| // SPDX-License-Identifier: GPL-2.0-only |
| /* arch/sparc64/kernel/traps.c |
| * |
| * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net) |
| * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com) |
| */ |
| |
| /* |
| * I like traps on v9, :)))) |
| */ |
| |
| #include <linux/extable.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/debug.h> |
| #include <linux/linkage.h> |
| #include <linux/kernel.h> |
| #include <linux/signal.h> |
| #include <linux/smp.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kdebug.h> |
| #include <linux/ftrace.h> |
| #include <linux/reboot.h> |
| #include <linux/gfp.h> |
| #include <linux/context_tracking.h> |
| |
| #include <asm/smp.h> |
| #include <asm/delay.h> |
| #include <asm/ptrace.h> |
| #include <asm/oplib.h> |
| #include <asm/page.h> |
| #include <asm/unistd.h> |
| #include <linux/uaccess.h> |
| #include <asm/fpumacro.h> |
| #include <asm/lsu.h> |
| #include <asm/dcu.h> |
| #include <asm/estate.h> |
| #include <asm/chafsr.h> |
| #include <asm/sfafsr.h> |
| #include <asm/psrcompat.h> |
| #include <asm/processor.h> |
| #include <asm/timer.h> |
| #include <asm/head.h> |
| #include <asm/prom.h> |
| #include <asm/memctrl.h> |
| #include <asm/cacheflush.h> |
| #include <asm/setup.h> |
| |
| #include "entry.h" |
| #include "kernel.h" |
| #include "kstack.h" |
| |
| /* When an irrecoverable trap occurs at tl > 0, the trap entry |
| * code logs the trap state registers at every level in the trap |
| * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout |
| * is as follows: |
| */ |
| struct tl1_traplog { |
| struct { |
| unsigned long tstate; |
| unsigned long tpc; |
| unsigned long tnpc; |
| unsigned long tt; |
| } trapstack[4]; |
| unsigned long tl; |
| }; |
| |
| static void dump_tl1_traplog(struct tl1_traplog *p) |
| { |
| int i, limit; |
| |
| printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, " |
| "dumping track stack.\n", p->tl); |
| |
| limit = (tlb_type == hypervisor) ? 2 : 4; |
| for (i = 0; i < limit; i++) { |
| printk(KERN_EMERG |
| "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] " |
| "TNPC[%016lx] TT[%lx]\n", |
| i + 1, |
| p->trapstack[i].tstate, p->trapstack[i].tpc, |
| p->trapstack[i].tnpc, p->trapstack[i].tt); |
| printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc); |
| } |
| } |
| |
| void bad_trap(struct pt_regs *regs, long lvl) |
| { |
| char buffer[36]; |
| |
| if (notify_die(DIE_TRAP, "bad trap", regs, |
| 0, lvl, SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| if (lvl < 0x100) { |
| sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl); |
| die_if_kernel(buffer, regs); |
| } |
| |
| lvl -= 0x100; |
| if (regs->tstate & TSTATE_PRIV) { |
| sprintf(buffer, "Kernel bad sw trap %lx", lvl); |
| die_if_kernel(buffer, regs); |
| } |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| force_sig_fault_trapno(SIGILL, ILL_ILLTRP, |
| (void __user *)regs->tpc, lvl); |
| } |
| |
| void bad_trap_tl1(struct pt_regs *regs, long lvl) |
| { |
| char buffer[36]; |
| |
| if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs, |
| 0, lvl, SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| |
| sprintf (buffer, "Bad trap %lx at tl>0", lvl); |
| die_if_kernel (buffer, regs); |
| } |
| |
| #ifdef CONFIG_DEBUG_BUGVERBOSE |
| void do_BUG(const char *file, int line) |
| { |
| bust_spinlocks(1); |
| printk("kernel BUG at %s:%d!\n", file, line); |
| } |
| EXPORT_SYMBOL(do_BUG); |
| #endif |
| |
| static DEFINE_SPINLOCK(dimm_handler_lock); |
| static dimm_printer_t dimm_handler; |
| |
| static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen) |
| { |
| unsigned long flags; |
| int ret = -ENODEV; |
| |
| spin_lock_irqsave(&dimm_handler_lock, flags); |
| if (dimm_handler) { |
| ret = dimm_handler(synd_code, paddr, buf, buflen); |
| } else if (tlb_type == spitfire) { |
| if (prom_getunumber(synd_code, paddr, buf, buflen) == -1) |
| ret = -EINVAL; |
| else |
| ret = 0; |
| } else |
| ret = -ENODEV; |
| spin_unlock_irqrestore(&dimm_handler_lock, flags); |
| |
| return ret; |
| } |
| |
| int register_dimm_printer(dimm_printer_t func) |
| { |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&dimm_handler_lock, flags); |
| if (!dimm_handler) |
| dimm_handler = func; |
| else |
| ret = -EEXIST; |
| spin_unlock_irqrestore(&dimm_handler_lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(register_dimm_printer); |
| |
| void unregister_dimm_printer(dimm_printer_t func) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dimm_handler_lock, flags); |
| if (dimm_handler == func) |
| dimm_handler = NULL; |
| spin_unlock_irqrestore(&dimm_handler_lock, flags); |
| } |
| EXPORT_SYMBOL_GPL(unregister_dimm_printer); |
| |
| void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (notify_die(DIE_TRAP, "instruction access exception", regs, |
| 0, 0x8, SIGTRAP) == NOTIFY_STOP) |
| goto out; |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| printk("spitfire_insn_access_exception: SFSR[%016lx] " |
| "SFAR[%016lx], going.\n", sfsr, sfar); |
| die_if_kernel("Iax", regs); |
| } |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)regs->tpc); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) |
| { |
| if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, |
| 0, 0x8, SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| spitfire_insn_access_exception(regs, sfsr, sfar); |
| } |
| |
| void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) |
| { |
| unsigned short type = (type_ctx >> 16); |
| unsigned short ctx = (type_ctx & 0xffff); |
| |
| if (notify_die(DIE_TRAP, "instruction access exception", regs, |
| 0, 0x8, SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| printk("sun4v_insn_access_exception: ADDR[%016lx] " |
| "CTX[%04x] TYPE[%04x], going.\n", |
| addr, ctx, type); |
| die_if_kernel("Iax", regs); |
| } |
| |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr); |
| } |
| |
| void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) |
| { |
| if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, |
| 0, 0x8, SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| sun4v_insn_access_exception(regs, addr, type_ctx); |
| } |
| |
| bool is_no_fault_exception(struct pt_regs *regs) |
| { |
| unsigned char asi; |
| u32 insn; |
| |
| if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT) |
| return false; |
| |
| /* |
| * Must do a little instruction decoding here in order to |
| * decide on a course of action. The bits of interest are: |
| * insn[31:30] = op, where 3 indicates the load/store group |
| * insn[24:19] = op3, which identifies individual opcodes |
| * insn[13] indicates an immediate offset |
| * op3[4]=1 identifies alternate space instructions |
| * op3[5:4]=3 identifies floating point instructions |
| * op3[2]=1 identifies stores |
| * See "Opcode Maps" in the appendix of any Sparc V9 |
| * architecture spec for full details. |
| */ |
| if ((insn & 0xc0800000) == 0xc0800000) { /* op=3, op3[4]=1 */ |
| if (insn & 0x2000) /* immediate offset */ |
| asi = (regs->tstate >> 24); /* saved %asi */ |
| else |
| asi = (insn >> 5); /* immediate asi */ |
| if ((asi & 0xf6) == ASI_PNF) { |
| if (insn & 0x200000) /* op3[2], stores */ |
| return false; |
| if (insn & 0x1000000) /* op3[5:4]=3 (fp) */ |
| handle_ldf_stq(insn, regs); |
| else |
| handle_ld_nf(insn, regs); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (notify_die(DIE_TRAP, "data access exception", regs, |
| 0, 0x30, SIGTRAP) == NOTIFY_STOP) |
| goto out; |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| /* Test if this comes from uaccess places. */ |
| const struct exception_table_entry *entry; |
| |
| entry = search_exception_tables(regs->tpc); |
| if (entry) { |
| /* Ouch, somebody is trying VM hole tricks on us... */ |
| #ifdef DEBUG_EXCEPTIONS |
| printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); |
| printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", |
| regs->tpc, entry->fixup); |
| #endif |
| regs->tpc = entry->fixup; |
| regs->tnpc = regs->tpc + 4; |
| goto out; |
| } |
| /* Shit... */ |
| printk("spitfire_data_access_exception: SFSR[%016lx] " |
| "SFAR[%016lx], going.\n", sfsr, sfar); |
| die_if_kernel("Dax", regs); |
| } |
| |
| if (is_no_fault_exception(regs)) |
| return; |
| |
| force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) |
| { |
| if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, |
| 0, 0x30, SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| spitfire_data_access_exception(regs, sfsr, sfar); |
| } |
| |
| void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) |
| { |
| unsigned short type = (type_ctx >> 16); |
| unsigned short ctx = (type_ctx & 0xffff); |
| |
| if (notify_die(DIE_TRAP, "data access exception", regs, |
| 0, 0x8, SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| /* Test if this comes from uaccess places. */ |
| const struct exception_table_entry *entry; |
| |
| entry = search_exception_tables(regs->tpc); |
| if (entry) { |
| /* Ouch, somebody is trying VM hole tricks on us... */ |
| #ifdef DEBUG_EXCEPTIONS |
| printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); |
| printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", |
| regs->tpc, entry->fixup); |
| #endif |
| regs->tpc = entry->fixup; |
| regs->tnpc = regs->tpc + 4; |
| return; |
| } |
| printk("sun4v_data_access_exception: ADDR[%016lx] " |
| "CTX[%04x] TYPE[%04x], going.\n", |
| addr, ctx, type); |
| die_if_kernel("Dax", regs); |
| } |
| |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| if (is_no_fault_exception(regs)) |
| return; |
| |
| /* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV |
| * is vectored thorugh data access exception trap with fault type |
| * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap. |
| * Accessing an address with invalid ASI for the address, for |
| * example setting an ADI tag on an address with ASI_MCD_PRIMARY |
| * when TTE.mcd is not set for the VA, is also vectored into |
| * kerbel by HV as data access exception with fault type set to |
| * HV_FAULT_TYPE_INV_ASI. |
| */ |
| switch (type) { |
| case HV_FAULT_TYPE_INV_ASI: |
| force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr); |
| break; |
| case HV_FAULT_TYPE_MCD_DIS: |
| force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr); |
| break; |
| default: |
| force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr); |
| break; |
| } |
| } |
| |
| void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) |
| { |
| if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, |
| 0, 0x8, SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| sun4v_data_access_exception(regs, addr, type_ctx); |
| } |
| |
| #ifdef CONFIG_PCI |
| #include "pci_impl.h" |
| #endif |
| |
