| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Wireless utility functions |
| * |
| * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> |
| * Copyright 2013-2014 Intel Mobile Communications GmbH |
| * Copyright 2017 Intel Deutschland GmbH |
| * Copyright (C) 2018-2020 Intel Corporation |
| */ |
| #include <linux/export.h> |
| #include <linux/bitops.h> |
| #include <linux/etherdevice.h> |
| #include <linux/slab.h> |
| #include <linux/ieee80211.h> |
| #include <net/cfg80211.h> |
| #include <net/ip.h> |
| #include <net/dsfield.h> |
| #include <linux/if_vlan.h> |
| #include <linux/mpls.h> |
| #include <linux/gcd.h> |
| #include <linux/bitfield.h> |
| #include <linux/nospec.h> |
| #include "core.h" |
| #include "rdev-ops.h" |
| |
| |
| struct ieee80211_rate * |
| ieee80211_get_response_rate(struct ieee80211_supported_band *sband, |
| u32 basic_rates, int bitrate) |
| { |
| struct ieee80211_rate *result = &sband->bitrates[0]; |
| int i; |
| |
| for (i = 0; i < sband->n_bitrates; i++) { |
| if (!(basic_rates & BIT(i))) |
| continue; |
| if (sband->bitrates[i].bitrate > bitrate) |
| continue; |
| result = &sband->bitrates[i]; |
| } |
| |
| return result; |
| } |
| EXPORT_SYMBOL(ieee80211_get_response_rate); |
| |
| u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, |
| enum nl80211_bss_scan_width scan_width) |
| { |
| struct ieee80211_rate *bitrates; |
| u32 mandatory_rates = 0; |
| enum ieee80211_rate_flags mandatory_flag; |
| int i; |
| |
| if (WARN_ON(!sband)) |
| return 1; |
| |
| if (sband->band == NL80211_BAND_2GHZ) { |
| if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || |
| scan_width == NL80211_BSS_CHAN_WIDTH_10) |
| mandatory_flag = IEEE80211_RATE_MANDATORY_G; |
| else |
| mandatory_flag = IEEE80211_RATE_MANDATORY_B; |
| } else { |
| mandatory_flag = IEEE80211_RATE_MANDATORY_A; |
| } |
| |
| bitrates = sband->bitrates; |
| for (i = 0; i < sband->n_bitrates; i++) |
| if (bitrates[i].flags & mandatory_flag) |
| mandatory_rates |= BIT(i); |
| return mandatory_rates; |
| } |
| EXPORT_SYMBOL(ieee80211_mandatory_rates); |
| |
| u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) |
| { |
| /* see 802.11 17.3.8.3.2 and Annex J |
| * there are overlapping channel numbers in 5GHz and 2GHz bands */ |
| if (chan <= 0) |
| return 0; /* not supported */ |
| switch (band) { |
| case NL80211_BAND_2GHZ: |
| if (chan == 14) |
| return MHZ_TO_KHZ(2484); |
| else if (chan < 14) |
| return MHZ_TO_KHZ(2407 + chan * 5); |
| break; |
| case NL80211_BAND_5GHZ: |
| if (chan >= 182 && chan <= 196) |
| return MHZ_TO_KHZ(4000 + chan * 5); |
| else |
| return MHZ_TO_KHZ(5000 + chan * 5); |
| break; |
| case NL80211_BAND_6GHZ: |
| /* see 802.11ax D6.1 27.3.23.2 */ |
| if (chan == 2) |
| return MHZ_TO_KHZ(5935); |
| if (chan <= 253) |
| return MHZ_TO_KHZ(5950 + chan * 5); |
| break; |
| case NL80211_BAND_60GHZ: |
| if (chan < 7) |
| return MHZ_TO_KHZ(56160 + chan * 2160); |
| break; |
| default: |
| ; |
| } |
| return 0; /* not supported */ |
| } |
| EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); |
| |
| int ieee80211_freq_khz_to_channel(u32 freq) |
| { |
| /* TODO: just handle MHz for now */ |
| freq = KHZ_TO_MHZ(freq); |
| |
| /* see 802.11 17.3.8.3.2 and Annex J */ |
| if (freq == 2484) |
| return 14; |
| else if (freq < 2484) |
| return (freq - 2407) / 5; |
| else if (freq >= 4910 && freq <= 4980) |
| return (freq - 4000) / 5; |
| else if (freq < 5945) |
| return (freq - 5000) / 5; |
| else if (freq <= 45000) /* DMG band lower limit */ |
| /* see 802.11ax D4.1 27.3.22.2 */ |
| return (freq - 5940) / 5; |
| else if (freq >= 58320 && freq <= 70200) |
| return (freq - 56160) / 2160; |
| else |
| return 0; |
| } |
| EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); |
| |
| struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, |
| u32 freq) |
| { |
| enum nl80211_band band; |
| struct ieee80211_supported_band *sband; |
| int i; |
| |
| for (band = 0; band < NUM_NL80211_BANDS; band++) { |
| sband = wiphy->bands[band]; |
| |
| if (!sband) |
| continue; |
| |
| for (i = 0; i < sband->n_channels; i++) { |
| struct ieee80211_channel *chan = &sband->channels[i]; |
| |
| if (ieee80211_channel_to_khz(chan) == freq) |
| return chan; |
| } |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(ieee80211_get_channel_khz); |
| |
| static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) |
| { |
| int i, want; |
| |
| switch (sband->band) { |
| case NL80211_BAND_5GHZ: |
| case NL80211_BAND_6GHZ: |
| want = 3; |
| for (i = 0; i < sband->n_bitrates; i++) { |
| if (sband->bitrates[i].bitrate == 60 || |
| sband->bitrates[i].bitrate == 120 || |
| sband->bitrates[i].bitrate == 240) { |
| sband->bitrates[i].flags |= |
| IEEE80211_RATE_MANDATORY_A; |
| want--; |
| } |
| } |
| WARN_ON(want); |
| break; |
| case NL80211_BAND_2GHZ: |
| want = 7; |
| for (i = 0; i < sband->n_bitrates; i++) { |
| switch (sband->bitrates[i].bitrate) { |
| case 10: |
| case 20: |
| case 55: |
| case 110: |
| sband->bitrates[i].flags |= |
| IEEE80211_RATE_MANDATORY_B | |
| IEEE80211_RATE_MANDATORY_G; |
| want--; |
| break; |
| case 60: |
| case 120: |
| case 240: |
| sband->bitrates[i].flags |= |
| IEEE80211_RATE_MANDATORY_G; |
| want--; |
| /* fall through */ |
| default: |
| sband->bitrates[i].flags |= |
| IEEE80211_RATE_ERP_G; |
| break; |
| } |
| } |
| WARN_ON(want != 0 && want != 3); |
| break; |
| case NL80211_BAND_60GHZ: |
| /* check for mandatory HT MCS 1..4 */ |
| WARN_ON(!sband->ht_cap.ht_supported); |
| WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); |
| break; |
| case NUM_NL80211_BANDS: |
| default: |
| WARN_ON(1); |
| break; |
| } |
| } |
| |
| void ieee80211_set_bitrate_flags(struct wiphy *wiphy) |
| { |
| enum nl80211_band band; |
| |
| for (band = 0; band < NUM_NL80211_BANDS; band++) |
| if (wiphy->bands[band]) |
| set_mandatory_flags_band(wiphy->bands[band]); |
| } |
| |
| bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) |
| { |
| int i; |
| for (i = 0; i < wiphy->n_cipher_suites; i++) |
| if (cipher == wiphy->cipher_suites[i]) |
| return true; |
| return false; |
| } |
| |
| int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, |
| struct key_params *params, int key_idx, |
| bool pairwise, const u8 *mac_addr) |
| { |
| int max_key_idx = 5; |
| |
| if (wiphy_ext_feature_isset(&rdev->wiphy, |
| NL80211_EXT_FEATURE_BEACON_PROTECTION) || |
| wiphy_ext_feature_isset(&rdev->wiphy, |
| NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) |
| max_key_idx = 7; |
| if (key_idx < 0 || key_idx > max_key_idx) |
| return -EINVAL; |
| |
| if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) |
| return -EINVAL; |
| |
| if (pairwise && !mac_addr) |
| return -EINVAL; |
| |
| switch (params->cipher) { |
| case WLAN_CIPHER_SUITE_TKIP: |
| /* Extended Key ID can only be used with CCMP/GCMP ciphers */ |
| if ((pairwise && key_idx) || |
