| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Stack depot - a stack trace storage that avoids duplication. |
| * |
| * Internally, stack depot maintains a hash table of unique stacktraces. The |
| * stack traces themselves are stored contiguously one after another in a set |
| * of separate page allocations. |
| * |
| * Author: Alexander Potapenko <glider@google.com> |
| * Copyright (C) 2016 Google, Inc. |
| * |
| * Based on the code by Dmitry Chernenkov. |
| */ |
| |
| #define pr_fmt(fmt) "stackdepot: " fmt |
| |
| #include <linux/gfp.h> |
| #include <linux/jhash.h> |
| #include <linux/kernel.h> |
| #include <linux/kmsan.h> |
| #include <linux/mm.h> |
| #include <linux/mutex.h> |
| #include <linux/percpu.h> |
| #include <linux/printk.h> |
| #include <linux/slab.h> |
| #include <linux/stacktrace.h> |
| #include <linux/stackdepot.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/memblock.h> |
| #include <linux/kasan-enabled.h> |
| |
| #define DEPOT_HANDLE_BITS (sizeof(depot_stack_handle_t) * 8) |
| |
| #define DEPOT_VALID_BITS 1 |
| #define DEPOT_POOL_ORDER 2 /* Pool size order, 4 pages */ |
| #define DEPOT_POOL_SIZE (1LL << (PAGE_SHIFT + DEPOT_POOL_ORDER)) |
| #define DEPOT_STACK_ALIGN 4 |
| #define DEPOT_OFFSET_BITS (DEPOT_POOL_ORDER + PAGE_SHIFT - DEPOT_STACK_ALIGN) |
| #define DEPOT_POOL_INDEX_BITS (DEPOT_HANDLE_BITS - DEPOT_VALID_BITS - \ |
| DEPOT_OFFSET_BITS - STACK_DEPOT_EXTRA_BITS) |
| #define DEPOT_POOLS_CAP 8192 |
| #define DEPOT_MAX_POOLS \ |
| (((1LL << (DEPOT_POOL_INDEX_BITS)) < DEPOT_POOLS_CAP) ? \ |
| (1LL << (DEPOT_POOL_INDEX_BITS)) : DEPOT_POOLS_CAP) |
| |
| /* Compact structure that stores a reference to a stack. */ |
| union handle_parts { |
| depot_stack_handle_t handle; |
| struct { |
| u32 pool_index : DEPOT_POOL_INDEX_BITS; |
| u32 offset : DEPOT_OFFSET_BITS; |
| u32 valid : DEPOT_VALID_BITS; |
| u32 extra : STACK_DEPOT_EXTRA_BITS; |
| }; |
| }; |
| |
| struct stack_record { |
| struct stack_record *next; /* Link in the hash table */ |
| u32 hash; /* Hash in the hash table */ |
| u32 size; /* Number of stored frames */ |
| union handle_parts handle; |
| unsigned long entries[]; /* Variable-sized array of frames */ |
| }; |
| |
| static bool stack_depot_disabled; |
| static bool __stack_depot_early_init_requested __initdata = IS_ENABLED(CONFIG_STACKDEPOT_ALWAYS_INIT); |
| static bool __stack_depot_early_init_passed __initdata; |
| |
| /* Use one hash table bucket per 16 KB of memory. */ |
| #define STACK_HASH_TABLE_SCALE 14 |
| /* Limit the number of buckets between 4K and 1M. */ |
| #define STACK_BUCKET_NUMBER_ORDER_MIN 12 |
| #define STACK_BUCKET_NUMBER_ORDER_MAX 20 |
| /* Initial seed for jhash2. */ |
| #define STACK_HASH_SEED 0x9747b28c |
| |
| /* Hash table of pointers to stored stack traces. */ |
| static struct stack_record **stack_table; |
| /* Fixed order of the number of table buckets. Used when KASAN is enabled. */ |
| static unsigned int stack_bucket_number_order; |
| /* Hash mask for indexing the table. */ |
| static unsigned int stack_hash_mask; |
| |
| /* Array of memory regions that store stack traces. */ |
| static void *stack_pools[DEPOT_MAX_POOLS]; |
| /* Currently used pool in stack_pools. */ |
| static int pool_index; |
| /* Offset to the unused space in the currently used pool. */ |
| static size_t pool_offset; |
| /* Lock that protects the variables above. */ |
| static DEFINE_RAW_SPINLOCK(pool_lock); |
| /* |
| * Stack depot tries to keep an extra pool allocated even before it runs out |
