| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * arch/alpha/kernel/traps.c |
| * |
| * (C) Copyright 1994 Linus Torvalds |
| */ |
| |
| /* |
| * This file initializes the trap entry points |
| */ |
| |
| #include <linux/jiffies.h> |
| #include <linux/mm.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/debug.h> |
| #include <linux/tty.h> |
| #include <linux/delay.h> |
| #include <linux/extable.h> |
| #include <linux/kallsyms.h> |
| #include <linux/ratelimit.h> |
| |
| #include <asm/gentrap.h> |
| #include <linux/uaccess.h> |
| #include <asm/unaligned.h> |
| #include <asm/sysinfo.h> |
| #include <asm/hwrpb.h> |
| #include <asm/mmu_context.h> |
| #include <asm/special_insns.h> |
| |
| #include "proto.h" |
| |
| /* Work-around for some SRMs which mishandle opDEC faults. */ |
| |
| static int opDEC_fix; |
| |
| static void |
| opDEC_check(void) |
| { |
| __asm__ __volatile__ ( |
| /* Load the address of... */ |
| " br $16, 1f\n" |
| /* A stub instruction fault handler. Just add 4 to the |
| pc and continue. */ |
| " ldq $16, 8($sp)\n" |
| " addq $16, 4, $16\n" |
| " stq $16, 8($sp)\n" |
| " call_pal %[rti]\n" |
| /* Install the instruction fault handler. */ |
| "1: lda $17, 3\n" |
| " call_pal %[wrent]\n" |
| /* With that in place, the fault from the round-to-minf fp |
| insn will arrive either at the "lda 4" insn (bad) or one |
| past that (good). This places the correct fixup in %0. */ |
| " lda %[fix], 0\n" |
| " cvttq/svm $f31,$f31\n" |
| " lda %[fix], 4" |
| : [fix] "=r" (opDEC_fix) |
| : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent) |
| : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25"); |
| |
| if (opDEC_fix) |
| printk("opDEC fixup enabled.\n"); |
| } |
| |
| void |
| dik_show_regs(struct pt_regs *regs, unsigned long *r9_15) |
| { |
| printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n", |
| regs->pc, regs->r26, regs->ps, print_tainted()); |
| printk("pc is at %pSR\n", (void *)regs->pc); |
| printk("ra is at %pSR\n", (void *)regs->r26); |
| printk("v0 = %016lx t0 = %016lx t1 = %016lx\n", |
| regs->r0, regs->r1, regs->r2); |
| printk("t2 = %016lx t3 = %016lx t4 = %016lx\n", |
| regs->r3, regs->r4, regs->r5); |
| printk("t5 = %016lx t6 = %016lx t7 = %016lx\n", |
| regs->r6, regs->r7, regs->r8); |
| |
| if (r9_15) { |
| printk("s0 = %016lx s1 = %016lx s2 = %016lx\n", |
| r9_15[9], r9_15[10], r9_15[11]); |
| printk("s3 = %016lx s4 = %016lx s5 = %016lx\n", |
| r9_15[12], r9_15[13], r9_15[14]); |
| printk("s6 = %016lx\n", r9_15[15]); |
| } |
| |
| printk("a0 = %016lx a1 = %016lx a2 = %016lx\n", |
| regs->r16, regs->r17, regs->r18); |
| printk("a3 = %016lx a4 = %016lx a5 = %016lx\n", |
| regs->r19, regs->r20, regs->r21); |
| printk("t8 = %016lx t9 = %016lx t10= %016lx\n", |
| regs->r22, regs->r23, regs->r24); |
| printk("t11= %016lx pv = %016lx at = %016lx\n", |
| regs->r25, regs->r27, regs->r28); |
| printk("gp = %016lx sp = %p\n", regs->gp, regs+1); |
| #if 0 |
| __halt(); |
| #endif |
| } |
| |
| #if 0 |
| static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", |
| "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", |
| "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", |
| "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"}; |
| #endif |
| |
| static void |
| dik_show_code(unsigned int *pc) |
| { |
| long i; |
| |
| printk("Code:"); |
| for (i = -6; i < 2; i++) { |
| unsigned int insn; |
| if (__get_user(insn, (unsigned int __user *)pc + i)) |
| break; |
| printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>'); |
| } |
| printk("\n"); |
| } |
| |
| static void |
| dik_show_trace(unsigned long *sp, const char *loglvl) |
| { |
| long i = 0; |
| printk("%sTrace:\n", loglvl); |
| while (0x1ff8 & (unsigned long) sp) { |
| extern char _stext[], _etext[]; |
| unsigned long tmp = *sp; |
| sp++; |
| if (!is_kernel_text(tmp)) |
| continue; |
| printk("%s[<%lx>] %pSR\n", loglvl, tmp, (void *)tmp); |
| if (i > 40) { |
| printk("%s ...", loglvl); |
| break; |
| } |
| } |
| printk("%s\n", loglvl); |
| } |
| |
| static int kstack_depth_to_print = 24; |
| |
| void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl) |
| { |
| unsigned long *stack; |
| int i; |
| |
| /* |
| * debugging aid: "show_stack(NULL, NULL, KERN_EMERG);" prints the |
| * back trace for this cpu. |
| */ |
| if(sp==NULL) |
| sp=(unsigned long*)&sp; |
| |
| stack = sp; |
| for(i=0; i < kstack_depth_to_print; i++) { |
| if (((long) stack & (THREAD_SIZE-1)) == 0) |
| break; |
| if ((i % 4) == 0) { |
| if (i) |
| pr_cont("\n"); |
| printk("%s ", loglvl); |
| } else { |
| pr_cont(" "); |
| } |
| pr_cont("%016lx", *stack++); |
| } |
| pr_cont("\n"); |
| dik_show_trace(sp, loglvl); |
| } |
| |
| void |
| die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15) |
| { |
| if (regs->ps & 8) |
| return; |
| #ifdef CONFIG_SMP |
| printk("CPU %d ", hard_smp_processor_id()); |
| #endif |
| printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err); |
| dik_show_regs(regs, r9_15); |
| add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT); |
| dik_show_code((unsigned int *)regs->pc); |
| |
| if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { |
| printk("die_if_kernel recursion detected.\n"); |
| local_irq_enable(); |
| while (1); |
| } |
| make_task_dead(SIGSEGV); |
| } |
| |
| #ifndef CONFIG_MATHEMU |
| static long dummy_emul(void) { return 0; } |
| long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask) |
| = (void *)dummy_emul; |
| EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise); |
| long (*alpha_fp_emul) (unsigned long pc) |
| = (void *)dummy_emul; |
| EXPORT_SYMBOL_GPL(alpha_fp_emul); |
| #else |
| long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask); |
| long alpha_fp_emul (unsigned long pc); |
| #endif |
| |
| asmlinkage void |
| do_entArith(unsigned long summary, unsigned long write_mask, |
| struct pt_regs *regs) |
| { |
| long si_code = FPE_FLTINV; |
| |
| if (summary & 1) { |
| /* Software-completion summary bit is set, so try to |
| emulate the instruction. If the processor supports |
| precise exceptions, we don't have to search. */ |
| if (!amask(AMASK_PRECISE_TRAP)) |
| si_code = alpha_fp_emul(regs->pc - 4); |
| else |
| si_code = alpha_fp_emul_imprecise(regs, write_mask); |
| if (si_code == 0) |
| return; |
| } |
| die_if_kernel("Arithmetic fault", regs, 0, NULL); |
| |
| send_sig_fault_trapno(SIGFPE, si_code, (void __user *) regs->pc, 0, current); |
| } |
| |
| asmlinkage void |
| do_entIF(unsigned long type, struct pt_regs *regs) |
| { |
| int signo, code; |
| |
| if (type == 3) { /* FEN fault */ |
| /* Irritating users can call PAL_clrfen to disable the |
| FPU for the process. The kernel will then trap in |
| do_switch_stack and undo_switch_stack when we try |
| to save and restore the FP registers. |
| |
| Given that GCC by default generates code that uses the |
| FP registers, PAL_clrfen is not useful except for DoS |
