id = cpu_to_be32(id); |
| dqp->q_mount = mp; |
| INIT_LIST_HEAD(&dqp->q_lru); |
| mutex_init(&dqp->q_qlock); |
| init_waitqueue_head(&dqp->q_pinwait); |
| |
| /* |
| * Because we want to use a counting completion, complete |
| * the flush completion once to allow a single access to |
| * the flush completion without blocking. |
| */ |
| init_completion(&dqp->q_flush); |
| complete(&dqp->q_flush); |
| |
| /* |
| * Make sure group quotas have a different lock class than user |
| * quotas. |
| */ |
| if (!(type & XFS_DQ_USER)) |
| lockdep_set_class(&dqp->q_qlock, &xfs_dquot_other_class); |
| |
| XFS_STATS_INC(xs_qm_dquot); |
| |
| trace_xfs_dqread(dqp); |
| |
| if (flags & XFS_QMOPT_DQALLOC) { |
| tp = xfs_trans_alloc(mp, XFS_TRANS_QM_DQALLOC); |
| error = xfs_trans_reserve(tp, XFS_QM_DQALLOC_SPACE_RES(mp), |
| XFS_QM_DQALLOC_LOG_RES(mp), 0, |
| XFS_TRANS_PERM_LOG_RES, |
| XFS_WRITE_LOG_COUNT); |
| if (error) |
| goto error1; |
| cancelflags = XFS_TRANS_RELEASE_LOG_RES; |
| } |
| |
| /* |
| * get a pointer to the on-disk dquot and the buffer containing it |
| * dqp already knows its own type (GROUP/USER). |
| */ |
| error = xfs_qm_dqtobp(&tp, dqp, &ddqp, &bp, flags); |
| if (error) { |
| /* |
| * This can happen if quotas got turned off (ESRCH), |
| * or if the dquot didn't exist on disk and we ask to |
| * allocate (ENOENT). |
| */ |
| trace_xfs_dqread_fail(dqp); |
| cancelflags |= XFS_TRANS_ABORT; |
| goto error1; |
| } |
| |
| /* copy everything from disk dquot to the incore dquot */ |
| memcpy(&dqp->q_core, ddqp, sizeof(xfs_disk_dquot_t)); |
| xfs_qm_dquot_logitem_init(dqp); |
| |
| /* |
| * Reservation counters are defined as reservation plus current usage |
| * to avoid having to add every time. |
| */ |
| dqp->q_res_bcount = be64_to_cpu(ddqp->d_bcount); |
| dqp->q_res_icount = be64_to_cpu(ddqp->d_icount); |
| dqp->q_res_rtbcount = be64_to_cpu(ddqp->d_rtbcount); |
| |
| /* initialize the dquot speculative prealloc thresholds */ |
| xfs_dquot_set_prealloc_limits(dqp); |
| |
| /* Mark the buf so that this will stay incore a little longer */ |
| xfs_buf_set_ref(bp, XFS_DQUOT_REF); |
| |
| /* |
| * We got the buffer with a xfs_trans_read_buf() (in dqtobp()) |
| * So we need to release with xfs_trans_brelse(). |
| * The strategy here is identical to that of inodes; we lock |
| * the dquot in xfs_qm_dqget() before making it accessible to |
| * others. This is because dquots, like inodes, need a good level of |
| * concurrency, and we don't want to take locks on the entire buffers |
| * for dquot accesses. |
| * Note also that the dquot buffer may even be dirty at this point, if |
| * this particular dquot was repaired. We still aren't afraid to |
| * brelse it because we have the changes incore. |
| */ |
| ASSERT(xfs_buf_islocked(bp)); |
| xfs_trans_brelse(tp, bp); |
| |
| if (tp) { |
| error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); |
| if (error) |
| goto error0; |
| } |
| |
| *O_dqpp = dqp; |
| return error; |
| |
| error1: |
| if (tp) |
| xfs_trans_cancel(tp, cancelflags); |
| error0: |
| xfs_qm_dqdestroy(dqp); |
| *O_dqpp = NULL; |
