| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2015 MediaTek Inc. |
| * Author: |
| * Zhigang.Wei <zhigang.wei@mediatek.com> |
| * Chunfeng.Yun <chunfeng.yun@mediatek.com> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #include "xhci.h" |
| #include "xhci-mtk.h" |
| |
| #define SSP_BW_BOUNDARY 130000 |
| #define SS_BW_BOUNDARY 51000 |
| /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */ |
| #define HS_BW_BOUNDARY 6144 |
| /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */ |
| #define FS_PAYLOAD_MAX 188 |
| /* |
| * max number of microframes for split transfer, |
| * for fs isoc in : 1 ss + 1 idle + 7 cs |
| */ |
| #define TT_MICROFRAMES_MAX 9 |
| |
| #define DBG_BUF_EN 64 |
| |
| /* schedule error type */ |
| #define ESCH_SS_Y6 1001 |
| #define ESCH_SS_OVERLAP 1002 |
| #define ESCH_CS_OVERFLOW 1003 |
| #define ESCH_BW_OVERFLOW 1004 |
| #define ESCH_FIXME 1005 |
| |
| /* mtk scheduler bitmasks */ |
| #define EP_BPKTS(p) ((p) & 0x7f) |
| #define EP_BCSCOUNT(p) (((p) & 0x7) << 8) |
| #define EP_BBM(p) ((p) << 11) |
| #define EP_BOFFSET(p) ((p) & 0x3fff) |
| #define EP_BREPEAT(p) (((p) & 0x7fff) << 16) |
| |
| static char *sch_error_string(int err_num) |
| { |
| switch (err_num) { |
| case ESCH_SS_Y6: |
| return "Can't schedule Start-Split in Y6"; |
| case ESCH_SS_OVERLAP: |
| return "Can't find a suitable Start-Split location"; |
| case ESCH_CS_OVERFLOW: |
| return "The last Complete-Split is greater than 7"; |
| case ESCH_BW_OVERFLOW: |
| return "Bandwidth exceeds the maximum limit"; |
| case ESCH_FIXME: |
| return "FIXME, to be resolved"; |
| default: |
| return "Unknown"; |
| } |
| } |
| |
| static int is_fs_or_ls(enum usb_device_speed speed) |
| { |
| return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW; |
| } |
| |
| static const char * |
| decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed) |
| { |
| static char buf[DBG_BUF_EN]; |
| struct usb_endpoint_descriptor *epd = &ep->desc; |
| unsigned int interval; |
| const char *unit; |
| |
| interval = usb_decode_interval(epd, speed); |
| if (interval % 1000) { |
| unit = "us"; |
| } else { |
| unit = "ms"; |
| interval /= 1000; |
| } |
| |
| snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s\n", |
| usb_speed_string(speed), usb_endpoint_num(epd), |
| usb_endpoint_dir_in(epd) ? "in" : "out", |
| usb_ep_type_string(usb_endpoint_type(epd)), |
| usb_endpoint_maxp(epd), epd->bInterval, interval, unit); |
| |
| return buf; |
| } |
| |
| static u32 get_bw_boundary(enum usb_device_speed speed) |
| { |
| u32 boundary; |
| |
| switch (speed) { |
| case USB_SPEED_SUPER_PLUS: |
| boundary = SSP_BW_BOUNDARY; |
| break; |
| case USB_SPEED_SUPER: |
| boundary = SS_BW_BOUNDARY; |
| break; |
| default: |
| boundary = HS_BW_BOUNDARY; |
| break; |
| } |
| |
| return boundary; |
| } |
| |
| /* |
| * get the bandwidth domain which @ep belongs to. |
| * |
| * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk, |
| * each HS root port is treated as a single bandwidth domain, |
| * but each SS root port is treated as two bandwidth domains, one for IN eps, |
| * one for OUT eps. |
| * @real_port value is defined as follow according to xHCI spec: |
| * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc |
| * so the bandwidth domain array is organized as follow for simplification: |
| * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY |
| */ |
| static struct mu3h_sch_bw_info * |
| get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); |
| struct xhci_virt_device *virt_dev; |
| int bw_index; |
| |
| virt_dev = xhci->devs[udev->slot_id]; |
| |
| if (udev->speed >= USB_SPEED_SUPER) { |
| if (usb_endpoint_dir_out(&ep->desc)) |
| bw_index = (virt_dev->real_port - 1) * 2; |
| else |
| bw_index = (virt_dev->real_port - 1) * 2 + 1; |
| } else { |
| /* add one more for each SS port */ |
| bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1; |
| } |
| |
| return &mtk->sch_array[bw_index]; |
| } |
| |
| static u32 get_esit(struct xhci_ep_ctx *ep_ctx) |
| { |
| u32 esit; |
| |
| esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info)); |
| if (esit > XHCI_MTK_MAX_ESIT) |
| esit = XHCI_MTK_MAX_ESIT; |
| |
| return esit; |
| } |
| |
| static struct mu3h_sch_tt *find_tt(struct usb_device *udev) |
| { |
| struct usb_tt *utt = udev->tt; |
| struct mu3h_sch_tt *tt, **tt_index, **ptt; |
| bool allocated_index = false; |
| |
| if (!utt) |
| return NULL; /* Not below a TT */ |
| |
| /* |
| * Find/create our data structure. |
| * For hubs with a single TT, we get it directly. |
| * For hubs with multiple TTs, there's an extra level of pointers. |
| */ |
| tt_index = NULL; |
| if (utt->multi) { |
| tt_index = utt->hcpriv; |
| if (!tt_index) { /* Create the index array */ |
| tt_index = kcalloc(utt->hub->maxchild, |
| sizeof(*tt_index), GFP_KERNEL); |
| if (!tt_index) |
| return ERR_PTR(-ENOMEM); |
| utt->hcpriv = tt_index; |
| allocated_index = true; |
| } |
| ptt = &tt_index[udev->ttport - 1]; |
| } else { |
| ptt = (struct mu3h_sch_tt **) &utt->hcpriv; |
| } |
| |
| tt = *ptt; |
| if (!tt) { /* Create the mu3h_sch_tt */ |
| tt = kzalloc(sizeof(*tt), GFP_KERNEL); |
| if (!tt) { |
| if (allocated_index) { |
| utt->hcpriv = NULL; |
| kfree(tt_index); |
| } |
| return ERR_PTR(-ENOMEM); |
| } |
| INIT_LIST_HEAD(&tt->ep_list); |
| *ptt = tt; |
| } |
| |
| return tt; |
| } |
| |
| /* Release the TT above udev, if it's not in use */ |
| static void drop_tt(struct usb_device *udev) |
| { |
| struct usb_tt *utt = udev->tt; |
| struct mu3h_sch_tt *tt, **tt_index, **ptt; |
| int i, cnt; |
| |
| if (!utt || !utt->hcpriv) |
| return; /* Not below a TT, or never allocated */ |
| |
| cnt = 0; |
| if (utt->multi) { |
| tt_index = utt->hcpriv; |
| ptt = &tt_index[udev->ttport - 1]; |
| /* How many entries are left in tt_index? */ |
| for (i = 0; i < utt->hub->maxchild; ++i) |
| cnt += !!tt_index[i]; |
| } else { |
| tt_index = NULL; |
| ptt = (struct mu3h_sch_tt **)&utt->hcpriv; |
| } |
| |
| tt = *ptt; |
| if (!tt || !list_empty(&tt->ep_list)) |
| return; /* never allocated , or still in use*/ |
| |
| *ptt = NULL; |
| kfree(tt); |
| |
| if (cnt == 1) { |
| utt->hcpriv = NULL; |
| kfree(tt_index); |
| } |
| } |
| |
| static struct mu3h_sch_ep_info *create_sch_ep(struct usb_device *udev, |
| struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx) |
| { |
| struct mu3h_sch_ep_info *sch_ep; |
| struct mu3h_sch_tt *tt = NULL; |
| u32 len_bw_budget_table; |
| size_t mem_size; |
| |
| if (is_fs_or_ls(udev->speed)) |
| len_bw_budget_table = TT_MICROFRAMES_MAX; |
| else if ((udev->speed >= USB_SPEED_SUPER) |
| && usb_endpoint_xfer_isoc(&ep->desc)) |
| len_bw_budget_table = get_esit(ep_ctx); |
| else |
| len_bw_budget_table = 1; |
| |
