| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * spu management operations for of based platforms |
| * |
| * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 |
| * Copyright 2006 Sony Corp. |
| * (C) Copyright 2007 TOSHIBA CORPORATION |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/list.h> |
| #include <linux/export.h> |
| #include <linux/ptrace.h> |
| #include <linux/wait.h> |
| #include <linux/mm.h> |
| #include <linux/io.h> |
| #include <linux/mutex.h> |
| #include <linux/device.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| |
| #include <asm/spu.h> |
| #include <asm/spu_priv1.h> |
| #include <asm/firmware.h> |
| |
| #include "spufs/spufs.h" |
| #include "interrupt.h" |
| |
| struct device_node *spu_devnode(struct spu *spu) |
| { |
| return spu->devnode; |
| } |
| |
| EXPORT_SYMBOL_GPL(spu_devnode); |
| |
| static u64 __init find_spu_unit_number(struct device_node *spe) |
| { |
| const unsigned int *prop; |
| int proplen; |
| |
| /* new device trees should provide the physical-id attribute */ |
| prop = of_get_property(spe, "physical-id", &proplen); |
| if (proplen == 4) |
| return (u64)*prop; |
| |
| /* celleb device tree provides the unit-id */ |
| prop = of_get_property(spe, "unit-id", &proplen); |
| if (proplen == 4) |
| return (u64)*prop; |
| |
| /* legacy device trees provide the id in the reg attribute */ |
| prop = of_get_property(spe, "reg", &proplen); |
| if (proplen == 4) |
| return (u64)*prop; |
| |
| return 0; |
| } |
| |
| static void spu_unmap(struct spu *spu) |
| { |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) |
| iounmap(spu->priv1); |
| iounmap(spu->priv2); |
| iounmap(spu->problem); |
| iounmap((__force u8 __iomem *)spu->local_store); |
| } |
| |
| static int __init spu_map_interrupts_old(struct spu *spu, |
| struct device_node *np) |
| { |
| unsigned int isrc; |
| const u32 *tmp; |
| int nid; |
| |
| /* Get the interrupt source unit from the device-tree */ |
| tmp = of_get_property(np, "isrc", NULL); |
| if (!tmp) |
| return -ENODEV; |
| isrc = tmp[0]; |
| |
| tmp = of_get_property(np->parent->parent, "node-id", NULL); |
| if (!tmp) { |
| printk(KERN_WARNING "%s: can't find node-id\n", __func__); |
| nid = spu->node; |
| } else |
| nid = tmp[0]; |
| |
| /* Add the node number */ |
| isrc |= nid << IIC_IRQ_NODE_SHIFT; |
| |
| /* Now map interrupts of all 3 classes */ |
| spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc); |
| spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc); |
| spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc); |
| |
| /* Right now, we only fail if class 2 failed */ |
| if (!spu->irqs[2]) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static void __iomem * __init spu_map_prop_old(struct spu *spu, |
| struct device_node *n, |
| const char *name) |
| { |
| const struct address_prop { |
| unsigned long address; |
| unsigned int len; |
| } __attribute__((packed)) *prop; |
| int proplen; |
| |
| prop = of_get_property(n, name, &proplen); |
| if (prop == NULL || proplen != sizeof (struct address_prop)) |
| return NULL; |
| |
| return ioremap(prop->address, prop->len); |
| } |
| |
| static int __init spu_map_device_old(struct spu *spu) |
| { |
| struct device_node *node = spu->devnode; |
| const char *prop; |
| int ret; |
| |
| ret = -ENODEV; |
| spu->name = of_get_property(node, "name", NULL); |