| return error; |
| } |
| |
| /* |
| * Given the file system, inode OR id, and type (UDQUOT/GDQUOT), return a |
| * a locked dquot, doing an allocation (if requested) as needed. |
| * When both an inode and an id are given, the inode's id takes precedence. |
| * That is, if the id changes while we don't hold the ilock inside this |
| * function, the new dquot is returned, not necessarily the one requested |
| * in the id argument. |
| */ |
| int |
| xfs_qm_dqget( |
| xfs_mount_t *mp, |
| xfs_inode_t *ip, /* locked inode (optional) */ |
| xfs_dqid_t id, /* uid/projid/gid depending on type */ |
| uint type, /* XFS_DQ_USER/XFS_DQ_PROJ/XFS_DQ_GROUP */ |
| uint flags, /* DQALLOC, DQSUSER, DQREPAIR, DOWARN */ |
| xfs_dquot_t **O_dqpp) /* OUT : locked incore dquot */ |
| { |
| struct xfs_quotainfo *qi = mp->m_quotainfo; |
| struct radix_tree_root *tree = xfs_dquot_tree(qi, type); |
| struct xfs_dquot *dqp; |
| int error; |
| |
| ASSERT(XFS_IS_QUOTA_RUNNING(mp)); |
| if ((! XFS_IS_UQUOTA_ON(mp) && type == XFS_DQ_USER) || |
| (! XFS_IS_PQUOTA_ON(mp) && type == XFS_DQ_PROJ) || |
| (! XFS_IS_GQUOTA_ON(mp) && type == XFS_DQ_GROUP)) { |
| return (ESRCH); |
| } |
| |
| #ifdef DEBUG |
| if (xfs_do_dqerror) { |
| if ((xfs_dqerror_target == mp->m_ddev_targp) && |
| (xfs_dqreq_num++ % xfs_dqerror_mod) == 0) { |
| xfs_debug(mp, "Returning error in dqget"); |
| return (EIO); |
| } |
| } |
| |
| ASSERT(type == XFS_DQ_USER || |
| type == XFS_DQ_PROJ || |
| type == XFS_DQ_GROUP); |
| if (ip) { |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| ASSERT(xfs_inode_dquot(ip, type) == NULL); |
| } |
| #endif |
| |
| restart: |
| mutex_lock(&qi->qi_tree_lock); |
| dqp = radix_tree_lookup(tree, id); |
| if (dqp) { |
| xfs_dqlock(dqp); |
| if (dqp->dq_flags & XFS_DQ_FREEING) { |
| xfs_dqunlock(dqp); |
| mutex_unlock(&qi->qi_tree_lock); |
| trace_xfs_dqget_freeing(dqp); |
| delay(1); |
| goto restart; |
| } |
| |
| dqp->q_nrefs++; |
| mutex_unlock(&qi->qi_tree_lock); |
| |
| trace_xfs_dqget_hit(dqp); |
| XFS_STATS_INC(xs_qm_dqcachehits); |
| *O_dqpp = dqp; |
| return 0; |
| } |
| mutex_unlock(&qi->qi_tree_lock); |
| XFS_STATS_INC(xs_qm_dqcachemisses); |
| |
| /* |
| * Dquot cache miss. We don't want to keep the inode lock across |
| * a (potential) disk read. Also we don't want to deal with the lock |
| * ordering between quotainode and this inode. OTOH, dropping the inode |
| * lock here means dealing with a chown that can happen before |
| * we re-acquire the lock. |
| */ |
| if (ip) |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| |
| error = xfs_qm_dqread(mp, id, type, flags, &dqp); |
| |
| if (ip) |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| |
| if (error) |
| return error; |
| |
| if (ip) { |
| /* |
| * A dquot could be attached to this inode by now, since |
| * we had dropped the ilock. |
| */ |
| if (xfs_this_quota_on(mp, type)) { |
| struct xfs_dquot *dqp1; |
| |
| dqp1 = xfs_inode_dquot(ip, type); |
| if (dqp1) { |
| xfs_qm_dqdestroy(dqp); |
| dqp = dqp1; |
| xfs_dqlock(dqp); |
| goto dqret; |
| } |
| } else { |
| /* inode stays locked on return */ |
