| /* |
| * Copyright (c) 2014 Mellanox Technologies. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/task.h> |
| #include <linux/pid.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hugetlb.h> |
| #include <linux/interval_tree.h> |
| #include <linux/pagemap.h> |
| |
| #include <rdma/ib_verbs.h> |
| #include <rdma/ib_umem.h> |
| #include <rdma/ib_umem_odp.h> |
| |
| #include "uverbs.h" |
| |
| static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp, |
| const struct mmu_interval_notifier_ops *ops) |
| { |
| int ret; |
| |
| umem_odp->umem.is_odp = 1; |
| mutex_init(&umem_odp->umem_mutex); |
| |
| if (!umem_odp->is_implicit_odp) { |
| size_t page_size = 1UL << umem_odp->page_shift; |
| unsigned long start; |
| unsigned long end; |
| size_t pages; |
| |
| start = ALIGN_DOWN(umem_odp->umem.address, page_size); |
| if (check_add_overflow(umem_odp->umem.address, |
| (unsigned long)umem_odp->umem.length, |
| &end)) |
| return -EOVERFLOW; |
| end = ALIGN(end, page_size); |
| if (unlikely(end < page_size)) |
| return -EOVERFLOW; |
| |
| pages = (end - start) >> umem_odp->page_shift; |
| if (!pages) |
| return -EINVAL; |
| |
| umem_odp->page_list = kvcalloc( |
| pages, sizeof(*umem_odp->page_list), GFP_KERNEL); |
| if (!umem_odp->page_list) |
| return -ENOMEM; |
| |
| umem_odp->dma_list = kvcalloc( |
| pages, sizeof(*umem_odp->dma_list), GFP_KERNEL); |
| if (!umem_odp->dma_list) { |
| ret = -ENOMEM; |
| goto out_page_list; |
| } |
| |
| ret = mmu_interval_notifier_insert(&umem_odp->notifier, |
| umem_odp->umem.owning_mm, |
| start, end - start, ops); |
| if (ret) |
| goto out_dma_list; |
| } |
| |
| return 0; |
| |
| out_dma_list: |
| kvfree(umem_odp->dma_list); |
| out_page_list: |
| kvfree(umem_odp->page_list); |
| return ret; |
| } |
| |
| /** |
| * ib_umem_odp_alloc_implicit - Allocate a parent implicit ODP umem |
| * |
| * Implicit ODP umems do not have a VA range and do not have any page lists. |
| * They exist only to hold the per_mm reference to help the driver create |
| * children umems. |
| * |
| * @device: IB device to create UMEM |
| * @access: ib_reg_mr access flags |
| */ |
| struct ib_umem_odp *ib_umem_odp_alloc_implicit(struct ib_device *device, |
| int access) |
| { |
| struct ib_umem *umem; |
| struct ib_umem_odp *umem_odp; |
| int ret; |
| |
| if (access & IB_ACCESS_HUGETLB) |
| return ERR_PTR(-EINVAL); |
| |
| umem_odp = kzalloc(sizeof(*umem_odp), GFP_KERNEL); |
| if (!umem_odp) |
| return ERR_PTR(-ENOMEM); |
| umem = &umem_odp->umem; |
| umem->ibdev = device; |
| umem->writable = ib_access_writable(access); |
| umem->owning_mm = current->mm; |
| umem_odp->is_implicit_odp = 1; |
| umem_odp->page_shift = PAGE_SHIFT; |
| |
| umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); |
| ret = ib_init_umem_odp(umem_odp, NULL); |
| if (ret) { |
| put_pid(umem_odp->tgid); |
| kfree(umem_odp); |
| return ERR_PTR(ret); |
| } |
| return umem_odp; |
| } |
| EXPORT_SYMBOL(ib_umem_odp_alloc_implicit); |
| |
| /** |
| * ib_umem_odp_alloc_child - Allocate a child ODP umem under an implicit |
| * parent ODP umem |
| * |
| * @root: The parent umem enclosing the child. This must be allocated using |
| * ib_alloc_implicit_odp_umem() |
| * @addr: The starting userspace VA |
| * @size: The length of the userspace VA |
| * @ops: MMU interval ops, currently only @invalidate |
| */ |
| struct ib_umem_odp * |
| ib_umem_odp_alloc_child(struct ib_umem_odp *root, unsigned long addr, |
| size_t size, |
| const struct mmu_interval_notifier_ops *ops) |
| { |
| /* |
| * Caller must ensure that root cannot be freed during the call to |
| * ib_alloc_odp_umem. |
| */ |
| struct ib_umem_odp *odp_data; |
| struct ib_umem *umem; |
| int ret; |
| |
| if (WARN_ON(!root->is_implicit_odp)) |
| return ERR_PTR(-EINVAL); |
| |
| odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); |
| if (!odp_data) |
| return ERR_PTR(-ENOMEM); |
| umem = &odp_data->umem; |
| umem->ibdev = root->umem.ibdev; |
| umem->length = size; |
| umem->address = addr; |