| /* When access exceptions happen, we must do this. */ |
| static void spitfire_clean_and_reenable_l1_caches(void) |
| { |
| unsigned long va; |
| |
| if (tlb_type != spitfire) |
| BUG(); |
| |
| /* Clean 'em. */ |
| for (va = 0; va < (PAGE_SIZE << 1); va += 32) { |
| spitfire_put_icache_tag(va, 0x0); |
| spitfire_put_dcache_tag(va, 0x0); |
| } |
| |
| /* Re-enable in LSU. */ |
| __asm__ __volatile__("flush %%g6\n\t" |
| "membar #Sync\n\t" |
| "stxa %0, [%%g0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC | |
| LSU_CONTROL_IM | LSU_CONTROL_DM), |
| "i" (ASI_LSU_CONTROL) |
| : "memory"); |
| } |
| |
| static void spitfire_enable_estate_errors(void) |
| { |
| __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (ESTATE_ERR_ALL), |
| "i" (ASI_ESTATE_ERROR_EN)); |
| } |
| |
| static char ecc_syndrome_table[] = { |
| 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49, |
| 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a, |
| 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48, |
| 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c, |
| 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48, |
| 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29, |
| 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b, |
| 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48, |
| 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48, |
| 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e, |
| 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b, |
| 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, |
| 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36, |
| 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48, |
| 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48, |
| 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, |
| 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48, |
| 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b, |
| 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32, |
| 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48, |
| 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b, |
| 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, |
| 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48, |
| 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, |
| 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49, |
| 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48, |
| 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48, |
| 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, |
| 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48, |
| 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, |
| 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b, |
| 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a |
| }; |
| |
| static char *syndrome_unknown = "<Unknown>"; |
| |
| static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit) |
| { |
| unsigned short scode; |
| char memmod_str[64], *p; |
| |
| if (udbl & bit) { |
| scode = ecc_syndrome_table[udbl & 0xff]; |
| if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) |
| p = syndrome_unknown; |
| else |
| p = memmod_str; |
| printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] " |
| "Memory Module \"%s\"\n", |
| smp_processor_id(), scode, p); |
| } |
| |
| if (udbh & bit) { |
| scode = ecc_syndrome_table[udbh & 0xff]; |
| if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) |
| p = syndrome_unknown; |
| else |
| p = memmod_str; |
| printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] " |
| "Memory Module \"%s\"\n", |
| smp_processor_id(), scode, p); |
| } |
| |
| } |
| |
| static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs) |
| { |
| |
| printk(KERN_WARNING "CPU[%d]: Correctable ECC Error " |
| "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n", |
| smp_processor_id(), afsr, afar, udbl, udbh, tl1); |
| |
| spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE); |
| |
| /* We always log it, even if someone is listening for this |
| * trap. |
| */ |
| notify_die(DIE_TRAP, "Correctable ECC Error", regs, |
| 0, TRAP_TYPE_CEE, SIGTRAP); |
| |
| /* The Correctable ECC Error trap does not disable I/D caches. So |
| * we only have to restore the ESTATE Error Enable register. |
| */ |
| spitfire_enable_estate_errors(); |
| } |
| |
| static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs) |
| { |
| printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] " |
| "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n", |
| smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1); |
| |
| /* XXX add more human friendly logging of the error status |
| * XXX as is implemented for cheetah |
| */ |
| |
| spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE); |
| |
| /* We always log it, even if someone is listening for this |
| * trap. |
| */ |
| notify_die(DIE_TRAP, "Uncorrectable Error", regs, |
| 0, tt, SIGTRAP); |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| if (tl1) |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("UE", regs); |
| } |
| |
| /* XXX need more intelligent processing here, such as is implemented |
| * XXX for cheetah errors, in fact if the E-cache still holds the |
| * XXX line with bad parity this will loop |
| */ |
| |
| spitfire_clean_and_reenable_l1_caches(); |
| spitfire_enable_estate_errors(); |
| |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0); |
| } |
| |
| void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar) |
| { |
| unsigned long afsr, tt, udbh, udbl; |
| int tl1; |
| |
| afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT; |
| tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT; |
| tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0; |
| udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT; |
| udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT; |
| |
| #ifdef CONFIG_PCI |
| if (tt == TRAP_TYPE_DAE && |
| pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { |
| spitfire_clean_and_reenable_l1_caches(); |
| spitfire_enable_estate_errors(); |
| |
| pci_poke_faulted = 1; |
| regs->tnpc = regs->tpc + 4; |
| return; |
| } |
| #endif |
| |
| if (afsr & SFAFSR_UE) |
| spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs); |
| |
| if (tt == TRAP_TYPE_CEE) { |
| /* Handle the case where we took a CEE trap, but ACK'd |
| * only the UE state in the UDB error registers. |
| */ |
| if (afsr & SFAFSR_UE) { |
| if (udbh & UDBE_CE) { |
| __asm__ __volatile__( |
| "stxa %0, [%1] %2\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (udbh & UDBE_CE), |
| "r" (0x0), "i" (ASI_UDB_ERROR_W)); |
| } |
| if (udbl & UDBE_CE) { |
| __asm__ __volatile__( |
| "stxa %0, [%1] %2\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (udbl & UDBE_CE), |
| "r" (0x18), "i" (ASI_UDB_ERROR_W)); |
| } |
| } |
| |
| spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs); |
| } |
| } |
| |
| int cheetah_pcache_forced_on; |
| |
| void cheetah_enable_pcache(void) |
| { |
| unsigned long dcr; |
| |
| printk("CHEETAH: Enabling P-Cache on cpu %d.\n", |
| smp_processor_id()); |
| |
| __asm__ __volatile__("ldxa [%%g0] %1, %0" |
| : "=r" (dcr) |
| : "i" (ASI_DCU_CONTROL_REG)); |
| dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL); |
| __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (dcr), "i" (ASI_DCU_CONTROL_REG)); |
| } |
| |
| /* Cheetah error trap handling. */ |
| static unsigned long ecache_flush_physbase; |
| static unsigned long ecache_flush_linesize; |
| static unsigned long ecache_flush_size; |
| |
| /* This table is ordered in priority of errors and matches the |
| * AFAR overwrite policy as well. |
| */ |
| |
| struct afsr_error_table { |
| unsigned long mask; |
| const char *name; |
| }; |
| |
| static const char CHAFSR_PERR_msg[] = |
| "System interface protocol error"; |
| static const char CHAFSR_IERR_msg[] = |
| "Internal processor error"; |
| static const char CHAFSR_ISAP_msg[] = |
| "System request parity error on incoming address"; |
| static const char CHAFSR_UCU_msg[] = |
| "Uncorrectable E-cache ECC error for ifetch/data"; |
| static const char CHAFSR_UCC_msg[] = |
| "SW Correctable E-cache ECC error for ifetch/data"; |
| static const char CHAFSR_UE_msg[] = |
| "Uncorrectable system bus data ECC error for read"; |
| static const char CHAFSR_EDU_msg[] = |
| "Uncorrectable E-cache ECC error for stmerge/blkld"; |
| static const char CHAFSR_EMU_msg[] = |
| "Uncorrectable system bus MTAG error"; |
| static const char CHAFSR_WDU_msg[] = |
| "Uncorrectable E-cache ECC error for writeback"; |
| static const char CHAFSR_CPU_msg[] = |
| "Uncorrectable ECC error for copyout"; |
| static const char CHAFSR_CE_msg[] = |
| "HW corrected system bus data ECC error for read"; |
| static const char CHAFSR_EDC_msg[] = |
| "HW corrected E-cache ECC error for stmerge/blkld"; |
| static const char CHAFSR_EMC_msg[] = |
| "HW corrected system bus MTAG ECC error"; |
| static const char CHAFSR_WDC_msg[] = |
| "HW corrected E-cache ECC error for writeback"; |
| static const char CHAFSR_CPC_msg[] = |
| "HW corrected ECC error for copyout"; |
| static const char CHAFSR_TO_msg[] = |
| "Unmapped error from system bus"; |
| static const char CHAFSR_BERR_msg[] = |
| "Bus error response from system bus"; |
| static const char CHAFSR_IVC_msg[] = |
| "HW corrected system bus data ECC error for ivec read"; |
| static const char CHAFSR_IVU_msg[] = |
| "Uncorrectable system bus data ECC error for ivec read"; |
| static struct afsr_error_table __cheetah_error_table[] = { |
| { CHAFSR_PERR, CHAFSR_PERR_msg }, |
| { CHAFSR_IERR, CHAFSR_IERR_msg }, |
| { CHAFSR_ISAP, CHAFSR_ISAP_msg }, |
| { CHAFSR_UCU, CHAFSR_UCU_msg }, |
| { CHAFSR_UCC, CHAFSR_UCC_msg }, |
| { CHAFSR_UE, CHAFSR_UE_msg }, |
| { CHAFSR_EDU, CHAFSR_EDU_msg }, |
| { CHAFSR_EMU, CHAFSR_EMU_msg }, |
| { CHAFSR_WDU, CHAFSR_WDU_msg }, |
| { CHAFSR_CPU, CHAFSR_CPU_msg }, |
| { CHAFSR_CE, CHAFSR_CE_msg }, |
| { CHAFSR_EDC, CHAFSR_EDC_msg }, |
| { CHAFSR_EMC, CHAFSR_EMC_msg }, |
| { CHAFSR_WDC, CHAFSR_WDC_msg }, |
| { CHAFSR_CPC, CHAFSR_CPC_msg }, |
| { CHAFSR_TO, CHAFSR_TO_msg }, |
| { CHAFSR_BERR, CHAFSR_BERR_msg }, |
| /* These two do not update the AFAR. */ |
| { CHAFSR_IVC, CHAFSR_IVC_msg }, |
| { CHAFSR_IVU, CHAFSR_IVU_msg }, |
| { 0, NULL }, |
| }; |
| static const char CHPAFSR_DTO_msg[] = |
| "System bus unmapped error for prefetch/storequeue-read"; |
| static const char CHPAFSR_DBERR_msg[] = |
| "System bus error for prefetch/storequeue-read"; |
| static const char CHPAFSR_THCE_msg[] = |
| "Hardware corrected E-cache Tag ECC error"; |
| static const char CHPAFSR_TSCE_msg[] = |
| "SW handled correctable E-cache Tag ECC error"; |
| static const char CHPAFSR_TUE_msg[] = |
| "Uncorrectable E-cache Tag ECC error"; |
| static const char CHPAFSR_DUE_msg[] = |
