blob: 604af2f6103a303ef50eb0ec22dfa3d50db7ced5 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* nct7802 - Driver for Nuvoton NCT7802Y
*
* Copyright (C) 2014 Guenter Roeck <linux@roeck-us.net>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define DRVNAME "nct7802"
static const u8 REG_VOLTAGE[5] = { 0x09, 0x0a, 0x0c, 0x0d, 0x0e };
static const u8 REG_VOLTAGE_LIMIT_LSB[2][5] = {
{ 0x46, 0x00, 0x40, 0x42, 0x44 },
{ 0x45, 0x00, 0x3f, 0x41, 0x43 },
};
static const u8 REG_VOLTAGE_LIMIT_MSB[5] = { 0x48, 0x00, 0x47, 0x47, 0x48 };
static const u8 REG_VOLTAGE_LIMIT_MSB_SHIFT[2][5] = {
{ 0, 0, 4, 0, 4 },
{ 2, 0, 6, 2, 6 },
};
#define REG_BANK 0x00
#define REG_TEMP_LSB 0x05
#define REG_TEMP_PECI_LSB 0x08
#define REG_VOLTAGE_LOW 0x0f
#define REG_FANCOUNT_LOW 0x13
#define REG_START 0x21
#define REG_MODE 0x22 /* 7.2.32 Mode Selection Register */
#define REG_PECI_ENABLE 0x23
#define REG_FAN_ENABLE 0x24
#define REG_VMON_ENABLE 0x25
#define REG_PWM(x) (0x60 + (x))
#define REG_SMARTFAN_EN(x) (0x64 + (x) / 2)
#define SMARTFAN_EN_SHIFT(x) ((x) % 2 * 4)
#define REG_VENDOR_ID 0xfd
#define REG_CHIP_ID 0xfe
#define REG_VERSION_ID 0xff
/*
* Data structures and manipulation thereof
*/
struct nct7802_data {
struct regmap *regmap;
struct mutex access_lock; /* for multi-byte read and write operations */
u8 in_status;
struct mutex in_alarm_lock;
};
static ssize_t temp_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
unsigned int mode;
int ret;
ret = regmap_read(data->regmap, REG_MODE, &mode);
if (ret < 0)
return ret;
return sprintf(buf, "%u\n", (mode >> (2 * sattr->index) & 3) + 2);
}
static ssize_t temp_type_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
unsigned int type;
int err;
err = kstrtouint(buf, 0, &type);
if (err < 0)
return err;
if (sattr->index == 2 && type != 4) /* RD3 */
return -EINVAL;
if (type < 3 || type > 4)
return -EINVAL;
err = regmap_update_bits(data->regmap, REG_MODE,
3 << 2 * sattr->index, (type - 2) << 2 * sattr->index);
return err ? : count;
}
static ssize_t pwm_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int regval;
int ret;
if (sattr->index > 1)
return sprintf(buf, "1\n");
ret = regmap_read(data->regmap, 0x5E, &regval);
if (ret < 0)
return ret;
return sprintf(buf, "%u\n", !(regval & (1 << sattr->index)));
}
static ssize_t pwm_show(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int val;
int ret;
if (!attr->index)
return sprintf(buf, "255\n");
ret = regmap_read(data->regmap, attr->index, &val);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", val);
}
static ssize_t pwm_store(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct nct7802_data *data = dev_get_drvdata(dev);
int err;
u8 val;
err = kstrtou8(buf, 0, &val);
if (err < 0)
return err;
err = regmap_write(data->regmap, attr->index, val);
return err ? : count;
}
static ssize_t pwm_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
unsigned int reg, enabled;
int ret;
ret = regmap_read(data->regmap, REG_SMARTFAN_EN(sattr->index), &reg);
if (ret < 0)
return ret;
enabled = reg >> SMARTFAN_EN_SHIFT(sattr->index) & 1;
return sprintf(buf, "%u\n", enabled + 1);
}
static ssize_t pwm_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
u8 val;
int ret;
ret = kstrtou8(buf, 0, &val);
if (ret < 0)
return ret;
if (val < 1 || val > 2)
return -EINVAL;
ret = regmap_update_bits(data->regmap, REG_SMARTFAN_EN(sattr->index),
1 << SMARTFAN_EN_SHIFT(sattr->index),
(val - 1) << SMARTFAN_EN_SHIFT(sattr->index));
return ret ? : count;
}
static int nct7802_read_temp(struct nct7802_data *data,
u8 reg_temp, u8 reg_temp_low, int *temp)
{
unsigned int t1, t2 = 0;
int err;
*temp = 0;
mutex_lock(&data->access_lock);
err = regmap_read(data->regmap, reg_temp, &t1);
if (err < 0)
goto abort;
t1 <<= 8;
if (reg_temp_low) { /* 11 bit data */
err = regmap_read(data->regmap, reg_temp_low, &t2);
if (err < 0)
goto abort;
}
t1 |= t2 & 0xe0;