| * of space in the currently used pool. |
| * This flag marks that this next extra pool needs to be allocated and |
| * initialized. It has the value 0 when either the next pool is not yet |
| * initialized or the limit on the number of pools is reached. |
| */ |
| static int next_pool_required = 1; |
| |
| static int __init disable_stack_depot(char *str) |
| { |
| int ret; |
| |
| ret = kstrtobool(str, &stack_depot_disabled); |
| if (!ret && stack_depot_disabled) { |
| pr_info("disabled\n"); |
| stack_table = NULL; |
| } |
| return 0; |
| } |
| early_param("stack_depot_disable", disable_stack_depot); |
| |
| void __init stack_depot_request_early_init(void) |
| { |
| /* Too late to request early init now. */ |
| WARN_ON(__stack_depot_early_init_passed); |
| |
| __stack_depot_early_init_requested = true; |
| } |
| |
| /* Allocates a hash table via memblock. Can only be used during early boot. */ |
| int __init stack_depot_early_init(void) |
| { |
| unsigned long entries = 0; |
| |
| /* This function must be called only once, from mm_init(). */ |
| if (WARN_ON(__stack_depot_early_init_passed)) |
| return 0; |
| __stack_depot_early_init_passed = true; |
| |
| /* |
| * If KASAN is enabled, use the maximum order: KASAN is frequently used |
| * in fuzzing scenarios, which leads to a large number of different |
| * stack traces being stored in stack depot. |
| */ |
| if (kasan_enabled() && !stack_bucket_number_order) |
| stack_bucket_number_order = STACK_BUCKET_NUMBER_ORDER_MAX; |
| |
| if (!__stack_depot_early_init_requested || stack_depot_disabled) |
| return 0; |
| |
| /* |
| * If stack_bucket_number_order is not set, leave entries as 0 to rely |
| * on the automatic calculations performed by alloc_large_system_hash. |
| */ |
| if (stack_bucket_number_order) |
| entries = 1UL << stack_bucket_number_order; |
| pr_info("allocating hash table via alloc_large_system_hash\n"); |
| stack_table = alloc_large_system_hash("stackdepot", |
| sizeof(struct stack_record *), |
| entries, |
| STACK_HASH_TABLE_SCALE, |
| HASH_EARLY | HASH_ZERO, |
| NULL, |
| &stack_hash_mask, |
| 1UL << STACK_BUCKET_NUMBER_ORDER_MIN, |
| 1UL << STACK_BUCKET_NUMBER_ORDER_MAX); |
| if (!stack_table) { |
| pr_err("hash table allocation failed, disabling\n"); |
| stack_depot_disabled = true; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /* Allocates a hash table via kvcalloc. Can be used after boot. */ |
| int stack_depot_init(void) |
| { |
| static DEFINE_MUTEX(stack_depot_init_mutex); |
| unsigned long entries; |
| int ret = 0; |
| |
| mutex_lock(&stack_depot_init_mutex); |
| |
| if (stack_depot_disabled || stack_table) |
| goto out_unlock; |
| |
| /* |
| * Similarly to stack_depot_early_init, use stack_bucket_number_order |
| * if assigned, and rely on automatic scaling otherwise. |
| */ |
| if (stack_bucket_number_order) { |
| entries = 1UL << stack_bucket_number_order; |
| } else { |
| int scale = STACK_HASH_TABLE_SCALE; |
| |
| entries = nr_free_buffer_pages(); |
| entries = roundup_pow_of_two(entries); |
| |
| if (scale > PAGE_SHIFT) |
| entries >>= (scale - PAGE_SHIFT); |
| else |
| entries <<= (PAGE_SHIFT - scale); |
| } |
| |
| if (entries < 1UL << STACK_BUCKET_NUMBER_ORDER_MIN) |
| entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MIN; |
| if (entries > 1UL << STACK_BUCKET_NUMBER_ORDER_MAX) |
| entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MAX; |
| |