| "System bus uncorrectable data ECC error due to prefetch/store-fill"; |
| static struct afsr_error_table __cheetah_plus_error_table[] = { |
| { CHAFSR_PERR, CHAFSR_PERR_msg }, |
| { CHAFSR_IERR, CHAFSR_IERR_msg }, |
| { CHAFSR_ISAP, CHAFSR_ISAP_msg }, |
| { CHAFSR_UCU, CHAFSR_UCU_msg }, |
| { CHAFSR_UCC, CHAFSR_UCC_msg }, |
| { CHAFSR_UE, CHAFSR_UE_msg }, |
| { CHAFSR_EDU, CHAFSR_EDU_msg }, |
| { CHAFSR_EMU, CHAFSR_EMU_msg }, |
| { CHAFSR_WDU, CHAFSR_WDU_msg }, |
| { CHAFSR_CPU, CHAFSR_CPU_msg }, |
| { CHAFSR_CE, CHAFSR_CE_msg }, |
| { CHAFSR_EDC, CHAFSR_EDC_msg }, |
| { CHAFSR_EMC, CHAFSR_EMC_msg }, |
| { CHAFSR_WDC, CHAFSR_WDC_msg }, |
| { CHAFSR_CPC, CHAFSR_CPC_msg }, |
| { CHAFSR_TO, CHAFSR_TO_msg }, |
| { CHAFSR_BERR, CHAFSR_BERR_msg }, |
| { CHPAFSR_DTO, CHPAFSR_DTO_msg }, |
| { CHPAFSR_DBERR, CHPAFSR_DBERR_msg }, |
| { CHPAFSR_THCE, CHPAFSR_THCE_msg }, |
| { CHPAFSR_TSCE, CHPAFSR_TSCE_msg }, |
| { CHPAFSR_TUE, CHPAFSR_TUE_msg }, |
| { CHPAFSR_DUE, CHPAFSR_DUE_msg }, |
| /* These two do not update the AFAR. */ |
| { CHAFSR_IVC, CHAFSR_IVC_msg }, |
| { CHAFSR_IVU, CHAFSR_IVU_msg }, |
| { 0, NULL }, |
| }; |
| static const char JPAFSR_JETO_msg[] = |
| "System interface protocol error, hw timeout caused"; |
| static const char JPAFSR_SCE_msg[] = |
| "Parity error on system snoop results"; |
| static const char JPAFSR_JEIC_msg[] = |
| "System interface protocol error, illegal command detected"; |
| static const char JPAFSR_JEIT_msg[] = |
| "System interface protocol error, illegal ADTYPE detected"; |
| static const char JPAFSR_OM_msg[] = |
| "Out of range memory error has occurred"; |
| static const char JPAFSR_ETP_msg[] = |
| "Parity error on L2 cache tag SRAM"; |
| static const char JPAFSR_UMS_msg[] = |
| "Error due to unsupported store"; |
| static const char JPAFSR_RUE_msg[] = |
| "Uncorrectable ECC error from remote cache/memory"; |
| static const char JPAFSR_RCE_msg[] = |
| "Correctable ECC error from remote cache/memory"; |
| static const char JPAFSR_BP_msg[] = |
| "JBUS parity error on returned read data"; |
| static const char JPAFSR_WBP_msg[] = |
| "JBUS parity error on data for writeback or block store"; |
| static const char JPAFSR_FRC_msg[] = |
| "Foreign read to DRAM incurring correctable ECC error"; |
| static const char JPAFSR_FRU_msg[] = |
| "Foreign read to DRAM incurring uncorrectable ECC error"; |
| static struct afsr_error_table __jalapeno_error_table[] = { |
| { JPAFSR_JETO, JPAFSR_JETO_msg }, |
| { JPAFSR_SCE, JPAFSR_SCE_msg }, |
| { JPAFSR_JEIC, JPAFSR_JEIC_msg }, |
| { JPAFSR_JEIT, JPAFSR_JEIT_msg }, |
| { CHAFSR_PERR, CHAFSR_PERR_msg }, |
| { CHAFSR_IERR, CHAFSR_IERR_msg }, |
| { CHAFSR_ISAP, CHAFSR_ISAP_msg }, |
| { CHAFSR_UCU, CHAFSR_UCU_msg }, |
| { CHAFSR_UCC, CHAFSR_UCC_msg }, |
| { CHAFSR_UE, CHAFSR_UE_msg }, |
| { CHAFSR_EDU, CHAFSR_EDU_msg }, |
| { JPAFSR_OM, JPAFSR_OM_msg }, |
| { CHAFSR_WDU, CHAFSR_WDU_msg }, |
| { CHAFSR_CPU, CHAFSR_CPU_msg }, |
| { CHAFSR_CE, CHAFSR_CE_msg }, |
| { CHAFSR_EDC, CHAFSR_EDC_msg }, |
| { JPAFSR_ETP, JPAFSR_ETP_msg }, |
| { CHAFSR_WDC, CHAFSR_WDC_msg }, |
| { CHAFSR_CPC, CHAFSR_CPC_msg }, |
| { CHAFSR_TO, CHAFSR_TO_msg }, |
| { CHAFSR_BERR, CHAFSR_BERR_msg }, |
| { JPAFSR_UMS, JPAFSR_UMS_msg }, |
| { JPAFSR_RUE, JPAFSR_RUE_msg }, |
| { JPAFSR_RCE, JPAFSR_RCE_msg }, |
| { JPAFSR_BP, JPAFSR_BP_msg }, |
| { JPAFSR_WBP, JPAFSR_WBP_msg }, |
| { JPAFSR_FRC, JPAFSR_FRC_msg }, |
| { JPAFSR_FRU, JPAFSR_FRU_msg }, |
| /* These two do not update the AFAR. */ |
| { CHAFSR_IVU, CHAFSR_IVU_msg }, |
| { 0, NULL }, |
| }; |
| static struct afsr_error_table *cheetah_error_table; |
| static unsigned long cheetah_afsr_errors; |
| |
| struct cheetah_err_info *cheetah_error_log; |
| |
| static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr) |
| { |
| struct cheetah_err_info *p; |
| int cpu = smp_processor_id(); |
| |
| if (!cheetah_error_log) |
| return NULL; |
| |
| p = cheetah_error_log + (cpu * 2); |
| if ((afsr & CHAFSR_TL1) != 0UL) |
| p++; |
| |
| return p; |
| } |
| |
| extern unsigned int tl0_icpe[], tl1_icpe[]; |
| extern unsigned int tl0_dcpe[], tl1_dcpe[]; |
| extern unsigned int tl0_fecc[], tl1_fecc[]; |
| extern unsigned int tl0_cee[], tl1_cee[]; |
| extern unsigned int tl0_iae[], tl1_iae[]; |
| extern unsigned int tl0_dae[], tl1_dae[]; |
| extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[]; |
| extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[]; |
| extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[]; |
| extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[]; |
| extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[]; |
| |
| void __init cheetah_ecache_flush_init(void) |
| { |
| unsigned long largest_size, smallest_linesize, order, ver; |
| int i, sz; |
| |
| /* Scan all cpu device tree nodes, note two values: |
| * 1) largest E-cache size |
| * 2) smallest E-cache line size |
| */ |
| largest_size = 0UL; |
| smallest_linesize = ~0UL; |
| |
| for (i = 0; i < NR_CPUS; i++) { |
| unsigned long val; |
| |
| val = cpu_data(i).ecache_size; |
| if (!val) |
| continue; |
| |
| if (val > largest_size) |
| largest_size = val; |
| |
| val = cpu_data(i).ecache_line_size; |
| if (val < smallest_linesize) |
| smallest_linesize = val; |
| |
| } |
| |
| if (largest_size == 0UL || smallest_linesize == ~0UL) { |
| prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache " |
| "parameters.\n"); |
| prom_halt(); |
| } |
| |
| ecache_flush_size = (2 * largest_size); |
| ecache_flush_linesize = smallest_linesize; |
| |
| ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size); |
| |
| if (ecache_flush_physbase == ~0UL) { |
| prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte " |
| "contiguous physical memory.\n", |
| ecache_flush_size); |
| prom_halt(); |
| } |
| |
| /* Now allocate error trap reporting scoreboard. */ |
| sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info)); |
| for (order = 0; order <= MAX_ORDER; order++) { |
| if ((PAGE_SIZE << order) >= sz) |
| break; |
| } |
| cheetah_error_log = (struct cheetah_err_info *) |
| __get_free_pages(GFP_KERNEL, order); |
| if (!cheetah_error_log) { |
| prom_printf("cheetah_ecache_flush_init: Failed to allocate " |
| "error logging scoreboard (%d bytes).\n", sz); |
| prom_halt(); |
| } |
| memset(cheetah_error_log, 0, PAGE_SIZE << order); |
| |
| /* Mark all AFSRs as invalid so that the trap handler will |
| * log new new information there. |
| */ |
| for (i = 0; i < 2 * NR_CPUS; i++) |
| cheetah_error_log[i].afsr = CHAFSR_INVALID; |
| |
| __asm__ ("rdpr %%ver, %0" : "=r" (ver)); |
| if ((ver >> 32) == __JALAPENO_ID || |
| (ver >> 32) == __SERRANO_ID) { |
| cheetah_error_table = &__jalapeno_error_table[0]; |
| cheetah_afsr_errors = JPAFSR_ERRORS; |
| } else if ((ver >> 32) == 0x003e0015) { |
| cheetah_error_table = &__cheetah_plus_error_table[0]; |
| cheetah_afsr_errors = CHPAFSR_ERRORS; |
| } else { |
| cheetah_error_table = &__cheetah_error_table[0]; |
| cheetah_afsr_errors = CHAFSR_ERRORS; |
| } |
| |
| /* Now patch trap tables. */ |
| memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4)); |
| memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4)); |
| memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4)); |
| memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4)); |
| memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4)); |
| memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4)); |
| memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4)); |
| memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4)); |
| if (tlb_type == cheetah_plus) { |
| memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4)); |
| memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4)); |
| memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4)); |
| memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4)); |
| } |
| flushi(PAGE_OFFSET); |
| } |
| |
| static void cheetah_flush_ecache(void) |
| { |
| unsigned long flush_base = ecache_flush_physbase; |
| unsigned long flush_linesize = ecache_flush_linesize; |
| unsigned long flush_size = ecache_flush_size; |
| |
| __asm__ __volatile__("1: subcc %0, %4, %0\n\t" |
| " bne,pt %%xcc, 1b\n\t" |
| " ldxa [%2 + %0] %3, %%g0\n\t" |
| : "=&r" (flush_size) |
| : "0" (flush_size), "r" (flush_base), |
| "i" (ASI_PHYS_USE_EC), "r" (flush_linesize)); |
| } |
| |
| static void cheetah_flush_ecache_line(unsigned long physaddr) |
| { |
| unsigned long alias; |
| |
| physaddr &= ~(8UL - 1UL); |
| physaddr = (ecache_flush_physbase + |
| (physaddr & ((ecache_flush_size>>1UL) - 1UL))); |
| alias = physaddr + (ecache_flush_size >> 1UL); |
| __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t" |
| "ldxa [%1] %2, %%g0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (physaddr), "r" (alias), |
| "i" (ASI_PHYS_USE_EC)); |
| } |
| |
| /* Unfortunately, the diagnostic access to the I-cache tags we need to |
| * use to clear the thing interferes with I-cache coherency transactions. |
| * |
| * So we must only flush the I-cache when it is disabled. |
| */ |
| static void __cheetah_flush_icache(void) |
| { |
| unsigned int icache_size, icache_line_size; |
| unsigned long addr; |
| |
| icache_size = local_cpu_data().icache_size; |
| icache_line_size = local_cpu_data().icache_line_size; |
| |
| /* Clear the valid bits in all the tags. */ |
| for (addr = 0; addr < icache_size; addr += icache_line_size) { |
| __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (addr | (2 << 3)), |
| "i" (ASI_IC_TAG)); |
| } |
| } |
| |
| static void cheetah_flush_icache(void) |
| { |
| unsigned long dcu_save; |
| |
| /* Save current DCU, disable I-cache. */ |
| __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" |
| "or %0, %2, %%g1\n\t" |
| "stxa %%g1, [%%g0] %1\n\t" |
| "membar #Sync" |
| : "=r" (dcu_save) |
| : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) |
| : "g1"); |
| |
| __cheetah_flush_icache(); |
| |
| /* Restore DCU register */ |
| __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG)); |
| } |
| |
| static void cheetah_flush_dcache(void) |
| { |
| unsigned int dcache_size, dcache_line_size; |
| unsigned long addr; |
| |
| dcache_size = local_cpu_data().dcache_size; |
| dcache_line_size = local_cpu_data().dcache_line_size; |
| |
| for (addr = 0; addr < dcache_size; addr += dcache_line_size) { |
| __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (addr), "i" (ASI_DCACHE_TAG)); |
| } |
| } |
| |
| /* In order to make the even parity correct we must do two things. |
| * First, we clear DC_data_parity and set DC_utag to an appropriate value. |
| * Next, we clear out all 32-bytes of data for that line. Data of |
| * all-zero + tag parity value of zero == correct parity. |
| */ |
| static void cheetah_plus_zap_dcache_parity(void) |