| if (!spu->name) |
| goto out; |
| |
| prop = of_get_property(node, "local-store", NULL); |
| if (!prop) |
| goto out; |
| spu->local_store_phys = *(unsigned long *)prop; |
| |
| /* we use local store as ram, not io memory */ |
| spu->local_store = (void __force *) |
| spu_map_prop_old(spu, node, "local-store"); |
| if (!spu->local_store) |
| goto out; |
| |
| prop = of_get_property(node, "problem", NULL); |
| if (!prop) |
| goto out_unmap; |
| spu->problem_phys = *(unsigned long *)prop; |
| |
| spu->problem = spu_map_prop_old(spu, node, "problem"); |
| if (!spu->problem) |
| goto out_unmap; |
| |
| spu->priv2 = spu_map_prop_old(spu, node, "priv2"); |
| if (!spu->priv2) |
| goto out_unmap; |
| |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| spu->priv1 = spu_map_prop_old(spu, node, "priv1"); |
| if (!spu->priv1) |
| goto out_unmap; |
| } |
| |
| ret = 0; |
| goto out; |
| |
| out_unmap: |
| spu_unmap(spu); |
| out: |
| return ret; |
| } |
| |
| static int __init spu_map_interrupts(struct spu *spu, struct device_node *np) |
| { |
| int i; |
| |
| for (i=0; i < 3; i++) { |
| spu->irqs[i] = irq_of_parse_and_map(np, i); |
| if (!spu->irqs[i]) |
| goto err; |
| } |
| return 0; |
| |
| err: |
| pr_debug("failed to map irq %x for spu %s\n", i, spu->name); |
| for (; i >= 0; i--) { |
| if (spu->irqs[i]) |
| irq_dispose_mapping(spu->irqs[i]); |
| } |
| return -EINVAL; |
| } |
| |
| static int __init spu_map_resource(struct spu *spu, int nr, |
| void __iomem** virt, unsigned long *phys) |
| { |
| struct device_node *np = spu->devnode; |
| struct resource resource = { }; |
| unsigned long len; |
| int ret; |
| |
| ret = of_address_to_resource(np, nr, &resource); |
| if (ret) |
| return ret; |
| if (phys) |
| *phys = resource.start; |
| len = resource_size(&resource); |
| *virt = ioremap(resource.start, len); |
| if (!*virt) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int __init spu_map_device(struct spu *spu) |
| { |
| struct device_node *np = spu->devnode; |
| int ret = -ENODEV; |
| |
| spu->name = of_get_property(np, "name", NULL); |
| if (!spu->name) |
| goto out; |
| |
| ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store, |
| &spu->local_store_phys); |
| if (ret) { |
| pr_debug("spu_new: failed to map %pOF resource 0\n", |
| np); |
| goto out; |
| } |
| ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem, |
| &spu->problem_phys); |
| if (ret) { |
| pr_debug("spu_new: failed to map %pOF resource 1\n", |
| np); |
| goto out_unmap; |
| } |
| ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL); |
| if (ret) { |
| pr_debug("spu_new: failed to map %pOF resource 2\n", |
| np); |
| goto out_unmap; |
| } |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) |
| ret = spu_map_resource(spu, 3, |
| (void __iomem**)&spu->priv1, NULL); |
| if (ret) { |
| pr_debug("spu_new: failed to map %pOF resource 3\n", |
| np); |
| goto out_unmap; |
| } |
| pr_debug("spu_new: %pOF maps:\n", np); |
| pr_debug(" local store : 0x%016lx -> 0x%p\n", |
| spu->local_store_phys, spu->local_store); |
| pr_debug(" problem state : 0x%016lx -> 0x%p\n", |
| spu->problem_phys, spu->problem); |
| pr_debug(" priv2 : 0x%p\n", spu->priv2); |
| pr_debug(" priv1 : 0x%p\n", spu->priv1); |
| |
| return 0; |
| |
| out_unmap: |
| spu_unmap(spu); |
| out: |
