| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * S390 kdump implementation |
| * |
| * Copyright IBM Corp. 2011 |
| * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com> |
| */ |
| |
| #include <linux/crash_dump.h> |
| #include <asm/lowcore.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/gfp.h> |
| #include <linux/slab.h> |
| #include <linux/memblock.h> |
| #include <linux/elf.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/os_info.h> |
| #include <asm/elf.h> |
| #include <asm/ipl.h> |
| #include <asm/sclp.h> |
| |
| #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y))) |
| #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y))) |
| #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y)))) |
| |
| static struct memblock_region oldmem_region; |
| |
| static struct memblock_type oldmem_type = { |
| .cnt = 1, |
| .max = 1, |
| .total_size = 0, |
| .regions = &oldmem_region, |
| .name = "oldmem", |
| }; |
| |
| struct save_area { |
| struct list_head list; |
| u64 psw[2]; |
| u64 ctrs[16]; |
| u64 gprs[16]; |
| u32 acrs[16]; |
| u64 fprs[16]; |
| u32 fpc; |
| u32 prefix; |
| u64 todpreg; |
| u64 timer; |
| u64 todcmp; |
| u64 vxrs_low[16]; |
| __vector128 vxrs_high[16]; |
| }; |
| |
| static LIST_HEAD(dump_save_areas); |
| |
| /* |
| * Allocate a save area |
| */ |
| struct save_area * __init save_area_alloc(bool is_boot_cpu) |
| { |
| struct save_area *sa; |
| |
| sa = (void *) memblock_phys_alloc(sizeof(*sa), 8); |
| if (!sa) |
| panic("Failed to allocate save area\n"); |
| |
| if (is_boot_cpu) |
| list_add(&sa->list, &dump_save_areas); |
| else |
| list_add_tail(&sa->list, &dump_save_areas); |
| return sa; |
| } |
| |
| /* |
| * Return the address of the save area for the boot CPU |
| */ |
| struct save_area * __init save_area_boot_cpu(void) |
| { |
| return list_first_entry_or_null(&dump_save_areas, struct save_area, list); |
| } |
| |
| /* |
| * Copy CPU registers into the save area |
| */ |
| void __init save_area_add_regs(struct save_area *sa, void *regs) |
| { |
| struct lowcore *lc; |
| |
| lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA); |
| memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw)); |
| memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs)); |
| memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs)); |
| memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs)); |
| memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs)); |
| memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc)); |
| memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix)); |
| memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg)); |
| memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer)); |
| memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp)); |
| } |
| |
| /* |
| * Copy vector registers into the save area |
| */ |
| void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs) |
| { |
| int i; |
| |
| /* Copy lower halves of vector registers 0-15 */ |
| for (i = 0; i < 16; i++) |
| memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8); |
| /* Copy vector registers 16-31 */ |
| memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128)); |
| } |
| |
| /* |
| * Return physical address for virtual address |
| */ |
| static inline void *load_real_addr(void *addr) |
| { |
| unsigned long real_addr; |
| |
| asm volatile( |
| " lra %0,0(%1)\n" |
| " jz 0f\n" |
| " la %0,0\n" |
| "0:" |
| : "=a" (real_addr) : "a" (addr) : "cc"); |
| return (void *)real_addr; |
| } |
| |
| /* |
| * Copy memory of the old, dumped system to a kernel space virtual address |
| */ |
| int copy_oldmem_kernel(void *dst, void *src, size_t count) |
| { |
| unsigned long from, len; |
| void *ra; |
| int rc; |
| |
| while (count) { |
| from = __pa(src); |
| if (!OLDMEM_BASE && from < sclp.hsa_size) { |
| /* Copy from zfcpdump HSA area */ |
