| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H |
| #define _ASM_POWERPC_NOHASH_32_PGTABLE_H |
| |
| #include <asm-generic/pgtable-nopmd.h> |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/sched.h> |
| #include <linux/threads.h> |
| #include <asm/mmu.h> /* For sub-arch specific PPC_PIN_SIZE */ |
| |
| #ifdef CONFIG_44x |
| extern int icache_44x_need_flush; |
| #endif |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #define PTE_INDEX_SIZE PTE_SHIFT |
| #define PMD_INDEX_SIZE 0 |
| #define PUD_INDEX_SIZE 0 |
| #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) |
| |
| #define PMD_CACHE_INDEX PMD_INDEX_SIZE |
| #define PUD_CACHE_INDEX PUD_INDEX_SIZE |
| |
| #ifndef __ASSEMBLY__ |
| #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) |
| #define PMD_TABLE_SIZE 0 |
| #define PUD_TABLE_SIZE 0 |
| #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) |
| |
| #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1) |
| #endif /* __ASSEMBLY__ */ |
| |
| #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) |
| #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) |
| |
| /* |
| * The normal case is that PTEs are 32-bits and we have a 1-page |
| * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus |
| * |
| * For any >32-bit physical address platform, we can use the following |
| * two level page table layout where the pgdir is 8KB and the MS 13 bits |
| * are an index to the second level table. The combined pgdir/pmd first |
| * level has 2048 entries and the second level has 512 64-bit PTE entries. |
| * -Matt |
| */ |
| /* PGDIR_SHIFT determines what a top-level page table entry can map */ |
| #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* Bits to mask out from a PGD to get to the PUD page */ |
| #define PGD_MASKED_BITS 0 |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0UL |
| |
| #define pte_ERROR(e) \ |
| pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ |
| (unsigned long long)pte_val(e)) |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| #ifndef __ASSEMBLY__ |
| |
| int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| |
| /* |
| * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary |
| * value (for now) on others, from where we can start layout kernel |
| * virtual space that goes below PKMAP and FIXMAP |
| */ |
| #include <asm/fixmap.h> |
| |
| /* |
| * ioremap_bot starts at that address. Early ioremaps move down from there, |
| * until mem_init() at which point this becomes the top of the vmalloc |
| * and ioremap space |
| */ |
| #ifdef CONFIG_HIGHMEM |
| #define IOREMAP_TOP PKMAP_BASE |
| #else |
| #define IOREMAP_TOP FIXADDR_START |
| #endif |
| |
| /* PPC32 shares vmalloc area with ioremap */ |
| #define IOREMAP_START VMALLOC_START |
| #define IOREMAP_END VMALLOC_END |
| |
| /* |
| * Just any arbitrary offset to the start of the vmalloc VM area: the |
| * current 16MB value just means that there will be a 64MB "hole" after the |
| * physical memory until the kernel virtual memory starts. That means that |
| * any out-of-bounds memory accesses will hopefully be caught. |
| * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| * area for the same reason. ;) |
| * |
| * We no longer map larger than phys RAM with the BATs so we don't have |
| * to worry about the VMALLOC_OFFSET causing problems. We do have to worry |
| * about clashes between our early calls to ioremap() that start growing down |
| * from IOREMAP_TOP being run into the VM area allocations (growing upwards |
| * from VMALLOC_START). For this reason we have ioremap_bot to check when |
| * we actually run into our mappings setup in the early boot with the VM |
| * system. This really does become a problem for machines with good amounts |
| * of RAM. -- Cort |
| */ |
| #define VMALLOC_OFFSET (0x1000000) /* 16M */ |
| #ifdef PPC_PIN_SIZE |
| #define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) |
| #else |
| #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) |
| #endif |
| |
| #ifdef CONFIG_KASAN_VMALLOC |
| #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT) |
| #else |
| #define VMALLOC_END ioremap_bot |
| #endif |
| |
| /* |
| * Bits in a linux-style PTE. These match the bits in the |
| * (hardware-defined) PowerPC PTE as closely as possible. |
| */ |
| |
| #if defined(CONFIG_40x) |
| #include <asm/nohash/32/pte-40x.h> |
| #elif defined(CONFIG_44x) |
| #include <asm/nohash/32/pte-44x.h> |
| #elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT) |
| #include <asm/nohash/pte-book3e.h> |
| #elif defined(CONFIG_FSL_BOOKE) |
| #include <asm/nohash/32/pte-fsl-booke.h> |
| #elif defined(CONFIG_PPC_8xx) |
| #include <asm/nohash/32/pte-8xx.h> |
| #endif |
| |
| /* |
| * Location of the PFN in the PTE. Most 32-bit platforms use the same |
| * as _PAGE_SHIFT here (ie, naturally aligned). |
| * Platform who don't just pre-define the value so we don't override it here. |
| */ |
| #ifndef PTE_RPN_SHIFT |
| #define PTE_RPN_SHIFT (PAGE_SHIFT) |
| #endif |
| |
| /* |
| * The mask covered by the RPN must be a ULL on 32-bit platforms with |
| * 64-bit PTEs. |
| */ |
| #if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) |
| #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1)) |
| #else |
| #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) |
| #endif |
| |
| /* |
| * _PAGE_CHG_MASK masks of bits that are to be preserved across |
| * pgprot changes. |
| */ |
| #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL) |
| |
| #ifndef __ASSEMBLY__ |
| |