| umem->writable = root->umem.writable; |
| umem->owning_mm = root->umem.owning_mm; |
| odp_data->page_shift = PAGE_SHIFT; |
| odp_data->notifier.ops = ops; |
| |
| /* |
| * A mmget must be held when registering a notifier, the owming_mm only |
| * has a mm_grab at this point. |
| */ |
| if (!mmget_not_zero(umem->owning_mm)) { |
| ret = -EFAULT; |
| goto out_free; |
| } |
| |
| odp_data->tgid = get_pid(root->tgid); |
| ret = ib_init_umem_odp(odp_data, ops); |
| if (ret) |
| goto out_tgid; |
| mmput(umem->owning_mm); |
| return odp_data; |
| |
| out_tgid: |
| put_pid(odp_data->tgid); |
| mmput(umem->owning_mm); |
| out_free: |
| kfree(odp_data); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL(ib_umem_odp_alloc_child); |
| |
| /** |
| * ib_umem_odp_get - Create a umem_odp for a userspace va |
| * |
| * @device: IB device struct to get UMEM |
| * @addr: userspace virtual address to start at |
| * @size: length of region to pin |
| * @access: IB_ACCESS_xxx flags for memory being pinned |
| * @ops: MMU interval ops, currently only @invalidate |
| * |
| * The driver should use when the access flags indicate ODP memory. It avoids |
| * pinning, instead, stores the mm for future page fault handling in |
| * conjunction with MMU notifiers. |
| */ |
| struct ib_umem_odp *ib_umem_odp_get(struct ib_device *device, |
| unsigned long addr, size_t size, int access, |
| const struct mmu_interval_notifier_ops *ops) |
| { |
| struct ib_umem_odp *umem_odp; |
| struct mm_struct *mm; |
| int ret; |
| |
| if (WARN_ON_ONCE(!(access & IB_ACCESS_ON_DEMAND))) |
| return ERR_PTR(-EINVAL); |
| |
| umem_odp = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL); |
| if (!umem_odp) |
| return ERR_PTR(-ENOMEM); |
| |
| umem_odp->umem.ibdev = device; |
| umem_odp->umem.length = size; |
| umem_odp->umem.address = addr; |
| umem_odp->umem.writable = ib_access_writable(access); |
| umem_odp->umem.owning_mm = mm = current->mm; |
| umem_odp->notifier.ops = ops; |
| |
| umem_odp->page_shift = PAGE_SHIFT; |
| #ifdef CONFIG_HUGETLB_PAGE |
| if (access & IB_ACCESS_HUGETLB) |
| umem_odp->page_shift = HPAGE_SHIFT; |
| #endif |
| |
| umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); |
| ret = ib_init_umem_odp(umem_odp, ops); |
| if (ret) |
| goto err_put_pid; |
| return umem_odp; |
| |
| err_put_pid: |
| put_pid(umem_odp->tgid); |
| kfree(umem_odp); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL(ib_umem_odp_get); |
| |
| void ib_umem_odp_release(struct ib_umem_odp *umem_odp) |
| { |
| /* |
| * Ensure that no more pages are mapped in the umem. |
| * |
| * It is the driver's responsibility to ensure, before calling us, |
| * that the hardware will not attempt to access the MR any more. |
| */ |
| if (!umem_odp->is_implicit_odp) { |
| mutex_lock(&umem_odp->umem_mutex); |
| ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp), |
| ib_umem_end(umem_odp)); |
| mutex_unlock(&umem_odp->umem_mutex); |
| mmu_interval_notifier_remove(&umem_odp->notifier); |
| kvfree(umem_odp->dma_list); |
| kvfree(umem_odp->page_list); |
| } |
| put_pid(umem_odp->tgid); |
| kfree(umem_odp); |
| } |
| EXPORT_SYMBOL(ib_umem_odp_release); |
| |
| /* |
| * Map for DMA and insert a single page into the on-demand paging page tables. |
| * |
| * @umem: the umem to insert the page to. |
| * @page_index: index in the umem to add the page to. |
| * @page: the page struct to map and add. |
| * @access_mask: access permissions needed for this page. |
| * @current_seq: sequence number for synchronization with invalidations. |
| * the sequence number is taken from |
| * umem_odp->notifiers_seq. |
| * |
| * The function returns -EFAULT if the DMA mapping operation fails. It returns |
| * -EAGAIN if a concurrent invalidation prevents us from updating the page. |
| * |
| * The page is released via put_page even if the operation failed. For on-demand |
| * pinning, the page is released whenever it isn't stored in the umem. |
| */ |
| static int ib_umem_odp_map_dma_single_page( |