| mem_size = sizeof(struct mu3h_sch_ep_info) + |
| len_bw_budget_table * sizeof(u32); |
| sch_ep = kzalloc(mem_size, GFP_KERNEL); |
| if (!sch_ep) |
| return ERR_PTR(-ENOMEM); |
| |
| if (is_fs_or_ls(udev->speed)) { |
| tt = find_tt(udev); |
| if (IS_ERR(tt)) { |
| kfree(sch_ep); |
| return ERR_PTR(-ENOMEM); |
| } |
| } |
| |
| sch_ep->sch_tt = tt; |
| sch_ep->ep = ep; |
| sch_ep->speed = udev->speed; |
| INIT_LIST_HEAD(&sch_ep->endpoint); |
| INIT_LIST_HEAD(&sch_ep->tt_endpoint); |
| |
| return sch_ep; |
| } |
| |
| static void setup_sch_info(struct xhci_ep_ctx *ep_ctx, |
| struct mu3h_sch_ep_info *sch_ep) |
| { |
| u32 ep_type; |
| u32 maxpkt; |
| u32 max_burst; |
| u32 mult; |
| u32 esit_pkts; |
| u32 max_esit_payload; |
| u32 *bwb_table = sch_ep->bw_budget_table; |
| int i; |
| |
| ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); |
| maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); |
| max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2)); |
| mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info)); |
| max_esit_payload = |
| (CTX_TO_MAX_ESIT_PAYLOAD_HI( |
| le32_to_cpu(ep_ctx->ep_info)) << 16) | |
| CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info)); |
| |
| sch_ep->esit = get_esit(ep_ctx); |
| sch_ep->ep_type = ep_type; |
| sch_ep->maxpkt = maxpkt; |
| sch_ep->offset = 0; |
| sch_ep->burst_mode = 0; |
| sch_ep->repeat = 0; |
| |
| if (sch_ep->speed == USB_SPEED_HIGH) { |
| sch_ep->cs_count = 0; |
| |
| /* |
| * usb_20 spec section5.9 |
| * a single microframe is enough for HS synchromous endpoints |
| * in a interval |
| */ |
| sch_ep->num_budget_microframes = 1; |
| |
| /* |
| * xHCI spec section6.2.3.4 |
| * @max_burst is the number of additional transactions |
| * opportunities per microframe |
| */ |
| sch_ep->pkts = max_burst + 1; |
| sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; |
| bwb_table[0] = sch_ep->bw_cost_per_microframe; |
| } else if (sch_ep->speed >= USB_SPEED_SUPER) { |
| /* usb3_r1 spec section4.4.7 & 4.4.8 */ |
| sch_ep->cs_count = 0; |
| sch_ep->burst_mode = 1; |
| /* |
| * some device's (d)wBytesPerInterval is set as 0, |
| * then max_esit_payload is 0, so evaluate esit_pkts from |
| * mult and burst |
| */ |
| esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt); |
| if (esit_pkts == 0) |
| esit_pkts = (mult + 1) * (max_burst + 1); |
| |
| if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { |
| sch_ep->pkts = esit_pkts; |
| sch_ep->num_budget_microframes = 1; |
| bwb_table[0] = maxpkt * sch_ep->pkts; |
| } |
| |
| if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) { |
| |
| if (sch_ep->esit == 1) |
| sch_ep->pkts = esit_pkts; |
| else if (esit_pkts <= sch_ep->esit) |
| sch_ep->pkts = 1; |
| else |
| sch_ep->pkts = roundup_pow_of_two(esit_pkts) |
| / sch_ep->esit; |
| |
| sch_ep->num_budget_microframes = |
| DIV_ROUND_UP(esit_pkts, sch_ep->pkts); |
| |
| sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1); |
| sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; |
| |
| for (i = 0; i < sch_ep->num_budget_microframes - 1; i++) |
| bwb_table[i] = sch_ep->bw_cost_per_microframe; |
| |
| /* last one <= bw_cost_per_microframe */ |
| bwb_table[i] = maxpkt * esit_pkts |
| - i * sch_ep->bw_cost_per_microframe; |
| } |
| } else if (is_fs_or_ls(sch_ep->speed)) { |
| sch_ep->pkts = 1; /* at most one packet for each microframe */ |
| |
| /* |
