| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Based on arch/arm/mm/context.c |
| * |
| * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. |
| * Copyright (C) 2012 ARM Ltd. |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/bitops.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/mmu_context.h> |
| #include <asm/smp.h> |
| #include <asm/tlbflush.h> |
| |
| static u32 asid_bits; |
| static DEFINE_RAW_SPINLOCK(cpu_asid_lock); |
| |
| static atomic64_t asid_generation; |
| static unsigned long *asid_map; |
| |
| static DEFINE_PER_CPU(atomic64_t, active_asids); |
| static DEFINE_PER_CPU(u64, reserved_asids); |
| static cpumask_t tlb_flush_pending; |
| |
| #define ASID_MASK (~GENMASK(asid_bits - 1, 0)) |
| #define ASID_FIRST_VERSION (1UL << asid_bits) |
| |
| #define NUM_USER_ASIDS ASID_FIRST_VERSION |
| #define asid2idx(asid) ((asid) & ~ASID_MASK) |
| #define idx2asid(idx) asid2idx(idx) |
| |
| /* Get the ASIDBits supported by the current CPU */ |
| static u32 get_cpu_asid_bits(void) |
| { |
| u32 asid; |
| int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1), |
| ID_AA64MMFR0_ASID_SHIFT); |
| |
| switch (fld) { |
| default: |
| pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n", |
| smp_processor_id(), fld); |
| fallthrough; |
| case 0: |
| asid = 8; |
| break; |
| case 2: |
| asid = 16; |
| } |
| |
| return asid; |
| } |
| |
| /* Check if the current cpu's ASIDBits is compatible with asid_bits */ |
| void verify_cpu_asid_bits(void) |
| { |
| u32 asid = get_cpu_asid_bits(); |
| |
| if (asid < asid_bits) { |
| /* |
| * We cannot decrease the ASID size at runtime, so panic if we support |
| * fewer ASID bits than the boot CPU. |
| */ |
| pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n", |
| smp_processor_id(), asid, asid_bits); |
| cpu_panic_kernel(); |
| } |
| } |
| |
| static void set_kpti_asid_bits(void) |
| { |
| unsigned int len = BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(unsigned long); |
| /* |
| * In case of KPTI kernel/user ASIDs are allocated in |
| * pairs, the bottom bit distinguishes the two: if it |
| * is set, then the ASID will map only userspace. Thus |
| * mark even as reserved for kernel. |
| */ |
| memset(asid_map, 0xaa, len); |
| } |
| |
| static void set_reserved_asid_bits(void) |
| { |
| if (arm64_kernel_unmapped_at_el0()) |
| set_kpti_asid_bits(); |
| else |
| bitmap_clear(asid_map, 0, NUM_USER_ASIDS); |
| } |
| |
| #define asid_gen_match(asid) \ |
| (!(((asid) ^ atomic64_read(&asid_generation)) >> asid_bits)) |
| |
| static void flush_context(void) |
| { |
| int i; |
| u64 asid; |
| |
| /* Update the list of reserved ASIDs and the ASID bitmap. */ |
| set_reserved_asid_bits(); |
| |
| for_each_possible_cpu(i) { |
| asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0); |
| /* |
| * If this CPU has already been through a |
| * rollover, but hasn't run another task in |
| * the meantime, we must preserve its reserved |
| * ASID, as this is the only trace we have of |
| * the process it is still running. |
| */ |
| if (asid == 0) |
| asid = per_cpu(reserved_asids, i); |
| __set_bit(asid2idx(asid), asid_map); |
| per_cpu(reserved_asids, i) = asid; |
| } |
| |
| /* |
| * Queue a TLB invalidation for each CPU to perform on next |
| * context-switch |
| */ |
| cpumask_setall(&tlb_flush_pending); |
| } |
| |
| static bool check_update_reserved_asid(u64 asid, u64 newasid) |
| { |
| int cpu; |
| bool hit = false; |
| |
| /* |
| * Iterate over the set of reserved ASIDs looking for a match. |
| * If we find one, then we can update our mm to use newasid |
| * (i.e. the same ASID in the current generation) but we can't |
| * exit the loop early, since we need to ensure that all copies |
| * of the old ASID are updated to reflect the mm. Failure to do |
| * so could result in us missing the reserved ASID in a future |
| * generation. |
| */ |
| for_each_possible_cpu(cpu) { |
| if (per_cpu(reserved_asids, cpu) == asid) { |
| hit = true; |
| per_cpu(reserved_asids, cpu) = newasid; |
| } |
| } |
| |
| return hit; |
| } |
| |
| static u64 new_context(struct mm_struct *mm) |
| { |
| static u32 cur_idx = 1; |
| u64 asid = atomic64_read(&mm->context.id); |
| u64 generation = atomic64_read(&asid_generation); |
| |
| if (asid != 0) { |
| u64 newasid = generation | (asid & ~ASID_MASK); |
| |
| /* |
| * If our current ASID was active during a rollover, we |
| * can continue to use it and this was just a false alarm. |
| */ |
| if (check_update_reserved_asid(asid, newasid)) |
| return newasid; |
| |
| /* |
| * We had a valid ASID in a previous life, so try to re-use |
| * it if possible. |
| */ |
| if (!__test_and_set_bit(asid2idx(asid), asid_map)) |
| return newasid; |
| } |
| |
| /* |
| * Allocate a free ASID. If we can't find one, take a note of the |
| * currently active ASIDs and mark the TLBs as requiring flushes. We |