*temp = (s16)t1 / 32 * 125;
abort:
mutex_unlock(&data->access_lock);
return err;
}
static int nct7802_read_fan(struct nct7802_data *data, u8 reg_fan)
{
unsigned int f1, f2;
int ret;
mutex_lock(&data->access_lock);
ret = regmap_read(data->regmap, reg_fan, &f1);
if (ret < 0)
goto abort;
ret = regmap_read(data->regmap, REG_FANCOUNT_LOW, &f2);
if (ret < 0)
goto abort;
ret = (f1 << 5) | (f2 >> 3);
/* convert fan count to rpm */
if (ret == 0x1fff) /* maximum value, assume fan is stopped */
ret = 0;
else if (ret)
ret = DIV_ROUND_CLOSEST(1350000U, ret);
abort:
mutex_unlock(&data->access_lock);
return ret;
}
static int nct7802_read_fan_min(struct nct7802_data *data, u8 reg_fan_low,
u8 reg_fan_high)
{
unsigned int f1, f2;
int ret;
mutex_lock(&data->access_lock);
ret = regmap_read(data->regmap, reg_fan_low, &f1);
if (ret < 0)
goto abort;
ret = regmap_read(data->regmap, reg_fan_high, &f2);
if (ret < 0)
goto abort;
ret = f1 | ((f2 & 0xf8) << 5);
/* convert fan count to rpm */
if (ret == 0x1fff) /* maximum value, assume no limit */
ret = 0;
else if (ret)
ret = DIV_ROUND_CLOSEST(1350000U, ret);
else
ret = 1350000U;
abort:
mutex_unlock(&data->access_lock);
return ret;
}
static int nct7802_write_fan_min(struct nct7802_data *data, u8 reg_fan_low,
u8 reg_fan_high, unsigned long limit)
{
int err;
if (limit)
limit = DIV_ROUND_CLOSEST(1350000U, limit);
else
limit = 0x1fff;
limit = clamp_val(limit, 0, 0x1fff);
mutex_lock(&data->access_lock);
err = regmap_write(data->regmap, reg_fan_low, limit & 0xff);
if (err < 0)
goto abort;
err = regmap_write(data->regmap, reg_fan_high, (limit & 0x1f00) >> 5);
abort:
mutex_unlock(&data->access_lock);
return err;
}
static u8 nct7802_vmul[] = { 4, 2, 2, 2, 2 };
static int nct7802_read_voltage(struct nct7802_data *data, int nr, int index)
{
unsigned int v1, v2;
int ret;
mutex_lock(&data->access_lock);
if (index == 0) { /* voltage */
ret = regmap_read(data->regmap, REG_VOLTAGE[nr], &v1);
if (ret < 0)
goto abort;
ret = regmap_read(data->regmap, REG_VOLTAGE_LOW, &v2);
if (ret < 0)
goto abort;
ret = ((v1 << 2) | (v2 >> 6)) * nct7802_vmul[nr];
} else { /* limit */
int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr];
ret = regmap_read(data->regmap,
REG_VOLTAGE_LIMIT_LSB[index - 1][nr], &v1);
if (ret < 0)
goto abort;
ret = regmap_read(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr],
&v2);
if (ret < 0)
goto abort;
ret = (v1 | ((v2 << shift) & 0x300)) * nct7802_vmul[nr];
}
abort:
mutex_unlock(&data->access_lock);
return ret;
}
static int nct7802_write_voltage(struct nct7802_data *data, int nr, int index,
unsigned long voltage)
{
int shift = 8 - REG_VOLTAGE_LIMIT_MSB_SHIFT[index - 1][nr];
int err;
voltage = clamp_val(voltage, 0, 0x3ff * nct7802_vmul[nr]);
voltage = DIV_ROUND_CLOSEST(voltage, nct7802_vmul[nr]);
mutex_lock(&data->access_lock);
err = regmap_write(data->regmap,
REG_VOLTAGE_LIMIT_LSB[index - 1][nr],
voltage & 0xff);
if (err < 0)
goto abort;
err = regmap_update_bits(data->regmap, REG_VOLTAGE_LIMIT_MSB[nr],
0x0300 >> shift, (voltage & 0x0300) >> shift);
abort:
mutex_unlock(&data->access_lock);
return err;
}
static ssize_t in_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int voltage;
voltage = nct7802_read_voltage(data, sattr->nr, sattr->index);
if (voltage < 0)
return voltage;
return sprintf(buf, "%d\n", voltage);
}
static ssize_t in_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int index = sattr->index;
int nr = sattr->nr;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
err = nct7802_write_voltage(data, nr, index, val);
return err ? : count;
}
static ssize_t in_alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int volt, min, max, ret;
unsigned int val;
mutex_lock(&data->in_alarm_lock);
/*
* The SMI Voltage status register is the only register giving a status
* for voltages. A bit is set for each input crossing a threshold, in
* both direction, but the "inside" or "outside" limits info is not