| len = min(count, sclp.hsa_size - from); |
| rc = memcpy_hsa_kernel(dst, from, len); |
| if (rc) |
| return rc; |
| } else { |
| /* Check for swapped kdump oldmem areas */ |
| if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) { |
| from -= OLDMEM_BASE; |
| len = min(count, OLDMEM_SIZE - from); |
| } else if (OLDMEM_BASE && from < OLDMEM_SIZE) { |
| len = min(count, OLDMEM_SIZE - from); |
| from += OLDMEM_BASE; |
| } else { |
| len = count; |
| } |
| if (is_vmalloc_or_module_addr(dst)) { |
| ra = load_real_addr(dst); |
| len = min(PAGE_SIZE - offset_in_page(ra), len); |
| } else { |
| ra = dst; |
| } |
| if (memcpy_real(ra, (void *) from, len)) |
| return -EFAULT; |
| } |
| dst += len; |
| src += len; |
| count -= len; |
| } |
| return 0; |
| } |
| |
| /* |
| * Copy memory of the old, dumped system to a user space virtual address |
| */ |
| static int copy_oldmem_user(void __user *dst, void *src, size_t count) |
| { |
| unsigned long from, len; |
| int rc; |
| |
| while (count) { |
| from = __pa(src); |
| if (!OLDMEM_BASE && from < sclp.hsa_size) { |
| /* Copy from zfcpdump HSA area */ |
| len = min(count, sclp.hsa_size - from); |
| rc = memcpy_hsa_user(dst, from, len); |
| if (rc) |
| return rc; |
| } else { |
| /* Check for swapped kdump oldmem areas */ |
| if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) { |
| from -= OLDMEM_BASE; |
| len = min(count, OLDMEM_SIZE - from); |
| } else if (OLDMEM_BASE && from < OLDMEM_SIZE) { |
| len = min(count, OLDMEM_SIZE - from); |
| from += OLDMEM_BASE; |
| } else { |
| len = count; |
| } |
| rc = copy_to_user_real(dst, (void *) from, count); |
| if (rc) |
| return rc; |
| } |
| dst += len; |
| src += len; |
| count -= len; |
| } |
| return 0; |
| } |
| |
| /* |
| * Copy one page from "oldmem" |
| */ |
| ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize, |
| unsigned long offset, int userbuf) |
| { |
| void *src; |
| int rc; |
| |
| if (!csize) |
| return 0; |
| src = (void *) (pfn << PAGE_SHIFT) + offset; |
| if (userbuf) |
| rc = copy_oldmem_user((void __force __user *) buf, src, csize); |
| else |
| rc = copy_oldmem_kernel((void *) buf, src, csize); |
| return rc; |
| } |
| |
| /* |
| * Remap "oldmem" for kdump |
| * |
| * For the kdump reserved memory this functions performs a swap operation: |
| * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] |
| */ |
| static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma, |
| unsigned long from, unsigned long pfn, |
| unsigned long size, pgprot_t prot) |
| { |
| unsigned long size_old; |
| int rc; |
| |
| if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) { |
| size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT)); |
| rc = remap_pfn_range(vma, from, |
| pfn + (OLDMEM_BASE >> PAGE_SHIFT), |
| size_old, prot); |
| if (rc || size == size_old) |
| return rc; |
| size -= size_old; |
| from += size_old; |
| pfn += size_old >> PAGE_SHIFT; |
| } |
| return remap_pfn_range(vma, from, pfn, size, prot); |
| } |
| |
| /* |
| * Remap "oldmem" for zfcpdump |
| * |
| * We only map available memory above HSA size. Memory below HSA size |
| * is read on demand using the copy_oldmem_page() function. |
| */ |
| static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma, |
| unsigned long from, |
| unsigned long pfn, |
| unsigned long size, pgprot_t prot) |
| { |
| unsigned long hsa_end = sclp.hsa_size; |
| unsigned long size_hsa; |
| |
| if (pfn < hsa_end >> PAGE_SHIFT) { |
| size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT)); |
| if (size == size_hsa) |
| return 0; |
| size -= size_hsa; |
| from += size_hsa; |
| pfn += size_hsa >> PAGE_SHIFT; |
| } |
| return remap_pfn_range(vma, from, pfn, size, prot); |
| } |
| |
| /* |
| * Remap "oldmem" for kdump or zfcpdump |
| */ |
| int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from, |