| attacks. So turn the bleeding FPU back on and be done |
| with it. */ |
| current_thread_info()->pcb.flags |= 1; |
| __reload_thread(¤t_thread_info()->pcb); |
| return; |
| } |
| if (!user_mode(regs)) { |
| if (type == 1) { |
| const unsigned int *data |
| = (const unsigned int *) regs->pc; |
| printk("Kernel bug at %s:%d\n", |
| (const char *)(data[1] | (long)data[2] << 32), |
| data[0]); |
| } |
| #ifdef CONFIG_ALPHA_WTINT |
| if (type == 4) { |
| /* If CALL_PAL WTINT is totally unsupported by the |
| PALcode, e.g. MILO, "emulate" it by overwriting |
| the insn. */ |
| unsigned int *pinsn |
| = (unsigned int *) regs->pc - 1; |
| if (*pinsn == PAL_wtint) { |
| *pinsn = 0x47e01400; /* mov 0,$0 */ |
| imb(); |
| regs->r0 = 0; |
| return; |
| } |
| } |
| #endif /* ALPHA_WTINT */ |
| die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"), |
| regs, type, NULL); |
| } |
| |
| switch (type) { |
| case 0: /* breakpoint */ |
| if (ptrace_cancel_bpt(current)) { |
| regs->pc -= 4; /* make pc point to former bpt */ |
| } |
| |
| send_sig_fault(SIGTRAP, TRAP_BRKPT, (void __user *)regs->pc, |
| current); |
| return; |
| |
| case 1: /* bugcheck */ |
| send_sig_fault_trapno(SIGTRAP, TRAP_UNK, |
| (void __user *) regs->pc, 0, current); |
| return; |
| |
| case 2: /* gentrap */ |
| switch ((long) regs->r16) { |
| case GEN_INTOVF: |
| signo = SIGFPE; |
| code = FPE_INTOVF; |
| break; |
| case GEN_INTDIV: |
| signo = SIGFPE; |
| code = FPE_INTDIV; |
| break; |
| case GEN_FLTOVF: |
| signo = SIGFPE; |
| code = FPE_FLTOVF; |
| break; |
| case GEN_FLTDIV: |
| signo = SIGFPE; |
| code = FPE_FLTDIV; |
| break; |
| case GEN_FLTUND: |
| signo = SIGFPE; |
| code = FPE_FLTUND; |
| break; |
| case GEN_FLTINV: |
| signo = SIGFPE; |
| code = FPE_FLTINV; |
| break; |
| case GEN_FLTINE: |
| signo = SIGFPE; |
| code = FPE_FLTRES; |
| break; |
| case GEN_ROPRAND: |
| signo = SIGFPE; |
| code = FPE_FLTUNK; |
| break; |
| |
| case GEN_DECOVF: |
| case GEN_DECDIV: |
| case GEN_DECINV: |
| case GEN_ASSERTERR: |
| case GEN_NULPTRERR: |
| case GEN_STKOVF: |
| case GEN_STRLENERR: |
| case GEN_SUBSTRERR: |
| case GEN_RANGERR: |
| case GEN_SUBRNG: |
| case GEN_SUBRNG1: |
| case GEN_SUBRNG2: |
| case GEN_SUBRNG3: |
| case GEN_SUBRNG4: |
| case GEN_SUBRNG5: |
| case GEN_SUBRNG6: |
| case GEN_SUBRNG7: |
| default: |
| signo = SIGTRAP; |
| code = TRAP_UNK; |
| break; |
| } |
| |
| send_sig_fault_trapno(signo, code, (void __user *) regs->pc, |
| regs->r16, current); |
| return; |
| |
| case 4: /* opDEC */ |
| if (implver() == IMPLVER_EV4) { |
| long si_code; |
| |
| /* The some versions of SRM do not handle |
| the opDEC properly - they return the PC of the |
| opDEC fault, not the instruction after as the |
| Alpha architecture requires. Here we fix it up. |
| We do this by intentionally causing an opDEC |
| fault during the boot sequence and testing if |
| we get the correct PC. If not, we set a flag |
| to correct it every time through. */ |
| regs->pc += opDEC_fix; |
| |
| /* EV4 does not implement anything except normal |
| rounding. Everything else will come here as |
| an illegal instruction. Emulate them. */ |
| si_code = alpha_fp_emul(regs->pc - 4); |
| if (si_code == 0) |
| return; |
| if (si_code > 0) { |
| send_sig_fault_trapno(SIGFPE, si_code, |
| (void __user *) regs->pc, |
| 0, current); |
| return; |
| } |
| } |
| break; |
| |
| case 5: /* illoc */ |
| default: /* unexpected instruction-fault type */ |
| ; |
| } |
| |