| pr_debug("failed to map spe %s: %d\n", spu->name, ret); |
| return ret; |
| } |
| |
| static int __init of_enumerate_spus(int (*fn)(void *data)) |
| { |
| int ret; |
| struct device_node *node; |
| unsigned int n = 0; |
| |
| ret = -ENODEV; |
| for_each_node_by_type(node, "spe") { |
| ret = fn(node); |
| if (ret) { |
| printk(KERN_WARNING "%s: Error initializing %pOFn\n", |
| __func__, node); |
| of_node_put(node); |
| break; |
| } |
| n++; |
| } |
| return ret ? ret : n; |
| } |
| |
| static int __init of_create_spu(struct spu *spu, void *data) |
| { |
| int ret; |
| struct device_node *spe = (struct device_node *)data; |
| static int legacy_map = 0, legacy_irq = 0; |
| |
| spu->devnode = of_node_get(spe); |
| spu->spe_id = find_spu_unit_number(spe); |
| |
| spu->node = of_node_to_nid(spe); |
| if (spu->node >= MAX_NUMNODES) { |
| printk(KERN_WARNING "SPE %pOF on node %d ignored," |
| " node number too big\n", spe, spu->node); |
| printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n"); |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| ret = spu_map_device(spu); |
| if (ret) { |
| if (!legacy_map) { |
| legacy_map = 1; |
| printk(KERN_WARNING "%s: Legacy device tree found, " |
| "trying to map old style\n", __func__); |
| } |
| ret = spu_map_device_old(spu); |
| if (ret) { |
| printk(KERN_ERR "Unable to map %s\n", |
| spu->name); |
| goto out; |
| } |
| } |
| |
| ret = spu_map_interrupts(spu, spe); |
| if (ret) { |
| if (!legacy_irq) { |
| legacy_irq = 1; |
| printk(KERN_WARNING "%s: Legacy device tree found, " |
| "trying old style irq\n", __func__); |
| } |
| ret = spu_map_interrupts_old(spu, spe); |
| if (ret) { |
| printk(KERN_ERR "%s: could not map interrupts\n", |
| spu->name); |
| goto out_unmap; |
| } |
| } |
| |
| pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name, |
| spu->local_store, spu->problem, spu->priv1, |
| spu->priv2, spu->number); |
| goto out; |
| |
| out_unmap: |
| spu_unmap(spu); |
| out: |
| return ret; |
| } |
| |
| static int of_destroy_spu(struct spu *spu) |
| { |
| spu_unmap(spu); |
| of_node_put(spu->devnode); |
| return 0; |
| } |
| |
| static void enable_spu_by_master_run(struct spu_context *ctx) |
| { |
| ctx->ops->master_start(ctx); |
| } |
| |
| static void disable_spu_by_master_run(struct spu_context *ctx) |
| { |
| ctx->ops->master_stop(ctx); |
| } |
| |
| /* Hardcoded affinity idxs for qs20 */ |
| #define QS20_SPES_PER_BE 8 |
| static int qs20_reg_idxs[QS20_SPES_PER_BE] = { 0, 2, 4, 6, 7, 5, 3, 1 }; |
| static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 }; |
| |
| static struct spu *__init spu_lookup_reg(int node, u32 reg) |
| { |
| struct spu *spu; |
| const u32 *spu_reg; |
| |
| list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { |
| spu_reg = of_get_property(spu_devnode(spu), "reg", NULL); |
| if (*spu_reg == reg) |
| return spu; |
| } |
| return NULL; |
| } |
| |
| static void __init init_affinity_qs20_harcoded(void) |
| { |
| int node, i; |
| struct spu *last_spu, *spu; |
| u32 reg; |
| |
| for (node = 0; node < MAX_NUMNODES; node++) { |
| last_spu = NULL; |
| for (i = 0; i < QS20_SPES_PER_BE; i++) { |
| reg = qs20_reg_idxs[i]; |
| spu = spu_lookup_reg(node, reg); |
| if (!spu) |
| continue; |
| spu->has_mem_affinity = qs20_reg_memory[reg]; |
| if (last_spu) |
| list_add_tail(&spu->aff_list, |
