| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Helper functions used by the EFI stub on multiple |
| * architectures. This should be #included by the EFI stub |
| * implementation files. |
| * |
| * Copyright 2011 Intel Corporation; author Matt Fleming |
| */ |
| |
| #include <stdarg.h> |
| |
| #include <linux/ctype.h> |
| #include <linux/efi.h> |
| #include <linux/kernel.h> |
| #include <linux/printk.h> /* For CONSOLE_LOGLEVEL_* */ |
| #include <asm/efi.h> |
| #include <asm/setup.h> |
| |
| #include "efistub.h" |
| |
| bool efi_nochunk; |
| bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE); |
| bool efi_noinitrd; |
| int efi_loglevel = CONSOLE_LOGLEVEL_DEFAULT; |
| bool efi_novamap; |
| |
| static bool efi_nosoftreserve; |
| static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA); |
| |
| bool __pure __efi_soft_reserve_enabled(void) |
| { |
| return !efi_nosoftreserve; |
| } |
| |
| /** |
| * efi_char16_puts() - Write a UCS-2 encoded string to the console |
| * @str: UCS-2 encoded string |
| */ |
| void efi_char16_puts(efi_char16_t *str) |
| { |
| efi_call_proto(efi_table_attr(efi_system_table, con_out), |
| output_string, str); |
| } |
| |
| static |
| u32 utf8_to_utf32(const u8 **s8) |
| { |
| u32 c32; |
| u8 c0, cx; |
| size_t clen, i; |
| |
| c0 = cx = *(*s8)++; |
| /* |
| * The position of the most-significant 0 bit gives us the length of |
| * a multi-octet encoding. |
| */ |
| for (clen = 0; cx & 0x80; ++clen) |
| cx <<= 1; |
| /* |
| * If the 0 bit is in position 8, this is a valid single-octet |
| * encoding. If the 0 bit is in position 7 or positions 1-3, the |
| * encoding is invalid. |
| * In either case, we just return the first octet. |
| */ |
| if (clen < 2 || clen > 4) |
| return c0; |
| /* Get the bits from the first octet. */ |
| c32 = cx >> clen--; |
| for (i = 0; i < clen; ++i) { |
| /* Trailing octets must have 10 in most significant bits. */ |
| cx = (*s8)[i] ^ 0x80; |
| if (cx & 0xc0) |
| return c0; |
| c32 = (c32 << 6) | cx; |
| } |
| /* |
| * Check for validity: |
| * - The character must be in the Unicode range. |
| * - It must not be a surrogate. |
| * - It must be encoded using the correct number of octets. |
| */ |
| if (c32 > 0x10ffff || |
| (c32 & 0xf800) == 0xd800 || |
| clen != (c32 >= 0x80) + (c32 >= 0x800) + (c32 >= 0x10000)) |
| return c0; |
| *s8 += clen; |
| return c32; |
| } |
| |
| /** |
| * efi_puts() - Write a UTF-8 encoded string to the console |
| * @str: UTF-8 encoded string |
| */ |
| void efi_puts(const char *str) |
| { |
| efi_char16_t buf[128]; |
| size_t pos = 0, lim = ARRAY_SIZE(buf); |
| const u8 *s8 = (const u8 *)str; |
| u32 c32; |
| |
| while (*s8) { |
| if (*s8 == '\n') |
| buf[pos++] = L'\r'; |
| c32 = utf8_to_utf32(&s8); |
| if (c32 < 0x10000) { |
| /* Characters in plane 0 use a single word. */ |
| buf[pos++] = c32; |
| } else { |
| /* |
| * Characters in other planes encode into a surrogate |
| * pair. |
| */ |
| buf[pos++] = (0xd800 - (0x10000 >> 10)) + (c32 >> 10); |
| buf[pos++] = 0xdc00 + (c32 & 0x3ff); |
| } |
| if (*s8 == '\0' || pos >= lim - 2) { |
| buf[pos] = L'\0'; |
| efi_char16_puts(buf); |
| pos = 0; |
| } |
| } |
| } |
| |
| /** |
| * efi_printk() - Print a kernel message |
| * @fmt: format string |
| * |
| * The first letter of the format string is used to determine the logging level |
| * of the message. If the level is less then the current EFI logging level, the |
| * message is suppressed. The message will be truncated to 255 bytes. |
| * |
| * Return: number of printed characters |
| */ |
| int efi_printk(const char *fmt, ...) |
| { |
| char printf_buf[256]; |
| va_list args; |
| int printed; |
| int loglevel = printk_get_level(fmt); |
| |
| switch (loglevel) { |
| case '0' ... '9': |
| loglevel -= '0'; |
| break; |
| default: |
| /* |
| * Use loglevel -1 for cases where we just want to print to |
| * the screen. |
| */ |
| loglevel = -1; |
| break; |
| } |
| |
| if (loglevel >= efi_loglevel) |
| return 0; |
| |
| if (loglevel >= 0) |
| efi_puts("EFI stub: "); |
| |
| fmt = printk_skip_level(fmt); |
| |
| va_start(args, fmt); |
| printed = vsnprintf(printf_buf, sizeof(printf_buf), fmt, args); |
| va_end(args); |
| |
| efi_puts(printf_buf); |
| if (printed >= sizeof(printf_buf)) { |
| efi_puts("[Message truncated]\n"); |