* available. Also this register is cleared on read.
* Note: this is not explicitly spelled out in the datasheet, but
* from experiment.
* To deal with this we use a status cache with one validity bit and
* one status bit for each input. Validity is cleared at startup and
* each time the register reports a change, and the status is processed
* by software based on current input value and limits.
*/
ret = regmap_read(data->regmap, 0x1e, &val); /* SMI Voltage status */
if (ret < 0)
goto abort;
/* invalidate cached status for all inputs crossing a threshold */
data->in_status &= ~((val & 0x0f) << 4);
/* if cached status for requested input is invalid, update it */
if (!(data->in_status & (0x10 << sattr->index))) {
ret = nct7802_read_voltage(data, sattr->nr, 0);
if (ret < 0)
goto abort;
volt = ret;
ret = nct7802_read_voltage(data, sattr->nr, 1);
if (ret < 0)
goto abort;
min = ret;
ret = nct7802_read_voltage(data, sattr->nr, 2);
if (ret < 0)
goto abort;
max = ret;
if (volt < min || volt > max)
data->in_status |= (1 << sattr->index);
else
data->in_status &= ~(1 << sattr->index);
data->in_status |= 0x10 << sattr->index;
}
ret = sprintf(buf, "%u\n", !!(data->in_status & (1 << sattr->index)));
abort:
mutex_unlock(&data->in_alarm_lock);
return ret;
}
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int err, temp;
err = nct7802_read_temp(data, sattr->nr, sattr->index, &temp);
if (err < 0)
return err;
return sprintf(buf, "%d\n", temp);
}
static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int nr = sattr->nr;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
val = DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), 1000);
err = regmap_write(data->regmap, nr, val & 0xff);
return err ? : count;
}
static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int speed;
speed = nct7802_read_fan(data, sattr->index);
if (speed < 0)
return speed;
return sprintf(buf, "%d\n", speed);
}
static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
int speed;
speed = nct7802_read_fan_min(data, sattr->nr, sattr->index);
if (speed < 0)
return speed;
return sprintf(buf, "%d\n", speed);
}
static ssize_t fan_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
err = nct7802_write_fan_min(data, sattr->nr, sattr->index, val);
return err ? : count;
}
static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nct7802_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
int bit = sattr->index;
unsigned int val;
int ret;
ret = regmap_read(data->regmap, sattr->nr, &val);
if (ret < 0)
return ret;
return sprintf(buf, "%u\n", !!(val & (1 << bit)));
}
static ssize_t
beep_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int regval;
int err;
err = regmap_read(data->regmap, sattr->nr, &regval);
if (err)
return err;
return sprintf(buf, "%u\n", !!(regval & (1 << sattr->index)));
}
static ssize_t
beep_store(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
if (val > 1)
return -EINVAL;
err = regmap_update_bits(data->regmap, sattr->nr, 1 << sattr->index,
val ? 1 << sattr->index : 0);
return err ? : count;
}
static SENSOR_DEVICE_ATTR_RW(temp1_type, temp_type, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp1_input, temp, 0x01, REG_TEMP_LSB);
static SENSOR_DEVICE_ATTR_2_RW(temp1_min, temp, 0x31, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_max, temp, 0x30, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp1_crit, temp, 0x3a, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_type, temp_type, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp2_input, temp, 0x02, REG_TEMP_LSB);
static SENSOR_DEVICE_ATTR_2_RW(temp2_min, temp, 0x33, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp2_max, temp, 0x32, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp2_crit, temp, 0x3b, 0);
static SENSOR_DEVICE_ATTR_RW(temp3_type, temp_type, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp3_input, temp, 0x03, REG_TEMP_LSB);