| params->mode != NL80211_KEY_RX_TX) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_CCMP: |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| /* IEEE802.11-2016 allows only 0 and - when supporting |
| * Extended Key ID - 1 as index for pairwise keys. |
| * @NL80211_KEY_NO_TX is only allowed for pairwise keys when |
| * the driver supports Extended Key ID. |
| * @NL80211_KEY_SET_TX can't be set when installing and |
| * validating a key. |
| */ |
| if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || |
| params->mode == NL80211_KEY_SET_TX) |
| return -EINVAL; |
| if (wiphy_ext_feature_isset(&rdev->wiphy, |
| NL80211_EXT_FEATURE_EXT_KEY_ID)) { |
| if (pairwise && (key_idx < 0 || key_idx > 1)) |
| return -EINVAL; |
| } else if (pairwise && key_idx) { |
| return -EINVAL; |
| } |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| /* Disallow BIP (group-only) cipher as pairwise cipher */ |
| if (pairwise) |
| return -EINVAL; |
| if (key_idx < 4) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| if (key_idx > 3) |
| return -EINVAL; |
| default: |
| break; |
| } |
| |
| switch (params->cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| if (params->key_len != WLAN_KEY_LEN_WEP40) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_TKIP: |
| if (params->key_len != WLAN_KEY_LEN_TKIP) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_CCMP: |
| if (params->key_len != WLAN_KEY_LEN_CCMP) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| if (params->key_len != WLAN_KEY_LEN_CCMP_256) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_GCMP: |
| if (params->key_len != WLAN_KEY_LEN_GCMP) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| if (params->key_len != WLAN_KEY_LEN_GCMP_256) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_WEP104: |
| if (params->key_len != WLAN_KEY_LEN_WEP104) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| if (params->key_len != WLAN_KEY_LEN_AES_CMAC) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) |
| return -EINVAL; |
| break; |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) |
| return -EINVAL; |
| break; |
| default: |
| /* |
| * We don't know anything about this algorithm, |
| * allow using it -- but the driver must check |
| * all parameters! We still check below whether |
| * or not the driver supports this algorithm, |
| * of course. |
| */ |
| break; |
| } |
| |
| if (params->seq) { |
| switch (params->cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| /* These ciphers do not use key sequence */ |
| return -EINVAL; |
| case WLAN_CIPHER_SUITE_TKIP: |
| case WLAN_CIPHER_SUITE_CCMP: |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| if (params->seq_len != 6) |
| return -EINVAL; |
| break; |
| } |
| } |
| |
| if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) |
| { |
| unsigned int hdrlen = 24; |
| |
| if (ieee80211_is_data(fc)) { |
| if (ieee80211_has_a4(fc)) |
| hdrlen = 30; |
| if (ieee80211_is_data_qos(fc)) { |
| hdrlen += IEEE80211_QOS_CTL_LEN; |
| if (ieee80211_has_order(fc)) |
| hdrlen += IEEE80211_HT_CTL_LEN; |
| } |
| goto out; |
| } |
| |
| if (ieee80211_is_mgmt(fc)) { |
| if (ieee80211_has_order(fc)) |
| hdrlen += IEEE80211_HT_CTL_LEN; |
| goto out; |
| } |
| |
| if (ieee80211_is_ctl(fc)) { |
| /* |
| * ACK and CTS are 10 bytes, all others 16. To see how |
| * to get this condition consider |
| * subtype mask: 0b0000000011110000 (0x00F0) |
| * ACK subtype: 0b0000000011010000 (0x00D0) |
| * CTS subtype: 0b0000000011000000 (0x00C0) |
| * bits that matter: ^^^ (0x00E0) |
| * value of those: 0b0000000011000000 (0x00C0) |
| */ |
| if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) |
| hdrlen = 10; |
| else |
| hdrlen = 16; |
| } |
| out: |
| return hdrlen; |
| } |
| EXPORT_SYMBOL(ieee80211_hdrlen); |
| |
| unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) |
| { |
| const struct ieee80211_hdr *hdr = |
| (const struct ieee80211_hdr *)skb->data; |
| unsigned int hdrlen; |
| |
| if (unlikely(skb->len < 10)) |
| return 0; |
| hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| if (unlikely(hdrlen > skb->len)) |
| return 0; |
| return hdrlen; |
| } |
| EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); |
| |
| static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) |
| { |
| int ae = flags & MESH_FLAGS_AE; |
| /* 802.11-2012, 8.2.4.7.3 */ |
| switch (ae) { |
| default: |
| case 0: |
| return 6; |
| case MESH_FLAGS_AE_A4: |
| return 12; |
| case MESH_FLAGS_AE_A5_A6: |
| return 18; |
| } |
| } |
| |
| unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) |
| { |
| return __ieee80211_get_mesh_hdrlen(meshhdr->flags); |
| } |
| EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); |
| |
| int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, |
| const u8 *addr, enum nl80211_iftype iftype, |
| u8 data_offset) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct { |
| u8 hdr[ETH_ALEN] __aligned(2); |
| __be16 proto; |
| } payload; |
| struct ethhdr tmp; |
| u16 hdrlen; |
| u8 mesh_flags = 0; |
| |
| if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) |
| return -1; |
| |
| hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; |
| if (skb->len < hdrlen + 8) |
| return -1; |
| |
| /* convert IEEE 802.11 header + possible LLC headers into Ethernet |
| * header |
| * IEEE 802.11 address fields: |
| * ToDS FromDS Addr1 Addr2 Addr3 Addr4 |
| * 0 0 DA SA BSSID n/a |
| * 0 1 DA BSSID SA n/a |
| * 1 0 BSSID SA DA n/a |
| * 1 1 RA TA DA SA |
| */ |
| memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); |
| memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); |
| |
| if (iftype == NL80211_IFTYPE_MESH_POINT) |
| skb_copy_bits(skb, hdrlen, &mesh_flags, 1); |
| |
| mesh_flags &= MESH_FLAGS_AE; |
| |
| switch (hdr->frame_control & |
| cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { |
| case cpu_to_le16(IEEE80211_FCTL_TODS): |
| if (unlikely(iftype != NL80211_IFTYPE_AP && |
| iftype != NL80211_IFTYPE_AP_VLAN && |
| iftype != NL80211_IFTYPE_P2P_GO)) |
| return -1; |
| break; |
| case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): |
| if (unlikely(iftype != NL80211_IFTYPE_WDS && |
| iftype != NL80211_IFTYPE_MESH_POINT && |
| iftype != NL80211_IFTYPE_AP_VLAN && |
| iftype != NL80211_IFTYPE_STATION)) |
| return -1; |
| if (iftype == NL80211_IFTYPE_MESH_POINT) { |
| if (mesh_flags == MESH_FLAGS_AE_A4) |
| return -1; |
| if (mesh_flags == MESH_FLAGS_AE_A5_A6) { |
| skb_copy_bits(skb, hdrlen + |
| offsetof(struct ieee80211s_hdr, eaddr1), |
| tmp.h_dest, 2 * ETH_ALEN); |
| } |
| hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); |
| } |
| break; |
| case cpu_to_le16(IEEE80211_FCTL_FROMDS): |
| if ((iftype != NL80211_IFTYPE_STATION && |
| iftype != NL80211_IFTYPE_P2P_CLIENT && |
| iftype != NL80211_IFTYPE_MESH_POINT) || |
| (is_multicast_ether_addr(tmp.h_dest) && |
| ether_addr_equal(tmp.h_source, addr))) |
| return -1; |
| if (iftype == NL80211_IFTYPE_MESH_POINT) { |
| if (mesh_flags == MESH_FLAGS_AE_A5_A6) |