| { |
| unsigned int dcache_size, dcache_line_size; |
| unsigned long addr; |
| |
| dcache_size = local_cpu_data().dcache_size; |
| dcache_line_size = local_cpu_data().dcache_line_size; |
| |
| for (addr = 0; addr < dcache_size; addr += dcache_line_size) { |
| unsigned long tag = (addr >> 14); |
| unsigned long line; |
| |
| __asm__ __volatile__("membar #Sync\n\t" |
| "stxa %0, [%1] %2\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (tag), "r" (addr), |
| "i" (ASI_DCACHE_UTAG)); |
| for (line = addr; line < addr + dcache_line_size; line += 8) |
| __asm__ __volatile__("membar #Sync\n\t" |
| "stxa %%g0, [%0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (line), |
| "i" (ASI_DCACHE_DATA)); |
| } |
| } |
| |
| /* Conversion tables used to frob Cheetah AFSR syndrome values into |
| * something palatable to the memory controller driver get_unumber |
| * routine. |
| */ |
| #define MT0 137 |
| #define MT1 138 |
| #define MT2 139 |
| #define NONE 254 |
| #define MTC0 140 |
| #define MTC1 141 |
| #define MTC2 142 |
| #define MTC3 143 |
| #define C0 128 |
| #define C1 129 |
| #define C2 130 |
| #define C3 131 |
| #define C4 132 |
| #define C5 133 |
| #define C6 134 |
| #define C7 135 |
| #define C8 136 |
| #define M2 144 |
| #define M3 145 |
| #define M4 146 |
| #define M 147 |
| static unsigned char cheetah_ecc_syntab[] = { |
| /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M, |
| /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16, |
| /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10, |
| /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M, |
| /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6, |
| /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4, |
| /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4, |
| /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3, |
| /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5, |
| /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M, |
| /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2, |
| /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3, |
| /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M, |
| /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3, |
| /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M, |
| /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M, |
| /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4, |
| /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M, |
| /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2, |
| /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M, |
| /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4, |
| /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3, |
| /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3, |
| /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2, |
| /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4, |
| /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M, |
| /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3, |
| /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M, |
| /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3, |
| /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M, |
| /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M, |
| /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M |
| }; |
| static unsigned char cheetah_mtag_syntab[] = { |
| NONE, MTC0, |
| MTC1, NONE, |
| MTC2, NONE, |
| NONE, MT0, |
| MTC3, NONE, |
| NONE, MT1, |
| NONE, MT2, |
| NONE, NONE |
| }; |
| |
| /* Return the highest priority error conditon mentioned. */ |
| static inline unsigned long cheetah_get_hipri(unsigned long afsr) |
| { |
| unsigned long tmp = 0; |
| int i; |
| |
| for (i = 0; cheetah_error_table[i].mask; i++) { |
| if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL) |
| return tmp; |
| } |
| return tmp; |
| } |
| |
| static const char *cheetah_get_string(unsigned long bit) |
| { |
| int i; |
| |
| for (i = 0; cheetah_error_table[i].mask; i++) { |
| if ((bit & cheetah_error_table[i].mask) != 0UL) |
| return cheetah_error_table[i].name; |
| } |
| return "???"; |
| } |
| |
| static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info, |
| unsigned long afsr, unsigned long afar, int recoverable) |
| { |
| unsigned long hipri; |
| char unum[256]; |
| |
| printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| afsr, afar, |
| (afsr & CHAFSR_TL1) ? 1 : 0); |
| printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate); |
| printk("%s" "ERROR(%d): ", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id()); |
| printk("TPC<%pS>\n", (void *) regs->tpc); |
| printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT, |
| (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT, |
| (afsr & CHAFSR_ME) ? ", Multiple Errors" : "", |
| (afsr & CHAFSR_PRIV) ? ", Privileged" : ""); |
| hipri = cheetah_get_hipri(afsr); |
| printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| hipri, cheetah_get_string(hipri)); |
| |
| /* Try to get unumber if relevant. */ |
| #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \ |
| CHAFSR_CPC | CHAFSR_CPU | \ |
| CHAFSR_UE | CHAFSR_CE | \ |
| CHAFSR_EDC | CHAFSR_EDU | \ |
| CHAFSR_UCC | CHAFSR_UCU | \ |
| CHAFSR_WDU | CHAFSR_WDC) |
| #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU) |
| if (afsr & ESYND_ERRORS) { |
| int syndrome; |
| int ret; |
| |
| syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT; |
| syndrome = cheetah_ecc_syntab[syndrome]; |
| ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); |
| if (ret != -1) |
| printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), |
| smp_processor_id(), unum); |
| } else if (afsr & MSYND_ERRORS) { |
| int syndrome; |
| int ret; |
| |
| syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT; |
| syndrome = cheetah_mtag_syntab[syndrome]; |
| ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); |
| if (ret != -1) |
| printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), |
| smp_processor_id(), unum); |
| } |
| |
| /* Now dump the cache snapshots. */ |
| printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| (int) info->dcache_index, |
| info->dcache_tag, |
| info->dcache_utag, |
| info->dcache_stag); |
| printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| info->dcache_data[0], |
| info->dcache_data[1], |
| info->dcache_data[2], |
| info->dcache_data[3]); |
| printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] " |
| "u[%016llx] l[%016llx]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| (int) info->icache_index, |
| info->icache_tag, |
| info->icache_utag, |
| info->icache_stag, |
| info->icache_upper, |
| info->icache_lower); |
| printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| info->icache_data[0], |
| info->icache_data[1], |
| info->icache_data[2], |
| info->icache_data[3]); |
| printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| info->icache_data[4], |
| info->icache_data[5], |
| info->icache_data[6], |
| info->icache_data[7]); |
| printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| (int) info->ecache_index, info->ecache_tag); |
| printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), |
| info->ecache_data[0], |
| info->ecache_data[1], |
| info->ecache_data[2], |
| info->ecache_data[3]); |
| |
| afsr = (afsr & ~hipri) & cheetah_afsr_errors; |
| while (afsr != 0UL) { |
| unsigned long bit = cheetah_get_hipri(afsr); |
| |
| printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n", |
| (recoverable ? KERN_WARNING : KERN_CRIT), |
| bit, cheetah_get_string(bit)); |
| |
| afsr &= ~bit; |
| } |
| |
| if (!recoverable) |
| printk(KERN_CRIT "ERROR: This condition is not recoverable.\n"); |
| } |
| |
| static int cheetah_recheck_errors(struct cheetah_err_info *logp) |
| { |
| unsigned long afsr, afar; |
| int ret = 0; |
| |
| __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" |
| : "=r" (afsr) |
| : "i" (ASI_AFSR)); |
| if ((afsr & cheetah_afsr_errors) != 0) { |
| if (logp != NULL) { |
| __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" |
| : "=r" (afar) |
| : "i" (ASI_AFAR)); |
| logp->afsr = afsr; |
| logp->afar = afar; |
| } |
| ret = 1; |
| } |
| __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" |
| "membar #Sync\n\t" |
| : : "r" (afsr), "i" (ASI_AFSR)); |
| |
| return ret; |
| } |
| |
| void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) |
| { |
| struct cheetah_err_info local_snapshot, *p; |
| int recoverable; |
| |
| /* Flush E-cache */ |
| cheetah_flush_ecache(); |
| |
| p = cheetah_get_error_log(afsr); |
| if (!p) { |
| prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n", |
| afsr, afar); |
| prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", |
| smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); |
| prom_halt(); |
| } |
| |
| /* Grab snapshot of logged error. */ |
| memcpy(&local_snapshot, p, sizeof(local_snapshot)); |
| |
| /* If the current trap snapshot does not match what the |
| * trap handler passed along into our args, big trouble. |
| * In such a case, mark the local copy as invalid. |
| * |
| * Else, it matches and we mark the afsr in the non-local |
| * copy as invalid so we may log new error traps there. |
| */ |
| if (p->afsr != afsr || p->afar != afar) |
| local_snapshot.afsr = CHAFSR_INVALID; |
| else |
| p->afsr = CHAFSR_INVALID; |
| |
| cheetah_flush_icache(); |
| cheetah_flush_dcache(); |
| |
| /* Re-enable I-cache/D-cache */ |
| __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" |
| "or %%g1, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "i" (ASI_DCU_CONTROL_REG), |
| "i" (DCU_DC | DCU_IC) |
| : "g1"); |
| |
| /* Re-enable error reporting */ |
| __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" |
| "or %%g1, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "i" (ASI_ESTATE_ERROR_EN), |
| "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) |
| : "g1"); |
| |
| /* Decide if we can continue after handling this trap and |
| * logging the error. |
| */ |
| recoverable = 1; |
| if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) |
| recoverable = 0; |
| |
| /* Re-check AFSR/AFAR. What we are looking for here is whether a new |
| * error was logged while we had error reporting traps disabled. |
| */ |
| if (cheetah_recheck_errors(&local_snapshot)) { |
| unsigned long new_afsr = local_snapshot.afsr; |
| |
| /* If we got a new asynchronous error, die... */ |
| if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | |
| CHAFSR_WDU | CHAFSR_CPU | |
| CHAFSR_IVU | CHAFSR_UE | |
| CHAFSR_BERR | CHAFSR_TO)) |
| recoverable = 0; |
| } |
| |
| /* Log errors. */ |
| cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); |
| |
| if (!recoverable) |
| panic("Irrecoverable Fast-ECC error trap.\n"); |
| |
