blob: c550d7d45f2fb560720ab398bbae79c536bc56ed [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Module kallsyms support
*
* Copyright (C) 2010 Rusty Russell
*/
#include <linux/module.h>
#include <linux/module_symbol.h>
#include <linux/kallsyms.h>
#include <linux/buildid.h>
#include <linux/bsearch.h>
#include "internal.h"
/* Lookup exported symbol in given range of kernel_symbols */
static const struct kernel_symbol *lookup_exported_symbol(const char *name,
const struct kernel_symbol *start,
const struct kernel_symbol *stop)
{
return bsearch(name, start, stop - start,
sizeof(struct kernel_symbol), cmp_name);
}
static int is_exported(const char *name, unsigned long value,
const struct module *mod)
{
const struct kernel_symbol *ks;
if (!mod)
ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
else
ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
return ks && kernel_symbol_value(ks) == value;
}
/* As per nm */
static char elf_type(const Elf_Sym *sym, const struct load_info *info)
{
const Elf_Shdr *sechdrs = info->sechdrs;
if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
return 'v';
else
return 'w';
}
if (sym->st_shndx == SHN_UNDEF)
return 'U';
if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
return 'a';
if (sym->st_shndx >= SHN_LORESERVE)
return '?';
if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
return 't';
if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC &&
sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
return 'r';
else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
return 'g';
else
return 'd';
}
if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
return 's';
else
return 'b';
}
if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
".debug")) {
return 'n';
}
return '?';
}
static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
unsigned int shnum, unsigned int pcpundx)
{
const Elf_Shdr *sec;
enum mod_mem_type type;
if (src->st_shndx == SHN_UNDEF ||
src->st_shndx >= shnum ||
!src->st_name)
return false;
#ifdef CONFIG_KALLSYMS_ALL
if (src->st_shndx == pcpundx)
return true;
#endif
sec = sechdrs + src->st_shndx;
type = sec->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
if (!(sec->sh_flags & SHF_ALLOC)
#ifndef CONFIG_KALLSYMS_ALL
|| !(sec->sh_flags & SHF_EXECINSTR)
#endif
|| mod_mem_type_is_init(type))
return false;
return true;
}
/*
* We only allocate and copy the strings needed by the parts of symtab
* we keep. This is simple, but has the effect of making multiple
* copies of duplicates. We could be more sophisticated, see
* linux-kernel thread starting with
* <73defb5e4bca04a6431392cc341112b1@localhost>.
*/
void layout_symtab(struct module *mod, struct load_info *info)
{
Elf_Shdr *symsect = info->sechdrs + info->index.sym;
Elf_Shdr *strsect = info->sechdrs + info->index.str;
const Elf_Sym *src;
unsigned int i, nsrc, ndst, strtab_size = 0;
struct module_memory *mod_mem_data = &mod->mem[MOD_DATA];
struct module_memory *mod_mem_init_data = &mod->mem[MOD_INIT_DATA];
/* Put symbol section at end of init part of module. */
symsect->sh_flags |= SHF_ALLOC;
symsect->sh_entsize = module_get_offset_and_type(mod, MOD_INIT_DATA,
symsect, info->index.sym);
pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
src = (void *)info->hdr + symsect->sh_offset;
nsrc = symsect->sh_size / sizeof(*src);
/* Compute total space required for the core symbols' strtab. */
for (ndst = i = 0; i < nsrc; i++) {
if (i == 0 || is_livepatch_module(mod) ||
is_core_symbol(src + i, info->sechdrs, info->hdr->e_shnum,
info->index.pcpu)) {
strtab_size += strlen(&info->strtab[src[i].st_name]) + 1;
ndst++;
}
}
/* Append room for core symbols at end of core part. */
info->symoffs = ALIGN(mod_mem_data->size, symsect->sh_addralign ?: 1);
info->stroffs = mod_mem_data->size = info->symoffs + ndst * sizeof(Elf_Sym);
mod_mem_data->size += strtab_size;
/* Note add_kallsyms() computes strtab_size as core_typeoffs - stroffs */
info->core_typeoffs = mod_mem_data->size;
mod_mem_data->size += ndst * sizeof(char);
/* Put string table section at end of init part of module. */
strsect->sh_flags |= SHF_ALLOC;
strsect->sh_entsize = module_get_offset_and_type(mod, MOD_INIT_DATA,
strsect, info->index.str);
pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
/* We'll tack temporary mod_kallsyms on the end. */
mod_mem_init_data->size = ALIGN(mod_mem_init_data->size,
__alignof__(struct mod_kallsyms));
info->mod_kallsyms_init_off = mod_mem_init_data->size;
mod_mem_init_data->size += sizeof(struct mod_kallsyms);
info->init_typeoffs = mod_mem_init_data->size;
mod_mem_init_data->size += nsrc * sizeof(char);
}
/*
* We use the full symtab and strtab which layout_symtab arranged to
* be appended to the init section. Later we switch to the cut-down
* core-only ones.