| return -1; |
| if (mesh_flags == MESH_FLAGS_AE_A4) |
| skb_copy_bits(skb, hdrlen + |
| offsetof(struct ieee80211s_hdr, eaddr1), |
| tmp.h_source, ETH_ALEN); |
| hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); |
| } |
| break; |
| case cpu_to_le16(0): |
| if (iftype != NL80211_IFTYPE_ADHOC && |
| iftype != NL80211_IFTYPE_STATION && |
| iftype != NL80211_IFTYPE_OCB) |
| return -1; |
| break; |
| } |
| |
| skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); |
| tmp.h_proto = payload.proto; |
| |
| if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && |
| tmp.h_proto != htons(ETH_P_AARP) && |
| tmp.h_proto != htons(ETH_P_IPX)) || |
| ether_addr_equal(payload.hdr, bridge_tunnel_header))) |
| /* remove RFC1042 or Bridge-Tunnel encapsulation and |
| * replace EtherType */ |
| hdrlen += ETH_ALEN + 2; |
| else |
| tmp.h_proto = htons(skb->len - hdrlen); |
| |
| pskb_pull(skb, hdrlen); |
| |
| if (!ehdr) |
| ehdr = skb_push(skb, sizeof(struct ethhdr)); |
| memcpy(ehdr, &tmp, sizeof(tmp)); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); |
| |
| static void |
| __frame_add_frag(struct sk_buff *skb, struct page *page, |
| void *ptr, int len, int size) |
| { |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| int page_offset; |
| |
| get_page(page); |
| page_offset = ptr - page_address(page); |
| skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); |
| } |
| |
| static void |
| __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, |
| int offset, int len) |
| { |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| const skb_frag_t *frag = &sh->frags[0]; |
| struct page *frag_page; |
| void *frag_ptr; |
| int frag_len, frag_size; |
| int head_size = skb->len - skb->data_len; |
| int cur_len; |
| |
| frag_page = virt_to_head_page(skb->head); |
| frag_ptr = skb->data; |
| frag_size = head_size; |
| |
| while (offset >= frag_size) { |
| offset -= frag_size; |
| frag_page = skb_frag_page(frag); |
| frag_ptr = skb_frag_address(frag); |
| frag_size = skb_frag_size(frag); |
| frag++; |
| } |
| |
| frag_ptr += offset; |
| frag_len = frag_size - offset; |
| |
| cur_len = min(len, frag_len); |
| |
| __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); |
| len -= cur_len; |
| |
| while (len > 0) { |
| frag_len = skb_frag_size(frag); |
| cur_len = min(len, frag_len); |
| __frame_add_frag(frame, skb_frag_page(frag), |
| skb_frag_address(frag), cur_len, frag_len); |
| len -= cur_len; |
| frag++; |
| } |
| } |
| |
| static struct sk_buff * |
| __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, |
| int offset, int len, bool reuse_frag) |
| { |
| struct sk_buff *frame; |
| int cur_len = len; |
| |
| if (skb->len - offset < len) |
| return NULL; |
| |
| /* |
| * When reusing framents, copy some data to the head to simplify |
| * ethernet header handling and speed up protocol header processing |
| * in the stack later. |
| */ |
| if (reuse_frag) |
| cur_len = min_t(int, len, 32); |
| |
| /* |
| * Allocate and reserve two bytes more for payload |
| * alignment since sizeof(struct ethhdr) is 14. |
| */ |
| frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); |
| if (!frame) |
| return NULL; |
| |
| skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); |
| skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); |
| |
| len -= cur_len; |
| if (!len) |
| return frame; |
| |
| offset += cur_len; |
| __ieee80211_amsdu_copy_frag(skb, frame, offset, len); |
| |
| return frame; |
| } |
| |
| void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, |
| const u8 *addr, enum nl80211_iftype iftype, |
| const unsigned int extra_headroom, |
| const u8 *check_da, const u8 *check_sa) |
| { |
| unsigned int hlen = ALIGN(extra_headroom, 4); |
| struct sk_buff *frame = NULL; |
| u16 ethertype; |
| u8 *payload; |
| int offset = 0, remaining; |
| struct ethhdr eth; |
| bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); |
| bool reuse_skb = false; |
| bool last = false; |
| |
| while (!last) { |
| unsigned int subframe_len; |
| int len; |
| u8 padding; |
| |
| skb_copy_bits(skb, offset, ð, sizeof(eth)); |
| len = ntohs(eth.h_proto); |
| subframe_len = sizeof(struct ethhdr) + len; |
| padding = (4 - subframe_len) & 0x3; |
| |
| /* the last MSDU has no padding */ |
| remaining = skb->len - offset; |
| if (subframe_len > remaining) |
| goto purge; |
| |
| offset += sizeof(struct ethhdr); |
| last = remaining <= subframe_len + padding; |
| |
| /* FIXME: should we really accept multicast DA? */ |
| if ((check_da && !is_multicast_ether_addr(eth.h_dest) && |
| !ether_addr_equal(check_da, eth.h_dest)) || |
| (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { |
| offset += len + padding; |
| continue; |
| } |
| |
| /* reuse skb for the last subframe */ |
| if (!skb_is_nonlinear(skb) && !reuse_frag && last) { |
| skb_pull(skb, offset); |
| frame = skb; |
| reuse_skb = true; |
| } else { |
| frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, |
| reuse_frag); |
| if (!frame) |
| goto purge; |
| |
| offset += len + padding; |
| } |
| |
| skb_reset_network_header(frame); |
| frame->dev = skb->dev; |
| frame->priority = skb->priority; |
| |
| payload = frame->data; |
| ethertype = (payload[6] << 8) | payload[7]; |
| if (likely((ether_addr_equal(payload, rfc1042_header) && |
| ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || |
| ether_addr_equal(payload, bridge_tunnel_header))) { |
| eth.h_proto = htons(ethertype); |
| skb_pull(frame, ETH_ALEN + 2); |
| } |
| |
| memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); |
| __skb_queue_tail(list, frame); |
| } |
| |
| if (!reuse_skb) |
| dev_kfree_skb(skb); |
| |
| return; |
| |
| purge: |
| __skb_queue_purge(list); |
| dev_kfree_skb(skb); |
| } |
| EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); |
| |
| /* Given a data frame determine the 802.1p/1d tag to use. */ |
| unsigned int cfg80211_classify8021d(struct sk_buff *skb, |
| struct cfg80211_qos_map *qos_map) |
| { |
| unsigned int dscp; |
| unsigned char vlan_priority; |
| unsigned int ret; |
| |
| /* skb->priority values from 256->263 are magic values to |
| * directly indicate a specific 802.1d priority. This is used |
| * to allow 802.1d priority to be passed directly in from VLAN |
| * tags, etc. |
| */ |
| if (skb->priority >= 256 && skb->priority <= 263) { |
| ret = skb->priority - 256; |
| goto out; |
| } |
| |
| if (skb_vlan_tag_present(skb)) { |
| vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) |
| >> VLAN_PRIO_SHIFT; |
| if (vlan_priority > 0) { |
| ret = vlan_priority; |
| goto out; |
| } |
| } |
| |
| switch (skb->protocol) { |
| case htons(ETH_P_IP): |
| dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; |
| break; |
| case htons(ETH_P_IPV6): |
| dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; |
| break; |
| case htons(ETH_P_MPLS_UC): |
| case htons(ETH_P_MPLS_MC): { |
| struct mpls_label mpls_tmp, *mpls; |
| |