| /* Flush E-cache to kick the error trap handlers out. */ |
| cheetah_flush_ecache(); |
| } |
| |
| /* Try to fix a correctable error by pushing the line out from |
| * the E-cache. Recheck error reporting registers to see if the |
| * problem is intermittent. |
| */ |
| static int cheetah_fix_ce(unsigned long physaddr) |
| { |
| unsigned long orig_estate; |
| unsigned long alias1, alias2; |
| int ret; |
| |
| /* Make sure correctable error traps are disabled. */ |
| __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t" |
| "andn %0, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %2\n\t" |
| "membar #Sync" |
| : "=&r" (orig_estate) |
| : "i" (ESTATE_ERROR_CEEN), |
| "i" (ASI_ESTATE_ERROR_EN) |
| : "g1"); |
| |
| /* We calculate alias addresses that will force the |
| * cache line in question out of the E-cache. Then |
| * we bring it back in with an atomic instruction so |
| * that we get it in some modified/exclusive state, |
| * then we displace it again to try and get proper ECC |
| * pushed back into the system. |
| */ |
| physaddr &= ~(8UL - 1UL); |
| alias1 = (ecache_flush_physbase + |
| (physaddr & ((ecache_flush_size >> 1) - 1))); |
| alias2 = alias1 + (ecache_flush_size >> 1); |
| __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t" |
| "ldxa [%1] %3, %%g0\n\t" |
| "casxa [%2] %3, %%g0, %%g0\n\t" |
| "ldxa [%0] %3, %%g0\n\t" |
| "ldxa [%1] %3, %%g0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (alias1), "r" (alias2), |
| "r" (physaddr), "i" (ASI_PHYS_USE_EC)); |
| |
| /* Did that trigger another error? */ |
| if (cheetah_recheck_errors(NULL)) { |
| /* Try one more time. */ |
| __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t" |
| "membar #Sync" |
| : : "r" (physaddr), "i" (ASI_PHYS_USE_EC)); |
| if (cheetah_recheck_errors(NULL)) |
| ret = 2; |
| else |
| ret = 1; |
| } else { |
| /* No new error, intermittent problem. */ |
| ret = 0; |
| } |
| |
| /* Restore error enables. */ |
| __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" |
| "membar #Sync" |
| : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN)); |
| |
| return ret; |
| } |
| |
| /* Return non-zero if PADDR is a valid physical memory address. */ |
| static int cheetah_check_main_memory(unsigned long paddr) |
| { |
| unsigned long vaddr = PAGE_OFFSET + paddr; |
| |
| if (vaddr > (unsigned long) high_memory) |
| return 0; |
| |
| return kern_addr_valid(vaddr); |
| } |
| |
| void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) |
| { |
| struct cheetah_err_info local_snapshot, *p; |
| int recoverable, is_memory; |
| |
| p = cheetah_get_error_log(afsr); |
| if (!p) { |
| prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n", |
| afsr, afar); |
| prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", |
| smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); |
| prom_halt(); |
| } |
| |
| /* Grab snapshot of logged error. */ |
| memcpy(&local_snapshot, p, sizeof(local_snapshot)); |
| |
| /* If the current trap snapshot does not match what the |
| * trap handler passed along into our args, big trouble. |
| * In such a case, mark the local copy as invalid. |
| * |
| * Else, it matches and we mark the afsr in the non-local |
| * copy as invalid so we may log new error traps there. |
| */ |
| if (p->afsr != afsr || p->afar != afar) |
| local_snapshot.afsr = CHAFSR_INVALID; |
| else |
| p->afsr = CHAFSR_INVALID; |
| |
| is_memory = cheetah_check_main_memory(afar); |
| |
| if (is_memory && (afsr & CHAFSR_CE) != 0UL) { |
| /* XXX Might want to log the results of this operation |
| * XXX somewhere... -DaveM |
| */ |
| cheetah_fix_ce(afar); |
| } |
| |
| { |
| int flush_all, flush_line; |
| |
| flush_all = flush_line = 0; |
| if ((afsr & CHAFSR_EDC) != 0UL) { |
| if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC) |
| flush_line = 1; |
| else |
| flush_all = 1; |
| } else if ((afsr & CHAFSR_CPC) != 0UL) { |
| if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC) |
| flush_line = 1; |
| else |
| flush_all = 1; |
| } |
| |
| /* Trap handler only disabled I-cache, flush it. */ |
| cheetah_flush_icache(); |
| |
| /* Re-enable I-cache */ |
| __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" |
| "or %%g1, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "i" (ASI_DCU_CONTROL_REG), |
| "i" (DCU_IC) |
| : "g1"); |
| |
| if (flush_all) |
| cheetah_flush_ecache(); |
| else if (flush_line) |
| cheetah_flush_ecache_line(afar); |
| } |
| |
| /* Re-enable error reporting */ |
| __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" |
| "or %%g1, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "i" (ASI_ESTATE_ERROR_EN), |
| "i" (ESTATE_ERROR_CEEN) |
| : "g1"); |
| |
| /* Decide if we can continue after handling this trap and |
| * logging the error. |
| */ |
| recoverable = 1; |
| if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) |
| recoverable = 0; |
| |
| /* Re-check AFSR/AFAR */ |
| (void) cheetah_recheck_errors(&local_snapshot); |
| |
| /* Log errors. */ |
| cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); |
| |
| if (!recoverable) |
| panic("Irrecoverable Correctable-ECC error trap.\n"); |
| } |
| |
| void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) |
| { |
| struct cheetah_err_info local_snapshot, *p; |
| int recoverable, is_memory; |
| |
| #ifdef CONFIG_PCI |
| /* Check for the special PCI poke sequence. */ |
| if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { |
| cheetah_flush_icache(); |
| cheetah_flush_dcache(); |
| |
| /* Re-enable I-cache/D-cache */ |
| __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" |
| "or %%g1, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "i" (ASI_DCU_CONTROL_REG), |
| "i" (DCU_DC | DCU_IC) |
| : "g1"); |
| |
| /* Re-enable error reporting */ |
| __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" |
| "or %%g1, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "i" (ASI_ESTATE_ERROR_EN), |
| "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) |
| : "g1"); |
| |
| (void) cheetah_recheck_errors(NULL); |
| |
| pci_poke_faulted = 1; |
| regs->tpc += 4; |
| regs->tnpc = regs->tpc + 4; |
| return; |
| } |
| #endif |
| |
| p = cheetah_get_error_log(afsr); |
| if (!p) { |
| prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n", |
| afsr, afar); |
| prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", |
| smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); |
| prom_halt(); |
| } |
| |
| /* Grab snapshot of logged error. */ |
| memcpy(&local_snapshot, p, sizeof(local_snapshot)); |
| |
| /* If the current trap snapshot does not match what the |
| * trap handler passed along into our args, big trouble. |
| * In such a case, mark the local copy as invalid. |
| * |
| * Else, it matches and we mark the afsr in the non-local |
| * copy as invalid so we may log new error traps there. |
| */ |
| if (p->afsr != afsr || p->afar != afar) |
| local_snapshot.afsr = CHAFSR_INVALID; |
| else |
| p->afsr = CHAFSR_INVALID; |
| |
| is_memory = cheetah_check_main_memory(afar); |
| |
| { |
| int flush_all, flush_line; |
| |
| flush_all = flush_line = 0; |
| if ((afsr & CHAFSR_EDU) != 0UL) { |
| if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU) |
| flush_line = 1; |
| else |
| flush_all = 1; |
| } else if ((afsr & CHAFSR_BERR) != 0UL) { |
| if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR) |
| flush_line = 1; |
| else |
| flush_all = 1; |
| } |
| |
| cheetah_flush_icache(); |
| cheetah_flush_dcache(); |
| |
| /* Re-enable I/D caches */ |
| __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" |
| "or %%g1, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "i" (ASI_DCU_CONTROL_REG), |
| "i" (DCU_IC | DCU_DC) |
| : "g1"); |
| |
| if (flush_all) |
| cheetah_flush_ecache(); |
| else if (flush_line) |
| cheetah_flush_ecache_line(afar); |
| } |
| |
| /* Re-enable error reporting */ |
| __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" |
| "or %%g1, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "i" (ASI_ESTATE_ERROR_EN), |
| "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) |
| : "g1"); |
| |
| /* Decide if we can continue after handling this trap and |
| * logging the error. |
| */ |
| recoverable = 1; |
| if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) |
| recoverable = 0; |
| |
| /* Re-check AFSR/AFAR. What we are looking for here is whether a new |
| * error was logged while we had error reporting traps disabled. |
| */ |
| if (cheetah_recheck_errors(&local_snapshot)) { |
| unsigned long new_afsr = local_snapshot.afsr; |
| |
| /* If we got a new asynchronous error, die... */ |
| if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | |
| CHAFSR_WDU | CHAFSR_CPU | |
| CHAFSR_IVU | CHAFSR_UE | |
| CHAFSR_BERR | CHAFSR_TO)) |
| recoverable = 0; |
| } |
| |
| /* Log errors. */ |
| cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); |
| |
| /* "Recoverable" here means we try to yank the page from ever |
| * being newly used again. This depends upon a few things: |
| * 1) Must be main memory, and AFAR must be valid. |
| * 2) If we trapped from user, OK. |
| * 3) Else, if we trapped from kernel we must find exception |
| * table entry (ie. we have to have been accessing user |
| * space). |
| * |
| * If AFAR is not in main memory, or we trapped from kernel |
| * and cannot find an exception table entry, it is unacceptable |
| * to try and continue. |
| */ |
| if (recoverable && is_memory) { |
| if ((regs->tstate & TSTATE_PRIV) == 0UL) { |
| /* OK, usermode access. */ |
| recoverable = 1; |
| } else { |
| const struct exception_table_entry *entry; |
| |
| entry = search_exception_tables(regs->tpc); |
| if (entry) { |
| /* OK, kernel access to userspace. */ |
| recoverable = 1; |
| |
| } else { |
| /* BAD, privileged state is corrupted. */ |
| recoverable = 0; |
| } |
| |
| if (recoverable) { |
| if (pfn_valid(afar >> PAGE_SHIFT)) |
| get_page(pfn_to_page(afar >> PAGE_SHIFT)); |
| else |
| recoverable = 0; |
| |
| /* Only perform fixup if we still have a |
| * recoverable condition. |
| */ |
| if (recoverable) { |
| regs->tpc = entry->fixup; |
| regs->tnpc = regs->tpc + 4; |
| } |
| } |
| } |
| } else { |
| recoverable = 0; |
| } |
| |
| if (!recoverable) |
| panic("Irrecoverable deferred error trap.\n"); |
| } |
| |
| /* Handle a D/I cache parity error trap. TYPE is encoded as: |
| * |
| * Bit0: 0=dcache,1=icache |
| * Bit1: 0=recoverable,1=unrecoverable |
| * |
| * The hardware has disabled both the I-cache and D-cache in |
| * the %dcr register. |
| */ |
| void cheetah_plus_parity_error(int type, struct pt_regs *regs) |
| { |
| if (type & 0x1) |
| __cheetah_flush_icache(); |
| else |
| cheetah_plus_zap_dcache_parity(); |
| cheetah_flush_dcache(); |
| |
| /* Re-enable I-cache/D-cache */ |