static SENSOR_DEVICE_ATTR_2_RW(temp3_min, temp, 0x35, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp3_max, temp, 0x34, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp3_crit, temp, 0x3c, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp4_input, temp, 0x04, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp4_min, temp, 0x37, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp4_max, temp, 0x36, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp4_crit, temp, 0x3d, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp5_input, temp, 0x06, REG_TEMP_PECI_LSB);
static SENSOR_DEVICE_ATTR_2_RW(temp5_min, temp, 0x39, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp5_max, temp, 0x38, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp5_crit, temp, 0x3e, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp6_input, temp, 0x07, REG_TEMP_PECI_LSB);
static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, alarm, 0x18, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, alarm, 0x18, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, alarm, 0x18, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, alarm, 0x18, 3);
static SENSOR_DEVICE_ATTR_2_RO(temp5_min_alarm, alarm, 0x18, 4);
static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, alarm, 0x19, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, alarm, 0x19, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, alarm, 0x19, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, alarm, 0x19, 3);
static SENSOR_DEVICE_ATTR_2_RO(temp5_max_alarm, alarm, 0x19, 4);
static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, alarm, 0x1b, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, alarm, 0x1b, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, alarm, 0x1b, 2);
static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, alarm, 0x1b, 3);
static SENSOR_DEVICE_ATTR_2_RO(temp5_crit_alarm, alarm, 0x1b, 4);
static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, alarm, 0x17, 0);
static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, alarm, 0x17, 1);
static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, alarm, 0x17, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp1_beep, beep, 0x5c, 0);
static SENSOR_DEVICE_ATTR_2_RW(temp2_beep, beep, 0x5c, 1);
static SENSOR_DEVICE_ATTR_2_RW(temp3_beep, beep, 0x5c, 2);
static SENSOR_DEVICE_ATTR_2_RW(temp4_beep, beep, 0x5c, 3);
static SENSOR_DEVICE_ATTR_2_RW(temp5_beep, beep, 0x5c, 4);
static SENSOR_DEVICE_ATTR_2_RW(temp6_beep, beep, 0x5c, 5);
static struct attribute *nct7802_temp_attrs[] = {
&sensor_dev_attr_temp1_type.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_fault.dev_attr.attr,
&sensor_dev_attr_temp1_beep.dev_attr.attr,
&sensor_dev_attr_temp2_type.dev_attr.attr, /* 10 */
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_temp2_beep.dev_attr.attr,
&sensor_dev_attr_temp3_type.dev_attr.attr, /* 20 */
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_temp3_beep.dev_attr.attr,
&sensor_dev_attr_temp4_input.dev_attr.attr, /* 30 */
&sensor_dev_attr_temp4_min.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
&sensor_dev_attr_temp4_crit.dev_attr.attr,
&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp4_beep.dev_attr.attr,
&sensor_dev_attr_temp5_input.dev_attr.attr, /* 38 */
&sensor_dev_attr_temp5_min.dev_attr.attr,
&sensor_dev_attr_temp5_max.dev_attr.attr,
&sensor_dev_attr_temp5_crit.dev_attr.attr,
&sensor_dev_attr_temp5_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp5_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp5_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp5_beep.dev_attr.attr,
&sensor_dev_attr_temp6_input.dev_attr.attr, /* 46 */
&sensor_dev_attr_temp6_beep.dev_attr.attr,
NULL
};
static umode_t nct7802_temp_is_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int reg;
int err;