| mpls = skb_header_pointer(skb, sizeof(struct ethhdr), |
| sizeof(*mpls), &mpls_tmp); |
| if (!mpls) |
| return 0; |
| |
| ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) |
| >> MPLS_LS_TC_SHIFT; |
| goto out; |
| } |
| case htons(ETH_P_80221): |
| /* 802.21 is always network control traffic */ |
| return 7; |
| default: |
| return 0; |
| } |
| |
| if (qos_map) { |
| unsigned int i, tmp_dscp = dscp >> 2; |
| |
| for (i = 0; i < qos_map->num_des; i++) { |
| if (tmp_dscp == qos_map->dscp_exception[i].dscp) { |
| ret = qos_map->dscp_exception[i].up; |
| goto out; |
| } |
| } |
| |
| for (i = 0; i < 8; i++) { |
| if (tmp_dscp >= qos_map->up[i].low && |
| tmp_dscp <= qos_map->up[i].high) { |
| ret = i; |
| goto out; |
| } |
| } |
| } |
| |
| ret = dscp >> 5; |
| out: |
| return array_index_nospec(ret, IEEE80211_NUM_TIDS); |
| } |
| EXPORT_SYMBOL(cfg80211_classify8021d); |
| |
| const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) |
| { |
| const struct cfg80211_bss_ies *ies; |
| |
| ies = rcu_dereference(bss->ies); |
| if (!ies) |
| return NULL; |
| |
| return cfg80211_find_elem(id, ies->data, ies->len); |
| } |
| EXPORT_SYMBOL(ieee80211_bss_get_elem); |
| |
| void cfg80211_upload_connect_keys(struct wireless_dev *wdev) |
| { |
| struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); |
| struct net_device *dev = wdev->netdev; |
| int i; |
| |
| if (!wdev->connect_keys) |
| return; |
| |
| for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { |
| if (!wdev->connect_keys->params[i].cipher) |
| continue; |
| if (rdev_add_key(rdev, dev, i, false, NULL, |
| &wdev->connect_keys->params[i])) { |
| netdev_err(dev, "failed to set key %d\n", i); |
| continue; |
| } |
| if (wdev->connect_keys->def == i && |
| rdev_set_default_key(rdev, dev, i, true, true)) { |
| netdev_err(dev, "failed to set defkey %d\n", i); |
| continue; |
| } |
| } |
| |
| kzfree(wdev->connect_keys); |
| wdev->connect_keys = NULL; |
| } |
| |
| void cfg80211_process_wdev_events(struct wireless_dev *wdev) |
| { |
| struct cfg80211_event *ev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&wdev->event_lock, flags); |
| while (!list_empty(&wdev->event_list)) { |
| ev = list_first_entry(&wdev->event_list, |
| struct cfg80211_event, list); |
| list_del(&ev->list); |
| spin_unlock_irqrestore(&wdev->event_lock, flags); |
| |
| wdev_lock(wdev); |
| switch (ev->type) { |
| case EVENT_CONNECT_RESULT: |
| __cfg80211_connect_result( |
| wdev->netdev, |
| &ev->cr, |
| ev->cr.status == WLAN_STATUS_SUCCESS); |
| break; |
| case EVENT_ROAMED: |
| __cfg80211_roamed(wdev, &ev->rm); |
| break; |
| case EVENT_DISCONNECTED: |
| __cfg80211_disconnected(wdev->netdev, |
| ev->dc.ie, ev->dc.ie_len, |
| ev->dc.reason, |
| !ev->dc.locally_generated); |
| break; |
| case EVENT_IBSS_JOINED: |
| __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, |
| ev->ij.channel); |
| break; |
| case EVENT_STOPPED: |
| __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); |
| break; |
| case EVENT_PORT_AUTHORIZED: |
| __cfg80211_port_authorized(wdev, ev->pa.bssid); |
| break; |
| } |
| wdev_unlock(wdev); |
| |
| kfree(ev); |
| |
| spin_lock_irqsave(&wdev->event_lock, flags); |
| } |
| spin_unlock_irqrestore(&wdev->event_lock, flags); |
| } |
| |
| void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) |
| { |
| struct wireless_dev *wdev; |
| |
| ASSERT_RTNL(); |
| |
| list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) |
| cfg80211_process_wdev_events(wdev); |
| } |
| |
| int cfg80211_change_iface(struct cfg80211_registered_device *rdev, |
| struct net_device *dev, enum nl80211_iftype ntype, |
| struct vif_params *params) |
| { |
| int err; |
| enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; |
| |
| ASSERT_RTNL(); |
| |
| /* don't support changing VLANs, you just re-create them */ |
| if (otype == NL80211_IFTYPE_AP_VLAN) |
| return -EOPNOTSUPP; |
| |
| /* cannot change into P2P device or NAN */ |
| if (ntype == NL80211_IFTYPE_P2P_DEVICE || |
| ntype == NL80211_IFTYPE_NAN) |
| return -EOPNOTSUPP; |
| |
| if (!rdev->ops->change_virtual_intf || |
| !(rdev->wiphy.interface_modes & (1 << ntype))) |
| return -EOPNOTSUPP; |
| |
| /* if it's part of a bridge, reject changing type to station/ibss */ |
| if (netif_is_bridge_port(dev) && |
| (ntype == NL80211_IFTYPE_ADHOC || |
| ntype == NL80211_IFTYPE_STATION || |
| ntype == NL80211_IFTYPE_P2P_CLIENT)) |
| return -EBUSY; |
| |
| if (ntype != otype) { |
| dev->ieee80211_ptr->use_4addr = false; |
| dev->ieee80211_ptr->mesh_id_up_len = 0; |
| wdev_lock(dev->ieee80211_ptr); |
| rdev_set_qos_map(rdev, dev, NULL); |
| wdev_unlock(dev->ieee80211_ptr); |
| |
| switch (otype) { |
| case NL80211_IFTYPE_AP: |
| cfg80211_stop_ap(rdev, dev, true); |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| cfg80211_leave_ibss(rdev, dev, false); |
| break; |
| case NL80211_IFTYPE_STATION: |
| case NL80211_IFTYPE_P2P_CLIENT: |
| wdev_lock(dev->ieee80211_ptr); |
| cfg80211_disconnect(rdev, dev, |
| WLAN_REASON_DEAUTH_LEAVING, true); |
| wdev_unlock(dev->ieee80211_ptr); |
| break; |
| case NL80211_IFTYPE_MESH_POINT: |
| /* mesh should be handled? */ |
| break; |
| default: |
| break; |
| } |
| |
| cfg80211_process_rdev_events(rdev); |
| cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); |
| } |
| |
| err = rdev_change_virtual_intf(rdev, dev, ntype, params); |
| |
| WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); |
| |
| if (!err && params && params->use_4addr != -1) |
| dev->ieee80211_ptr->use_4addr = params->use_4addr; |
| |
| if (!err) { |
| dev->priv_flags &= ~IFF_DONT_BRIDGE; |
| switch (ntype) { |
| case NL80211_IFTYPE_STATION: |
| if (dev->ieee80211_ptr->use_4addr) |
| break; |
| /* fall through */ |
| case NL80211_IFTYPE_OCB: |
| case NL80211_IFTYPE_P2P_CLIENT: |
| case NL80211_IFTYPE_ADHOC: |
| dev->priv_flags |= IFF_DONT_BRIDGE; |
| break; |
| case NL80211_IFTYPE_P2P_GO: |
| case NL80211_IFTYPE_AP: |
| case NL80211_IFTYPE_AP_VLAN: |
| case NL80211_IFTYPE_WDS: |
| case NL80211_IFTYPE_MESH_POINT: |
| /* bridging OK */ |
| break; |
| case NL80211_IFTYPE_MONITOR: |
| /* monitor can't bridge anyway */ |
| break; |
| case NL80211_IFTYPE_UNSPECIFIED: |
| case NUM_NL80211_IFTYPES: |
| /* not happening */ |
| break; |
| case NL80211_IFTYPE_P2P_DEVICE: |
| case NL80211_IFTYPE_NAN: |
| WARN_ON(1); |
| break; |
| } |
| } |
| |
| if (!err && ntype != otype && netif_running(dev)) { |
| cfg80211_update_iface_num(rdev, ntype, 1); |
| cfg80211_update_iface_num(rdev, otype, -1); |
| } |
| |
| return err; |
| } |
| |
| static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) |
| { |
| int modulation, streams, bitrate; |
| |
| /* the formula below does only work for MCS values smaller than 32 */ |
| if (WARN_ON_ONCE(rate->mcs >= 32)) |
| return 0; |
| |
| modulation = rate->mcs & 7; |
| streams = (rate->mcs >> 3) + 1; |
| |
| bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; |
| |
| if (modulation < 4) |