| * always count from ASID #2 (index 1), as we use ASID #0 when setting |
| * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd |
| * pairs. |
| */ |
| asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx); |
| if (asid != NUM_USER_ASIDS) |
| goto set_asid; |
| |
| /* We're out of ASIDs, so increment the global generation count */ |
| generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION, |
| &asid_generation); |
| flush_context(); |
| |
| /* We have more ASIDs than CPUs, so this will always succeed */ |
| asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1); |
| |
| set_asid: |
| __set_bit(asid, asid_map); |
| cur_idx = asid; |
| return idx2asid(asid) | generation; |
| } |
| |
| void check_and_switch_context(struct mm_struct *mm) |
| { |
| unsigned long flags; |
| unsigned int cpu; |
| u64 asid, old_active_asid; |
| |
| if (system_supports_cnp()) |
| cpu_set_reserved_ttbr0(); |
| |
| asid = atomic64_read(&mm->context.id); |
| |
| /* |
| * The memory ordering here is subtle. |
| * If our active_asids is non-zero and the ASID matches the current |
| * generation, then we update the active_asids entry with a relaxed |
| * cmpxchg. Racing with a concurrent rollover means that either: |
| * |
| * - We get a zero back from the cmpxchg and end up waiting on the |
| * lock. Taking the lock synchronises with the rollover and so |
| * we are forced to see the updated generation. |
| * |
| * - We get a valid ASID back from the cmpxchg, which means the |
| * relaxed xchg in flush_context will treat us as reserved |
| * because atomic RmWs are totally ordered for a given location. |
| */ |
| old_active_asid = atomic64_read(this_cpu_ptr(&active_asids)); |
| if (old_active_asid && asid_gen_match(asid) && |
| atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_asids), |
| old_active_asid, asid)) |
| goto switch_mm_fastpath; |
| |
| raw_spin_lock_irqsave(&cpu_asid_lock, flags); |
| /* Check that our ASID belongs to the current generation. */ |
| asid = atomic64_read(&mm->context.id); |
| if (!asid_gen_match(asid)) { |
| asid = new_context(mm); |
| atomic64_set(&mm->context.id, asid); |
| } |
| |
| cpu = smp_processor_id(); |
| if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) |
| local_flush_tlb_all(); |
| |
| atomic64_set(this_cpu_ptr(&active_asids), asid); |
| raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); |
| |
| switch_mm_fastpath: |
| |
| arm64_apply_bp_hardening(); |
| |
| /* |
| * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when |
| * emulating PAN. |
| */ |
| if (!system_uses_ttbr0_pan()) |
| cpu_switch_mm(mm->pgd, mm); |
| } |
| |
| /* Errata workaround post TTBRx_EL1 update. */ |
| asmlinkage void post_ttbr_update_workaround(void) |
| { |
| if (!IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) |
| return; |
| |
| asm(ALTERNATIVE("nop; nop; nop", |
| "ic iallu; dsb nsh; isb", |
| ARM64_WORKAROUND_CAVIUM_27456)); |
| } |
| |
| void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm) |
| { |
| unsigned long ttbr1 = read_sysreg(ttbr1_el1); |
| unsigned long asid = ASID(mm); |
| unsigned long ttbr0 = phys_to_ttbr(pgd_phys); |
| |
| /* Skip CNP for the reserved ASID */ |
| if (system_supports_cnp() && asid) |
| ttbr0 |= TTBR_CNP_BIT; |
| |
| /* SW PAN needs a copy of the ASID in TTBR0 for entry */ |
| if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN)) |
| ttbr0 |= FIELD_PREP(TTBR_ASID_MASK, asid); |
| |
| /* Set ASID in TTBR1 since TCR.A1 is set */ |
| ttbr1 &= ~TTBR_ASID_MASK; |
| ttbr1 |= FIELD_PREP(TTBR_ASID_MASK, asid); |
| |
| write_sysreg(ttbr1, ttbr1_el1); |
| isb(); |
| write_sysreg(ttbr0, ttbr0_el1); |
| isb(); |
| post_ttbr_update_workaround(); |
| } |
| |
| static int asids_update_limit(void) |
| { |
| unsigned long num_available_asids = NUM_USER_ASIDS; |
| |
| if (arm64_kernel_unmapped_at_el0()) |
| num_available_asids /= 2; |
| /* |
| * Expect allocation after rollover to fail if we don't have at least |
| * one more ASID than CPUs. ASID #0 is reserved for init_mm. |
| */ |
| WARN_ON(num_available_asids - 1 <= num_possible_cpus()); |
| pr_info("ASID allocator initialised with %lu entries\n", |
| num_available_asids); |
| return 0; |
| } |
| arch_initcall(asids_update_limit); |
| |
| static int asids_init(void) |
| { |
| asid_bits = get_cpu_asid_bits(); |
| atomic64_set(&asid_generation, ASID_FIRST_VERSION); |
| asid_map = kcalloc(BITS_TO_LONGS(NUM_USER_ASIDS), sizeof(*asid_map), |
| GFP_KERNEL); |
| if (!asid_map) |
| panic("Failed to allocate bitmap for %lu ASIDs\n", |
| NUM_USER_ASIDS); |
| |
| /* |
| * We cannot call set_reserved_asid_bits() here because CPU |
| * caps are not finalized yet, so it is safer to assume KPTI |
| * and reserve kernel ASID's from beginning. |
| */ |
| if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) |
| set_kpti_asid_bits(); |
| return 0; |
| } |
| early_initcall(asids_init); |