err = regmap_read(data->regmap, REG_MODE, &reg);
if (err < 0)
return 0;
if (index < 10 &&
(reg & 03) != 0x01 && (reg & 0x03) != 0x02) /* RD1 */
return 0;
if (index >= 10 && index < 20 &&
(reg & 0x0c) != 0x04 && (reg & 0x0c) != 0x08) /* RD2 */
return 0;
if (index >= 20 && index < 30 && (reg & 0x30) != 0x20) /* RD3 */
return 0;
if (index >= 30 && index < 38) /* local */
return attr->mode;
err = regmap_read(data->regmap, REG_PECI_ENABLE, &reg);
if (err < 0)
return 0;
if (index >= 38 && index < 46 && !(reg & 0x01)) /* PECI 0 */
return 0;
if (index >= 0x46 && (!(reg & 0x02))) /* PECI 1 */
return 0;
return attr->mode;
}
static const struct attribute_group nct7802_temp_group = {
.attrs = nct7802_temp_attrs,
.is_visible = nct7802_temp_is_visible,
};
static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, 0, 0);
static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, 0, 1);
static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, 0, 2);
static SENSOR_DEVICE_ATTR_2_RO(in0_alarm, in_alarm, 0, 3);
static SENSOR_DEVICE_ATTR_2_RW(in0_beep, beep, 0x5a, 3);
static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, 1, 0);
static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, 2, 0);
static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, 2, 1);
static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, 2, 2);
static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, in_alarm, 2, 0);
static SENSOR_DEVICE_ATTR_2_RW(in2_beep, beep, 0x5a, 0);
static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, 3, 0);
static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, 3, 1);
static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, 3, 2);
static SENSOR_DEVICE_ATTR_2_RO(in3_alarm, in_alarm, 3, 1);
static SENSOR_DEVICE_ATTR_2_RW(in3_beep, beep, 0x5a, 1);
static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, 4, 0);
static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, 4, 1);
static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, 4, 2);
static SENSOR_DEVICE_ATTR_2_RO(in4_alarm, in_alarm, 4, 2);
static SENSOR_DEVICE_ATTR_2_RW(in4_beep, beep, 0x5a, 2);
static struct attribute *nct7802_in_attrs[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in0_beep.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr, /* 5 */
&sensor_dev_attr_in2_input.dev_attr.attr, /* 6 */
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in2_beep.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr, /* 11 */
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in3_beep.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr, /* 16 */
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in4_beep.dev_attr.attr,
NULL,
};
static umode_t nct7802_in_is_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct nct7802_data *data = dev_get_drvdata(dev);
unsigned int reg;
int err;
if (index < 6) /* VCC, VCORE */
return attr->mode;
err = regmap_read(data->regmap, REG_MODE, &reg);
if (err < 0)
return 0;
if (index >= 6 && index < 11 && (reg & 0x03) != 0x03) /* VSEN1 */
return 0;
if (index >= 11 && index < 16 && (reg & 0x0c) != 0x0c) /* VSEN2 */
return 0;
if (index >= 16 && (reg & 0x30) != 0x30) /* VSEN3 */
return 0;
return attr->mode;
}
static const struct attribute_group nct7802_in_group = {
.attrs = nct7802_in_attrs,
.is_visible = nct7802_in_is_visible,
};
static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0x10);
static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan_min, 0x49, 0x4c);
static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, alarm, 0x1a, 0);
static SENSOR_DEVICE_ATTR_2_RW(fan1_beep, beep, 0x5b, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 0x11);
static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan_min, 0x4a, 0x4d);
static SENSOR_DEVICE_ATTR_2_RO(fan2_alarm, alarm, 0x1a, 1);
static SENSOR_DEVICE_ATTR_2_RW(fan2_beep, beep, 0x5b, 1);