| unsigned long pfn, unsigned long size, pgprot_t prot) |
| { |
| if (OLDMEM_BASE) |
| return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot); |
| else |
| return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size, |
| prot); |
| } |
| |
| static const char *nt_name(Elf64_Word type) |
| { |
| const char *name = "LINUX"; |
| |
| if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG) |
| name = KEXEC_CORE_NOTE_NAME; |
| return name; |
| } |
| |
| /* |
| * Initialize ELF note |
| */ |
| static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len, |
| const char *name) |
| { |
| Elf64_Nhdr *note; |
| u64 len; |
| |
| note = (Elf64_Nhdr *)buf; |
| note->n_namesz = strlen(name) + 1; |
| note->n_descsz = d_len; |
| note->n_type = type; |
| len = sizeof(Elf64_Nhdr); |
| |
| memcpy(buf + len, name, note->n_namesz); |
| len = roundup(len + note->n_namesz, 4); |
| |
| memcpy(buf + len, desc, note->n_descsz); |
| len = roundup(len + note->n_descsz, 4); |
| |
| return PTR_ADD(buf, len); |
| } |
| |
| static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len) |
| { |
| return nt_init_name(buf, type, desc, d_len, nt_name(type)); |
| } |
| |
| /* |
| * Calculate the size of ELF note |
| */ |
| static size_t nt_size_name(int d_len, const char *name) |
| { |
| size_t size; |
| |
| size = sizeof(Elf64_Nhdr); |
| size += roundup(strlen(name) + 1, 4); |
| size += roundup(d_len, 4); |
| |
| return size; |
| } |
| |
| static inline size_t nt_size(Elf64_Word type, int d_len) |
| { |
| return nt_size_name(d_len, nt_name(type)); |
| } |
| |
| /* |
| * Fill ELF notes for one CPU with save area registers |
| */ |
| static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa) |
| { |
| struct elf_prstatus nt_prstatus; |
| elf_fpregset_t nt_fpregset; |
| |
| /* Prepare prstatus note */ |
| memset(&nt_prstatus, 0, sizeof(nt_prstatus)); |
| memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs)); |
| memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw)); |
| memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs)); |
| nt_prstatus.pr_pid = cpu; |
| /* Prepare fpregset (floating point) note */ |
| memset(&nt_fpregset, 0, sizeof(nt_fpregset)); |
| memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc)); |
| memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs)); |
| /* Create ELF notes for the CPU */ |
| ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus)); |
| ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset)); |
| ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer)); |
| ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp)); |
| ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg)); |
| ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs)); |
| ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix)); |
| if (MACHINE_HAS_VX) { |
| ptr = nt_init(ptr, NT_S390_VXRS_HIGH, |
| &sa->vxrs_high, sizeof(sa->vxrs_high)); |
| ptr = nt_init(ptr, NT_S390_VXRS_LOW, |
| &sa->vxrs_low, sizeof(sa->vxrs_low)); |
| } |
| return ptr; |
| } |
| |
| /* |
| * Calculate size of ELF notes per cpu |
| */ |
| static size_t get_cpu_elf_notes_size(void) |
| { |
| struct save_area *sa = NULL; |
| size_t size; |
| |
| size = nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus)); |
| size += nt_size(NT_PRFPREG, sizeof(elf_fpregset_t)); |
| size += nt_size(NT_S390_TIMER, sizeof(sa->timer)); |
| size += nt_size(NT_S390_TODCMP, sizeof(sa->todcmp)); |
| size += nt_size(NT_S390_TODPREG, sizeof(sa->todpreg)); |
| size += nt_size(NT_S390_CTRS, sizeof(sa->ctrs)); |
| size += nt_size(NT_S390_PREFIX, sizeof(sa->prefix)); |
| if (MACHINE_HAS_VX) { |
| size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high)); |
| size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low)); |
| } |
| |
| return size; |
| } |
| |
| /* |
| * Initialize prpsinfo note (new kernel) |