| return -1; |
| } |
| |
| return printed; |
| } |
| |
| /** |
| * efi_parse_options() - Parse EFI command line options |
| * @cmdline: kernel command line |
| * |
| * Parse the ASCII string @cmdline for EFI options, denoted by the efi= |
| * option, e.g. efi=nochunk. |
| * |
| * It should be noted that efi= is parsed in two very different |
| * environments, first in the early boot environment of the EFI boot |
| * stub, and subsequently during the kernel boot. |
| * |
| * Return: status code |
| */ |
| efi_status_t efi_parse_options(char const *cmdline) |
| { |
| size_t len = strlen(cmdline) + 1; |
| efi_status_t status; |
| char *str, *buf; |
| |
| status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| str = skip_spaces(memcpy(buf, cmdline, len)); |
| |
| while (*str) { |
| char *param, *val; |
| |
| str = next_arg(str, ¶m, &val); |
| |
| if (!strcmp(param, "nokaslr")) { |
| efi_nokaslr = true; |
| } else if (!strcmp(param, "quiet")) { |
| efi_loglevel = CONSOLE_LOGLEVEL_QUIET; |
| } else if (!strcmp(param, "noinitrd")) { |
| efi_noinitrd = true; |
| } else if (!strcmp(param, "efi") && val) { |
| efi_nochunk = parse_option_str(val, "nochunk"); |
| efi_novamap = parse_option_str(val, "novamap"); |
| |
| efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) && |
| parse_option_str(val, "nosoftreserve"); |
| |
| if (parse_option_str(val, "disable_early_pci_dma")) |
| efi_disable_pci_dma = true; |
| if (parse_option_str(val, "no_disable_early_pci_dma")) |
| efi_disable_pci_dma = false; |
| if (parse_option_str(val, "debug")) |
| efi_loglevel = CONSOLE_LOGLEVEL_DEBUG; |
| } else if (!strcmp(param, "video") && |
| val && strstarts(val, "efifb:")) { |
| efi_parse_option_graphics(val + strlen("efifb:")); |
| } |
| } |
| efi_bs_call(free_pool, buf); |
| return EFI_SUCCESS; |
| } |
| |
| /* |
| * Convert the unicode UEFI command line to ASCII to pass to kernel. |
| * Size of memory allocated return in *cmd_line_len. |
| * Returns NULL on error. |
| */ |
| char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len) |
| { |
| const u16 *s2; |
| unsigned long cmdline_addr = 0; |
| int options_chars = efi_table_attr(image, load_options_size) / 2; |
| const u16 *options = efi_table_attr(image, load_options); |
| int options_bytes = 0, safe_options_bytes = 0; /* UTF-8 bytes */ |
| bool in_quote = false; |
| efi_status_t status; |
| |
| if (options) { |
| s2 = options; |
| while (options_bytes < COMMAND_LINE_SIZE && options_chars--) { |
| u16 c = *s2++; |
| |
| if (c < 0x80) { |
| if (c == L'\0' || c == L'\n') |
| break; |
| if (c == L'"') |
| in_quote = !in_quote; |
| else if (!in_quote && isspace((char)c)) |
| safe_options_bytes = options_bytes; |
| |
| options_bytes++; |
| continue; |
| } |
| |
| /* |
| * Get the number of UTF-8 bytes corresponding to a |
| * UTF-16 character. |
| * The first part handles everything in the BMP. |
| */ |
| options_bytes += 2 + (c >= 0x800); |
| /* |
| * Add one more byte for valid surrogate pairs. Invalid |
| * surrogates will be replaced with 0xfffd and take up |
| * only 3 bytes. |
| */ |
| if ((c & 0xfc00) == 0xd800) { |
| /* |
| * If the very last word is a high surrogate, |
| * we must ignore it since we can't access the |
| * low surrogate. |
| */ |
| if (!options_chars) { |
| options_bytes -= 3; |
| } else if ((*s2 & 0xfc00) == 0xdc00) { |
| options_bytes++; |
| options_chars--; |
| s2++; |
| } |
| } |
| } |
| if (options_bytes >= COMMAND_LINE_SIZE) { |
| options_bytes = safe_options_bytes; |
| efi_err("Command line is too long: truncated to %d bytes\n", |
| options_bytes); |
| } |
| } |
| |
| options_bytes++; /* NUL termination */ |
| |
| status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes, |
| (void **)&cmdline_addr); |
| if (status != EFI_SUCCESS) |
| return NULL; |
| |
| snprintf((char *)cmdline_addr, options_bytes, "%.*ls", |
| options_bytes - 1, options); |
| |
| *cmd_line_len = options_bytes; |
| return (char *)cmdline_addr; |
| } |
| |
| /** |
| * efi_exit_boot_services() - Exit boot services |
| * @handle: handle of the exiting image |
| * @map: pointer to receive the memory map |
| * @priv: argument to be passed to @priv_func |
| * @priv_func: function to process the memory map before exiting boot services |
| * |
| * Handle calling ExitBootServices according to the requirements set out by the |
