blob: c8400a2adbc2b226ba01b39087d6b40610d12f42 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/percpu-debug.c
*
* Copyright (C) 2017 Facebook Inc.
* Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
*
* Prints statistics about the percpu allocator and backing chunks.
*/
#include <linux/debugfs.h>
#include <linux/list.h>
#include <linux/percpu.h>
#include <linux/seq_file.h>
#include <linux/sort.h>
#include <linux/vmalloc.h>
#include "percpu-internal.h"
#define P(X, Y) \
seq_printf(m, " %-20s: %12lld\n", X, (long long int)Y)
struct percpu_stats pcpu_stats;
struct pcpu_alloc_info pcpu_stats_ai;
static int cmpint(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
/*
* Iterates over all chunks to find the max nr_alloc entries.
*/
static int find_max_nr_alloc(void)
{
struct pcpu_chunk *chunk;
int slot, max_nr_alloc;
enum pcpu_chunk_type type;
max_nr_alloc = 0;
for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
for (slot = 0; slot < pcpu_nr_slots; slot++)
list_for_each_entry(chunk, &pcpu_chunk_list(type)[slot],
list)
max_nr_alloc = max(max_nr_alloc,
chunk->nr_alloc);
return max_nr_alloc;
}
/*
* Prints out chunk state. Fragmentation is considered between
* the beginning of the chunk to the last allocation.
*
* All statistics are in bytes unless stated otherwise.
*/
static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
int *buffer)
{
struct pcpu_block_md *chunk_md = &chunk->chunk_md;
int i, last_alloc, as_len, start, end;
int *alloc_sizes, *p;
/* statistics */
int sum_frag = 0, max_frag = 0;
int cur_min_alloc = 0, cur_med_alloc = 0, cur_max_alloc = 0;
alloc_sizes = buffer;
/*
* find_last_bit returns the start value if nothing found.
* Therefore, we must determine if it is a failure of find_last_bit
* and set the appropriate value.
*/
last_alloc = find_last_bit(chunk->alloc_map,
pcpu_chunk_map_bits(chunk) -
chunk->end_offset / PCPU_MIN_ALLOC_SIZE - 1);
last_alloc = test_bit(last_alloc, chunk->alloc_map) ?
last_alloc + 1 : 0;
as_len = 0;
start = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
/*
* If a bit is set in the allocation map, the bound_map identifies
* where the allocation ends. If the allocation is not set, the
* bound_map does not identify free areas as it is only kept accurate
* on allocation, not free.
*
* Positive values are allocations and negative values are free
* fragments.
*/
while (start < last_alloc) {
if (test_bit(start, chunk->alloc_map)) {
end = find_next_bit(chunk->bound_map, last_alloc,
start + 1);
alloc_sizes[as_len] = 1;
} else {
end = find_next_bit(chunk->alloc_map, last_alloc,
start + 1);
alloc_sizes[as_len] = -1;
}
alloc_sizes[as_len++] *= (end - start) * PCPU_MIN_ALLOC_SIZE;
start = end;
}
/*
* The negative values are free fragments and thus sorting gives the
* free fragments at the beginning in largest first order.
*/
if (as_len > 0) {
sort(alloc_sizes, as_len, sizeof(int), cmpint, NULL);
/* iterate through the unallocated fragments */
for (i = 0, p = alloc_sizes; *p < 0 && i < as_len; i++, p++) {
sum_frag -= *p;
max_frag = max(max_frag, -1 * (*p));
}
cur_min_alloc = alloc_sizes[i];
cur_med_alloc = alloc_sizes[(i + as_len - 1) / 2];
cur_max_alloc = alloc_sizes[as_len - 1];
}
P("nr_alloc", chunk->nr_alloc);
P("max_alloc_size", chunk->max_alloc_size);
P("empty_pop_pages", chunk->nr_empty_pop_pages);
P("first_bit", chunk_md->first_free);
P("free_bytes", chunk->free_bytes);
P("contig_bytes", chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
P("sum_frag", sum_frag);
P("max_frag", max_frag);
P("cur_min_alloc", cur_min_alloc);
P("cur_med_alloc", cur_med_alloc);
P("cur_max_alloc", cur_max_alloc);
#ifdef CONFIG_MEMCG_KMEM
P("memcg_aware", pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)));
#endif
seq_putc(m, '\n');
}
static int percpu_stats_show(struct seq_file *m, void *v)
{
struct pcpu_chunk *chunk;
int slot, max_nr_alloc;
int *buffer;
enum pcpu_chunk_type type;
alloc_buffer:
spin_lock_irq(&pcpu_lock);
max_nr_alloc = find_max_nr_alloc();
spin_unlock_irq(&pcpu_lock);
/* there can be at most this many free and allocated fragments */
buffer = vmalloc(array_size(sizeof(int), (2 * max_nr_alloc + 1)));
if (!buffer)
return -ENOMEM;
spin_lock_irq(&pcpu_lock);
/* if the buffer allocated earlier is too small */
if (max_nr_alloc < find_max_nr_alloc()) {
spin_unlock_irq(&pcpu_lock);
vfree(buffer);
goto alloc_buffer;
}
#define PL(X) \
seq_printf(m, " %-20s: %12lld\n", #X, (long long int)pcpu_stats_ai.X)
seq_printf(m,
"Percpu Memory Statistics\n"
"Allocation Info:\n"
"----------------------------------------\n");
PL(unit_size);
PL(static_size);
PL(reserved_size);
PL(dyn_size);
PL(atom_size);
PL(alloc_size);
seq_putc(m, '\n');
#undef PL
#define PU(X) \
seq_printf(m, " %-20s: %12llu\n", #X, (unsigned long long)pcpu_stats.X)
seq_printf(m,
"Global Stats:\n"
"----------------------------------------\n");
PU(nr_alloc);
PU(nr_dealloc);
PU(nr_cur_alloc);
PU(nr_max_alloc);
PU(nr_chunks);
PU(nr_max_chunks);
PU(min_alloc_size);
PU(max_alloc_size);
P("empty_pop_pages", pcpu_nr_empty_pop_pages);
seq_putc(m, '\n');
#undef PU
seq_printf(m,
"Per Chunk Stats:\n"
"----------------------------------------\n");
if (pcpu_reserved_chunk) {
seq_puts(m, "Chunk: <- Reserved Chunk\n");
chunk_map_stats(m, pcpu_reserved_chunk, buffer);
}
for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) {
for (slot = 0; slot < pcpu_nr_slots; slot++) {
list_for_each_entry(chunk, &pcpu_chunk_list(type)[slot],
list) {
if (chunk == pcpu_first_chunk) {
seq_puts(m, "Chunk: <- First Chunk\n");
chunk_map_stats(m, chunk, buffer);
} else {
seq_puts(m, "Chunk:\n");
chunk_map_stats(m, chunk, buffer);
}
}
}
}
spin_unlock_irq(&pcpu_lock);
vfree(buffer);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(percpu_stats);
static int __init init_percpu_stats_debugfs(void)
{
debugfs_create_file("percpu_stats", 0444, NULL, NULL,
&percpu_stats_fops);
return 0;
}
late_initcall(init_percpu_stats_debugfs);