| xfs_qm_dqdestroy(dqp); |
| return XFS_ERROR(ESRCH); |
| } |
| } |
| |
| mutex_lock(&qi->qi_tree_lock); |
| error = -radix_tree_insert(tree, id, dqp); |
| if (unlikely(error)) { |
| WARN_ON(error != EEXIST); |
| |
| /* |
| * Duplicate found. Just throw away the new dquot and start |
| * over. |
| */ |
| mutex_unlock(&qi->qi_tree_lock); |
| trace_xfs_dqget_dup(dqp); |
| xfs_qm_dqdestroy(dqp); |
| XFS_STATS_INC(xs_qm_dquot_dups); |
| goto restart; |
| } |
| |
| /* |
| * We return a locked dquot to the caller, with a reference taken |
| */ |
| xfs_dqlock(dqp); |
| dqp->q_nrefs = 1; |
| |
| qi->qi_dquots++; |
| mutex_unlock(&qi->qi_tree_lock); |
| |
| dqret: |
| ASSERT((ip == NULL) || xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| trace_xfs_dqget_miss(dqp); |
| *O_dqpp = dqp; |
| return (0); |
| } |
| |
| |
| STATIC void |
| xfs_qm_dqput_final( |
| struct xfs_dquot *dqp) |
| { |
| struct xfs_quotainfo *qi = dqp->q_mount->m_quotainfo; |
| struct xfs_dquot *gdqp; |
| struct xfs_dquot *pdqp; |
| |
| trace_xfs_dqput_free(dqp); |
| |
| mutex_lock(&qi->qi_lru_lock); |
| if (list_empty(&dqp->q_lru)) { |
| list_add_tail(&dqp->q_lru, &qi->qi_lru_list); |
| qi->qi_lru_count++; |
| XFS_STATS_INC(xs_qm_dquot_unused); |
| } |
| mutex_unlock(&qi->qi_lru_lock); |
| |
| /* |
| * If we just added a udquot to the freelist, then we want to release |
| * the gdquot/pdquot reference that it (probably) has. Otherwise it'll |
| * keep the gdquot/pdquot from getting reclaimed. |
| */ |
| gdqp = dqp->q_gdquot; |
| if (gdqp) { |
| xfs_dqlock(gdqp); |
| dqp->q_gdquot = NULL; |
| } |
| |
| pdqp = dqp->q_pdquot; |
| if (pdqp) { |
| xfs_dqlock(pdqp); |
| dqp->q_pdquot = NULL; |
| } |
| xfs_dqunlock(dqp); |
| |
| /* |
| * If we had a group/project quota hint, release it now. |
| */ |
| if (gdqp) |
| xfs_qm_dqput(gdqp); |
| if (pdqp) |
| xfs_qm_dqput(pdqp); |
| } |
| |
| /* |
| * Release a reference to the dquot (decrement ref-count) and unlock it. |
| * |
| * If there is a group quota attached to this dquot, carefully release that |
| * too without tripping over deadlocks'n'stuff. |
| */ |
| void |
| xfs_qm_dqput( |
| struct xfs_dquot *dqp) |
| { |
| ASSERT(dqp->q_nrefs > 0); |
| ASSERT(XFS_DQ_IS_LOCKED(dqp)); |
| |
| trace_xfs_dqput(dqp); |
| |
| if (--dqp->q_nrefs > 0) |
| xfs_dqunlock(dqp); |
| else |
| xfs_qm_dqput_final(dqp); |
| } |
| |
| /* |
| * Release a dquot. Flush it if dirty, then dqput() it. |
| * dquot must not be locked. |
| */ |
| void |
| xfs_qm_dqrele( |
| xfs_dquot_t *dqp) |
| { |
| if (!dqp) |
| return; |
| |
| trace_xfs_dqrele(dqp); |
| |
| xfs_dqlock(dqp); |
| /* |
| * We don't care to flush it if the dquot is dirty here. |
| * That will create stutters that we want to avoid. |
| * Instead we do a delayed write when we try to reclaim |
| * a dirty dquot. Also xfs_sync will take part of the burden... |
| */ |
| xfs_qm_dqput(dqp); |
| } |
| |
| /* |
| * This is the dquot flushing I/O completion routine. It is called |
| * from interrupt level when the buffer containing the dquot is |
| * flushed to disk. It is responsible for removing the dquot logitem |
| * from the AIL if it has not been re-logged, and unlocking the dquot's |
| * flush lock. This behavior is very similar to that of inodes.. |
| */ |
| STATIC void |
| xfs_qm_dqflush_done( |
| struct xfs_buf *bp, |
| struct xfs_log_item *lip) |
| { |
| xfs_dq_logitem_t *qip = (struct xfs_dq_logitem *)lip; |
| xfs_dquot_t *dqp = qip->qli_dquot; |
| struct xfs_ail *ailp = lip->li_ailp; |
| |
| /* |
| * We only want to pull the item from the AIL if its |
| * location in the log has not changed since we started the flush. |
| * Thus, we only bother if the dquot's lsn has |
| * not changed. First we check the lsn outside the lock |
| * since it's cheaper, and then we recheck while |
| * holding the lock before removing the dquot from the AIL. |
| */ |
| if ((lip->li_flags & XFS_LI_IN_AIL) && |
| lip->li_lsn == qip->qli_flush_lsn) { |
| |
| /* xfs_trans_ail_delete() drops the AIL lock. */ |
| spin_lock(&ailp->xa_lock); |
| if (lip->li_lsn == qip->qli_flush_lsn) |
| xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); |
| else |
| spin_unlock(&ailp->xa_lock); |
| } |
| |
| /* |
| * Release the dq's flush lock since we're done with it. |
| */ |
| xfs_dqfunlock(dqp); |
| } |
| |
| /* |
| * Write a modified dquot to disk. |
| * The dquot must be locked and the flush lock too taken by caller. |
| * The flush lock will not be unlocked until the dquot reaches the disk, |
| * but the dquot is free to be unlocked and modified by the caller |
| * in the interim. Dquot is still locked on return. This behavior is |
| * identical to that of inodes. |
| */ |
| int |
| xfs_qm_dqflush( |
| struct xfs_dquot *dqp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_mount *mp = dqp->q_mount; |
| struct xfs_buf *bp; |
| struct xfs_disk_dquot *ddqp; |
| int error; |
| |
| ASSERT(XFS_DQ_IS_LOCKED(dqp)); |
| ASSERT(!completion_done(&dqp->q_flush)); |
| |
| trace_xfs_dqflush(dqp); |
| |
| *bpp = NULL; |
| |
| xfs_qm_dqunpin_wait(dqp); |
| |
| /* |
| * This may have been unpinned because the filesystem is shutting |
| * down forcibly. If that's the case we must not write this dquot |
| * to disk, because the log record didn't make it to disk. |
| * |
| * We also have to remove the log item from the AIL in this case, |
| * as we wait for an emptry AIL as part of the unmount process. |
| */ |
| if (XFS_FORCED_SHUTDOWN(mp)) { |
| struct xfs_log_item *lip = &dqp->q_logitem.qli_item; |
| dqp->dq_flags &= ~XFS_DQ_DIRTY; |
| |
| spin_lock(&mp->m_ail->xa_lock); |
| if (lip->li_flags & XFS_LI_IN_AIL) |
| xfs_trans_ail_delete(mp->m_ail, lip, |
| SHUTDOWN_CORRUPT_INCORE); |
| else |
| spin_unlock(&mp->m_ail->xa_lock); |
| error = XFS_ERROR(EIO); |
| goto out_unlock; |
| } |
| |
| /* |
| * Get the buffer containing the on-disk dquot |
| */ |
| error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, 0, &bp, NULL); |
| if (error) |
| goto out_unlock; |
| |
| /* |
| * Calculate the location of the dquot inside the buffer. |
| */ |
| ddqp = bp->b_addr + dqp->q_bufoffset; |
| |
| /* |
| * A simple sanity check in case we got a corrupted dquot.. |
| */ |