| __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" |
| "or %%g1, %1, %%g1\n\t" |
| "stxa %%g1, [%%g0] %0\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "i" (ASI_DCU_CONTROL_REG), |
| "i" (DCU_DC | DCU_IC) |
| : "g1"); |
| |
| if (type & 0x2) { |
| printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", |
| smp_processor_id(), |
| (type & 0x1) ? 'I' : 'D', |
| regs->tpc); |
| printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc); |
| panic("Irrecoverable Cheetah+ parity error."); |
| } |
| |
| printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", |
| smp_processor_id(), |
| (type & 0x1) ? 'I' : 'D', |
| regs->tpc); |
| printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc); |
| } |
| |
| struct sun4v_error_entry { |
| /* Unique error handle */ |
| /*0x00*/u64 err_handle; |
| |
| /* %stick value at the time of the error */ |
| /*0x08*/u64 err_stick; |
| |
| /*0x10*/u8 reserved_1[3]; |
| |
| /* Error type */ |
| /*0x13*/u8 err_type; |
| #define SUN4V_ERR_TYPE_UNDEFINED 0 |
| #define SUN4V_ERR_TYPE_UNCORRECTED_RES 1 |
| #define SUN4V_ERR_TYPE_PRECISE_NONRES 2 |
| #define SUN4V_ERR_TYPE_DEFERRED_NONRES 3 |
| #define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4 |
| #define SUN4V_ERR_TYPE_DUMP_CORE 5 |
| #define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6 |
| #define SUN4V_ERR_TYPE_NUM 7 |
| |
| /* Error attributes */ |
| /*0x14*/u32 err_attrs; |
| #define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001 |
| #define SUN4V_ERR_ATTRS_MEMORY 0x00000002 |
| #define SUN4V_ERR_ATTRS_PIO 0x00000004 |
| #define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008 |
| #define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010 |
| #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020 |
| #define SUN4V_ERR_ATTRS_ASR 0x00000040 |
| #define SUN4V_ERR_ATTRS_ASI 0x00000080 |
| #define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100 |
| #define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600 |
| #define SUN4V_ERR_ATTRS_MCD 0x00000800 |
| #define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9 |
| #define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000 |
| #define SUN4V_ERR_ATTRS_MODE_SHFT 24 |
| #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000 |
| |
| #define SUN4V_ERR_SPSTATE_FAULTED 0 |
| #define SUN4V_ERR_SPSTATE_AVAILABLE 1 |
| #define SUN4V_ERR_SPSTATE_NOT_PRESENT 2 |
| |
| #define SUN4V_ERR_MODE_USER 1 |
| #define SUN4V_ERR_MODE_PRIV 2 |
| |
| /* Real address of the memory region or PIO transaction */ |
| /*0x18*/u64 err_raddr; |
| |
| /* Size of the operation triggering the error, in bytes */ |
| /*0x20*/u32 err_size; |
| |
| /* ID of the CPU */ |
| /*0x24*/u16 err_cpu; |
| |
| /* Grace periof for shutdown, in seconds */ |
| /*0x26*/u16 err_secs; |
| |
| /* Value of the %asi register */ |
| /*0x28*/u8 err_asi; |
| |
| /*0x29*/u8 reserved_2; |
| |
| /* Value of the ASR register number */ |
| /*0x2a*/u16 err_asr; |
| #define SUN4V_ERR_ASR_VALID 0x8000 |
| |
| /*0x2c*/u32 reserved_3; |
| /*0x30*/u64 reserved_4; |
| /*0x38*/u64 reserved_5; |
| }; |
| |
| static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0); |
| static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0); |
| |
| static const char *sun4v_err_type_to_str(u8 type) |
| { |
| static const char *types[SUN4V_ERR_TYPE_NUM] = { |
| "undefined", |
| "uncorrected resumable", |
| "precise nonresumable", |
| "deferred nonresumable", |
| "shutdown request", |
| "dump core", |
| "SP state change", |
| }; |
| |
| if (type < SUN4V_ERR_TYPE_NUM) |
| return types[type]; |
| |
| return "unknown"; |
| } |
| |
| static void sun4v_emit_err_attr_strings(u32 attrs) |
| { |
| static const char *attr_names[] = { |
| "processor", |
| "memory", |
| "PIO", |
| "int-registers", |
| "fpu-registers", |
| "shutdown-request", |
| "ASR", |
| "ASI", |
| "priv-reg", |
| }; |
| static const char *sp_states[] = { |
| "sp-faulted", |
| "sp-available", |
| "sp-not-present", |
| "sp-state-reserved", |
| }; |
| static const char *modes[] = { |
| "mode-reserved0", |
| "user", |
| "priv", |
| "mode-reserved1", |
| }; |
| u32 sp_state, mode; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(attr_names); i++) { |
| if (attrs & (1U << i)) { |
| const char *s = attr_names[i]; |
| |
| pr_cont("%s ", s); |
| } |
| } |
| |
| sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >> |
| SUN4V_ERR_ATTRS_SPSTATE_SHFT); |
| pr_cont("%s ", sp_states[sp_state]); |
| |
| mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >> |
| SUN4V_ERR_ATTRS_MODE_SHFT); |
| pr_cont("%s ", modes[mode]); |
| |
| if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) |
| pr_cont("res-queue-full "); |
| } |
| |
| /* When the report contains a real-address of "-1" it means that the |
| * hardware did not provide the address. So we compute the effective |
| * address of the load or store instruction at regs->tpc and report |
| * that. Usually when this happens it's a PIO and in such a case we |
| * are using physical addresses with bypass ASIs anyways, so what we |
| * report here is exactly what we want. |
| */ |
| static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs) |
| { |
| unsigned int insn; |
| u64 addr; |
| |
| if (!(regs->tstate & TSTATE_PRIV)) |
| return; |
| |
| insn = *(unsigned int *) regs->tpc; |
| |
| addr = compute_effective_address(regs, insn, 0); |
| |
| printk("%s: insn effective address [0x%016llx]\n", |
| pfx, addr); |
| } |
| |
| static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent, |
| int cpu, const char *pfx, atomic_t *ocnt) |
| { |
| u64 *raw_ptr = (u64 *) ent; |
| u32 attrs; |
| int cnt; |
| |
| printk("%s: Reporting on cpu %d\n", pfx, cpu); |
| printk("%s: TPC [0x%016lx] <%pS>\n", |
| pfx, regs->tpc, (void *) regs->tpc); |
| |
| printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n", |
| pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]); |
| printk("%s: %016llx:%016llx:%016llx:%016llx]\n", |
| pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]); |
| |
| printk("%s: handle [0x%016llx] stick [0x%016llx]\n", |
| pfx, ent->err_handle, ent->err_stick); |
| |
| printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type)); |
| |
| attrs = ent->err_attrs; |
| printk("%s: attrs [0x%08x] < ", pfx, attrs); |
| sun4v_emit_err_attr_strings(attrs); |
| pr_cont(">\n"); |
| |
| /* Various fields in the error report are only valid if |
| * certain attribute bits are set. |
| */ |
| if (attrs & (SUN4V_ERR_ATTRS_MEMORY | |
| SUN4V_ERR_ATTRS_PIO | |
| SUN4V_ERR_ATTRS_ASI)) { |
| printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr); |
| |
| if (ent->err_raddr == ~(u64)0) |
| sun4v_report_real_raddr(pfx, regs); |
| } |
| |
| if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI)) |
| printk("%s: size [0x%x]\n", pfx, ent->err_size); |
| |
| if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR | |
| SUN4V_ERR_ATTRS_INT_REGISTERS | |
| SUN4V_ERR_ATTRS_FPU_REGISTERS | |
| SUN4V_ERR_ATTRS_PRIV_REG)) |
| printk("%s: cpu[%u]\n", pfx, ent->err_cpu); |
| |
| if (attrs & SUN4V_ERR_ATTRS_ASI) |
| printk("%s: asi [0x%02x]\n", pfx, ent->err_asi); |
| |
| if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS | |
| SUN4V_ERR_ATTRS_FPU_REGISTERS | |
| SUN4V_ERR_ATTRS_PRIV_REG)) && |
| (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0) |
| printk("%s: reg [0x%04x]\n", |
| pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID); |
| |
| show_regs(regs); |
| |
| if ((cnt = atomic_read(ocnt)) != 0) { |
| atomic_set(ocnt, 0); |
| wmb(); |
| printk("%s: Queue overflowed %d times.\n", |
| pfx, cnt); |
| } |
| } |
| |
| /* Handle memory corruption detected error which is vectored in |
| * through resumable error trap. |
| */ |
| void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent) |
| { |
| if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34, |
| SIGSEGV) == NOTIFY_STOP) |
| return; |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| /* MCD exception could happen because the task was |
| * running a system call with MCD enabled and passed a |
| * non-versioned pointer or pointer with bad version |
| * tag to the system call. In such cases, hypervisor |
| * places the address of offending instruction in the |
| * resumable error report. This is a deferred error, |
| * so the read/write that caused the trap was potentially |
| * retired long time back and we may have no choice |
| * but to send SIGSEGV to the process. |
| */ |
| const struct exception_table_entry *entry; |
| |
| entry = search_exception_tables(regs->tpc); |
| if (entry) { |
| /* Looks like a bad syscall parameter */ |
| #ifdef DEBUG_EXCEPTIONS |
| pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n", |
| regs->tpc); |
| pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n", |
| ent.err_raddr, entry->fixup); |
| #endif |
| regs->tpc = entry->fixup; |
| regs->tnpc = regs->tpc + 4; |
| return; |
| } |
| } |
| |
| /* Send SIGSEGV to the userspace process with the right signal |
| * code |
| */ |
| force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr); |
| } |
| |
| /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. |
| * Log the event and clear the first word of the entry. |
| */ |
| void sun4v_resum_error(struct pt_regs *regs, unsigned long offset) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| struct sun4v_error_entry *ent, local_copy; |
| struct trap_per_cpu *tb; |
| unsigned long paddr; |
| int cpu; |
| |
| cpu = get_cpu(); |
| |
| tb = &trap_block[cpu]; |
| paddr = tb->resum_kernel_buf_pa + offset; |
| ent = __va(paddr); |
| |
| memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); |
| |
| /* We have a local copy now, so release the entry. */ |
| ent->err_handle = 0; |
| wmb(); |
| |
| put_cpu(); |
| |
| if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) { |
| /* We should really take the seconds field of |
| * the error report and use it for the shutdown |
| * invocation, but for now do the same thing we |
| * do for a DS shutdown request. |
| */ |
| pr_info("Shutdown request, %u seconds...\n", |
| local_copy.err_secs); |
| orderly_poweroff(true); |
| goto out; |
| } |
| |
| /* If this is a memory corruption detected error vectored in |
| * by HV through resumable error trap, call the handler |
| */ |
| if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) { |
| do_mcd_err(regs, local_copy); |
| return; |
| } |
| |
| sun4v_log_error(regs, &local_copy, cpu, |
| KERN_ERR "RESUMABLE ERROR", |
| &sun4v_resum_oflow_cnt); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| /* If we try to printk() we'll probably make matters worse, by trying |
| * to retake locks this cpu already holds or causing more errors. So |
| * just bump a counter, and we'll report these counter bumps above. |
| */ |
