| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright(c) 2018 Intel Corporation. All rights reserved. |
| |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/mmzone.h> |
| #include <linux/random.h> |
| #include <linux/moduleparam.h> |
| #include "internal.h" |
| #include "shuffle.h" |
| |
| DEFINE_STATIC_KEY_FALSE(page_alloc_shuffle_key); |
| |
| static bool shuffle_param; |
| static int shuffle_show(char *buffer, const struct kernel_param *kp) |
| { |
| return sprintf(buffer, "%c\n", shuffle_param ? 'Y' : 'N'); |
| } |
| |
| static __meminit int shuffle_store(const char *val, |
| const struct kernel_param *kp) |
| { |
| int rc = param_set_bool(val, kp); |
| |
| if (rc < 0) |
| return rc; |
| if (shuffle_param) |
| static_branch_enable(&page_alloc_shuffle_key); |
| return 0; |
| } |
| module_param_call(shuffle, shuffle_store, shuffle_show, &shuffle_param, 0400); |
| |
| /* |
| * For two pages to be swapped in the shuffle, they must be free (on a |
| * 'free_area' lru), have the same order, and have the same migratetype. |
| */ |
| static struct page * __meminit shuffle_valid_page(struct zone *zone, |
| unsigned long pfn, int order) |
| { |
| struct page *page = pfn_to_online_page(pfn); |
| |
| /* |
| * Given we're dealing with randomly selected pfns in a zone we |
| * need to ask questions like... |
| */ |
| |
| /* ... is the page managed by the buddy? */ |
| if (!page) |
| return NULL; |
| |
| /* ... is the page assigned to the same zone? */ |
| if (page_zone(page) != zone) |
| return NULL; |
| |
| /* ...is the page free and currently on a free_area list? */ |
| if (!PageBuddy(page)) |
| return NULL; |
| |
| /* |
| * ...is the page on the same list as the page we will |
| * shuffle it with? |
| */ |
| if (page_order(page) != order) |
| return NULL; |
| |
| return page; |
| } |
| |
| /* |
| * Fisher-Yates shuffle the freelist which prescribes iterating through an |
| * array, pfns in this case, and randomly swapping each entry with another in |
| * the span, end_pfn - start_pfn. |
| * |
| * To keep the implementation simple it does not attempt to correct for sources |
| * of bias in the distribution, like modulo bias or pseudo-random number |
| * generator bias. I.e. the expectation is that this shuffling raises the bar |
| * for attacks that exploit the predictability of page allocations, but need not |
| * be a perfect shuffle. |
| */ |
| #define SHUFFLE_RETRY 10 |
| void __meminit __shuffle_zone(struct zone *z) |
| { |
| unsigned long i, flags; |
| unsigned long start_pfn = z->zone_start_pfn; |
| unsigned long end_pfn = zone_end_pfn(z); |
| const int order = SHUFFLE_ORDER; |
| const int order_pages = 1 << order; |
| |
| spin_lock_irqsave(&z->lock, flags); |
| start_pfn = ALIGN(start_pfn, order_pages); |
| for (i = start_pfn; i < end_pfn; i += order_pages) { |
| unsigned long j; |
| int migratetype, retry; |
| struct page *page_i, *page_j; |
| |
| /* |
| * We expect page_i, in the sub-range of a zone being added |
| * (@start_pfn to @end_pfn), to more likely be valid compared to |
| * page_j randomly selected in the span @zone_start_pfn to |
| * @spanned_pages. |
| */ |
| page_i = shuffle_valid_page(z, i, order); |
| if (!page_i) |
| continue; |
| |
| for (retry = 0; retry < SHUFFLE_RETRY; retry++) { |
| /* |
| * Pick a random order aligned page in the zone span as |
| * a swap target. If the selected pfn is a hole, retry |
| * up to SHUFFLE_RETRY attempts find a random valid pfn |
| * in the zone. |
| */ |
| j = z->zone_start_pfn + |
| ALIGN_DOWN(get_random_long() % z->spanned_pages, |
| order_pages); |
| page_j = shuffle_valid_page(z, j, order); |
| if (page_j && page_j != page_i) |
| break; |
| } |
| if (retry >= SHUFFLE_RETRY) { |
| pr_debug("%s: failed to swap %#lx\n", __func__, i); |
| continue; |
| } |
| |
| /* |
| * Each migratetype corresponds to its own list, make sure the |
| * types match otherwise we're moving pages to lists where they |
| * do not belong. |
| */ |
| migratetype = get_pageblock_migratetype(page_i); |
| if (get_pageblock_migratetype(page_j) != migratetype) { |
| pr_debug("%s: migratetype mismatch %#lx\n", __func__, i); |
| continue; |
| } |
| |
| list_swap(&page_i->lru, &page_j->lru); |
| |
| pr_debug("%s: swap: %#lx -> %#lx\n", __func__, i, j); |
| |
| /* take it easy on the zone lock */ |
| if ((i % (100 * order_pages)) == 0) { |
| spin_unlock_irqrestore(&z->lock, flags); |
| cond_resched(); |
| spin_lock_irqsave(&z->lock, flags); |
| } |
| } |
| spin_unlock_irqrestore(&z->lock, flags); |
| } |
| |
| /** |
| * shuffle_free_memory - reduce the predictability of the page allocator |
| * @pgdat: node page data |
| */ |
| void __meminit __shuffle_free_memory(pg_data_t *pgdat) |
| { |
| struct zone *z; |
| |
| for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) |
| shuffle_zone(z); |
| } |
| |
| bool shuffle_pick_tail(void) |
| { |
| static u64 rand; |
| static u8 rand_bits; |
| bool ret; |
| |
| /* |
| * The lack of locking is deliberate. If 2 threads race to |
| * update the rand state it just adds to the entropy. |
| */ |
| if (rand_bits == 0) { |
| rand_bits = 64; |
| rand = get_random_u64(); |
| } |
| |
| ret = rand & 1; |
| |
| rand_bits--; |
| rand >>= 1; |
| |
| return ret; |
| } |