| * spec. Obtains the current memory map, and returns that info after calling |
| * ExitBootServices. The client must specify a function to perform any |
| * processing of the memory map data prior to ExitBootServices. A client |
| * specific structure may be passed to the function via priv. The client |
| * function may be called multiple times. |
| * |
| * Return: status code |
| */ |
| efi_status_t efi_exit_boot_services(void *handle, |
| struct efi_boot_memmap *map, |
| void *priv, |
| efi_exit_boot_map_processing priv_func) |
| { |
| efi_status_t status; |
| |
| status = efi_get_memory_map(map); |
| |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| status = priv_func(map, priv); |
| if (status != EFI_SUCCESS) |
| goto free_map; |
| |
| if (efi_disable_pci_dma) |
| efi_pci_disable_bridge_busmaster(); |
| |
| status = efi_bs_call(exit_boot_services, handle, *map->key_ptr); |
| |
| if (status == EFI_INVALID_PARAMETER) { |
| /* |
| * The memory map changed between efi_get_memory_map() and |
| * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: |
| * EFI_BOOT_SERVICES.ExitBootServices we need to get the |
| * updated map, and try again. The spec implies one retry |
| * should be sufficent, which is confirmed against the EDK2 |
| * implementation. Per the spec, we can only invoke |
| * get_memory_map() and exit_boot_services() - we cannot alloc |
| * so efi_get_memory_map() cannot be used, and we must reuse |
| * the buffer. For all practical purposes, the headroom in the |
| * buffer should account for any changes in the map so the call |
| * to get_memory_map() is expected to succeed here. |
| */ |
| *map->map_size = *map->buff_size; |
| status = efi_bs_call(get_memory_map, |
| map->map_size, |
| *map->map, |
| map->key_ptr, |
| map->desc_size, |
| map->desc_ver); |
| |
| /* exit_boot_services() was called, thus cannot free */ |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| status = priv_func(map, priv); |
| /* exit_boot_services() was called, thus cannot free */ |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| status = efi_bs_call(exit_boot_services, handle, *map->key_ptr); |
| } |
| |
| /* exit_boot_services() was called, thus cannot free */ |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| return EFI_SUCCESS; |
| |
| free_map: |
| efi_bs_call(free_pool, *map->map); |
| fail: |
| return status; |
| } |
| |
| /** |
| * get_efi_config_table() - retrieve UEFI configuration table |
| * @guid: GUID of the configuration table to be retrieved |
| * Return: pointer to the configuration table or NULL |
| */ |
| void *get_efi_config_table(efi_guid_t guid) |
| { |
| unsigned long tables = efi_table_attr(efi_system_table, tables); |
| int nr_tables = efi_table_attr(efi_system_table, nr_tables); |
| int i; |
| |
| for (i = 0; i < nr_tables; i++) { |
| efi_config_table_t *t = (void *)tables; |
| |
| if (efi_guidcmp(t->guid, guid) == 0) |
| return efi_table_attr(t, table); |
| |
| tables += efi_is_native() ? sizeof(efi_config_table_t) |
| : sizeof(efi_config_table_32_t); |
| } |
| return NULL; |
| } |
| |
| /* |
| * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way |
| * for the firmware or bootloader to expose the initrd data directly to the stub |
| * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is |
| * very easy to implement. It is a simple Linux initrd specific conduit between |
| * kernel and firmware, allowing us to put the EFI stub (being part of the |
| * kernel) in charge of where and when to load the initrd, while leaving it up |
| * to the firmware to decide whether it needs to expose its filesystem hierarchy |
| * via EFI protocols. |
| */ |
| static const struct { |
| struct efi_vendor_dev_path vendor; |
| struct efi_generic_dev_path end; |
| } __packed initrd_dev_path = { |
| { |
| { |
| EFI_DEV_MEDIA, |
| EFI_DEV_MEDIA_VENDOR, |
| sizeof(struct efi_vendor_dev_path), |
| }, |
| LINUX_EFI_INITRD_MEDIA_GUID |
| }, { |
| EFI_DEV_END_PATH, |
| EFI_DEV_END_ENTIRE, |
| sizeof(struct efi_generic_dev_path) |
| } |
| }; |
| |
| /** |
| * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path |
| * @load_addr: pointer to store the address where the initrd was loaded |
| * @load_size: pointer to store the size of the loaded initrd |
| * @max: upper limit for the initrd memory allocation |
| * |
| * Return: |
| * * %EFI_SUCCESS if the initrd was loaded successfully, in which |
| * case @load_addr and @load_size are assigned accordingly |
| * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path |
| * * %EFI_INVALID_PARAMETER if load_addr == NULL or load_size == NULL |
| * * %EFI_OUT_OF_RESOURCES if memory allocation failed |
| * * %EFI_LOAD_ERROR in all other cases |
| */ |
| static |
| efi_status_t efi_load_initrd_dev_path(unsigned long *load_addr, |
| unsigned long *load_size, |
| unsigned long max) |
| { |
| efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID; |
| efi_device_path_protocol_t *dp; |
| efi_load_file2_protocol_t *lf2; |
| unsigned long initrd_addr; |
| unsigned long initrd_size; |
| efi_handle_t handle; |
| efi_status_t status; |
| |
| dp = (efi_device_path_protocol_t *)&initrd_dev_path; |
| status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid, |
| (void **)&lf2); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, NULL); |
| if (status != EFI_BUFFER_TOO_SMALL) |
| return EFI_LOAD_ERROR; |
| |
| status = efi_allocate_pages(initrd_size, &initrd_addr, max); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_call_proto(lf2, load_file, dp, false, &initrd_size, |
| (void *)initrd_addr); |
| if (status != EFI_SUCCESS) { |
| efi_free(initrd_size, initrd_addr); |
| return EFI_LOAD_ERROR; |
| } |
| |
| *load_addr = initrd_addr; |
| *load_size = initrd_size; |
| return EFI_SUCCESS; |
| } |
| |
| static |
| efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image, |
| unsigned long *load_addr, |
| unsigned long *load_size, |
| unsigned long soft_limit, |
| unsigned long hard_limit) |
| { |
| if (!IS_ENABLED(CONFIG_EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER) || |
| (IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL))) { |
| *load_addr = *load_size = 0; |
| return EFI_SUCCESS; |
| } |
| |
| return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2, |
| soft_limit, hard_limit, |
| load_addr, load_size); |
| } |
| |
| /** |
| * efi_load_initrd() - Load initial RAM disk |
| * @image: EFI loaded image protocol |
| * @load_addr: pointer to loaded initrd |
| * @load_size: size of loaded initrd |
| * @soft_limit: preferred size of allocated memory for loading the initrd |
| * @hard_limit: minimum size of allocated memory |
| * |
| * Return: status code |
| */ |
| efi_status_t efi_load_initrd(efi_loaded_image_t *image, |
| unsigned long *load_addr, |
| unsigned long *load_size, |
| unsigned long soft_limit, |
| unsigned long hard_limit) |
| { |
| efi_status_t status; |
| |
| if (!load_addr || !load_size) |
| return EFI_INVALID_PARAMETER; |
| |
| status = efi_load_initrd_dev_path(load_addr, load_size, hard_limit); |
| if (status == EFI_SUCCESS) { |
| efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n"); |
| } else if (status == EFI_NOT_FOUND) { |
| status = efi_load_initrd_cmdline(image, load_addr, load_size, |
| soft_limit, hard_limit); |
| if (status == EFI_SUCCESS && *load_size > 0) |
| efi_info("Loaded initrd from command line option\n"); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * efi_wait_for_key() - Wait for key stroke |
| * @usec: number of microseconds to wait for key stroke |
| * @key: key entered |
| * |
| * Wait for up to @usec microseconds for a key stroke. |
| * |
| * Return: status code, EFI_SUCCESS if key received |
| */ |
| efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key) |
| { |
| efi_event_t events[2], timer; |
| unsigned long index; |
| efi_simple_text_input_protocol_t *con_in; |
| efi_status_t status; |
| |
| con_in = efi_table_attr(efi_system_table, con_in); |
| if (!con_in) |
| return EFI_UNSUPPORTED; |
| efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key)); |
| |
| status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_bs_call(set_timer, timer, EfiTimerRelative, |
| EFI_100NSEC_PER_USEC * usec); |
| if (status != EFI_SUCCESS) |
| return status; |
| efi_set_event_at(events, 1, timer); |
| |
| status = efi_bs_call(wait_for_event, 2, events, &index); |
| if (status == EFI_SUCCESS) { |
| if (index == 0) |
| status = efi_call_proto(con_in, read_keystroke, key); |
| else |
| status = EFI_TIMEOUT; |
| } |
| |
| efi_bs_call(close_event, timer); |
| |
| return status; |
| } |