| struct ib_umem_odp *umem_odp, |
| unsigned int page_index, |
| struct page *page, |
| u64 access_mask, |
| unsigned long current_seq) |
| { |
| struct ib_device *dev = umem_odp->umem.ibdev; |
| dma_addr_t dma_addr; |
| int ret = 0; |
| |
| if (mmu_interval_check_retry(&umem_odp->notifier, current_seq)) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| if (!(umem_odp->dma_list[page_index])) { |
| dma_addr = |
| ib_dma_map_page(dev, page, 0, BIT(umem_odp->page_shift), |
| DMA_BIDIRECTIONAL); |
| if (ib_dma_mapping_error(dev, dma_addr)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| umem_odp->dma_list[page_index] = dma_addr | access_mask; |
| umem_odp->page_list[page_index] = page; |
| umem_odp->npages++; |
| } else if (umem_odp->page_list[page_index] == page) { |
| umem_odp->dma_list[page_index] |= access_mask; |
| } else { |
| /* |
| * This is a race here where we could have done: |
| * |
| * CPU0 CPU1 |
| * get_user_pages() |
| * invalidate() |
| * page_fault() |
| * mutex_lock(umem_mutex) |
| * page from GUP != page in ODP |
| * |
| * It should be prevented by the retry test above as reading |
| * the seq number should be reliable under the |
| * umem_mutex. Thus something is really not working right if |
| * things get here. |
| */ |
| WARN(true, |
| "Got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", |
| umem_odp->page_list[page_index], page); |
| ret = -EAGAIN; |
| } |
| |
| out: |
| put_page(page); |
| return ret; |
| } |
| |
| /** |
| * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. |
| * |
| * Pins the range of pages passed in the argument, and maps them to |
| * DMA addresses. The DMA addresses of the mapped pages is updated in |
| * umem_odp->dma_list. |
| * |
| * Returns the number of pages mapped in success, negative error code |
| * for failure. |
| * An -EAGAIN error code is returned when a concurrent mmu notifier prevents |
| * the function from completing its task. |
| * An -ENOENT error code indicates that userspace process is being terminated |
| * and mm was already destroyed. |
| * @umem_odp: the umem to map and pin |
| * @user_virt: the address from which we need to map. |
| * @bcnt: the minimal number of bytes to pin and map. The mapping might be |
| * bigger due to alignment, and may also be smaller in case of an error |
| * pinning or mapping a page. The actual pages mapped is returned in |
| * the return value. |
| * @access_mask: bit mask of the requested access permissions for the given |
| * range. |
| * @current_seq: the MMU notifiers sequance value for synchronization with |
| * invalidations. the sequance number is read from |
| * umem_odp->notifiers_seq before calling this function |
| */ |
| int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt, |
| u64 bcnt, u64 access_mask, |
| unsigned long current_seq) |
| { |
| struct task_struct *owning_process = NULL; |
| struct mm_struct *owning_mm = umem_odp->umem.owning_mm; |
| struct page **local_page_list = NULL; |
| u64 page_mask, off; |
| int j, k, ret = 0, start_idx, npages = 0; |
| unsigned int flags = 0, page_shift; |
| phys_addr_t p = 0; |
| |
| if (access_mask == 0) |
| return -EINVAL; |
| |
| if (user_virt < ib_umem_start(umem_odp) || |
| user_virt + bcnt > ib_umem_end(umem_odp)) |
| return -EFAULT; |
| |
| local_page_list = (struct page **)__get_free_page(GFP_KERNEL); |
| if (!local_page_list) |
| return -ENOMEM; |
| |
| page_shift = umem_odp->page_shift; |
| page_mask = ~(BIT(page_shift) - 1); |
| off = user_virt & (~page_mask); |
| user_virt = user_virt & page_mask; |
| bcnt += off; /* Charge for the first page offset as well. */ |
| |
| /* |
| * owning_process is allowed to be NULL, this means somehow the mm is |
| * existing beyond the lifetime of the originating process.. Presumably |
| * mmget_not_zero will fail in this case. |
| */ |
| owning_process = get_pid_task(umem_odp->tgid, PIDTYPE_PID); |
| if (!owning_process || !mmget_not_zero(owning_mm)) { |
| ret = -EINVAL; |
| goto out_put_task; |
| } |
| |