| * num_budget_microframes and cs_count will be updated when |
| * check TT for INT_OUT_EP, ISOC/INT_IN_EP type |
| */ |
| sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX); |
| sch_ep->num_budget_microframes = sch_ep->cs_count; |
| sch_ep->bw_cost_per_microframe = |
| (maxpkt < FS_PAYLOAD_MAX) ? maxpkt : FS_PAYLOAD_MAX; |
| |
| /* init budget table */ |
| if (ep_type == ISOC_OUT_EP) { |
| for (i = 0; i < sch_ep->num_budget_microframes; i++) |
| bwb_table[i] = sch_ep->bw_cost_per_microframe; |
| } else if (ep_type == INT_OUT_EP) { |
| /* only first one consumes bandwidth, others as zero */ |
| bwb_table[0] = sch_ep->bw_cost_per_microframe; |
| } else { /* INT_IN_EP or ISOC_IN_EP */ |
| bwb_table[0] = 0; /* start split */ |
| bwb_table[1] = 0; /* idle */ |
| /* |
| * due to cs_count will be updated according to cs |
| * position, assign all remainder budget array |
| * elements as @bw_cost_per_microframe, but only first |
| * @num_budget_microframes elements will be used later |
| */ |
| for (i = 2; i < TT_MICROFRAMES_MAX; i++) |
| bwb_table[i] = sch_ep->bw_cost_per_microframe; |
| } |
| } |
| } |
| |
| /* Get maximum bandwidth when we schedule at offset slot. */ |
| static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw, |
| struct mu3h_sch_ep_info *sch_ep, u32 offset) |
| { |
| u32 num_esit; |
| u32 max_bw = 0; |
| u32 bw; |
| int i; |
| int j; |
| |
| num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; |
| for (i = 0; i < num_esit; i++) { |
| u32 base = offset + i * sch_ep->esit; |
| |
| for (j = 0; j < sch_ep->num_budget_microframes; j++) { |
| bw = sch_bw->bus_bw[base + j] + |
| sch_ep->bw_budget_table[j]; |
| if (bw > max_bw) |
| max_bw = bw; |
| } |
| } |
| return max_bw; |
| } |
| |
| static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw, |
| struct mu3h_sch_ep_info *sch_ep, bool used) |
| { |
| u32 num_esit; |
| u32 base; |
| int i; |
| int j; |
| |
| num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; |
| for (i = 0; i < num_esit; i++) { |
| base = sch_ep->offset + i * sch_ep->esit; |
| for (j = 0; j < sch_ep->num_budget_microframes; j++) { |
| if (used) |
| sch_bw->bus_bw[base + j] += |
| sch_ep->bw_budget_table[j]; |
| else |
| sch_bw->bus_bw[base + j] -= |
| sch_ep->bw_budget_table[j]; |
| } |
| } |
| } |
| |
| static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset) |
| { |
| struct mu3h_sch_tt *tt = sch_ep->sch_tt; |
| u32 num_esit, tmp; |
| int base; |
| int i, j; |
| |
| num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; |
| for (i = 0; i < num_esit; i++) { |
| base = offset + i * sch_ep->esit; |
| |
| /* |
| * Compared with hs bus, no matter what ep type, |
| * the hub will always delay one uframe to send data |
| */ |
| for (j = 0; j < sch_ep->cs_count; j++) { |
| tmp = tt->fs_bus_bw[base + j] + sch_ep->bw_cost_per_microframe; |
| if (tmp > FS_PAYLOAD_MAX) |
| return -ESCH_BW_OVERFLOW; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset) |
| { |
| struct mu3h_sch_tt *tt = sch_ep->sch_tt; |
| u32 extra_cs_count; |
| u32 start_ss, last_ss; |
| u32 start_cs, last_cs; |
| int i; |
| |
| start_ss = offset % 8; |
| |
| if (sch_ep->ep_type == ISOC_OUT_EP) { |
| last_ss = start_ss + sch_ep->cs_count - 1; |
| |
| /* |
| * usb_20 spec section11.18: |
| * must never schedule Start-Split in Y6 |
| */ |
| if (!(start_ss == 7 || last_ss < 6)) |