| send_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc, current); |
| } |
| |
| /* There is an ifdef in the PALcode in MILO that enables a |
| "kernel debugging entry point" as an unprivileged call_pal. |
| |
| We don't want to have anything to do with it, but unfortunately |
| several versions of MILO included in distributions have it enabled, |
| and if we don't put something on the entry point we'll oops. */ |
| |
| asmlinkage void |
| do_entDbg(struct pt_regs *regs) |
| { |
| die_if_kernel("Instruction fault", regs, 0, NULL); |
| |
| force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc); |
| } |
| |
| |
| /* |
| * entUna has a different register layout to be reasonably simple. It |
| * needs access to all the integer registers (the kernel doesn't use |
| * fp-regs), and it needs to have them in order for simpler access. |
| * |
| * Due to the non-standard register layout (and because we don't want |
| * to handle floating-point regs), user-mode unaligned accesses are |
| * handled separately by do_entUnaUser below. |
| * |
| * Oh, btw, we don't handle the "gp" register correctly, but if we fault |
| * on a gp-register unaligned load/store, something is _very_ wrong |
| * in the kernel anyway.. |
| */ |
| struct allregs { |
| unsigned long regs[32]; |
| unsigned long ps, pc, gp, a0, a1, a2; |
| }; |
| |
| struct unaligned_stat { |
| unsigned long count, va, pc; |
| } unaligned[2]; |
| |
| |
| /* Macro for exception fixup code to access integer registers. */ |
| #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)]) |
| |
| |
| asmlinkage void |
| do_entUna(void * va, unsigned long opcode, unsigned long reg, |
| struct allregs *regs) |
| { |
| long error, tmp1, tmp2, tmp3, tmp4; |
| unsigned long pc = regs->pc - 4; |
| unsigned long *_regs = regs->regs; |
| const struct exception_table_entry *fixup; |
| |
| unaligned[0].count++; |
| unaligned[0].va = (unsigned long) va; |
| unaligned[0].pc = pc; |
| |
| /* We don't want to use the generic get/put unaligned macros as |
| we want to trap exceptions. Only if we actually get an |
| exception will we decide whether we should have caught it. */ |
| |
| switch (opcode) { |
| case 0x0c: /* ldwu */ |
| __asm__ __volatile__( |
| "1: ldq_u %1,0(%3)\n" |
| "2: ldq_u %2,1(%3)\n" |
| " extwl %1,%3,%1\n" |
| " extwh %2,%3,%2\n" |
| "3:\n" |
| EXC(1b,3b,%1,%0) |
| EXC(2b,3b,%2,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) |
| : "r"(va), "0"(0)); |
| if (error) |
| goto got_exception; |
| una_reg(reg) = tmp1|tmp2; |
| return; |
| |
| case 0x28: /* ldl */ |
| __asm__ __volatile__( |
| "1: ldq_u %1,0(%3)\n" |
| "2: ldq_u %2,3(%3)\n" |
| " extll %1,%3,%1\n" |
| " extlh %2,%3,%2\n" |
| "3:\n" |
| EXC(1b,3b,%1,%0) |
| EXC(2b,3b,%2,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) |
| : "r"(va), "0"(0)); |
| if (error) |
| goto got_exception; |
| una_reg(reg) = (int)(tmp1|tmp2); |
| return; |
| |
| case 0x29: /* ldq */ |
| __asm__ __volatile__( |
| "1: ldq_u %1,0(%3)\n" |
| "2: ldq_u %2,7(%3)\n" |
| " extql %1,%3,%1\n" |
| " extqh %2,%3,%2\n" |
| "3:\n" |
| EXC(1b,3b,%1,%0) |
| EXC(2b,3b,%2,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) |
| : "r"(va), "0"(0)); |
| if (error) |
| goto got_exception; |
| una_reg(reg) = tmp1|tmp2; |
| return; |
| |
| /* Note that the store sequences do not indicate that they change |
| memory because it _should_ be affecting nothing in this context. |
| (Otherwise we have other, much larger, problems.) */ |