| void sun4v_resum_overflow(struct pt_regs *regs) |
| { |
| atomic_inc(&sun4v_resum_oflow_cnt); |
| } |
| |
| /* Given a set of registers, get the virtual addressi that was being accessed |
| * by the faulting instructions at tpc. |
| */ |
| static unsigned long sun4v_get_vaddr(struct pt_regs *regs) |
| { |
| unsigned int insn; |
| |
| if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) { |
| return compute_effective_address(regs, insn, |
| (insn >> 25) & 0x1f); |
| } |
| return 0; |
| } |
| |
| /* Attempt to handle non-resumable errors generated from userspace. |
| * Returns true if the signal was handled, false otherwise. |
| */ |
| bool sun4v_nonresum_error_user_handled(struct pt_regs *regs, |
| struct sun4v_error_entry *ent) { |
| |
| unsigned int attrs = ent->err_attrs; |
| |
| if (attrs & SUN4V_ERR_ATTRS_MEMORY) { |
| unsigned long addr = ent->err_raddr; |
| |
| if (addr == ~(u64)0) { |
| /* This seems highly unlikely to ever occur */ |
| pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n"); |
| } else { |
| unsigned long page_cnt = DIV_ROUND_UP(ent->err_size, |
| PAGE_SIZE); |
| |
| /* Break the unfortunate news. */ |
| pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n", |
| addr); |
| pr_emerg("SUN4V NON-RECOVERABLE ERROR: Claiming %lu ages.\n", |
| page_cnt); |
| |
| while (page_cnt-- > 0) { |
| if (pfn_valid(addr >> PAGE_SHIFT)) |
| get_page(pfn_to_page(addr >> PAGE_SHIFT)); |
| addr += PAGE_SIZE; |
| } |
| } |
| force_sig(SIGKILL); |
| |
| return true; |
| } |
| if (attrs & SUN4V_ERR_ATTRS_PIO) { |
| force_sig_fault(SIGBUS, BUS_ADRERR, |
| (void __user *)sun4v_get_vaddr(regs)); |
| return true; |
| } |
| |
| /* Default to doing nothing */ |
| return false; |
| } |
| |
| /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. |
| * Log the event, clear the first word of the entry, and die. |
| */ |
| void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset) |
| { |
| struct sun4v_error_entry *ent, local_copy; |
| struct trap_per_cpu *tb; |
| unsigned long paddr; |
| int cpu; |
| |
| cpu = get_cpu(); |
| |
| tb = &trap_block[cpu]; |
| paddr = tb->nonresum_kernel_buf_pa + offset; |
| ent = __va(paddr); |
| |
| memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); |
| |
| /* We have a local copy now, so release the entry. */ |
| ent->err_handle = 0; |
| wmb(); |
| |
| put_cpu(); |
| |
| if (!(regs->tstate & TSTATE_PRIV) && |
| sun4v_nonresum_error_user_handled(regs, &local_copy)) { |
| /* DON'T PANIC: This userspace error was handled. */ |
| return; |
| } |
| |
| #ifdef CONFIG_PCI |
| /* Check for the special PCI poke sequence. */ |
| if (pci_poke_in_progress && pci_poke_cpu == cpu) { |
| pci_poke_faulted = 1; |
| regs->tpc += 4; |
| regs->tnpc = regs->tpc + 4; |
| return; |
| } |
| #endif |
| |
| sun4v_log_error(regs, &local_copy, cpu, |
| KERN_EMERG "NON-RESUMABLE ERROR", |
| &sun4v_nonresum_oflow_cnt); |
| |
| panic("Non-resumable error."); |
| } |
| |
| /* If we try to printk() we'll probably make matters worse, by trying |
| * to retake locks this cpu already holds or causing more errors. So |
| * just bump a counter, and we'll report these counter bumps above. |
| */ |
| void sun4v_nonresum_overflow(struct pt_regs *regs) |
| { |
| /* XXX Actually even this can make not that much sense. Perhaps |
| * XXX we should just pull the plug and panic directly from here? |
| */ |
| atomic_inc(&sun4v_nonresum_oflow_cnt); |
| } |
| |
| static void sun4v_tlb_error(struct pt_regs *regs) |
| { |
| die_if_kernel("TLB/TSB error", regs); |
| } |
| |
| unsigned long sun4v_err_itlb_vaddr; |
| unsigned long sun4v_err_itlb_ctx; |
| unsigned long sun4v_err_itlb_pte; |
| unsigned long sun4v_err_itlb_error; |
| |
| void sun4v_itlb_error_report(struct pt_regs *regs, int tl) |
| { |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| |
| printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n", |
| regs->tpc, tl); |
| printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc); |
| printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]); |
| printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n", |
| (void *) regs->u_regs[UREG_I7]); |
| printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] " |
| "pte[%lx] error[%lx]\n", |
| sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx, |
| sun4v_err_itlb_pte, sun4v_err_itlb_error); |
| |
| sun4v_tlb_error(regs); |
| } |
| |
| unsigned long sun4v_err_dtlb_vaddr; |
| unsigned long sun4v_err_dtlb_ctx; |
| unsigned long sun4v_err_dtlb_pte; |
| unsigned long sun4v_err_dtlb_error; |
| |
| void sun4v_dtlb_error_report(struct pt_regs *regs, int tl) |
| { |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| |
| printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n", |
| regs->tpc, tl); |
| printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc); |
| printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]); |
| printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n", |
| (void *) regs->u_regs[UREG_I7]); |
| printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] " |
| "pte[%lx] error[%lx]\n", |
| sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx, |
| sun4v_err_dtlb_pte, sun4v_err_dtlb_error); |
| |
| sun4v_tlb_error(regs); |
| } |
| |
| void hypervisor_tlbop_error(unsigned long err, unsigned long op) |
| { |
| printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n", |
| err, op); |
| } |
| |
| void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op) |
| { |
| printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n", |
| err, op); |
| } |
| |
| static void do_fpe_common(struct pt_regs *regs) |
| { |
| if (regs->tstate & TSTATE_PRIV) { |
| regs->tpc = regs->tnpc; |
| regs->tnpc += 4; |
| } else { |
| unsigned long fsr = current_thread_info()->xfsr[0]; |
| int code; |
| |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| code = FPE_FLTUNK; |
| if ((fsr & 0x1c000) == (1 << 14)) { |
| if (fsr & 0x10) |
| code = FPE_FLTINV; |
| else if (fsr & 0x08) |
| code = FPE_FLTOVF; |
| else if (fsr & 0x04) |
| code = FPE_FLTUND; |
| else if (fsr & 0x02) |
| code = FPE_FLTDIV; |
| else if (fsr & 0x01) |
| code = FPE_FLTRES; |
| } |
| force_sig_fault(SIGFPE, code, (void __user *)regs->tpc); |
| } |
| } |
| |
| void do_fpieee(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (notify_die(DIE_TRAP, "fpu exception ieee", regs, |
| 0, 0x24, SIGFPE) == NOTIFY_STOP) |
| goto out; |
| |
| do_fpe_common(regs); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| void do_fpother(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| struct fpustate *f = FPUSTATE; |
| int ret = 0; |
| |
| if (notify_die(DIE_TRAP, "fpu exception other", regs, |
| 0, 0x25, SIGFPE) == NOTIFY_STOP) |
| goto out; |
| |
| switch ((current_thread_info()->xfsr[0] & 0x1c000)) { |
| case (2 << 14): /* unfinished_FPop */ |
| case (3 << 14): /* unimplemented_FPop */ |
| ret = do_mathemu(regs, f, false); |
| break; |
| } |
| if (ret) |
| goto out; |
| do_fpe_common(regs); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| void do_tof(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs, |
| 0, 0x26, SIGEMT) == NOTIFY_STOP) |
| goto out; |
| |
| if (regs->tstate & TSTATE_PRIV) |
| die_if_kernel("Penguin overflow trap from kernel mode", regs); |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| force_sig_fault(SIGEMT, EMT_TAGOVF, (void __user *)regs->tpc); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| void do_div0(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (notify_die(DIE_TRAP, "integer division by zero", regs, |
| 0, 0x28, SIGFPE) == NOTIFY_STOP) |
| goto out; |
| |
| if (regs->tstate & TSTATE_PRIV) |
| die_if_kernel("TL0: Kernel divide by zero.", regs); |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->tpc); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| static void instruction_dump(unsigned int *pc) |
| { |
| int i; |
| |
| if ((((unsigned long) pc) & 3)) |
| return; |
| |
| printk("Instruction DUMP:"); |
| for (i = -3; i < 6; i++) |
| printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>'); |
| printk("\n"); |
| } |
| |
| static void user_instruction_dump(unsigned int __user *pc) |
| { |
| int i; |
| unsigned int buf[9]; |
| |
| if ((((unsigned long) pc) & 3)) |
| return; |
| |
| if (copy_from_user(buf, pc - 3, sizeof(buf))) |
| return; |
| |
| printk("Instruction DUMP:"); |
| for (i = 0; i < 9; i++) |
| printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>'); |
| printk("\n"); |
| } |
| |
| void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl) |
| { |
| unsigned long fp, ksp; |
| struct thread_info *tp; |
| int count = 0; |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| int graph = 0; |
| #endif |
| |
| ksp = (unsigned long) _ksp; |
| if (!tsk) |
| tsk = current; |
| tp = task_thread_info(tsk); |
| if (ksp == 0UL) { |
| if (tsk == current) |
| asm("mov %%fp, %0" : "=r" (ksp)); |
| else |
| ksp = tp->ksp; |
| } |
| if (tp == current_thread_info()) |
| flushw_all(); |
| |
| fp = ksp + STACK_BIAS; |
| |
| printk("%sCall Trace:\n", loglvl); |
| do { |
| struct sparc_stackf *sf; |
| struct pt_regs *regs; |
| unsigned long pc; |
| |
| if (!kstack_valid(tp, fp)) |
| break; |
| sf = (struct sparc_stackf *) fp; |
| regs = (struct pt_regs *) (sf + 1); |
| |
| if (kstack_is_trap_frame(tp, regs)) { |
| if (!(regs->tstate & TSTATE_PRIV)) |
| break; |
| pc = regs->tpc; |
| fp = regs->u_regs[UREG_I6] + STACK_BIAS; |
| } else { |
| pc = sf->callers_pc; |
| fp = (unsigned long)sf->fp + STACK_BIAS; |
| } |
| |
| print_ip_sym(loglvl, pc); |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| if ((pc + 8UL) == (unsigned long) &return_to_handler) { |
| struct ftrace_ret_stack *ret_stack; |
| ret_stack = ftrace_graph_get_ret_stack(tsk, graph); |
| if (ret_stack) { |
| pc = ret_stack->ret; |
| print_ip_sym(loglvl, pc); |
| graph++; |
| } |
| } |
| #endif |
| } while (++count < 16); |
| } |
| |
| static inline struct reg_window *kernel_stack_up(struct reg_window *rw) |
| { |
| unsigned long fp = rw->ins[6]; |
| |
| if (!fp) |
| return NULL; |
| |
| return (struct reg_window *) (fp + STACK_BIAS); |
| } |
| |
| void __noreturn die_if_kernel(char *str, struct pt_regs *regs) |
| { |
| static int die_counter; |
| int count = 0; |
| |
| /* Amuse the user. */ |
| printk( |
| " \\|/ ____ \\|/\n" |
| " \"@'/ .. \\`@\"\n" |
| " /_| \\__/ |_\\\n" |
| " \\__U_/\n"); |
| |
| printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter); |
| notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV); |
| __asm__ __volatile__("flushw"); |
| show_regs(regs); |
| add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| if (regs->tstate & TSTATE_PRIV) { |
| struct thread_info *tp = current_thread_info(); |
| struct reg_window *rw = (struct reg_window *) |