| &last_spu->aff_list); |
| last_spu = spu; |
| } |
| } |
| } |
| |
| static int __init of_has_vicinity(void) |
| { |
| struct device_node *dn; |
| |
| for_each_node_by_type(dn, "spe") { |
| if (of_find_property(dn, "vicinity", NULL)) { |
| of_node_put(dn); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static struct spu *__init devnode_spu(int cbe, struct device_node *dn) |
| { |
| struct spu *spu; |
| |
| list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) |
| if (spu_devnode(spu) == dn) |
| return spu; |
| return NULL; |
| } |
| |
| static struct spu * __init |
| neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid) |
| { |
| struct spu *spu; |
| struct device_node *spu_dn; |
| const phandle *vic_handles; |
| int lenp, i; |
| |
| list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) { |
| spu_dn = spu_devnode(spu); |
| if (spu_dn == avoid) |
| continue; |
| vic_handles = of_get_property(spu_dn, "vicinity", &lenp); |
| for (i=0; i < (lenp / sizeof(phandle)); i++) { |
| if (vic_handles[i] == target->phandle) |
| return spu; |
| } |
| } |
| return NULL; |
| } |
| |
| static void __init init_affinity_node(int cbe) |
| { |
| struct spu *spu, *last_spu; |
| struct device_node *vic_dn, *last_spu_dn; |
| phandle avoid_ph; |
| const phandle *vic_handles; |
| int lenp, i, added; |
| |
| last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu, |
| cbe_list); |
| avoid_ph = 0; |
| for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) { |
| last_spu_dn = spu_devnode(last_spu); |
| vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp); |
| |
| /* |
| * Walk through each phandle in vicinity property of the spu |
| * (typically two vicinity phandles per spe node) |
| */ |
| for (i = 0; i < (lenp / sizeof(phandle)); i++) { |
| if (vic_handles[i] == avoid_ph) |
| continue; |
| |
| vic_dn = of_find_node_by_phandle(vic_handles[i]); |
| if (!vic_dn) |
| continue; |
| |
| if (of_node_name_eq(vic_dn, "spe") ) { |
| spu = devnode_spu(cbe, vic_dn); |
| avoid_ph = last_spu_dn->phandle; |
| } else { |
| /* |
| * "mic-tm" and "bif0" nodes do not have |
| * vicinity property. So we need to find the |
| * spe which has vic_dn as neighbour, but |
| * skipping the one we came from (last_spu_dn) |
| */ |
| spu = neighbour_spu(cbe, vic_dn, last_spu_dn); |
| if (!spu) |
| continue; |
| if (of_node_name_eq(vic_dn, "mic-tm")) { |
| last_spu->has_mem_affinity = 1; |
| spu->has_mem_affinity = 1; |
| } |
| avoid_ph = vic_dn->phandle; |
| } |
| |
| list_add_tail(&spu->aff_list, &last_spu->aff_list); |
| last_spu = spu; |
| break; |
| } |
| } |
| } |
| |
| static void __init init_affinity_fw(void) |
| { |
| int cbe; |
| |
| for (cbe = 0; cbe < MAX_NUMNODES; cbe++) |
| init_affinity_node(cbe); |
| } |
| |
| static int __init init_affinity(void) |
| { |
| if (of_has_vicinity()) { |
| init_affinity_fw(); |
| } else { |
| if (of_machine_is_compatible("IBM,CPBW-1.0")) |
| init_affinity_qs20_harcoded(); |
| else |
| printk("No affinity configuration found\n"); |
| } |
| |
| return 0; |
| } |
| |
| const struct spu_management_ops spu_management_of_ops = { |
| .enumerate_spus = of_enumerate_spus, |
| .create_spu = of_create_spu, |
| .destroy_spu = of_destroy_spu, |
| .enable_spu = enable_spu_by_master_run, |
| .disable_spu = disable_spu_by_master_run, |
| .init_affinity = init_affinity, |
| }; |