| case 0x0d: /* stw */ |
| __asm__ __volatile__( |
| "1: ldq_u %2,1(%5)\n" |
| "2: ldq_u %1,0(%5)\n" |
| " inswh %6,%5,%4\n" |
| " inswl %6,%5,%3\n" |
| " mskwh %2,%5,%2\n" |
| " mskwl %1,%5,%1\n" |
| " or %2,%4,%2\n" |
| " or %1,%3,%1\n" |
| "3: stq_u %2,1(%5)\n" |
| "4: stq_u %1,0(%5)\n" |
| "5:\n" |
| EXC(1b,5b,%2,%0) |
| EXC(2b,5b,%1,%0) |
| EXC(3b,5b,$31,%0) |
| EXC(4b,5b,$31,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), |
| "=&r"(tmp3), "=&r"(tmp4) |
| : "r"(va), "r"(una_reg(reg)), "0"(0)); |
| if (error) |
| goto got_exception; |
| return; |
| |
| case 0x2c: /* stl */ |
| __asm__ __volatile__( |
| "1: ldq_u %2,3(%5)\n" |
| "2: ldq_u %1,0(%5)\n" |
| " inslh %6,%5,%4\n" |
| " insll %6,%5,%3\n" |
| " msklh %2,%5,%2\n" |
| " mskll %1,%5,%1\n" |
| " or %2,%4,%2\n" |
| " or %1,%3,%1\n" |
| "3: stq_u %2,3(%5)\n" |
| "4: stq_u %1,0(%5)\n" |
| "5:\n" |
| EXC(1b,5b,%2,%0) |
| EXC(2b,5b,%1,%0) |
| EXC(3b,5b,$31,%0) |
| EXC(4b,5b,$31,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), |
| "=&r"(tmp3), "=&r"(tmp4) |
| : "r"(va), "r"(una_reg(reg)), "0"(0)); |
| if (error) |
| goto got_exception; |
| return; |
| |
| case 0x2d: /* stq */ |
| __asm__ __volatile__( |
| "1: ldq_u %2,7(%5)\n" |
| "2: ldq_u %1,0(%5)\n" |
| " insqh %6,%5,%4\n" |
| " insql %6,%5,%3\n" |
| " mskqh %2,%5,%2\n" |
| " mskql %1,%5,%1\n" |
| " or %2,%4,%2\n" |
| " or %1,%3,%1\n" |
| "3: stq_u %2,7(%5)\n" |
| "4: stq_u %1,0(%5)\n" |
| "5:\n" |
| EXC(1b,5b,%2,%0) |
| EXC(2b,5b,%1,%0) |
| EXC(3b,5b,$31,%0) |
| EXC(4b,5b,$31,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), |
| "=&r"(tmp3), "=&r"(tmp4) |
| : "r"(va), "r"(una_reg(reg)), "0"(0)); |
| if (error) |
| goto got_exception; |
| return; |
| } |
| |
| printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n", |
| pc, va, opcode, reg); |
| make_task_dead(SIGSEGV); |
| |
| got_exception: |
| /* Ok, we caught the exception, but we don't want it. Is there |
| someone to pass it along to? */ |
| if ((fixup = search_exception_tables(pc)) != 0) { |
| unsigned long newpc; |
| newpc = fixup_exception(una_reg, fixup, pc); |
| |
| printk("Forwarding unaligned exception at %lx (%lx)\n", |
| pc, newpc); |
| |
| regs->pc = newpc; |
| return; |
| } |
| |
| /* |
| * Yikes! No one to forward the exception to. |
| * Since the registers are in a weird format, dump them ourselves. |
| */ |
| |
| printk("%s(%d): unhandled unaligned exception\n", |
| current->comm, task_pid_nr(current)); |
| |
| printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n", |
| pc, una_reg(26), regs->ps); |
| printk("r0 = %016lx r1 = %016lx r2 = %016lx\n", |
| una_reg(0), una_reg(1), una_reg(2)); |
| printk("r3 = %016lx r4 = %016lx r5 = %016lx\n", |
| una_reg(3), una_reg(4), una_reg(5)); |
| printk("r6 = %016lx r7 = %016lx r8 = %016lx\n", |
| una_reg(6), una_reg(7), una_reg(8)); |
| printk("r9 = %016lx r10= %016lx r11= %016lx\n", |
| una_reg(9), una_reg(10), una_reg(11)); |
| printk("r12= %016lx r13= %016lx r14= %016lx\n", |
| una_reg(12), una_reg(13), una_reg(14)); |
| printk("r15= %016lx\n", una_reg(15)); |
| printk("r16= %016lx r17= %016lx r18= %016lx\n", |
| una_reg(16), una_reg(17), una_reg(18)); |
| printk("r19= %016lx r20= %016lx r21= %016lx\n", |
| una_reg(19), una_reg(20), una_reg(21)); |
| printk("r22= %016lx r23= %016lx r24= %016lx\n", |
| una_reg(22), una_reg(23), una_reg(24)); |
| printk("r25= %016lx r27= %016lx r28= %016lx\n", |
| una_reg(25), una_reg(27), una_reg(28)); |