| */ |
| static void *nt_prpsinfo(void *ptr) |
| { |
| struct elf_prpsinfo prpsinfo; |
| |
| memset(&prpsinfo, 0, sizeof(prpsinfo)); |
| prpsinfo.pr_sname = 'R'; |
| strcpy(prpsinfo.pr_fname, "vmlinux"); |
| return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo)); |
| } |
| |
| /* |
| * Get vmcoreinfo using lowcore->vmcore_info (new kernel) |
| */ |
| static void *get_vmcoreinfo_old(unsigned long *size) |
| { |
| char nt_name[11], *vmcoreinfo; |
| Elf64_Nhdr note; |
| void *addr; |
| |
| if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr))) |
| return NULL; |
| memset(nt_name, 0, sizeof(nt_name)); |
| if (copy_oldmem_kernel(¬e, addr, sizeof(note))) |
| return NULL; |
| if (copy_oldmem_kernel(nt_name, addr + sizeof(note), |
| sizeof(nt_name) - 1)) |
| return NULL; |
| if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0) |
| return NULL; |
| vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL); |
| if (!vmcoreinfo) |
| return NULL; |
| if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) { |
| kfree(vmcoreinfo); |
| return NULL; |
| } |
| *size = note.n_descsz; |
| return vmcoreinfo; |
| } |
| |
| /* |
| * Initialize vmcoreinfo note (new kernel) |
| */ |
| static void *nt_vmcoreinfo(void *ptr) |
| { |
| const char *name = VMCOREINFO_NOTE_NAME; |
| unsigned long size; |
| void *vmcoreinfo; |
| |
| vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); |
| if (vmcoreinfo) |
| return nt_init_name(ptr, 0, vmcoreinfo, size, name); |
| |
| vmcoreinfo = get_vmcoreinfo_old(&size); |
| if (!vmcoreinfo) |
| return ptr; |
| ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name); |
| kfree(vmcoreinfo); |
| return ptr; |
| } |
| |
| static size_t nt_vmcoreinfo_size(void) |
| { |
| const char *name = VMCOREINFO_NOTE_NAME; |
| unsigned long size; |
| void *vmcoreinfo; |
| |
| vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); |
| if (vmcoreinfo) |
| return nt_size_name(size, name); |
| |
| vmcoreinfo = get_vmcoreinfo_old(&size); |
| if (!vmcoreinfo) |
| return 0; |
| |
| kfree(vmcoreinfo); |
| return nt_size_name(size, name); |
| } |
| |
| /* |
| * Initialize final note (needed for /proc/vmcore code) |
| */ |
| static void *nt_final(void *ptr) |
| { |
| Elf64_Nhdr *note; |
| |
| note = (Elf64_Nhdr *) ptr; |
| note->n_namesz = 0; |
| note->n_descsz = 0; |
| note->n_type = 0; |
| return PTR_ADD(ptr, sizeof(Elf64_Nhdr)); |
| } |
| |
| /* |
| * Initialize ELF header (new kernel) |
| */ |
| static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt) |
| { |
| memset(ehdr, 0, sizeof(*ehdr)); |
| memcpy(ehdr->e_ident, ELFMAG, SELFMAG); |
| ehdr->e_ident[EI_CLASS] = ELFCLASS64; |
| ehdr->e_ident[EI_DATA] = ELFDATA2MSB; |
| ehdr->e_ident[EI_VERSION] = EV_CURRENT; |
| memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); |
| ehdr->e_type = ET_CORE; |
| ehdr->e_machine = EM_S390; |
| ehdr->e_version = EV_CURRENT; |
| ehdr->e_phoff = sizeof(Elf64_Ehdr); |
| ehdr->e_ehsize = sizeof(Elf64_Ehdr); |
| ehdr->e_phentsize = sizeof(Elf64_Phdr); |
| ehdr->e_phnum = mem_chunk_cnt + 1; |
| return ehdr + 1; |
| } |
| |
| /* |
| * Return CPU count for ELF header (new kernel) |
| */ |
| static int get_cpu_cnt(void) |
| { |
| struct save_area *sa; |
| int cpus = 0; |
| |
| list_for_each_entry(sa, &dump_save_areas, list) |
| if (sa->prefix != 0) |
| cpus++; |
| return cpus; |
| } |
| |
| /* |
| * Return memory chunk count for ELF header (new kernel) |
| */ |
| static int get_mem_chunk_cnt(void) |
| { |
| int cnt = 0; |
| u64 idx; |
| |
| for_each_physmem_range(idx, &oldmem_type, NULL, NULL) |
| cnt++; |
| return cnt; |
| } |
| |
| /* |
| * Initialize ELF loads (new kernel) |
| */ |
| static void loads_init(Elf64_Phdr *phdr, u64 loads_offset) |
| { |
| phys_addr_t start, end; |
| u64 idx; |
| |
| for_each_physmem_range(idx, &oldmem_type, &start, &end) { |