| bitrate *= (modulation + 1); |
| else if (modulation == 4) |
| bitrate *= (modulation + 2); |
| else |
| bitrate *= (modulation + 3); |
| |
| bitrate *= streams; |
| |
| if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) |
| bitrate = (bitrate / 9) * 10; |
| |
| /* do NOT round down here */ |
| return (bitrate + 50000) / 100000; |
| } |
| |
| static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) |
| { |
| static const u32 __mcs2bitrate[] = { |
| /* control PHY */ |
| [0] = 275, |
| /* SC PHY */ |
| [1] = 3850, |
| [2] = 7700, |
| [3] = 9625, |
| [4] = 11550, |
| [5] = 12512, /* 1251.25 mbps */ |
| [6] = 15400, |
| [7] = 19250, |
| [8] = 23100, |
| [9] = 25025, |
| [10] = 30800, |
| [11] = 38500, |
| [12] = 46200, |
| /* OFDM PHY */ |
| [13] = 6930, |
| [14] = 8662, /* 866.25 mbps */ |
| [15] = 13860, |
| [16] = 17325, |
| [17] = 20790, |
| [18] = 27720, |
| [19] = 34650, |
| [20] = 41580, |
| [21] = 45045, |
| [22] = 51975, |
| [23] = 62370, |
| [24] = 67568, /* 6756.75 mbps */ |
| /* LP-SC PHY */ |
| [25] = 6260, |
| [26] = 8340, |
| [27] = 11120, |
| [28] = 12510, |
| [29] = 16680, |
| [30] = 22240, |
| [31] = 25030, |
| }; |
| |
| if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) |
| return 0; |
| |
| return __mcs2bitrate[rate->mcs]; |
| } |
| |
| static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) |
| { |
| static const u32 __mcs2bitrate[] = { |
| /* control PHY */ |
| [0] = 275, |
| /* SC PHY */ |
| [1] = 3850, |
| [2] = 7700, |
| [3] = 9625, |
| [4] = 11550, |
| [5] = 12512, /* 1251.25 mbps */ |
| [6] = 13475, |
| [7] = 15400, |
| [8] = 19250, |
| [9] = 23100, |
| [10] = 25025, |
| [11] = 26950, |
| [12] = 30800, |
| [13] = 38500, |
| [14] = 46200, |
| [15] = 50050, |
| [16] = 53900, |
| [17] = 57750, |
| [18] = 69300, |
| [19] = 75075, |
| [20] = 80850, |
| }; |
| |
| if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) |
| return 0; |
| |
| return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; |
| } |
| |
| static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) |
| { |
| static const u32 base[4][10] = { |
| { 6500000, |
| 13000000, |
| 19500000, |
| 26000000, |
| 39000000, |
| 52000000, |
| 58500000, |
| 65000000, |
| 78000000, |
| /* not in the spec, but some devices use this: */ |
| 86500000, |
| }, |
| { 13500000, |
| 27000000, |
| 40500000, |
| 54000000, |
| 81000000, |
| 108000000, |
| 121500000, |
| 135000000, |
| 162000000, |
| 180000000, |
| }, |
| { 29300000, |
| 58500000, |
| 87800000, |
| 117000000, |
| 175500000, |
| 234000000, |
| 263300000, |
| 292500000, |
| 351000000, |
| 390000000, |
| }, |
| { 58500000, |
| 117000000, |
| 175500000, |
| 234000000, |
| 351000000, |
| 468000000, |
| 526500000, |
| 585000000, |
| 702000000, |
| 780000000, |
| }, |
| }; |
| u32 bitrate; |
| int idx; |
| |
| if (rate->mcs > 9) |
| goto warn; |
| |
| switch (rate->bw) { |
| case RATE_INFO_BW_160: |
| idx = 3; |
| break; |
| case RATE_INFO_BW_80: |
| idx = 2; |
| break; |
| case RATE_INFO_BW_40: |
| idx = 1; |
| break; |
| case RATE_INFO_BW_5: |
| case RATE_INFO_BW_10: |
| default: |
| goto warn; |
| case RATE_INFO_BW_20: |
| idx = 0; |
| } |
| |
| bitrate = base[idx][rate->mcs]; |
| bitrate *= rate->nss; |
| |
| if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) |
| bitrate = (bitrate / 9) * 10; |
| |
| /* do NOT round down here */ |
| return (bitrate + 50000) / 100000; |
| warn: |
| WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", |
| rate->bw, rate->mcs, rate->nss); |
| return 0; |
| } |
| |
| static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) |
| { |
| #define SCALE 2048 |
| u16 mcs_divisors[12] = { |
| 34133, /* 16.666666... */ |
| 17067, /* 8.333333... */ |
| 11378, /* 5.555555... */ |
| 8533, /* 4.166666... */ |
| 5689, /* 2.777777... */ |
| 4267, /* 2.083333... */ |
| 3923, /* 1.851851... */ |
| 3413, /* 1.666666... */ |
| 2844, /* 1.388888... */ |
| 2560, /* 1.250000... */ |
| 2276, /* 1.111111... */ |
| 2048, /* 1.000000... */ |
| }; |
| u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; |
| u32 rates_969[3] = { 480388888, 453700000, 408333333 }; |
| u32 rates_484[3] = { 229411111, 216666666, 195000000 }; |
| u32 rates_242[3] = { 114711111, 108333333, 97500000 }; |
| u32 rates_106[3] = { 40000000, 37777777, 34000000 }; |
| u32 rates_52[3] = { 18820000, 17777777, 16000000 }; |
| u32 rates_26[3] = { 9411111, 8888888, 8000000 }; |
| u64 tmp; |
| u32 result; |
| |
| if (WARN_ON_ONCE(rate->mcs > 11)) |
| return 0; |
| |
| if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) |
| return 0; |
| if (WARN_ON_ONCE(rate->he_ru_alloc > |
| NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) |
| return 0; |
| if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) |
| return 0; |
| |
| if (rate->bw == RATE_INFO_BW_160) |
| result = rates_160M[rate->he_gi]; |
| else if (rate->bw == RATE_INFO_BW_80 || |
| (rate->bw == RATE_INFO_BW_HE_RU && |
| rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) |
| result = rates_969[rate->he_gi]; |
| else if (rate->bw == RATE_INFO_BW_40 || |
| (rate->bw == RATE_INFO_BW_HE_RU && |
| rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) |
| result = rates_484[rate->he_gi]; |
| else if (rate->bw == RATE_INFO_BW_20 || |
| (rate->bw == RATE_INFO_BW_HE_RU && |
| rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) |
| result = rates_242[rate->he_gi]; |
| else if (rate->bw == RATE_INFO_BW_HE_RU && |
| rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) |
| result = rates_106[rate->he_gi]; |
| else if (rate->bw == RATE_INFO_BW_HE_RU && |
| rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) |
| result = rates_52[rate->he_gi]; |
| else if (rate->bw == RATE_INFO_BW_HE_RU && |
| rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) |
| result = rates_26[rate->he_gi]; |
| else { |
| WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", |
| rate->bw, rate->he_ru_alloc); |
| return 0; |
| } |
| |
| /* now scale to the appropriate MCS */ |
| tmp = result; |
| tmp *= SCALE; |
| do_div(tmp, mcs_divisors[rate->mcs]); |
| result = tmp; |
| |
| /* and take NSS, DCM into account */ |
| result = (result * rate->nss) / 8; |
| if (rate->he_dcm) |
| result /= 2; |
| |
| return result / 10000; |
| } |
| |
| u32 cfg80211_calculate_bitrate(struct rate_info *rate) |
| { |
| if (rate->flags & RATE_INFO_FLAGS_MCS) |
| return cfg80211_calculate_bitrate_ht(rate); |
| if (rate->flags & RATE_INFO_FLAGS_DMG) |
| return cfg80211_calculate_bitrate_dmg(rate); |
| if (rate->flags & RATE_INFO_FLAGS_EDMG) |
| return cfg80211_calculate_bitrate_edmg(rate); |
| if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) |
| return cfg80211_calculate_bitrate_vht(rate); |
| if (rate->flags & RATE_INFO_FLAGS_HE_MCS) |
| return cfg80211_calculate_bitrate_he(rate); |
| |
| return rate->legacy; |
| } |
| EXPORT_SYMBOL(cfg80211_calculate_bitrate); |
| |
| int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, |