| error = xfs_qm_dqcheck(mp, &dqp->q_core, be32_to_cpu(ddqp->d_id), 0, |
| XFS_QMOPT_DOWARN, "dqflush (incore copy)"); |
| if (error) { |
| xfs_buf_relse(bp); |
| xfs_dqfunlock(dqp); |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| return XFS_ERROR(EIO); |
| } |
| |
| /* This is the only portion of data that needs to persist */ |
| memcpy(ddqp, &dqp->q_core, sizeof(xfs_disk_dquot_t)); |
| |
| /* |
| * Clear the dirty field and remember the flush lsn for later use. |
| */ |
| dqp->dq_flags &= ~XFS_DQ_DIRTY; |
| |
| xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn, |
| &dqp->q_logitem.qli_item.li_lsn); |
| |
| /* |
| * copy the lsn into the on-disk dquot now while we have the in memory |
| * dquot here. This can't be done later in the write verifier as we |
| * can't get access to the log item at that point in time. |
| * |
| * We also calculate the CRC here so that the on-disk dquot in the |
| * buffer always has a valid CRC. This ensures there is no possibility |
| * of a dquot without an up-to-date CRC getting to disk. |
| */ |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddqp; |
| |
| dqb->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn); |
| xfs_update_cksum((char *)dqb, sizeof(struct xfs_dqblk), |
| XFS_DQUOT_CRC_OFF); |
| } |
| |
| /* |
| * Attach an iodone routine so that we can remove this dquot from the |
| * AIL and release the flush lock once the dquot is synced to disk. |
| */ |
| xfs_buf_attach_iodone(bp, xfs_qm_dqflush_done, |
| &dqp->q_logitem.qli_item); |
| |
| /* |
| * If the buffer is pinned then push on the log so we won't |
| * get stuck waiting in the write for too long. |
| */ |
| if (xfs_buf_ispinned(bp)) { |
| trace_xfs_dqflush_force(dqp); |
| xfs_log_force(mp, 0); |
| } |
| |
| trace_xfs_dqflush_done(dqp); |
| *bpp = bp; |
| return 0; |
| |
| out_unlock: |
| xfs_dqfunlock(dqp); |
| return XFS_ERROR(EIO); |
| } |
| |
| /* |
| * Lock two xfs_dquot structures. |
| * |
| * To avoid deadlocks we always lock the quota structure with |
| * the lowerd id first. |
| */ |
| void |
| xfs_dqlock2( |
| xfs_dquot_t *d1, |
| xfs_dquot_t *d2) |
| { |
| if (d1 && d2) { |
| ASSERT(d1 != d2); |
| if (be32_to_cpu(d1->q_core.d_id) > |
| be32_to_cpu(d2->q_core.d_id)) { |
| mutex_lock(&d2->q_qlock); |
| mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED); |
| } else { |
| mutex_lock(&d1->q_qlock); |
| mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED); |
| } |
| } else if (d1) { |
| mutex_lock(&d1->q_qlock); |
| } else if (d2) { |
| mutex_lock(&d2->q_qlock); |
| } |
| } |
| |
| int __init |
| xfs_qm_init(void) |
| { |
| xfs_qm_dqzone = |
| kmem_zone_init(sizeof(struct xfs_dquot), "xfs_dquot"); |
| if (!xfs_qm_dqzone) |
| goto out; |
| |
| xfs_qm_dqtrxzone = |
| kmem_zone_init(sizeof(struct xfs_dquot_acct), "xfs_dqtrx"); |
| if (!xfs_qm_dqtrxzone) |
| goto out_free_dqzone; |
| |
| return 0; |
| |
| out_free_dqzone: |
| kmem_zone_destroy(xfs_qm_dqzone); |
| out: |
| return -ENOMEM; |
| } |
| |
| void |
| xfs_qm_exit(void) |
| { |
| kmem_zone_destroy(xfs_qm_dqtrxzone); |
| kmem_zone_destroy(xfs_qm_dqzone); |
| } |