static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 0x12);
static SENSOR_DEVICE_ATTR_2_RW(fan3_min, fan_min, 0x4b, 0x4e);
static SENSOR_DEVICE_ATTR_2_RO(fan3_alarm, alarm, 0x1a, 2);
static SENSOR_DEVICE_ATTR_2_RW(fan3_beep, beep, 0x5b, 2);
/* 7.2.89 Fan Control Output Type */
static SENSOR_DEVICE_ATTR_RO(pwm1_mode, pwm_mode, 0);
static SENSOR_DEVICE_ATTR_RO(pwm2_mode, pwm_mode, 1);
static SENSOR_DEVICE_ATTR_RO(pwm3_mode, pwm_mode, 2);
/* 7.2.91... Fan Control Output Value */
static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, REG_PWM(0));
static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, REG_PWM(1));
static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, REG_PWM(2));
/* 7.2.95... Temperature to Fan mapping Relationships Register */
static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
static struct attribute *nct7802_fan_attrs[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_beep.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_beep.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_beep.dev_attr.attr,
NULL
};
static umode_t nct7802_fan_is_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct nct7802_data *data = dev_get_drvdata(dev);
int fan = index / 4; /* 4 attributes per fan */
unsigned int reg;
int err;
err = regmap_read(data->regmap, REG_FAN_ENABLE, &reg);
if (err < 0 || !(reg & (1 << fan)))
return 0;
return attr->mode;
}
static const struct attribute_group nct7802_fan_group = {
.attrs = nct7802_fan_attrs,
.is_visible = nct7802_fan_is_visible,
};
static struct attribute *nct7802_pwm_attrs[] = {
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_mode.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_mode.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_mode.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
NULL
};
static const struct attribute_group nct7802_pwm_group = {
.attrs = nct7802_pwm_attrs,
};
/* 7.2.115... 0x80-0x83, 0x84 Temperature (X-axis) transition */
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_temp, temp, 0x80, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_temp, temp, 0x81, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point3_temp, temp, 0x82, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point4_temp, temp, 0x83, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point5_temp, temp, 0x84, 0);
/* 7.2.120... 0x85-0x88 PWM (Y-axis) transition */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_pwm, pwm, 0x85);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_pwm, pwm, 0x86);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point3_pwm, pwm, 0x87);
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point4_pwm, pwm, 0x88);
static SENSOR_DEVICE_ATTR_RO(pwm1_auto_point5_pwm, pwm, 0);
/* 7.2.124 Table 2 X-axis Transition Point 1 Register */
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_temp, temp, 0x90, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_temp, temp, 0x91, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point3_temp, temp, 0x92, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point4_temp, temp, 0x93, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point5_temp, temp, 0x94, 0);
/* 7.2.129 Table 2 Y-axis Transition Point 1 Register */
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point1_pwm, pwm, 0x95);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point2_pwm, pwm, 0x96);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point3_pwm, pwm, 0x97);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point4_pwm, pwm, 0x98);
static SENSOR_DEVICE_ATTR_RO(pwm2_auto_point5_pwm, pwm, 0);
/* 7.2.133 Table 3 X-axis Transition Point 1 Register */
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_temp, temp, 0xA0, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_temp, temp, 0xA1, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point3_temp, temp, 0xA2, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point4_temp, temp, 0xA3, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point5_temp, temp, 0xA4, 0);