| #define pte_clear(mm, addr, ptep) \ |
| do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0) |
| |
| #ifndef pte_mkwrite |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_RW); |
| } |
| #endif |
| |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_DIRTY); |
| } |
| |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_ACCESSED); |
| } |
| |
| #ifndef pte_wrprotect |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_RW); |
| } |
| #endif |
| |
| static inline pte_t pte_mkexec(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_EXEC); |
| } |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) |
| #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| *pmdp = __pmd(0); |
| } |
| |
| /* |
| * PTE updates. This function is called whenever an existing |
| * valid PTE is updated. This does -not- include set_pte_at() |
| * which nowadays only sets a new PTE. |
| * |
| * Depending on the type of MMU, we may need to use atomic updates |
| * and the PTE may be either 32 or 64 bit wide. In the later case, |
| * when using atomic updates, only the low part of the PTE is |
| * accessed atomically. |
| * |
| * In addition, on 44x, we also maintain a global flag indicating |
| * that an executable user mapping was modified, which is needed |
| * to properly flush the virtually tagged instruction cache of |
| * those implementations. |
| * |
| * On the 8xx, the page tables are a bit special. For 16k pages, we have |
| * 4 identical entries. For 512k pages, we have 128 entries as if it was |
| * 4k pages, but they are flagged as 512k pages for the hardware. |
| * For other page sizes, we have a single entry in the table. |
| */ |
| #ifdef CONFIG_PPC_8xx |
| static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr); |
| |
| static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, |
| unsigned long clr, unsigned long set, int huge) |
| { |
| pte_basic_t *entry = &p->pte; |
| pte_basic_t old = pte_val(*p); |
| pte_basic_t new = (old & ~(pte_basic_t)clr) | set; |
| int num, i; |
| pmd_t *pmd = pmd_off(mm, addr); |
| |
| if (!huge) |
| num = PAGE_SIZE / SZ_4K; |
| else if ((pmd_val(*pmd) & _PMD_PAGE_MASK) != _PMD_PAGE_8M) |
| num = SZ_512K / SZ_4K; |
| else |
| num = 1; |
| |
| for (i = 0; i < num; i++, entry++, new += SZ_4K) |
| *entry = new; |
| |
| return old; |
| } |
| |
| #ifdef CONFIG_PPC_16K_PAGES |
| #define __HAVE_ARCH_PTEP_GET |
| static inline pte_t ptep_get(pte_t *ptep) |
| { |
| pte_basic_t val = READ_ONCE(ptep->pte); |
| pte_t pte = {val, val, val, val}; |
| |
| return pte; |
| } |
| #endif /* CONFIG_PPC_16K_PAGES */ |
| |
| #else |
| static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, |
| unsigned long clr, unsigned long set, int huge) |
| { |
| pte_basic_t old = pte_val(*p); |
| pte_basic_t new = (old & ~(pte_basic_t)clr) | set; |
| |
| *p = __pte(new); |
| |
| #ifdef CONFIG_44x |
| if ((old & _PAGE_USER) && (old & _PAGE_EXEC)) |
| icache_44x_need_flush = 1; |
| #endif |
| return old; |
| } |
| #endif |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int __ptep_test_and_clear_young(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old; |
| old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); |
| return (old & _PAGE_ACCESSED) != 0; |
| } |
| #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ |
| __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep) |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| return __pte(pte_update(mm, addr, ptep, ~0, 0, 0)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| unsigned long clr = ~pte_val(pte_wrprotect(__pte(~0))); |
| unsigned long set = pte_val(pte_wrprotect(__pte(0))); |
| |
| pte_update(mm, addr, ptep, clr, set, 0); |
| } |
| |
| static inline void __ptep_set_access_flags(struct vm_area_struct *vma, |
| pte_t *ptep, pte_t entry, |
| unsigned long address, |
| int psize) |
| { |
| pte_t pte_set = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(0))))); |
| pte_t pte_clr = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(~0))))); |
| unsigned long set = pte_val(entry) & pte_val(pte_set); |
| unsigned long clr = ~pte_val(entry) & ~pte_val(pte_clr); |
| int huge = psize > mmu_virtual_psize ? 1 : 0; |
| |
| pte_update(vma->vm_mm, address, ptep, clr, set, huge); |
| |
| flush_tlb_page(vma, address); |
| } |
| |
| static inline int pte_young(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_ACCESSED; |
| } |
| |
| #define __HAVE_ARCH_PTE_SAME |
| #define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0) |
| |
| /* |
| * Note that on Book E processors, the pmd contains the kernel virtual |
| * (lowmem) address of the pte page. The physical address is less useful |
| * because everything runs with translation enabled (even the TLB miss |
| * handler). On everything else the pmd contains the physical address |
| * of the pte page. -- paulus |
| */ |
| #ifndef CONFIG_BOOKE |
| #define pmd_page(pmd) \ |
| pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) |
| #else |
| #define pmd_page_vaddr(pmd) \ |
| ((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1))) |
| #define pmd_page(pmd) \ |
| pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT)) |
| #endif |
| |
| /* |
| * Encode and decode a swap entry. |
| * Note that the bits we use in a PTE for representing a swap entry |
| * must not include the _PAGE_PRESENT bit. |
| * -- paulus |
| */ |
| #define __swp_type(entry) ((entry).val & 0x1f) |
| #define __swp_offset(entry) ((entry).val >> 5) |
| #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */ |