| /* |
| * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. |
| * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. |
| * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. |
| * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. |
| * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. |
| * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/sched/signal.h> |
| #include <linux/module.h> |
| #include <crypto/aead.h> |
| |
| #include <net/strparser.h> |
| #include <net/tls.h> |
| |
| static int __skb_nsg(struct sk_buff *skb, int offset, int len, |
| unsigned int recursion_level) |
| { |
| int start = skb_headlen(skb); |
| int i, chunk = start - offset; |
| struct sk_buff *frag_iter; |
| int elt = 0; |
| |
| if (unlikely(recursion_level >= 24)) |
| return -EMSGSIZE; |
| |
| if (chunk > 0) { |
| if (chunk > len) |
| chunk = len; |
| elt++; |
| len -= chunk; |
| if (len == 0) |
| return elt; |
| offset += chunk; |
| } |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| int end; |
| |
| WARN_ON(start > offset + len); |
| |
| end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); |
| chunk = end - offset; |
| if (chunk > 0) { |
| if (chunk > len) |
| chunk = len; |
| elt++; |
| len -= chunk; |
| if (len == 0) |
| return elt; |
| offset += chunk; |
| } |
| start = end; |
| } |
| |
| if (unlikely(skb_has_frag_list(skb))) { |
| skb_walk_frags(skb, frag_iter) { |
| int end, ret; |
| |
| WARN_ON(start > offset + len); |
| |
| end = start + frag_iter->len; |
| chunk = end - offset; |
| if (chunk > 0) { |
| if (chunk > len) |
| chunk = len; |
| ret = __skb_nsg(frag_iter, offset - start, chunk, |
| recursion_level + 1); |
| if (unlikely(ret < 0)) |
| return ret; |
| elt += ret; |
| len -= chunk; |
| if (len == 0) |
| return elt; |
| offset += chunk; |
| } |
| start = end; |
| } |
| } |
| BUG_ON(len); |
| return elt; |
| } |
| |
| /* Return the number of scatterlist elements required to completely map the |
| * skb, or -EMSGSIZE if the recursion depth is exceeded. |
| */ |
| static int skb_nsg(struct sk_buff *skb, int offset, int len) |
| { |
| return __skb_nsg(skb, offset, len, 0); |
| } |
| |
| static int padding_length(struct tls_sw_context_rx *ctx, |
| struct tls_prot_info *prot, struct sk_buff *skb) |
| { |
| struct strp_msg *rxm = strp_msg(skb); |
| int sub = 0; |
| |
| /* Determine zero-padding length */ |
| if (prot->version == TLS_1_3_VERSION) { |
| char content_type = 0; |
| int err; |
| int back = 17; |
| |
| while (content_type == 0) { |
| if (back > rxm->full_len - prot->prepend_size) |
| return -EBADMSG; |
| err = skb_copy_bits(skb, |
| rxm->offset + rxm->full_len - back, |
| &content_type, 1); |
| if (err) |
| return err; |
| if (content_type) |
| break; |
| sub++; |
| back++; |
| } |
| ctx->control = content_type; |
| } |
| return sub; |
| } |
| |
| static void tls_decrypt_done(struct crypto_async_request *req, int err) |
| { |
| struct aead_request *aead_req = (struct aead_request *)req; |
| struct scatterlist *sgout = aead_req->dst; |
| struct scatterlist *sgin = aead_req->src; |
| struct tls_sw_context_rx *ctx; |
| struct tls_context *tls_ctx; |
| struct tls_prot_info *prot; |
| struct scatterlist *sg; |
| struct sk_buff *skb; |
| unsigned int pages; |
| int pending; |
| |
| skb = (struct sk_buff *)req->data; |
| tls_ctx = tls_get_ctx(skb->sk); |
| ctx = tls_sw_ctx_rx(tls_ctx); |
| prot = &tls_ctx->prot_info; |
| |
| /* Propagate if there was an err */ |
| if (err) { |
| if (err == -EBADMSG) |
| TLS_INC_STATS(sock_net(skb->sk), |
| LINUX_MIB_TLSDECRYPTERROR); |
| ctx->async_wait.err = err; |
| tls_err_abort(skb->sk, err); |
| } else { |
| struct strp_msg *rxm = strp_msg(skb); |
| int pad; |
| |
| pad = padding_length(ctx, prot, skb); |
| if (pad < 0) { |
| ctx->async_wait.err = pad; |
| tls_err_abort(skb->sk, pad); |
| } else { |
| rxm->full_len -= pad; |
| rxm->offset += prot->prepend_size; |
| rxm->full_len -= prot->overhead_size; |
| } |
| } |
| |
| /* After using skb->sk to propagate sk through crypto async callback |
| * we need to NULL it again. |
| */ |
| skb->sk = NULL; |
| |
| |
| /* Free the destination pages if skb was not decrypted inplace */ |
| if (sgout != sgin) { |
| /* Skip the first S/G entry as it points to AAD */ |
| for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { |
| if (!sg) |
| break; |
| put_page(sg_page(sg)); |
| } |
| } |
| |
| kfree(aead_req); |
| |
| spin_lock_bh(&ctx->decrypt_compl_lock); |
| pending = atomic_dec_return(&ctx->decrypt_pending); |
| |
| if (!pending && ctx->async_notify) |
| complete(&ctx->async_wait.completion); |
| spin_unlock_bh(&ctx->decrypt_compl_lock); |
| } |
| |
| static int tls_do_decryption(struct sock *sk, |
| struct sk_buff *skb, |
| struct scatterlist *sgin, |
| struct scatterlist *sgout, |
| char *iv_recv, |
| size_t data_len, |
| struct aead_request *aead_req, |
| bool async) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| int ret; |
| |
| aead_request_set_tfm(aead_req, ctx->aead_recv); |
| aead_request_set_ad(aead_req, prot->aad_size); |
| aead_request_set_crypt(aead_req, sgin, sgout, |
| data_len + prot->tag_size, |
| (u8 *)iv_recv); |
| |
| if (async) { |
| /* Using skb->sk to push sk through to crypto async callback |
| * handler. This allows propagating errors up to the socket |
| * if needed. It _must_ be cleared in the async handler |
| * before consume_skb is called. We _know_ skb->sk is NULL |
| * because it is a clone from strparser. |
| */ |
| skb->sk = sk; |
| aead_request_set_callback(aead_req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG, |
| tls_decrypt_done, skb); |
| atomic_inc(&ctx->decrypt_pending); |
| } else { |
| aead_request_set_callback(aead_req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &ctx->async_wait); |
| } |
| |
| ret = crypto_aead_decrypt(aead_req); |
| if (ret == -EINPROGRESS) { |
| if (async) |
| return ret; |
| |
| ret = crypto_wait_req(ret, &ctx->async_wait); |
| } |
| |
| if (async) |
| atomic_dec(&ctx->decrypt_pending); |
| |
| return ret; |
| } |
| |
| static void tls_trim_both_msgs(struct sock *sk, int target_size) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| |
| sk_msg_trim(sk, &rec->msg_plaintext, target_size); |
| if (target_size > 0) |
| target_size += prot->overhead_size; |
| sk_msg_trim(sk, &rec->msg_encrypted, target_size); |
| } |
| |
| static int tls_alloc_encrypted_msg(struct sock *sk, int len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| struct sk_msg *msg_en = &rec->msg_encrypted; |
| |
| return sk_msg_alloc(sk, msg_en, len, 0); |
| } |
| |
| static int tls_clone_plaintext_msg(struct sock *sk, int required) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| struct sk_msg *msg_pl = &rec->msg_plaintext; |
| struct sk_msg *msg_en = &rec->msg_encrypted; |
| int skip, len; |
| |
| /* We add page references worth len bytes from encrypted sg |
| * at the end of plaintext sg. It is guaranteed that msg_en |
| * has enough required room (ensured by caller). |
| */ |
| len = required - msg_pl->sg.size; |
| |
| /* Skip initial bytes in msg_en's data to be able to use |
| * same offset of both plain and encrypted data. |
| */ |
| skip = prot->prepend_size + msg_pl->sg.size; |
| |
| return sk_msg_clone(sk, msg_pl, msg_en, skip, len); |
| } |
| |
| static struct tls_rec *tls_get_rec(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct sk_msg *msg_pl, *msg_en; |
| struct tls_rec *rec; |
| int mem_size; |
| |
| mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); |
| |
| rec = kzalloc(mem_size, sk->sk_allocation); |
| if (!rec) |
| return NULL; |
| |
| msg_pl = &rec->msg_plaintext; |
| msg_en = &rec->msg_encrypted; |
| |
| sk_msg_init(msg_pl); |
| sk_msg_init(msg_en); |
| |
| sg_init_table(rec->sg_aead_in, 2); |
| sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); |
| sg_unmark_end(&rec->sg_aead_in[1]); |
| |
| sg_init_table(rec->sg_aead_out, 2); |
| sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); |
| sg_unmark_end(&rec->sg_aead_out[1]); |
| |
| return rec; |
| } |
| |