| enum ieee80211_p2p_attr_id attr, |
| u8 *buf, unsigned int bufsize) |
| { |
| u8 *out = buf; |
| u16 attr_remaining = 0; |
| bool desired_attr = false; |
| u16 desired_len = 0; |
| |
| while (len > 0) { |
| unsigned int iedatalen; |
| unsigned int copy; |
| const u8 *iedata; |
| |
| if (len < 2) |
| return -EILSEQ; |
| iedatalen = ies[1]; |
| if (iedatalen + 2 > len) |
| return -EILSEQ; |
| |
| if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) |
| goto cont; |
| |
| if (iedatalen < 4) |
| goto cont; |
| |
| iedata = ies + 2; |
| |
| /* check WFA OUI, P2P subtype */ |
| if (iedata[0] != 0x50 || iedata[1] != 0x6f || |
| iedata[2] != 0x9a || iedata[3] != 0x09) |
| goto cont; |
| |
| iedatalen -= 4; |
| iedata += 4; |
| |
| /* check attribute continuation into this IE */ |
| copy = min_t(unsigned int, attr_remaining, iedatalen); |
| if (copy && desired_attr) { |
| desired_len += copy; |
| if (out) { |
| memcpy(out, iedata, min(bufsize, copy)); |
| out += min(bufsize, copy); |
| bufsize -= min(bufsize, copy); |
| } |
| |
| |
| if (copy == attr_remaining) |
| return desired_len; |
| } |
| |
| attr_remaining -= copy; |
| if (attr_remaining) |
| goto cont; |
| |
| iedatalen -= copy; |
| iedata += copy; |
| |
| while (iedatalen > 0) { |
| u16 attr_len; |
| |
| /* P2P attribute ID & size must fit */ |
| if (iedatalen < 3) |
| return -EILSEQ; |
| desired_attr = iedata[0] == attr; |
| attr_len = get_unaligned_le16(iedata + 1); |
| iedatalen -= 3; |
| iedata += 3; |
| |
| copy = min_t(unsigned int, attr_len, iedatalen); |
| |
| if (desired_attr) { |
| desired_len += copy; |
| if (out) { |
| memcpy(out, iedata, min(bufsize, copy)); |
| out += min(bufsize, copy); |
| bufsize -= min(bufsize, copy); |
| } |
| |
| if (copy == attr_len) |
| return desired_len; |
| } |
| |
| iedata += copy; |
| iedatalen -= copy; |
| attr_remaining = attr_len - copy; |
| } |
| |
| cont: |
| len -= ies[1] + 2; |
| ies += ies[1] + 2; |
| } |
| |
| if (attr_remaining && desired_attr) |
| return -EILSEQ; |
| |
| return -ENOENT; |
| } |
| EXPORT_SYMBOL(cfg80211_get_p2p_attr); |
| |
| static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) |
| { |
| int i; |
| |
| /* Make sure array values are legal */ |
| if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) |
| return false; |
| |
| i = 0; |
| while (i < n_ids) { |
| if (ids[i] == WLAN_EID_EXTENSION) { |
| if (id_ext && (ids[i + 1] == id)) |
| return true; |
| |
| i += 2; |
| continue; |
| } |
| |
| if (ids[i] == id && !id_ext) |
| return true; |
| |
| i++; |
| } |
| return false; |
| } |
| |
| static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) |
| { |
| /* we assume a validly formed IEs buffer */ |
| u8 len = ies[pos + 1]; |
| |
| pos += 2 + len; |
| |
| /* the IE itself must have 255 bytes for fragments to follow */ |
| if (len < 255) |
| return pos; |
| |
| while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { |
| len = ies[pos + 1]; |
| pos += 2 + len; |
| } |
| |
| return pos; |
| } |
| |
| size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, |
| const u8 *ids, int n_ids, |
| const u8 *after_ric, int n_after_ric, |
| size_t offset) |
| { |
| size_t pos = offset; |
| |
| while (pos < ielen) { |
| u8 ext = 0; |
| |
| if (ies[pos] == WLAN_EID_EXTENSION) |
| ext = 2; |
| if ((pos + ext) >= ielen) |
| break; |
| |
| if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], |
| ies[pos] == WLAN_EID_EXTENSION)) |
| break; |
| |
| if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { |
| pos = skip_ie(ies, ielen, pos); |
| |
| while (pos < ielen) { |
| if (ies[pos] == WLAN_EID_EXTENSION) |
| ext = 2; |
| else |
| ext = 0; |
| |
| if ((pos + ext) >= ielen) |
| break; |
| |
| if (!ieee80211_id_in_list(after_ric, |
| n_after_ric, |
| ies[pos + ext], |
| ext == 2)) |
| pos = skip_ie(ies, ielen, pos); |
| else |
| break; |
| } |
| } else { |
| pos = skip_ie(ies, ielen, pos); |
| } |
| } |
| |
| return pos; |
| } |
| EXPORT_SYMBOL(ieee80211_ie_split_ric); |
| |
| bool ieee80211_operating_class_to_band(u8 operating_class, |
| enum nl80211_band *band) |
| { |
| switch (operating_class) { |
| case 112: |
| case 115 ... 127: |
| case 128 ... 130: |
| *band = NL80211_BAND_5GHZ; |
| return true; |
| case 131 ... 135: |
| *band = NL80211_BAND_6GHZ; |
| return true; |
| case 81: |
| case 82: |
| case 83: |
| case 84: |
| *band = NL80211_BAND_2GHZ; |
| return true; |
| case 180: |
| *band = NL80211_BAND_60GHZ; |
| return true; |
| } |
| |
| return false; |
| } |
| EXPORT_SYMBOL(ieee80211_operating_class_to_band); |
| |
| bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, |
| u8 *op_class) |
| { |
| u8 vht_opclass; |
| u32 freq = chandef->center_freq1; |
| |
| if (freq >= 2412 && freq <= 2472) { |
| if (chandef->width > NL80211_CHAN_WIDTH_40) |
| return false; |
| |
| /* 2.407 GHz, channels 1..13 */ |
| if (chandef->width == NL80211_CHAN_WIDTH_40) { |
| if (freq > chandef->chan->center_freq) |
| *op_class = 83; /* HT40+ */ |
| else |
| *op_class = 84; /* HT40- */ |
| } else { |
| *op_class = 81; |
| } |
| |
| return true; |
| } |
| |
| if (freq == 2484) { |
| /* channel 14 is only for IEEE 802.11b */ |
| if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) |
| return false; |
| |
| *op_class = 82; /* channel 14 */ |
| return true; |
| } |
| |
| switch (chandef->width) { |
| case NL80211_CHAN_WIDTH_80: |
| vht_opclass = 128; |
| break; |
| case NL80211_CHAN_WIDTH_160: |
| vht_opclass = 129; |
| break; |
| case NL80211_CHAN_WIDTH_80P80: |
| vht_opclass = 130; |
| break; |
| case NL80211_CHAN_WIDTH_10: |
| case NL80211_CHAN_WIDTH_5: |
| return false; /* unsupported for now */ |
| default: |
| vht_opclass = 0; |
| break; |
| } |
| |
| /* 5 GHz, channels 36..48 */ |
| if (freq >= 5180 && freq <= 5240) { |
| if (vht_opclass) { |
| *op_class = vht_opclass; |
| } else if (chandef->width == NL80211_CHAN_WIDTH_40) { |
| if (freq > chandef->chan->center_freq) |
| *op_class = 116; |
| else |
| *op_class = 117; |
| } else { |
| *op_class = 115; |
| } |
| |
| return true; |
| } |
| |
| /* 5 GHz, channels 52..64 */ |
| if (freq >= 5260 && freq <= 5320) { |
| if (vht_opclass) { |
| *op_class = vht_opclass; |
| } else if (chandef->width == NL80211_CHAN_WIDTH_40) { |
| if (freq > chandef->chan->center_freq) |
| *op_class = 119; |
| else |
| *op_class = 120; |
| } else { |
| *op_class = 118; |
| } |
| |
| return true; |
| } |
| |
| /* 5 GHz, channels 100..144 */ |
| if (freq >= 5500 && freq <= 5720) { |
| if (vht_opclass) { |
| *op_class = vht_opclass; |
| } else if (chandef->width == NL80211_CHAN_WIDTH_40) { |
| if (freq > chandef->chan->center_freq) |
| *op_class = 122; |
| else |
| *op_class = 123; |
| } else { |
| *op_class = 121; |
| } |
| |
| return true; |
| } |
| |
| /* 5 GHz, channels 149..169 */ |
| if (freq >= 5745 && freq <= 5845) { |
| if (vht_opclass) { |
| *op_class = vht_opclass; |
| } else if (chandef->width == NL80211_CHAN_WIDTH_40) { |