| printk("gp = %016lx sp = %p\n", regs->gp, regs+1); |
| |
| dik_show_code((unsigned int *)pc); |
| dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT); |
| |
| if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) { |
| printk("die_if_kernel recursion detected.\n"); |
| local_irq_enable(); |
| while (1); |
| } |
| make_task_dead(SIGSEGV); |
| } |
| |
| /* |
| * Convert an s-floating point value in memory format to the |
| * corresponding value in register format. The exponent |
| * needs to be remapped to preserve non-finite values |
| * (infinities, not-a-numbers, denormals). |
| */ |
| static inline unsigned long |
| s_mem_to_reg (unsigned long s_mem) |
| { |
| unsigned long frac = (s_mem >> 0) & 0x7fffff; |
| unsigned long sign = (s_mem >> 31) & 0x1; |
| unsigned long exp_msb = (s_mem >> 30) & 0x1; |
| unsigned long exp_low = (s_mem >> 23) & 0x7f; |
| unsigned long exp; |
| |
| exp = (exp_msb << 10) | exp_low; /* common case */ |
| if (exp_msb) { |
| if (exp_low == 0x7f) { |
| exp = 0x7ff; |
| } |
| } else { |
| if (exp_low == 0x00) { |
| exp = 0x000; |
| } else { |
| exp |= (0x7 << 7); |
| } |
| } |
| return (sign << 63) | (exp << 52) | (frac << 29); |
| } |
| |
| /* |
| * Convert an s-floating point value in register format to the |
| * corresponding value in memory format. |
| */ |
| static inline unsigned long |
| s_reg_to_mem (unsigned long s_reg) |
| { |
| return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34); |
| } |
| |
| /* |
| * Handle user-level unaligned fault. Handling user-level unaligned |
| * faults is *extremely* slow and produces nasty messages. A user |
| * program *should* fix unaligned faults ASAP. |
| * |
| * Notice that we have (almost) the regular kernel stack layout here, |
| * so finding the appropriate registers is a little more difficult |
| * than in the kernel case. |
| * |
| * Finally, we handle regular integer load/stores only. In |
| * particular, load-linked/store-conditionally and floating point |
| * load/stores are not supported. The former make no sense with |
| * unaligned faults (they are guaranteed to fail) and I don't think |
| * the latter will occur in any decent program. |
| * |
| * Sigh. We *do* have to handle some FP operations, because GCC will |
| * uses them as temporary storage for integer memory to memory copies. |
| * However, we need to deal with stt/ldt and sts/lds only. |
| */ |
| |
| #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \ |
| | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \ |
| | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \ |
| | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */ |
| |
| #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \ |
| | 1L << 0x2c | 1L << 0x2d /* stl stq */ \ |
| | 1L << 0x0d | 1L << 0x0e ) /* stw stb */ |
| |
| #define R(x) ((size_t) &((struct pt_regs *)0)->x) |
| |
| static int unauser_reg_offsets[32] = { |
| R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8), |
| /* r9 ... r15 are stored in front of regs. */ |
| -56, -48, -40, -32, -24, -16, -8, |
| R(r16), R(r17), R(r18), |
| R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26), |
| R(r27), R(r28), R(gp), |
| 0, 0 |
| }; |
| |
| #undef R |
| |
| asmlinkage void |
| do_entUnaUser(void __user * va, unsigned long opcode, |
| unsigned long reg, struct pt_regs *regs) |
| { |
| static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5); |
| |
| unsigned long tmp1, tmp2, tmp3, tmp4; |