/* 7.2.138 Table 3 Y-axis Transition Point 1 Register */
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point1_pwm, pwm, 0xA5);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point2_pwm, pwm, 0xA6);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point3_pwm, pwm, 0xA7);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point4_pwm, pwm, 0xA8);
static SENSOR_DEVICE_ATTR_RO(pwm3_auto_point5_pwm, pwm, 0);
static struct attribute *nct7802_auto_point_attrs[] = {
&sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point5_pwm.dev_attr.attr,
NULL
};
static const struct attribute_group nct7802_auto_point_group = {
.attrs = nct7802_auto_point_attrs,
};
static const struct attribute_group *nct7802_groups[] = {
&nct7802_temp_group,
&nct7802_in_group,
&nct7802_fan_group,
&nct7802_pwm_group,
&nct7802_auto_point_group,
NULL
};
static int nct7802_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
int reg;
/*
* Chip identification registers are only available in bank 0,
* so only attempt chip detection if bank 0 is selected
*/
reg = i2c_smbus_read_byte_data(client, REG_BANK);
if (reg != 0x00)
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_VENDOR_ID);
if (reg != 0x50)
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_CHIP_ID);
if (reg != 0xc3)
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_VERSION_ID);
if (reg < 0 || (reg & 0xf0) != 0x20)
return -ENODEV;
/* Also validate lower bits of voltage and temperature registers */
reg = i2c_smbus_read_byte_data(client, REG_TEMP_LSB);
if (reg < 0 || (reg & 0x1f))
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_TEMP_PECI_LSB);
if (reg < 0 || (reg & 0x3f))
return -ENODEV;
reg = i2c_smbus_read_byte_data(client, REG_VOLTAGE_LOW);
if (reg < 0 || (reg & 0x3f))
return -ENODEV;
strlcpy(info->type, "nct7802", I2C_NAME_SIZE);
return 0;
}
static bool nct7802_regmap_is_volatile(struct device *dev, unsigned int reg)
{
return (reg != REG_BANK && reg <= 0x20) ||
(reg >= REG_PWM(0) && reg <= REG_PWM(2));
}
static const struct regmap_config nct7802_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = nct7802_regmap_is_volatile,
};
static int nct7802_init_chip(struct nct7802_data *data)
{
int err;
/* Enable ADC */
err = regmap_update_bits(data->regmap, REG_START, 0x01, 0x01);
if (err)
return err;
/* Enable local temperature sensor */
err = regmap_update_bits(data->regmap, REG_MODE, 0x40, 0x40);
if (err)
return err;
/* Enable Vcore and VCC voltage monitoring */
return regmap_update_bits(data->regmap, REG_VMON_ENABLE, 0x03, 0x03);
}
static int nct7802_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct nct7802_data *data;
struct device *hwmon_dev;
int ret;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
data->regmap = devm_regmap_init_i2c(client, &nct7802_regmap_config);
if (IS_ERR(data->regmap))
return PTR_ERR(data->regmap);
mutex_init(&data->access_lock);
mutex_init(&data->in_alarm_lock);
ret = nct7802_init_chip(data);
if (ret < 0)
return ret;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data,
nct7802_groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const unsigned short nct7802_address_list[] = {
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END
};
static const struct i2c_device_id nct7802_idtable[] = {
{ "nct7802", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, nct7802_idtable);
static struct i2c_driver nct7802_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = DRVNAME,
},
.detect = nct7802_detect,
.probe_new = nct7802_probe,
.id_table = nct7802_idtable,
.address_list = nct7802_address_list,
};
module_i2c_driver(nct7802_driver);
MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
MODULE_DESCRIPTION("NCT7802Y Hardware Monitoring Driver");
MODULE_LICENSE("GPL v2");