| if (freq > chandef->chan->center_freq) |
| *op_class = 126; |
| else |
| *op_class = 127; |
| } else if (freq <= 5805) { |
| *op_class = 124; |
| } else { |
| *op_class = 125; |
| } |
| |
| return true; |
| } |
| |
| /* 56.16 GHz, channel 1..4 */ |
| if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { |
| if (chandef->width >= NL80211_CHAN_WIDTH_40) |
| return false; |
| |
| *op_class = 180; |
| return true; |
| } |
| |
| /* not supported yet */ |
| return false; |
| } |
| EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); |
| |
| static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, |
| u32 *beacon_int_gcd, |
| bool *beacon_int_different) |
| { |
| struct wireless_dev *wdev; |
| |
| *beacon_int_gcd = 0; |
| *beacon_int_different = false; |
| |
| list_for_each_entry(wdev, &wiphy->wdev_list, list) { |
| if (!wdev->beacon_interval) |
| continue; |
| |
| if (!*beacon_int_gcd) { |
| *beacon_int_gcd = wdev->beacon_interval; |
| continue; |
| } |
| |
| if (wdev->beacon_interval == *beacon_int_gcd) |
| continue; |
| |
| *beacon_int_different = true; |
| *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); |
| } |
| |
| if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { |
| if (*beacon_int_gcd) |
| *beacon_int_different = true; |
| *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); |
| } |
| } |
| |
| int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, |
| enum nl80211_iftype iftype, u32 beacon_int) |
| { |
| /* |
| * This is just a basic pre-condition check; if interface combinations |
| * are possible the driver must already be checking those with a call |
| * to cfg80211_check_combinations(), in which case we'll validate more |
| * through the cfg80211_calculate_bi_data() call and code in |
| * cfg80211_iter_combinations(). |
| */ |
| |
| if (beacon_int < 10 || beacon_int > 10000) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int cfg80211_iter_combinations(struct wiphy *wiphy, |
| struct iface_combination_params *params, |
| void (*iter)(const struct ieee80211_iface_combination *c, |
| void *data), |
| void *data) |
| { |
| const struct ieee80211_regdomain *regdom; |
| enum nl80211_dfs_regions region = 0; |
| int i, j, iftype; |
| int num_interfaces = 0; |
| u32 used_iftypes = 0; |
| u32 beacon_int_gcd; |
| bool beacon_int_different; |
| |
| /* |
| * This is a bit strange, since the iteration used to rely only on |
| * the data given by the driver, but here it now relies on context, |
| * in form of the currently operating interfaces. |
| * This is OK for all current users, and saves us from having to |
| * push the GCD calculations into all the drivers. |
| * In the future, this should probably rely more on data that's in |
| * cfg80211 already - the only thing not would appear to be any new |
| * interfaces (while being brought up) and channel/radar data. |
| */ |
| cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, |
| &beacon_int_gcd, &beacon_int_different); |
| |
| if (params->radar_detect) { |
| rcu_read_lock(); |
| regdom = rcu_dereference(cfg80211_regdomain); |
| if (regdom) |
| region = regdom->dfs_region; |
| rcu_read_unlock(); |
| } |
| |
| for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { |
| num_interfaces += params->iftype_num[iftype]; |
| if (params->iftype_num[iftype] > 0 && |
| !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) |
| used_iftypes |= BIT(iftype); |
| } |
| |
| for (i = 0; i < wiphy->n_iface_combinations; i++) { |
| const struct ieee80211_iface_combination *c; |
| struct ieee80211_iface_limit *limits; |
| u32 all_iftypes = 0; |
| |
| c = &wiphy->iface_combinations[i]; |
| |
| if (num_interfaces > c->max_interfaces) |
| continue; |
| if (params->num_different_channels > c->num_different_channels) |
| continue; |
| |
| limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, |
| GFP_KERNEL); |
| if (!limits) |
| return -ENOMEM; |
| |
| for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { |
| if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) |
| continue; |
| for (j = 0; j < c->n_limits; j++) { |
| all_iftypes |= limits[j].types; |
| if (!(limits[j].types & BIT(iftype))) |
| continue; |
| if (limits[j].max < params->iftype_num[iftype]) |
| goto cont; |
| limits[j].max -= params->iftype_num[iftype]; |
| } |
| } |
| |
| if (params->radar_detect != |
| (c->radar_detect_widths & params->radar_detect)) |
| goto cont; |
| |
| if (params->radar_detect && c->radar_detect_regions && |
| !(c->radar_detect_regions & BIT(region))) |
| goto cont; |
| |
| /* Finally check that all iftypes that we're currently |
| * using are actually part of this combination. If they |
| * aren't then we can't use this combination and have |
| * to continue to the next. |
| */ |
| if ((all_iftypes & used_iftypes) != used_iftypes) |
| goto cont; |
| |
| if (beacon_int_gcd) { |
| if (c->beacon_int_min_gcd && |
| beacon_int_gcd < c->beacon_int_min_gcd) |
| goto cont; |
| if (!c->beacon_int_min_gcd && beacon_int_different) |
| goto cont; |
| } |
| |
| /* This combination covered all interface types and |
| * supported the requested numbers, so we're good. |
| */ |
| |
| (*iter)(c, data); |
| cont: |
| kfree(limits); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(cfg80211_iter_combinations); |
| |
| static void |
| cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, |
| void *data) |
| { |
| int *num = data; |
| (*num)++; |
| } |
| |
| int cfg80211_check_combinations(struct wiphy *wiphy, |
| struct iface_combination_params *params) |
| { |
| int err, num = 0; |
| |
| err = cfg80211_iter_combinations(wiphy, params, |
| cfg80211_iter_sum_ifcombs, &num); |
| if (err) |
| return err; |
| if (num == 0) |
| return -EBUSY; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(cfg80211_check_combinations); |
| |
| int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, |
| const u8 *rates, unsigned int n_rates, |
| u32 *mask) |
| { |
| int i, j; |
| |
| if (!sband) |
| return -EINVAL; |
| |
| if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) |
| return -EINVAL; |
| |
| *mask = 0; |
| |
| for (i = 0; i < n_rates; i++) { |
| int rate = (rates[i] & 0x7f) * 5; |
| bool found = false; |
| |
| for (j = 0; j < sband->n_bitrates; j++) { |
| if (sband->bitrates[j].bitrate == rate) { |
| found = true; |
| *mask |= BIT(j); |
| break; |
| } |
| } |
| if (!found) |
| return -EINVAL; |
| } |
| |
| /* |
| * mask must have at least one bit set here since we |
| * didn't accept a 0-length rates array nor allowed |
| * entries in the array that didn't exist |
| */ |
| |
| return 0; |
| } |
| |
| unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) |
| { |
| enum nl80211_band band; |
| unsigned int n_channels = 0; |
| |
| for (band = 0; band < NUM_NL80211_BANDS; band++) |
| if (wiphy->bands[band]) |
| n_channels += wiphy->bands[band]->n_channels; |
| |
| return n_channels; |
| } |
| EXPORT_SYMBOL(ieee80211_get_num_supported_channels); |
| |