| unsigned long fake_reg, *reg_addr = &fake_reg; |
| int si_code; |
| long error; |
| |
| /* Check the UAC bits to decide what the user wants us to do |
| with the unaligned access. */ |
| |
| if (!(current_thread_info()->status & TS_UAC_NOPRINT)) { |
| if (__ratelimit(&ratelimit)) { |
| printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n", |
| current->comm, task_pid_nr(current), |
| regs->pc - 4, va, opcode, reg); |
| } |
| } |
| if ((current_thread_info()->status & TS_UAC_SIGBUS)) |
| goto give_sigbus; |
| /* Not sure why you'd want to use this, but... */ |
| if ((current_thread_info()->status & TS_UAC_NOFIX)) |
| return; |
| |
| /* Don't bother reading ds in the access check since we already |
| know that this came from the user. Also rely on the fact that |
| the page at TASK_SIZE is unmapped and so can't be touched anyway. */ |
| if ((unsigned long)va >= TASK_SIZE) |
| goto give_sigsegv; |
| |
| ++unaligned[1].count; |
| unaligned[1].va = (unsigned long)va; |
| unaligned[1].pc = regs->pc - 4; |
| |
| if ((1L << opcode) & OP_INT_MASK) { |
| /* it's an integer load/store */ |
| if (reg < 30) { |
| reg_addr = (unsigned long *) |
| ((char *)regs + unauser_reg_offsets[reg]); |
| } else if (reg == 30) { |
| /* usp in PAL regs */ |
| fake_reg = rdusp(); |
| } else { |
| /* zero "register" */ |
| fake_reg = 0; |
| } |
| } |
| |
| /* We don't want to use the generic get/put unaligned macros as |
| we want to trap exceptions. Only if we actually get an |
| exception will we decide whether we should have caught it. */ |
| |
| switch (opcode) { |
| case 0x0c: /* ldwu */ |
| __asm__ __volatile__( |
| "1: ldq_u %1,0(%3)\n" |
| "2: ldq_u %2,1(%3)\n" |
| " extwl %1,%3,%1\n" |
| " extwh %2,%3,%2\n" |
| "3:\n" |
| EXC(1b,3b,%1,%0) |
| EXC(2b,3b,%2,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) |
| : "r"(va), "0"(0)); |
| if (error) |
| goto give_sigsegv; |
| *reg_addr = tmp1|tmp2; |
| break; |
| |
| case 0x22: /* lds */ |
| __asm__ __volatile__( |
| "1: ldq_u %1,0(%3)\n" |
| "2: ldq_u %2,3(%3)\n" |
| " extll %1,%3,%1\n" |
| " extlh %2,%3,%2\n" |
| "3:\n" |
| EXC(1b,3b,%1,%0) |
| EXC(2b,3b,%2,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) |
| : "r"(va), "0"(0)); |
| if (error) |
| goto give_sigsegv; |
| alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2))); |
| return; |
| |
| case 0x23: /* ldt */ |
| __asm__ __volatile__( |
| "1: ldq_u %1,0(%3)\n" |
| "2: ldq_u %2,7(%3)\n" |
| " extql %1,%3,%1\n" |
| " extqh %2,%3,%2\n" |
| "3:\n" |
| EXC(1b,3b,%1,%0) |
| EXC(2b,3b,%2,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) |
| : "r"(va), "0"(0)); |
| if (error) |
| goto give_sigsegv; |
| alpha_write_fp_reg(reg, tmp1|tmp2); |
| return; |
| |
| case 0x28: /* ldl */ |
| __asm__ __volatile__( |
| "1: ldq_u %1,0(%3)\n" |
| "2: ldq_u %2,3(%3)\n" |
| " extll %1,%3,%1\n" |
| " extlh %2,%3,%2\n" |
| "3:\n" |
| EXC(1b,3b,%1,%0) |
| EXC(2b,3b,%2,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) |
| : "r"(va), "0"(0)); |
| if (error) |
| goto give_sigsegv; |
| *reg_addr = (int)(tmp1|tmp2); |
| break; |
| |
| case 0x29: /* ldq */ |
| __asm__ __volatile__( |
| "1: ldq_u %1,0(%3)\n" |
| "2: ldq_u %2,7(%3)\n" |
| " extql %1,%3,%1\n" |
| " extqh %2,%3,%2\n" |
| "3:\n" |
| EXC(1b,3b,%1,%0) |
| EXC(2b,3b,%2,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2) |
| : "r"(va), "0"(0)); |
| if (error) |
| goto give_sigsegv; |
| *reg_addr = tmp1|tmp2; |
| break; |
| |
| /* Note that the store sequences do not indicate that they change |