| return -ESCH_SS_Y6; |
| |
| for (i = 0; i < sch_ep->cs_count; i++) |
| if (test_bit(offset + i, tt->ss_bit_map)) |
| return -ESCH_SS_OVERLAP; |
| |
| } else { |
| u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX); |
| |
| /* |
| * usb_20 spec section11.18: |
| * must never schedule Start-Split in Y6 |
| */ |
| if (start_ss == 6) |
| return -ESCH_SS_Y6; |
| |
| /* one uframe for ss + one uframe for idle */ |
| start_cs = (start_ss + 2) % 8; |
| last_cs = start_cs + cs_count - 1; |
| |
| if (last_cs > 7) |
| return -ESCH_CS_OVERFLOW; |
| |
| if (sch_ep->ep_type == ISOC_IN_EP) |
| extra_cs_count = (last_cs == 7) ? 1 : 2; |
| else /* ep_type : INTR IN / INTR OUT */ |
| extra_cs_count = 1; |
| |
| cs_count += extra_cs_count; |
| if (cs_count > 7) |
| cs_count = 7; /* HW limit */ |
| |
| if (test_bit(offset, tt->ss_bit_map)) |
| return -ESCH_SS_OVERLAP; |
| |
| sch_ep->cs_count = cs_count; |
| /* one for ss, the other for idle */ |
| sch_ep->num_budget_microframes = cs_count + 2; |
| |
| /* |
| * if interval=1, maxp >752, num_budge_micoframe is larger |
| * than sch_ep->esit, will overstep boundary |
| */ |
| if (sch_ep->num_budget_microframes > sch_ep->esit) |
| sch_ep->num_budget_microframes = sch_ep->esit; |
| } |
| |
| return check_fs_bus_bw(sch_ep, offset); |
| } |
| |
| static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used) |
| { |
| struct mu3h_sch_tt *tt = sch_ep->sch_tt; |
| u32 base, num_esit; |
| int bw_updated; |
| int bits; |
| int i, j; |
| |
| num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; |
| bits = (sch_ep->ep_type == ISOC_OUT_EP) ? sch_ep->cs_count : 1; |
| |
| if (used) |
| bw_updated = sch_ep->bw_cost_per_microframe; |
| else |
| bw_updated = -sch_ep->bw_cost_per_microframe; |
| |
| for (i = 0; i < num_esit; i++) { |
| base = sch_ep->offset + i * sch_ep->esit; |
| |
| for (j = 0; j < bits; j++) { |
| if (used) |
| set_bit(base + j, tt->ss_bit_map); |
| else |
| clear_bit(base + j, tt->ss_bit_map); |
| } |
| |
| for (j = 0; j < sch_ep->cs_count; j++) |
| tt->fs_bus_bw[base + j] += bw_updated; |
| } |
| |
| if (used) |
| list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list); |
| else |
| list_del(&sch_ep->tt_endpoint); |
| } |
| |
| static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw, |
| struct mu3h_sch_ep_info *sch_ep, bool loaded) |
| { |
| if (sch_ep->sch_tt) |
| update_sch_tt(sch_ep, loaded); |
| |
| /* update bus bandwidth info */ |
| update_bus_bw(sch_bw, sch_ep, loaded); |
| sch_ep->allocated = loaded; |
| |
| return 0; |
| } |
| |
| static u32 get_esit_boundary(struct mu3h_sch_ep_info *sch_ep) |
| { |
| u32 boundary = sch_ep->esit; |
| |
| if (sch_ep->sch_tt) { /* LS/FS with TT */ |
| /* tune for CS */ |
| if (sch_ep->ep_type != ISOC_OUT_EP) |
| boundary++; |
| else if (boundary > 1) /* normally esit >= 8 for FS/LS */ |
| boundary--; |
| } |
| |
| return boundary; |
| } |
| |
| static int check_sch_bw(struct mu3h_sch_bw_info *sch_bw, |
| struct mu3h_sch_ep_info *sch_ep) |
| { |
| u32 offset; |
| u32 min_bw; |
| u32 min_index; |
| u32 worst_bw; |
| u32 bw_boundary; |
| u32 esit_boundary; |
| u32 min_num_budget; |
| u32 min_cs_count; |
| int ret = 0; |
| |
| /* |
| * Search through all possible schedule microframes. |
| * and find a microframe where its worst bandwidth is minimum. |
| */ |
| min_bw = ~0; |
| min_index = 0; |
| min_cs_count = sch_ep->cs_count; |