| pr_info("allocating hash table of %lu entries via kvcalloc\n", entries); |
| stack_table = kvcalloc(entries, sizeof(struct stack_record *), GFP_KERNEL); |
| if (!stack_table) { |
| pr_err("hash table allocation failed, disabling\n"); |
| stack_depot_disabled = true; |
| ret = -ENOMEM; |
| goto out_unlock; |
| } |
| stack_hash_mask = entries - 1; |
| |
| out_unlock: |
| mutex_unlock(&stack_depot_init_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_init); |
| |
| /* Uses preallocated memory to initialize a new stack depot pool. */ |
| static void depot_init_pool(void **prealloc) |
| { |
| /* |
| * If the next pool is already initialized or the maximum number of |
| * pools is reached, do not use the preallocated memory. |
| * smp_load_acquire() here pairs with smp_store_release() below and |
| * in depot_alloc_stack(). |
| */ |
| if (!smp_load_acquire(&next_pool_required)) |
| return; |
| |
| /* Check if the current pool is not yet allocated. */ |
| if (stack_pools[pool_index] == NULL) { |
| /* Use the preallocated memory for the current pool. */ |
| stack_pools[pool_index] = *prealloc; |
| *prealloc = NULL; |
| } else { |
| /* |
| * Otherwise, use the preallocated memory for the next pool |
| * as long as we do not exceed the maximum number of pools. |
| */ |
| if (pool_index + 1 < DEPOT_MAX_POOLS) { |
| stack_pools[pool_index + 1] = *prealloc; |
| *prealloc = NULL; |
| } |
| /* |
| * At this point, either the next pool is initialized or the |
| * maximum number of pools is reached. In either case, take |
| * note that initializing another pool is not required. |
| * This smp_store_release pairs with smp_load_acquire() above |
| * and in stack_depot_save(). |
| */ |
| smp_store_release(&next_pool_required, 0); |
| } |
| } |
| |
| /* Allocates a new stack in a stack depot pool. */ |
| static struct stack_record * |
| depot_alloc_stack(unsigned long *entries, int size, u32 hash, void **prealloc) |
| { |
| struct stack_record *stack; |
| size_t required_size = struct_size(stack, entries, size); |
| |
| required_size = ALIGN(required_size, 1 << DEPOT_STACK_ALIGN); |
| |
| /* Check if there is not enough space in the current pool. */ |
| if (unlikely(pool_offset + required_size > DEPOT_POOL_SIZE)) { |
| /* Bail out if we reached the pool limit. */ |
| if (unlikely(pool_index + 1 >= DEPOT_MAX_POOLS)) { |
| WARN_ONCE(1, "Stack depot reached limit capacity"); |
| return NULL; |
| } |
| |
| /* |
| * Move on to the next pool. |
| * WRITE_ONCE pairs with potential concurrent read in |
| * stack_depot_fetch(). |
| */ |
| WRITE_ONCE(pool_index, pool_index + 1); |
| pool_offset = 0; |
| /* |
| * If the maximum number of pools is not reached, take note |
| * that the next pool needs to initialized. |
| * smp_store_release() here pairs with smp_load_acquire() in |
| * stack_depot_save() and depot_init_pool(). |
| */ |
| if (pool_index + 1 < DEPOT_MAX_POOLS) |
| smp_store_release(&next_pool_required, 1); |
| } |
| |
| /* Assign the preallocated memory to a pool if required. */ |
| if (*prealloc) |
| depot_init_pool(prealloc); |
| |
| /* Check if we have a pool to save the stack trace. */ |
| if (stack_pools[pool_index] == NULL) |
| return NULL; |
| |
| /* Save the stack trace. */ |
| stack = stack_pools[pool_index] + pool_offset; |
| stack->hash = hash; |
| stack->size = size; |
| stack->handle.pool_index = pool_index; |
| stack->handle.offset = pool_offset >> DEPOT_STACK_ALIGN; |
| stack->handle.valid = 1; |
| stack->handle.extra = 0; |