| memory because it _should_ be affecting nothing in this context. |
| (Otherwise we have other, much larger, problems.) */ |
| case 0x0d: /* stw */ |
| __asm__ __volatile__( |
| "1: ldq_u %2,1(%5)\n" |
| "2: ldq_u %1,0(%5)\n" |
| " inswh %6,%5,%4\n" |
| " inswl %6,%5,%3\n" |
| " mskwh %2,%5,%2\n" |
| " mskwl %1,%5,%1\n" |
| " or %2,%4,%2\n" |
| " or %1,%3,%1\n" |
| "3: stq_u %2,1(%5)\n" |
| "4: stq_u %1,0(%5)\n" |
| "5:\n" |
| EXC(1b,5b,%2,%0) |
| EXC(2b,5b,%1,%0) |
| EXC(3b,5b,$31,%0) |
| EXC(4b,5b,$31,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), |
| "=&r"(tmp3), "=&r"(tmp4) |
| : "r"(va), "r"(*reg_addr), "0"(0)); |
| if (error) |
| goto give_sigsegv; |
| return; |
| |
| case 0x26: /* sts */ |
| fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg)); |
| fallthrough; |
| |
| case 0x2c: /* stl */ |
| __asm__ __volatile__( |
| "1: ldq_u %2,3(%5)\n" |
| "2: ldq_u %1,0(%5)\n" |
| " inslh %6,%5,%4\n" |
| " insll %6,%5,%3\n" |
| " msklh %2,%5,%2\n" |
| " mskll %1,%5,%1\n" |
| " or %2,%4,%2\n" |
| " or %1,%3,%1\n" |
| "3: stq_u %2,3(%5)\n" |
| "4: stq_u %1,0(%5)\n" |
| "5:\n" |
| EXC(1b,5b,%2,%0) |
| EXC(2b,5b,%1,%0) |
| EXC(3b,5b,$31,%0) |
| EXC(4b,5b,$31,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), |
| "=&r"(tmp3), "=&r"(tmp4) |
| : "r"(va), "r"(*reg_addr), "0"(0)); |
| if (error) |
| goto give_sigsegv; |
| return; |
| |
| case 0x27: /* stt */ |
| fake_reg = alpha_read_fp_reg(reg); |
| fallthrough; |
| |
| case 0x2d: /* stq */ |
| __asm__ __volatile__( |
| "1: ldq_u %2,7(%5)\n" |
| "2: ldq_u %1,0(%5)\n" |
| " insqh %6,%5,%4\n" |
| " insql %6,%5,%3\n" |
| " mskqh %2,%5,%2\n" |
| " mskql %1,%5,%1\n" |
| " or %2,%4,%2\n" |
| " or %1,%3,%1\n" |
| "3: stq_u %2,7(%5)\n" |
| "4: stq_u %1,0(%5)\n" |
| "5:\n" |
| EXC(1b,5b,%2,%0) |
| EXC(2b,5b,%1,%0) |
| EXC(3b,5b,$31,%0) |
| EXC(4b,5b,$31,%0) |
| : "=r"(error), "=&r"(tmp1), "=&r"(tmp2), |
| "=&r"(tmp3), "=&r"(tmp4) |
| : "r"(va), "r"(*reg_addr), "0"(0)); |
| if (error) |
| goto give_sigsegv; |
| return; |
| |
| default: |
| /* What instruction were you trying to use, exactly? */ |
| goto give_sigbus; |
| } |
| |
| /* Only integer loads should get here; everyone else returns early. */ |
| if (reg == 30) |
| wrusp(fake_reg); |
| return; |
| |
| give_sigsegv: |
| regs->pc -= 4; /* make pc point to faulting insn */ |
| |
| /* We need to replicate some of the logic in mm/fault.c, |
| since we don't have access to the fault code in the |
| exception handling return path. */ |
| if ((unsigned long)va >= TASK_SIZE) |
| si_code = SEGV_ACCERR; |
| else { |
| struct mm_struct *mm = current->mm; |
| mmap_read_lock(mm); |
| if (find_vma(mm, (unsigned long)va)) |
| si_code = SEGV_ACCERR; |
| else |
| si_code = SEGV_MAPERR; |
| mmap_read_unlock(mm); |
| } |
| send_sig_fault(SIGSEGV, si_code, va, current); |
| return; |
| |
| give_sigbus: |
| regs->pc -= 4; |
| send_sig_fault(SIGBUS, BUS_ADRALN, va, current); |
| return; |
| } |
| |
| void |
| trap_init(void) |
| { |
| /* Tell PAL-code what global pointer we want in the kernel. */ |
| register unsigned long gptr __asm__("$29"); |
| wrkgp(gptr); |
| |
| /* Hack for Multia (UDB) and JENSEN: some of their SRMs have |
| a bug in the handling of the opDEC fault. Fix it up if so. */ |
| if (implver() == IMPLVER_EV4) |
| opDEC_check(); |
| |
| wrent(entArith, 1); |
| wrent(entMM, 2); |
| wrent(entIF, 3); |
| wrent(entUna, 4); |
| wrent(entSys, 5); |
| wrent(entDbg, 6); |
| } |