| phdr->p_filesz = end - start; |
| phdr->p_type = PT_LOAD; |
| phdr->p_offset = start; |
| phdr->p_vaddr = start; |
| phdr->p_paddr = start; |
| phdr->p_memsz = end - start; |
| phdr->p_flags = PF_R | PF_W | PF_X; |
| phdr->p_align = PAGE_SIZE; |
| phdr++; |
| } |
| } |
| |
| /* |
| * Initialize notes (new kernel) |
| */ |
| static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset) |
| { |
| struct save_area *sa; |
| void *ptr_start = ptr; |
| int cpu; |
| |
| ptr = nt_prpsinfo(ptr); |
| |
| cpu = 1; |
| list_for_each_entry(sa, &dump_save_areas, list) |
| if (sa->prefix != 0) |
| ptr = fill_cpu_elf_notes(ptr, cpu++, sa); |
| ptr = nt_vmcoreinfo(ptr); |
| ptr = nt_final(ptr); |
| memset(phdr, 0, sizeof(*phdr)); |
| phdr->p_type = PT_NOTE; |
| phdr->p_offset = notes_offset; |
| phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start); |
| phdr->p_memsz = phdr->p_filesz; |
| return ptr; |
| } |
| |
| static size_t get_elfcorehdr_size(int mem_chunk_cnt) |
| { |
| size_t size; |
| |
| size = sizeof(Elf64_Ehdr); |
| /* PT_NOTES */ |
| size += sizeof(Elf64_Phdr); |
| /* nt_prpsinfo */ |
| size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo)); |
| /* regsets */ |
| size += get_cpu_cnt() * get_cpu_elf_notes_size(); |
| /* nt_vmcoreinfo */ |
| size += nt_vmcoreinfo_size(); |
| /* nt_final */ |
| size += sizeof(Elf64_Nhdr); |
| /* PT_LOADS */ |
| size += mem_chunk_cnt * sizeof(Elf64_Phdr); |
| |
| return size; |
| } |
| |
| /* |
| * Create ELF core header (new kernel) |
| */ |
| int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) |
| { |
| Elf64_Phdr *phdr_notes, *phdr_loads; |
| int mem_chunk_cnt; |
| void *ptr, *hdr; |
| u32 alloc_size; |
| u64 hdr_off; |
| |
| /* If we are not in kdump or zfcpdump mode return */ |
| if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP) |
| return 0; |
| /* If we cannot get HSA size for zfcpdump return error */ |
| if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size) |
| return -ENODEV; |
| |
| /* For kdump, exclude previous crashkernel memory */ |
| if (OLDMEM_BASE) { |
| oldmem_region.base = OLDMEM_BASE; |
| oldmem_region.size = OLDMEM_SIZE; |
| oldmem_type.total_size = OLDMEM_SIZE; |
| } |
| |
| mem_chunk_cnt = get_mem_chunk_cnt(); |
| |
| alloc_size = get_elfcorehdr_size(mem_chunk_cnt); |
| |
| hdr = kzalloc(alloc_size, GFP_KERNEL); |
| |
| /* Without elfcorehdr /proc/vmcore cannot be created. Thus creating |
| * a dump with this crash kernel will fail. Panic now to allow other |
| * dump mechanisms to take over. |
| */ |
| if (!hdr) |
| panic("s390 kdump allocating elfcorehdr failed"); |
| |
| /* Init elf header */ |
| ptr = ehdr_init(hdr, mem_chunk_cnt); |
| /* Init program headers */ |
| phdr_notes = ptr; |
| ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr)); |
| phdr_loads = ptr; |
| ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt); |
| /* Init notes */ |
| hdr_off = PTR_DIFF(ptr, hdr); |
| ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off); |
| /* Init loads */ |
| hdr_off = PTR_DIFF(ptr, hdr); |
| loads_init(phdr_loads, hdr_off); |
| *addr = (unsigned long long) hdr; |
| *size = (unsigned long long) hdr_off; |
| BUG_ON(elfcorehdr_size > alloc_size); |
| return 0; |
| } |
| |
| /* |
| * Free ELF core header (new kernel) |
| */ |
| void elfcorehdr_free(unsigned long long addr) |
| { |
| kfree((void *)(unsigned long)addr); |
| } |
| |
| /* |
| * Read from ELF header |
| */ |
| ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos) |
| { |
| void *src = (void *)(unsigned long)*ppos; |
| |
| memcpy(buf, src, count); |
| *ppos += count; |
| return count; |
| } |
| |
| /* |
| * Read from ELF notes data |
| */ |
| ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) |
| { |
| void *src = (void *)(unsigned long)*ppos; |
| |
| memcpy(buf, src, count); |
| *ppos += count; |
| return count; |
| } |