| (regs->u_regs[UREG_FP] + STACK_BIAS); |
| |
| /* Stop the back trace when we hit userland or we |
| * find some badly aligned kernel stack. |
| */ |
| while (rw && |
| count++ < 30 && |
| kstack_valid(tp, (unsigned long) rw)) { |
| printk("Caller[%016lx]: %pS\n", rw->ins[7], |
| (void *) rw->ins[7]); |
| |
| rw = kernel_stack_up(rw); |
| } |
| instruction_dump ((unsigned int *) regs->tpc); |
| } else { |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| user_instruction_dump ((unsigned int __user *) regs->tpc); |
| } |
| if (panic_on_oops) |
| panic("Fatal exception"); |
| make_task_dead((regs->tstate & TSTATE_PRIV)? SIGKILL : SIGSEGV); |
| } |
| EXPORT_SYMBOL(die_if_kernel); |
| |
| #define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19)) |
| #define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19)) |
| |
| void do_illegal_instruction(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| unsigned long pc = regs->tpc; |
| unsigned long tstate = regs->tstate; |
| u32 insn; |
| |
| if (notify_die(DIE_TRAP, "illegal instruction", regs, |
| 0, 0x10, SIGILL) == NOTIFY_STOP) |
| goto out; |
| |
| if (tstate & TSTATE_PRIV) |
| die_if_kernel("Kernel illegal instruction", regs); |
| if (test_thread_flag(TIF_32BIT)) |
| pc = (u32)pc; |
| if (get_user(insn, (u32 __user *) pc) != -EFAULT) { |
| if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ { |
| if (handle_popc(insn, regs)) |
| goto out; |
| } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ { |
| if (handle_ldf_stq(insn, regs)) |
| goto out; |
| } else if (tlb_type == hypervisor) { |
| if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) { |
| if (!vis_emul(regs, insn)) |
| goto out; |
| } else { |
| struct fpustate *f = FPUSTATE; |
| |
| /* On UltraSPARC T2 and later, FPU insns which |
| * are not implemented in HW signal an illegal |
| * instruction trap and do not set the FP Trap |
| * Trap in the %fsr to unimplemented_FPop. |
| */ |
| if (do_mathemu(regs, f, true)) |
| goto out; |
| } |
| } |
| } |
| force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (notify_die(DIE_TRAP, "memory address unaligned", regs, |
| 0, 0x34, SIGSEGV) == NOTIFY_STOP) |
| goto out; |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); |
| goto out; |
| } |
| if (is_no_fault_exception(regs)) |
| return; |
| |
| force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) |
| { |
| if (notify_die(DIE_TRAP, "memory address unaligned", regs, |
| 0, 0x34, SIGSEGV) == NOTIFY_STOP) |
| return; |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); |
| return; |
| } |
| if (is_no_fault_exception(regs)) |
| return; |
| |
| force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr); |
| } |
| |
| /* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI |
| * tag mismatch. |
| * |
| * ADI version tag mismatch on a load from memory always results in a |
| * precise exception. Tag mismatch on a store to memory will result in |
| * precise exception if MCDPER or PMCDPER is set to 1. |
| */ |
| void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr, |
| unsigned long context) |
| { |
| if (notify_die(DIE_TRAP, "memory corruption precise exception", regs, |
| 0, 0x8, SIGSEGV) == NOTIFY_STOP) |
| return; |
| |
| if (regs->tstate & TSTATE_PRIV) { |
| /* MCD exception could happen because the task was running |
| * a system call with MCD enabled and passed a non-versioned |
| * pointer or pointer with bad version tag to the system |
| * call. |
| */ |
| const struct exception_table_entry *entry; |
| |
| entry = search_exception_tables(regs->tpc); |
| if (entry) { |
| /* Looks like a bad syscall parameter */ |
| #ifdef DEBUG_EXCEPTIONS |
| pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n", |
| regs->tpc); |
| pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n", |
| regs->tpc, entry->fixup); |
| #endif |
| regs->tpc = entry->fixup; |
| regs->tnpc = regs->tpc + 4; |
| return; |
| } |
| pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n", |
| __func__, addr, context); |
| die_if_kernel("MCD precise", regs); |
| } |
| |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr); |
| } |
| |
| void do_privop(struct pt_regs *regs) |
| { |
| enum ctx_state prev_state = exception_enter(); |
| |
| if (notify_die(DIE_TRAP, "privileged operation", regs, |
| 0, 0x11, SIGILL) == NOTIFY_STOP) |
| goto out; |
| |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| force_sig_fault(SIGILL, ILL_PRVOPC, (void __user *)regs->tpc); |
| out: |
| exception_exit(prev_state); |
| } |
| |
| void do_privact(struct pt_regs *regs) |
| { |
| do_privop(regs); |
| } |
| |
| /* Trap level 1 stuff or other traps we should never see... */ |
| void do_cee(struct pt_regs *regs) |
| { |
| exception_enter(); |
| die_if_kernel("TL0: Cache Error Exception", regs); |
| } |
| |
| void do_div0_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: DIV0 Exception", regs); |
| } |
| |
| void do_fpieee_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: FPU IEEE Exception", regs); |
| } |
| |
| void do_fpother_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: FPU Other Exception", regs); |
| } |
| |
| void do_ill_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: Illegal Instruction Exception", regs); |
| } |
| |
| void do_irq_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: IRQ Exception", regs); |
| } |
| |
| void do_lddfmna_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: LDDF Exception", regs); |
| } |
| |
| void do_stdfmna_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: STDF Exception", regs); |
| } |
| |
| void do_paw(struct pt_regs *regs) |
| { |
| exception_enter(); |
| die_if_kernel("TL0: Phys Watchpoint Exception", regs); |
| } |
| |
| void do_paw_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: Phys Watchpoint Exception", regs); |
| } |
| |
| void do_vaw(struct pt_regs *regs) |
| { |
| exception_enter(); |
| die_if_kernel("TL0: Virt Watchpoint Exception", regs); |
| } |
| |
| void do_vaw_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: Virt Watchpoint Exception", regs); |
| } |
| |
| void do_tof_tl1(struct pt_regs *regs) |
| { |
| exception_enter(); |
| dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); |
| die_if_kernel("TL1: Tag Overflow Exception", regs); |
| } |
| |
| void do_getpsr(struct pt_regs *regs) |
| { |
| regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate); |
| regs->tpc = regs->tnpc; |
| regs->tnpc += 4; |
| if (test_thread_flag(TIF_32BIT)) { |
| regs->tpc &= 0xffffffff; |
| regs->tnpc &= 0xffffffff; |
| } |
| } |
| |
| u64 cpu_mondo_counter[NR_CPUS] = {0}; |
| struct trap_per_cpu trap_block[NR_CPUS]; |
| EXPORT_SYMBOL(trap_block); |
| |
| /* This can get invoked before sched_init() so play it super safe |
| * and use hard_smp_processor_id(). |
| */ |
| void notrace init_cur_cpu_trap(struct thread_info *t) |
| { |
| int cpu = hard_smp_processor_id(); |
| struct trap_per_cpu *p = &trap_block[cpu]; |
| |
| p->thread = t; |
| p->pgd_paddr = 0; |
| } |
| |
| extern void thread_info_offsets_are_bolixed_dave(void); |
| extern void trap_per_cpu_offsets_are_bolixed_dave(void); |
| extern void tsb_config_offsets_are_bolixed_dave(void); |
| |
| /* Only invoked on boot processor. */ |
| void __init trap_init(void) |
| { |
| /* Compile time sanity check. */ |
| BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) || |
| TI_FLAGS != offsetof(struct thread_info, flags) || |
| TI_CPU != offsetof(struct thread_info, cpu) || |
| TI_FPSAVED != offsetof(struct thread_info, fpsaved) || |
| TI_KSP != offsetof(struct thread_info, ksp) || |
| TI_FAULT_ADDR != offsetof(struct thread_info, |
| fault_address) || |
| TI_KREGS != offsetof(struct thread_info, kregs) || |
| TI_UTRAPS != offsetof(struct thread_info, utraps) || |
| TI_REG_WINDOW != offsetof(struct thread_info, |
| reg_window) || |
| TI_RWIN_SPTRS != offsetof(struct thread_info, |
| rwbuf_stkptrs) || |
| TI_GSR != offsetof(struct thread_info, gsr) || |
| TI_XFSR != offsetof(struct thread_info, xfsr) || |
| TI_PRE_COUNT != offsetof(struct thread_info, |
| preempt_count) || |
| TI_NEW_CHILD != offsetof(struct thread_info, new_child) || |
| TI_KUNA_REGS != offsetof(struct thread_info, |
| kern_una_regs) || |
| TI_KUNA_INSN != offsetof(struct thread_info, |
| kern_una_insn) || |
| TI_FPREGS != offsetof(struct thread_info, fpregs) || |
| (TI_FPREGS & (64 - 1))); |
| |
| BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, |
| thread) || |
| (TRAP_PER_CPU_PGD_PADDR != |
| offsetof(struct trap_per_cpu, pgd_paddr)) || |
| (TRAP_PER_CPU_CPU_MONDO_PA != |
| offsetof(struct trap_per_cpu, cpu_mondo_pa)) || |
| (TRAP_PER_CPU_DEV_MONDO_PA != |
| offsetof(struct trap_per_cpu, dev_mondo_pa)) || |
| (TRAP_PER_CPU_RESUM_MONDO_PA != |
| offsetof(struct trap_per_cpu, resum_mondo_pa)) || |
| (TRAP_PER_CPU_RESUM_KBUF_PA != |
| offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) || |
| (TRAP_PER_CPU_NONRESUM_MONDO_PA != |
| offsetof(struct trap_per_cpu, nonresum_mondo_pa)) || |
| (TRAP_PER_CPU_NONRESUM_KBUF_PA != |
| offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) || |
| (TRAP_PER_CPU_FAULT_INFO != |
| offsetof(struct trap_per_cpu, fault_info)) || |
| (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA != |
| offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) || |
| (TRAP_PER_CPU_CPU_LIST_PA != |
| offsetof(struct trap_per_cpu, cpu_list_pa)) || |
| (TRAP_PER_CPU_TSB_HUGE != |
| offsetof(struct trap_per_cpu, tsb_huge)) || |
| (TRAP_PER_CPU_TSB_HUGE_TEMP != |
| offsetof(struct trap_per_cpu, tsb_huge_temp)) || |
| (TRAP_PER_CPU_IRQ_WORKLIST_PA != |
| offsetof(struct trap_per_cpu, irq_worklist_pa)) || |
| (TRAP_PER_CPU_CPU_MONDO_QMASK != |
| offsetof(struct trap_per_cpu, cpu_mondo_qmask)) || |
| (TRAP_PER_CPU_DEV_MONDO_QMASK != |
| offsetof(struct trap_per_cpu, dev_mondo_qmask)) || |
| (TRAP_PER_CPU_RESUM_QMASK != |
| offsetof(struct trap_per_cpu, resum_qmask)) || |
| (TRAP_PER_CPU_NONRESUM_QMASK != |
| offsetof(struct trap_per_cpu, nonresum_qmask)) || |
| (TRAP_PER_CPU_PER_CPU_BASE != |
| offsetof(struct trap_per_cpu, __per_cpu_base))); |
| |
| BUILD_BUG_ON((TSB_CONFIG_TSB != |
| offsetof(struct tsb_config, tsb)) || |
| (TSB_CONFIG_RSS_LIMIT != |
| offsetof(struct tsb_config, tsb_rss_limit)) || |
| (TSB_CONFIG_NENTRIES != |
| offsetof(struct tsb_config, tsb_nentries)) || |
| (TSB_CONFIG_REG_VAL != |
| offsetof(struct tsb_config, tsb_reg_val)) || |
| (TSB_CONFIG_MAP_VADDR != |
| offsetof(struct tsb_config, tsb_map_vaddr)) || |
| (TSB_CONFIG_MAP_PTE != |
| offsetof(struct tsb_config, tsb_map_pte))); |
| |
| /* Attach to the address space of init_task. On SMP we |
| * do this in smp.c:smp_callin for other cpus. |
| */ |
| mmgrab(&init_mm); |
| current->active_mm = &init_mm; |
| } |