| int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, |
| struct station_info *sinfo) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct wireless_dev *wdev; |
| |
| wdev = dev->ieee80211_ptr; |
| if (!wdev) |
| return -EOPNOTSUPP; |
| |
| rdev = wiphy_to_rdev(wdev->wiphy); |
| if (!rdev->ops->get_station) |
| return -EOPNOTSUPP; |
| |
| memset(sinfo, 0, sizeof(*sinfo)); |
| |
| return rdev_get_station(rdev, dev, mac_addr, sinfo); |
| } |
| EXPORT_SYMBOL(cfg80211_get_station); |
| |
| void cfg80211_free_nan_func(struct cfg80211_nan_func *f) |
| { |
| int i; |
| |
| if (!f) |
| return; |
| |
| kfree(f->serv_spec_info); |
| kfree(f->srf_bf); |
| kfree(f->srf_macs); |
| for (i = 0; i < f->num_rx_filters; i++) |
| kfree(f->rx_filters[i].filter); |
| |
| for (i = 0; i < f->num_tx_filters; i++) |
| kfree(f->tx_filters[i].filter); |
| |
| kfree(f->rx_filters); |
| kfree(f->tx_filters); |
| kfree(f); |
| } |
| EXPORT_SYMBOL(cfg80211_free_nan_func); |
| |
| bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, |
| u32 center_freq_khz, u32 bw_khz) |
| { |
| u32 start_freq_khz, end_freq_khz; |
| |
| start_freq_khz = center_freq_khz - (bw_khz / 2); |
| end_freq_khz = center_freq_khz + (bw_khz / 2); |
| |
| if (start_freq_khz >= freq_range->start_freq_khz && |
| end_freq_khz <= freq_range->end_freq_khz) |
| return true; |
| |
| return false; |
| } |
| |
| int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) |
| { |
| sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, |
| sizeof(*(sinfo->pertid)), |
| gfp); |
| if (!sinfo->pertid) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); |
| |
| /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ |
| /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ |
| const unsigned char rfc1042_header[] __aligned(2) = |
| { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; |
| EXPORT_SYMBOL(rfc1042_header); |
| |
| /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ |
| const unsigned char bridge_tunnel_header[] __aligned(2) = |
| { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; |
| EXPORT_SYMBOL(bridge_tunnel_header); |
| |
| /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ |
| struct iapp_layer2_update { |
| u8 da[ETH_ALEN]; /* broadcast */ |
| u8 sa[ETH_ALEN]; /* STA addr */ |
| __be16 len; /* 6 */ |
| u8 dsap; /* 0 */ |
| u8 ssap; /* 0 */ |
| u8 control; |
| u8 xid_info[3]; |
| } __packed; |
| |
| void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) |
| { |
| struct iapp_layer2_update *msg; |
| struct sk_buff *skb; |
| |
| /* Send Level 2 Update Frame to update forwarding tables in layer 2 |
| * bridge devices */ |
| |
| skb = dev_alloc_skb(sizeof(*msg)); |
| if (!skb) |
| return; |
| msg = skb_put(skb, sizeof(*msg)); |
| |
| /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) |
| * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ |
| |
| eth_broadcast_addr(msg->da); |
| ether_addr_copy(msg->sa, addr); |
| msg->len = htons(6); |
| msg->dsap = 0; |
| msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ |
| msg->control = 0xaf; /* XID response lsb.1111F101. |
| * F=0 (no poll command; unsolicited frame) */ |
| msg->xid_info[0] = 0x81; /* XID format identifier */ |
| msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ |
| msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ |
| |
| skb->dev = dev; |
| skb->protocol = eth_type_trans(skb, dev); |
| memset(skb->cb, 0, sizeof(skb->cb)); |
| netif_rx_ni(skb); |
| } |
| EXPORT_SYMBOL(cfg80211_send_layer2_update); |
| |
| int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, |
| enum ieee80211_vht_chanwidth bw, |
| int mcs, bool ext_nss_bw_capable, |
| unsigned int max_vht_nss) |
| { |
| u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); |
| int ext_nss_bw; |
| int supp_width; |
| int i, mcs_encoding; |
| |
| if (map == 0xffff) |
| return 0; |
| |
| if (WARN_ON(mcs > 9 || max_vht_nss > 8)) |
| return 0; |
| if (mcs <= 7) |
| mcs_encoding = 0; |
| else if (mcs == 8) |
| mcs_encoding = 1; |
| else |
| mcs_encoding = 2; |
| |
| if (!max_vht_nss) { |
| /* find max_vht_nss for the given MCS */ |
| for (i = 7; i >= 0; i--) { |
| int supp = (map >> (2 * i)) & 3; |
| |
| if (supp == 3) |
| continue; |
| |
| if (supp >= mcs_encoding) { |
| max_vht_nss = i + 1; |
| break; |
| } |
| } |
| } |
| |
| if (!(cap->supp_mcs.tx_mcs_map & |
| cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) |
| return max_vht_nss; |
| |
| ext_nss_bw = le32_get_bits(cap->vht_cap_info, |
| IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); |
| supp_width = le32_get_bits(cap->vht_cap_info, |
| IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); |
| |
| /* if not capable, treat ext_nss_bw as 0 */ |
| if (!ext_nss_bw_capable) |
| ext_nss_bw = 0; |
| |
| /* This is invalid */ |
| if (supp_width == 3) |
| return 0; |
| |
| /* This is an invalid combination so pretend nothing is supported */ |
| if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) |
| return 0; |
| |
| /* |
| * Cover all the special cases according to IEEE 802.11-2016 |
| * Table 9-250. All other cases are either factor of 1 or not |
| * valid/supported. |
| */ |
| switch (bw) { |
| case IEEE80211_VHT_CHANWIDTH_USE_HT: |
| case IEEE80211_VHT_CHANWIDTH_80MHZ: |
| if ((supp_width == 1 || supp_width == 2) && |
| ext_nss_bw == 3) |
| return 2 * max_vht_nss; |
| break; |
| case IEEE80211_VHT_CHANWIDTH_160MHZ: |
| if (supp_width == 0 && |
| (ext_nss_bw == 1 || ext_nss_bw == 2)) |
| return max_vht_nss / 2; |
| if (supp_width == 0 && |
| ext_nss_bw == 3) |
| return (3 * max_vht_nss) / 4; |
| if (supp_width == 1 && |
| ext_nss_bw == 3) |
| return 2 * max_vht_nss; |
| break; |
| case IEEE80211_VHT_CHANWIDTH_80P80MHZ: |
| if (supp_width == 0 && ext_nss_bw == 1) |
| return 0; /* not possible */ |
| if (supp_width == 0 && |
| ext_nss_bw == 2) |
| return max_vht_nss / 2; |
| if (supp_width == 0 && |
| ext_nss_bw == 3) |
| return (3 * max_vht_nss) / 4; |
| if (supp_width == 1 && |
| ext_nss_bw == 0) |
| return 0; /* not possible */ |
| if (supp_width == 1 && |
| ext_nss_bw == 1) |
| return max_vht_nss / 2; |
| if (supp_width == 1 && |
| ext_nss_bw == 2) |
| return (3 * max_vht_nss) / 4; |
| break; |
| } |
| |
| /* not covered or invalid combination received */ |
| return max_vht_nss; |
| } |
| EXPORT_SYMBOL(ieee80211_get_vht_max_nss); |
| |
| bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, |
| bool is_4addr, u8 check_swif) |
| |
| { |
| bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; |
| |
| switch (check_swif) { |
| case 0: |
| if (is_vlan && is_4addr) |
| return wiphy->flags & WIPHY_FLAG_4ADDR_AP; |
| return wiphy->interface_modes & BIT(iftype); |
| case 1: |
| if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) |
| return wiphy->flags & WIPHY_FLAG_4ADDR_AP; |
| return wiphy->software_iftypes & BIT(iftype); |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| EXPORT_SYMBOL(cfg80211_iftype_allowed); |