*/
void add_kallsyms(struct module *mod, const struct load_info *info)
{
unsigned int i, ndst;
const Elf_Sym *src;
Elf_Sym *dst;
char *s;
Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
unsigned long strtab_size;
void *data_base = mod->mem[MOD_DATA].base;
void *init_data_base = mod->mem[MOD_INIT_DATA].base;
/* Set up to point into init section. */
mod->kallsyms = (void __rcu *)init_data_base +
info->mod_kallsyms_init_off;
rcu_read_lock();
/* The following is safe since this pointer cannot change */
rcu_dereference(mod->kallsyms)->symtab = (void *)symsec->sh_addr;
rcu_dereference(mod->kallsyms)->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
/* Make sure we get permanent strtab: don't use info->strtab. */
rcu_dereference(mod->kallsyms)->strtab =
(void *)info->sechdrs[info->index.str].sh_addr;
rcu_dereference(mod->kallsyms)->typetab = init_data_base + info->init_typeoffs;
/*
* Now populate the cut down core kallsyms for after init
* and set types up while we still have access to sections.
*/
mod->core_kallsyms.symtab = dst = data_base + info->symoffs;
mod->core_kallsyms.strtab = s = data_base + info->stroffs;
mod->core_kallsyms.typetab = data_base + info->core_typeoffs;
strtab_size = info->core_typeoffs - info->stroffs;
src = rcu_dereference(mod->kallsyms)->symtab;
for (ndst = i = 0; i < rcu_dereference(mod->kallsyms)->num_symtab; i++) {
rcu_dereference(mod->kallsyms)->typetab[i] = elf_type(src + i, info);
if (i == 0 || is_livepatch_module(mod) ||
is_core_symbol(src + i, info->sechdrs, info->hdr->e_shnum,
info->index.pcpu)) {
ssize_t ret;
mod->core_kallsyms.typetab[ndst] =
rcu_dereference(mod->kallsyms)->typetab[i];
dst[ndst] = src[i];
dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
ret = strscpy(s,
&rcu_dereference(mod->kallsyms)->strtab[src[i].st_name],
strtab_size);
if (ret < 0)
break;
s += ret + 1;
strtab_size -= ret + 1;
}
}
rcu_read_unlock();
mod->core_kallsyms.num_symtab = ndst;
}
#if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
void init_build_id(struct module *mod, const struct load_info *info)
{
const Elf_Shdr *sechdr;
unsigned int i;
for (i = 0; i < info->hdr->e_shnum; i++) {
sechdr = &info->sechdrs[i];
if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE &&
!build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id,
sechdr->sh_size))
break;
}
}
#else
void init_build_id(struct module *mod, const struct load_info *info)
{
}
#endif
static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
{
return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
}
/*
* Given a module and address, find the corresponding symbol and return its name
* while providing its size and offset if needed.
*/
static const char *find_kallsyms_symbol(struct module *mod,
unsigned long addr,
unsigned long *size,
unsigned long *offset)
{
unsigned int i, best = 0;
unsigned long nextval, bestval;
struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
struct module_memory *mod_mem;
/* At worse, next value is at end of module */
if (within_module_init(addr, mod))
mod_mem = &mod->mem[MOD_INIT_TEXT];
else
mod_mem = &mod->mem[MOD_TEXT];
nextval = (unsigned long)mod_mem->base + mod_mem->size;
bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
/*
* Scan for closest preceding symbol, and next symbol. (ELF
* starts real symbols at 1).
*/
for (i = 1; i < kallsyms->num_symtab; i++) {
const Elf_Sym *sym = &kallsyms->symtab[i];
unsigned long thisval = kallsyms_symbol_value(sym);
if (sym->st_shndx == SHN_UNDEF)
continue;
/*
* We ignore unnamed symbols: they're uninformative
* and inserted at a whim.
*/
if (*kallsyms_symbol_name(kallsyms, i) == '\0' ||
is_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
continue;
if (thisval <= addr && thisval > bestval) {
best = i;
bestval = thisval;
}
if (thisval > addr && thisval < nextval)
nextval = thisval;
}
if (!best)
return NULL;
if (size)
*size = nextval - bestval;
if (offset)
*offset = addr - bestval;
return kallsyms_symbol_name(kallsyms, best);
}
void * __weak dereference_module_function_descriptor(struct module *mod,
void *ptr)
{
return ptr;
}
/*
* For kallsyms to ask for address resolution. NULL means not found. Careful
* not to lock to avoid deadlock on oopses, simply disable preemption.