| memcpy(stack->entries, entries, flex_array_size(stack, entries, size)); |
| pool_offset += required_size; |
| /* |
| * Let KMSAN know the stored stack record is initialized. This shall |
| * prevent false positive reports if instrumented code accesses it. |
| */ |
| kmsan_unpoison_memory(stack, required_size); |
| |
| return stack; |
| } |
| |
| /* Calculates the hash for a stack. */ |
| static inline u32 hash_stack(unsigned long *entries, unsigned int size) |
| { |
| return jhash2((u32 *)entries, |
| array_size(size, sizeof(*entries)) / sizeof(u32), |
| STACK_HASH_SEED); |
| } |
| |
| /* |
| * Non-instrumented version of memcmp(). |
| * Does not check the lexicographical order, only the equality. |
| */ |
| static inline |
| int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2, |
| unsigned int n) |
| { |
| for ( ; n-- ; u1++, u2++) { |
| if (*u1 != *u2) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Finds a stack in a bucket of the hash table. */ |
| static inline struct stack_record *find_stack(struct stack_record *bucket, |
| unsigned long *entries, int size, |
| u32 hash) |
| { |
| struct stack_record *found; |
| |
| for (found = bucket; found; found = found->next) { |
| if (found->hash == hash && |
| found->size == size && |
| !stackdepot_memcmp(entries, found->entries, size)) |
| return found; |
| } |
| return NULL; |
| } |
| |
| depot_stack_handle_t __stack_depot_save(unsigned long *entries, |
| unsigned int nr_entries, |
| gfp_t alloc_flags, bool can_alloc) |
| { |
| struct stack_record *found = NULL, **bucket; |
| union handle_parts retval = { .handle = 0 }; |
| struct page *page = NULL; |
| void *prealloc = NULL; |
| unsigned long flags; |
| u32 hash; |
| |
| /* |
| * If this stack trace is from an interrupt, including anything before |
| * interrupt entry usually leads to unbounded stack depot growth. |
| * |
| * Since use of filter_irq_stacks() is a requirement to ensure stack |
| * depot can efficiently deduplicate interrupt stacks, always |
| * filter_irq_stacks() to simplify all callers' use of stack depot. |
| */ |
| nr_entries = filter_irq_stacks(entries, nr_entries); |
| |
| if (unlikely(nr_entries == 0) || stack_depot_disabled) |
| goto fast_exit; |
| |
| hash = hash_stack(entries, nr_entries); |
| bucket = &stack_table[hash & stack_hash_mask]; |
| |
| /* |
| * Fast path: look the stack trace up without locking. |
| * The smp_load_acquire() here pairs with smp_store_release() to |
| * |bucket| below. |
| */ |
| found = find_stack(smp_load_acquire(bucket), entries, nr_entries, hash); |
| if (found) |
| goto exit; |
| |
| /* |
| * Check if another stack pool needs to be initialized. If so, allocate |
| * the memory now - we won't be able to do that under the lock. |
| * |
| * The smp_load_acquire() here pairs with smp_store_release() to |
| * |next_pool_inited| in depot_alloc_stack() and depot_init_pool(). |
| */ |
| if (unlikely(can_alloc && smp_load_acquire(&next_pool_required))) { |
| /* |
| * Zero out zone modifiers, as we don't have specific zone |
| * requirements. Keep the flags related to allocation in atomic |
| * contexts and I/O. |
| */ |
| alloc_flags &= ~GFP_ZONEMASK; |
| alloc_flags &= (GFP_ATOMIC | GFP_KERNEL); |
| alloc_flags |= __GFP_NOWARN; |
| page = alloc_pages(alloc_flags, DEPOT_POOL_ORDER); |
| if (page) |
| prealloc = page_address(page); |
| } |
| |
| raw_spin_lock_irqsave(&pool_lock, flags); |
| |
| found = find_stack(*bucket, entries, nr_entries, hash); |
| if (!found) { |
| struct stack_record *new = |
| depot_alloc_stack(entries, nr_entries, hash, &prealloc); |
| |
| if (new) { |
| new->next = *bucket; |
| /* |
| * This smp_store_release() pairs with |
| * smp_load_acquire() from |bucket| above. |
| */ |
| smp_store_release(bucket, new); |
| found = new; |
| } |
| } else if (prealloc) { |
| /* |
| * Stack depot already contains this stack trace, but let's |
| * keep the preallocated memory for the future. |
| */ |
| depot_init_pool(&prealloc); |
| } |
| |
| raw_spin_unlock_irqrestore(&pool_lock, flags); |
| exit: |
| if (prealloc) { |
| /* Stack depot didn't use this memory, free it. */ |
| free_pages((unsigned long)prealloc, DEPOT_POOL_ORDER); |
| } |
| if (found) |
| retval.handle = found->handle.handle; |
| fast_exit: |
| return retval.handle; |
| } |
| EXPORT_SYMBOL_GPL(__stack_depot_save); |
| |
| depot_stack_handle_t stack_depot_save(unsigned long *entries, |
| unsigned int nr_entries, |
| gfp_t alloc_flags) |
| { |
| return __stack_depot_save(entries, nr_entries, alloc_flags, true); |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_save); |
| |
| unsigned int stack_depot_fetch(depot_stack_handle_t handle, |
| unsigned long **entries) |
| { |
| union handle_parts parts = { .handle = handle }; |
| /* |
| * READ_ONCE pairs with potential concurrent write in |
| * depot_alloc_stack. |
| */ |
| int pool_index_cached = READ_ONCE(pool_index); |
| void *pool; |
| size_t offset = parts.offset << DEPOT_STACK_ALIGN; |
| struct stack_record *stack; |
| |
| *entries = NULL; |
| /* |
| * Let KMSAN know *entries is initialized. This shall prevent false |
| * positive reports if instrumented code accesses it. |
| */ |
| kmsan_unpoison_memory(entries, sizeof(*entries)); |
| |
| if (!handle) |
| return 0; |
| |
| if (parts.pool_index > pool_index_cached) { |
| WARN(1, "pool index %d out of bounds (%d) for stack id %08x\n", |
| parts.pool_index, pool_index_cached, handle); |
| return 0; |
| } |
| pool = stack_pools[parts.pool_index]; |
| if (!pool) |
| return 0; |
| stack = pool + offset; |
| |
| *entries = stack->entries; |
| return stack->size; |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_fetch); |
| |
| void stack_depot_print(depot_stack_handle_t stack) |
| { |
| unsigned long *entries; |
| unsigned int nr_entries; |
| |
| nr_entries = stack_depot_fetch(stack, &entries); |
| if (nr_entries > 0) |
| stack_trace_print(entries, nr_entries, 0); |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_print); |
| |
| int stack_depot_snprint(depot_stack_handle_t handle, char *buf, size_t size, |
| int spaces) |
| { |
| unsigned long *entries; |
| unsigned int nr_entries; |
| |
| nr_entries = stack_depot_fetch(handle, &entries); |
| return nr_entries ? stack_trace_snprint(buf, size, entries, nr_entries, |
| spaces) : 0; |
| } |
| EXPORT_SYMBOL_GPL(stack_depot_snprint); |
| |
| depot_stack_handle_t __must_check stack_depot_set_extra_bits( |
| depot_stack_handle_t handle, unsigned int extra_bits) |
| { |
| union handle_parts parts = { .handle = handle }; |
| |
| /* Don't set extra bits on empty handles. */ |
| if (!handle) |
| return 0; |
| |
| parts.extra = extra_bits; |
| return parts.handle; |
| } |
| EXPORT_SYMBOL(stack_depot_set_extra_bits); |
| |
| unsigned int stack_depot_get_extra_bits(depot_stack_handle_t handle) |
| { |
| union handle_parts parts = { .handle = handle }; |
| |
| return parts.extra; |
| } |
| EXPORT_SYMBOL(stack_depot_get_extra_bits); |