| if (access_mask & ODP_WRITE_ALLOWED_BIT) |
| flags |= FOLL_WRITE; |
| |
| start_idx = (user_virt - ib_umem_start(umem_odp)) >> page_shift; |
| k = start_idx; |
| |
| while (bcnt > 0) { |
| const size_t gup_num_pages = min_t(size_t, |
| ALIGN(bcnt, PAGE_SIZE) / PAGE_SIZE, |
| PAGE_SIZE / sizeof(struct page *)); |
| |
| mmap_read_lock(owning_mm); |
| /* |
| * Note: this might result in redundent page getting. We can |
| * avoid this by checking dma_list to be 0 before calling |
| * get_user_pages. However, this make the code much more |
| * complex (and doesn't gain us much performance in most use |
| * cases). |
| */ |
| npages = get_user_pages_remote(owning_mm, |
| user_virt, gup_num_pages, |
| flags, local_page_list, NULL, NULL); |
| mmap_read_unlock(owning_mm); |
| |
| if (npages < 0) { |
| if (npages != -EAGAIN) |
| pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages); |
| else |
| pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages); |
| break; |
| } |
| |
| bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); |
| mutex_lock(&umem_odp->umem_mutex); |
| for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { |
| if (user_virt & ~page_mask) { |
| p += PAGE_SIZE; |
| if (page_to_phys(local_page_list[j]) != p) { |
| ret = -EFAULT; |
| break; |
| } |
| put_page(local_page_list[j]); |
| continue; |
| } |
| |
| ret = ib_umem_odp_map_dma_single_page( |
| umem_odp, k, local_page_list[j], |
| access_mask, current_seq); |
| if (ret < 0) { |
| if (ret != -EAGAIN) |
| pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); |
| else |
| pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); |
| break; |
| } |
| |
| p = page_to_phys(local_page_list[j]); |
| k++; |
| } |
| mutex_unlock(&umem_odp->umem_mutex); |
| |
| if (ret < 0) { |
| /* |
| * Release pages, remembering that the first page |
| * to hit an error was already released by |
| * ib_umem_odp_map_dma_single_page(). |
| */ |
| if (npages - (j + 1) > 0) |
| release_pages(&local_page_list[j+1], |
| npages - (j + 1)); |
| break; |
| } |
| } |
| |
| if (ret >= 0) { |
| if (npages < 0 && k == start_idx) |
| ret = npages; |
| else |
| ret = k - start_idx; |
| } |
| |
| mmput(owning_mm); |
| out_put_task: |
| if (owning_process) |
| put_task_struct(owning_process); |
| free_page((unsigned long)local_page_list); |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); |
| |
| void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, |
| u64 bound) |
| { |
| int idx; |
| u64 addr; |
| struct ib_device *dev = umem_odp->umem.ibdev; |
| |
| lockdep_assert_held(&umem_odp->umem_mutex); |
| |
| virt = max_t(u64, virt, ib_umem_start(umem_odp)); |
| bound = min_t(u64, bound, ib_umem_end(umem_odp)); |
| /* Note that during the run of this function, the |
| * notifiers_count of the MR is > 0, preventing any racing |
| * faults from completion. We might be racing with other |
| * invalidations, so we must make sure we free each page only |
| * once. */ |
| for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) { |
| idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; |
| if (umem_odp->page_list[idx]) { |
| struct page *page = umem_odp->page_list[idx]; |
| dma_addr_t dma = umem_odp->dma_list[idx]; |
| dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; |
| |
| WARN_ON(!dma_addr); |
| |
| ib_dma_unmap_page(dev, dma_addr, |
| BIT(umem_odp->page_shift), |
| DMA_BIDIRECTIONAL); |
| if (dma & ODP_WRITE_ALLOWED_BIT) { |
| struct page *head_page = compound_head(page); |
| /* |
| * set_page_dirty prefers being called with |
| * the page lock. However, MMU notifiers are |
| * called sometimes with and sometimes without |
| * the lock. We rely on the umem_mutex instead |
| * to prevent other mmu notifiers from |
| * continuing and allowing the page mapping to |
| * be removed. |
| */ |
| set_page_dirty(head_page); |
| } |
| umem_odp->page_list[idx] = NULL; |
| umem_odp->dma_list[idx] = 0; |
| umem_odp->npages--; |
| } |
| } |
| } |
| EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); |