*/
const char *module_address_lookup(unsigned long addr,
unsigned long *size,
unsigned long *offset,
char **modname,
const unsigned char **modbuildid,
char *namebuf)
{
const char *ret = NULL;
struct module *mod;
preempt_disable();
mod = __module_address(addr);
if (mod) {
if (modname)
*modname = mod->name;
if (modbuildid) {
#if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
*modbuildid = mod->build_id;
#else
*modbuildid = NULL;
#endif
}
ret = find_kallsyms_symbol(mod, addr, size, offset);
}
/* Make a copy in here where it's safe */
if (ret) {
strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
ret = namebuf;
}
preempt_enable();
return ret;
}
int lookup_module_symbol_name(unsigned long addr, char *symname)
{
struct module *mod;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (mod->state == MODULE_STATE_UNFORMED)
continue;
if (within_module(addr, mod)) {
const char *sym;
sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
if (!sym)
goto out;
strscpy(symname, sym, KSYM_NAME_LEN);
preempt_enable();
return 0;
}
}
out:
preempt_enable();
return -ERANGE;
}
int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
unsigned long *offset, char *modname, char *name)
{
struct module *mod;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (mod->state == MODULE_STATE_UNFORMED)
continue;
if (within_module(addr, mod)) {
const char *sym;
sym = find_kallsyms_symbol(mod, addr, size, offset);
if (!sym)
goto out;
if (modname)
strscpy(modname, mod->name, MODULE_NAME_LEN);
if (name)
strscpy(name, sym, KSYM_NAME_LEN);
preempt_enable();
return 0;
}
}
out:
preempt_enable();
return -ERANGE;
}
int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
char *name, char *module_name, int *exported)
{
struct module *mod;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
struct mod_kallsyms *kallsyms;
if (mod->state == MODULE_STATE_UNFORMED)
continue;
kallsyms = rcu_dereference_sched(mod->kallsyms);
if (symnum < kallsyms->num_symtab) {
const Elf_Sym *sym = &kallsyms->symtab[symnum];
*value = kallsyms_symbol_value(sym);
*type = kallsyms->typetab[symnum];
strscpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
strscpy(module_name, mod->name, MODULE_NAME_LEN);
*exported = is_exported(name, *value, mod);
preempt_enable();
return 0;
}
symnum -= kallsyms->num_symtab;
}
preempt_enable();
return -ERANGE;
}
/* Given a module and name of symbol, find and return the symbol's value */
static unsigned long __find_kallsyms_symbol_value(struct module *mod, const char *name)
{
unsigned int i;
struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
for (i = 0; i < kallsyms->num_symtab; i++) {
const Elf_Sym *sym = &kallsyms->symtab[i];
if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
sym->st_shndx != SHN_UNDEF)
return kallsyms_symbol_value(sym);
}
return 0;
}
static unsigned long __module_kallsyms_lookup_name(const char *name)
{
struct module *mod;
char *colon;
colon = strnchr(name, MODULE_NAME_LEN, ':');
if (colon) {
mod = find_module_all(name, colon - name, false);
if (mod)
return __find_kallsyms_symbol_value(mod, colon + 1);
return 0;
}
list_for_each_entry_rcu(mod, &modules, list) {
unsigned long ret;
if (mod->state == MODULE_STATE_UNFORMED)
continue;
ret = __find_kallsyms_symbol_value(mod, name);
if (ret)
return ret;
}
return 0;
}
/* Look for this name: can be of form module:name. */
unsigned long module_kallsyms_lookup_name(const char *name)
{
unsigned long ret;
/* Don't lock: we're in enough trouble already. */
preempt_disable();
ret = __module_kallsyms_lookup_name(name);
preempt_enable();
return ret;
}
unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
{
unsigned long ret;
preempt_disable();
ret = __find_kallsyms_symbol_value(mod, name);
preempt_enable();
return ret;
}
int module_kallsyms_on_each_symbol(const char *modname,
int (*fn)(void *, const char *, unsigned long),
void *data)
{
struct module *mod;
unsigned int i;
int ret = 0;
mutex_lock(&module_mutex);
list_for_each_entry(mod, &modules, list) {
struct mod_kallsyms *kallsyms;
if (mod->state == MODULE_STATE_UNFORMED)
continue;
if (modname && strcmp(modname, mod->name))
continue;
/* Use rcu_dereference_sched() to remain compliant with the sparse tool */
preempt_disable();
kallsyms = rcu_dereference_sched(mod->kallsyms);
preempt_enable();
for (i = 0; i < kallsyms->num_symtab; i++) {
const Elf_Sym *sym = &kallsyms->symtab[i];
if (sym->st_shndx == SHN_UNDEF)
continue;
ret = fn(data, kallsyms_symbol_name(kallsyms, i),
kallsyms_symbol_value(sym));
if (ret != 0)
goto out;
}
/*
* The given module is found, the subsequent modules do not
* need to be compared.
*/
if (modname)
break;
}
out:
mutex_unlock(&module_mutex);
return ret;
}