| min_num_budget = sch_ep->num_budget_microframes; |
| esit_boundary = get_esit_boundary(sch_ep); |
| for (offset = 0; offset < sch_ep->esit; offset++) { |
| if (sch_ep->sch_tt) { |
| ret = check_sch_tt(sch_ep, offset); |
| if (ret) |
| continue; |
| } |
| |
| if ((offset + sch_ep->num_budget_microframes) > esit_boundary) |
| break; |
| |
| worst_bw = get_max_bw(sch_bw, sch_ep, offset); |
| if (min_bw > worst_bw) { |
| min_bw = worst_bw; |
| min_index = offset; |
| min_cs_count = sch_ep->cs_count; |
| min_num_budget = sch_ep->num_budget_microframes; |
| } |
| if (min_bw == 0) |
| break; |
| } |
| |
| bw_boundary = get_bw_boundary(sch_ep->speed); |
| /* check bandwidth */ |
| if (min_bw > bw_boundary) |
| return ret ? ret : -ESCH_BW_OVERFLOW; |
| |
| sch_ep->offset = min_index; |
| sch_ep->cs_count = min_cs_count; |
| sch_ep->num_budget_microframes = min_num_budget; |
| |
| return load_ep_bw(sch_bw, sch_ep, true); |
| } |
| |
| static void destroy_sch_ep(struct usb_device *udev, |
| struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep) |
| { |
| /* only release ep bw check passed by check_sch_bw() */ |
| if (sch_ep->allocated) |
| load_ep_bw(sch_bw, sch_ep, false); |
| |
| if (sch_ep->sch_tt) |
| drop_tt(udev); |
| |
| list_del(&sch_ep->endpoint); |
| kfree(sch_ep); |
| } |
| |
| static bool need_bw_sch(struct usb_host_endpoint *ep, |
| enum usb_device_speed speed, int has_tt) |
| { |
| /* only for periodic endpoints */ |
| if (usb_endpoint_xfer_control(&ep->desc) |
| || usb_endpoint_xfer_bulk(&ep->desc)) |
| return false; |
| |
| /* |
| * for LS & FS periodic endpoints which its device is not behind |
| * a TT are also ignored, root-hub will schedule them directly, |
| * but need set @bpkts field of endpoint context to 1. |
| */ |
| if (is_fs_or_ls(speed) && !has_tt) |
| return false; |
| |
| /* skip endpoint with zero maxpkt */ |
| if (usb_endpoint_maxp(&ep->desc) == 0) |
| return false; |
| |
| return true; |
| } |
| |
| int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk) |
| { |
| struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); |
| struct mu3h_sch_bw_info *sch_array; |
| int num_usb_bus; |
| int i; |
| |
| /* ss IN and OUT are separated */ |
| num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports; |
| |
| sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL); |
| if (sch_array == NULL) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_usb_bus; i++) |
| INIT_LIST_HEAD(&sch_array[i].bw_ep_list); |
| |
| mtk->sch_array = sch_array; |
| |
| INIT_LIST_HEAD(&mtk->bw_ep_chk_list); |
| |
| return 0; |
| } |
| |
| void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk) |
| { |
| kfree(mtk->sch_array); |
| } |
| |
| static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| struct xhci_ep_ctx *ep_ctx; |
| struct xhci_virt_device *virt_dev; |
| struct mu3h_sch_ep_info *sch_ep; |
| unsigned int ep_index; |
| |
| virt_dev = xhci->devs[udev->slot_id]; |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); |
| |
| xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); |
| |
| if (!need_bw_sch(ep, udev->speed, !!virt_dev->tt_info)) { |
| /* |
| * set @bpkts to 1 if it is LS or FS periodic endpoint, and its |
| * device does not connected through an external HS hub |
| */ |
| if (usb_endpoint_xfer_int(&ep->desc) |
| || usb_endpoint_xfer_isoc(&ep->desc)) |
| ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1)); |
| |
| return 0; |
| } |
| |
| sch_ep = create_sch_ep(udev, ep, ep_ctx); |
| if (IS_ERR_OR_NULL(sch_ep)) |
| return -ENOMEM; |
| |
| setup_sch_info(ep_ctx, sch_ep); |
| |
| list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list); |
| |
| return 0; |
| } |
| |
| static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| struct xhci_virt_device *virt_dev; |
| struct mu3h_sch_bw_info *sch_bw; |
| struct mu3h_sch_ep_info *sch_ep, *tmp; |
| |
| virt_dev = xhci->devs[udev->slot_id]; |
| |
| xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); |
| |
| if (!need_bw_sch(ep, udev->speed, !!virt_dev->tt_info)) |
| return; |
| |
| sch_bw = get_bw_info(mtk, udev, ep); |
| |
| list_for_each_entry_safe(sch_ep, tmp, &sch_bw->bw_ep_list, endpoint) { |
| if (sch_ep->ep == ep) { |
| destroy_sch_ep(udev, sch_bw, sch_ep); |
| break; |
| } |
| } |
| } |
| |
| int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) |
| { |
| struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; |
| struct mu3h_sch_bw_info *sch_bw; |
| struct mu3h_sch_ep_info *sch_ep, *tmp; |
| int ret; |
| |
| xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); |
| |
| list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) { |
| sch_bw = get_bw_info(mtk, udev, sch_ep->ep); |
| |
| ret = check_sch_bw(sch_bw, sch_ep); |
| if (ret) { |
| xhci_err(xhci, "Not enough bandwidth! (%s)\n", |
| sch_error_string(-ret)); |
| return -ENOSPC; |
| } |
| } |
| |
| list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) { |
| struct xhci_ep_ctx *ep_ctx; |
| struct usb_host_endpoint *ep = sch_ep->ep; |
| unsigned int ep_index = xhci_get_endpoint_index(&ep->desc); |
| |
| sch_bw = get_bw_info(mtk, udev, ep); |
| list_move_tail(&sch_ep->endpoint, &sch_bw->bw_ep_list); |
| |
| ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); |
| ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts) |
| | EP_BCSCOUNT(sch_ep->cs_count) |
| | EP_BBM(sch_ep->burst_mode)); |
| ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset) |
| | EP_BREPEAT(sch_ep->repeat)); |
| |
| xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n", |
| sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode, |
| sch_ep->offset, sch_ep->repeat); |
| } |
| |
| return xhci_check_bandwidth(hcd, udev); |
| } |
| |
| void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) |
| { |
| struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); |
| struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| struct mu3h_sch_bw_info *sch_bw; |
| struct mu3h_sch_ep_info *sch_ep, *tmp; |
| |
| xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); |
| |
| list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) { |
| sch_bw = get_bw_info(mtk, udev, sch_ep->ep); |
| destroy_sch_ep(udev, sch_bw, sch_ep); |
| } |
| |
| xhci_reset_bandwidth(hcd, udev); |
| } |
| |
| int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| int ret; |
| |
| ret = xhci_add_endpoint(hcd, udev, ep); |
| if (ret) |
| return ret; |
| |
| if (ep->hcpriv) |
| ret = add_ep_quirk(hcd, udev, ep); |
| |
| return ret; |
| } |
| |
| int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| int ret; |
| |
| ret = xhci_drop_endpoint(hcd, udev, ep); |
| if (ret) |
| return ret; |
| |
| if (ep->hcpriv) |
| drop_ep_quirk(hcd, udev, ep); |
| |
| return 0; |
| } |