| static void tls_free_rec(struct sock *sk, struct tls_rec *rec) |
| { |
| sk_msg_free(sk, &rec->msg_encrypted); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } |
| |
| static void tls_free_open_rec(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| |
| if (rec) { |
| tls_free_rec(sk, rec); |
| ctx->open_rec = NULL; |
| } |
| } |
| |
| int tls_tx_records(struct sock *sk, int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec, *tmp; |
| struct sk_msg *msg_en; |
| int tx_flags, rc = 0; |
| |
| if (tls_is_partially_sent_record(tls_ctx)) { |
| rec = list_first_entry(&ctx->tx_list, |
| struct tls_rec, list); |
| |
| if (flags == -1) |
| tx_flags = rec->tx_flags; |
| else |
| tx_flags = flags; |
| |
| rc = tls_push_partial_record(sk, tls_ctx, tx_flags); |
| if (rc) |
| goto tx_err; |
| |
| /* Full record has been transmitted. |
| * Remove the head of tx_list |
| */ |
| list_del(&rec->list); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } |
| |
| /* Tx all ready records */ |
| list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { |
| if (READ_ONCE(rec->tx_ready)) { |
| if (flags == -1) |
| tx_flags = rec->tx_flags; |
| else |
| tx_flags = flags; |
| |
| msg_en = &rec->msg_encrypted; |
| rc = tls_push_sg(sk, tls_ctx, |
| &msg_en->sg.data[msg_en->sg.curr], |
| 0, tx_flags); |
| if (rc) |
| goto tx_err; |
| |
| list_del(&rec->list); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } else { |
| break; |
| } |
| } |
| |
| tx_err: |
| if (rc < 0 && rc != -EAGAIN) |
| tls_err_abort(sk, EBADMSG); |
| |
| return rc; |
| } |
| |
| static void tls_encrypt_done(struct crypto_async_request *req, int err) |
| { |
| struct aead_request *aead_req = (struct aead_request *)req; |
| struct sock *sk = req->data; |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct scatterlist *sge; |
| struct sk_msg *msg_en; |
| struct tls_rec *rec; |
| bool ready = false; |
| int pending; |
| |
| rec = container_of(aead_req, struct tls_rec, aead_req); |
| msg_en = &rec->msg_encrypted; |
| |
| sge = sk_msg_elem(msg_en, msg_en->sg.curr); |
| sge->offset -= prot->prepend_size; |
| sge->length += prot->prepend_size; |
| |
| /* Check if error is previously set on socket */ |
| if (err || sk->sk_err) { |
| rec = NULL; |
| |
| /* If err is already set on socket, return the same code */ |
| if (sk->sk_err) { |
| ctx->async_wait.err = sk->sk_err; |
| } else { |
| ctx->async_wait.err = err; |
| tls_err_abort(sk, err); |
| } |
| } |
| |
| if (rec) { |
| struct tls_rec *first_rec; |
| |
| /* Mark the record as ready for transmission */ |
| smp_store_mb(rec->tx_ready, true); |
| |
| /* If received record is at head of tx_list, schedule tx */ |
| first_rec = list_first_entry(&ctx->tx_list, |
| struct tls_rec, list); |
| if (rec == first_rec) |
| ready = true; |
| } |
| |
| spin_lock_bh(&ctx->encrypt_compl_lock); |
| pending = atomic_dec_return(&ctx->encrypt_pending); |
| |
| if (!pending && ctx->async_notify) |
| complete(&ctx->async_wait.completion); |
| spin_unlock_bh(&ctx->encrypt_compl_lock); |
| |
| if (!ready) |
| return; |
| |
| /* Schedule the transmission */ |
| if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) |
| schedule_delayed_work(&ctx->tx_work.work, 1); |
| } |
| |
| static int tls_do_encryption(struct sock *sk, |
| struct tls_context *tls_ctx, |
| struct tls_sw_context_tx *ctx, |
| struct aead_request *aead_req, |
| size_t data_len, u32 start) |
| { |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_rec *rec = ctx->open_rec; |
| struct sk_msg *msg_en = &rec->msg_encrypted; |
| struct scatterlist *sge = sk_msg_elem(msg_en, start); |
| int rc, iv_offset = 0; |
| |
| /* For CCM based ciphers, first byte of IV is a constant */ |
| if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { |
| rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; |
| iv_offset = 1; |
| } |
| |
| memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, |
| prot->iv_size + prot->salt_size); |
| |
| xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); |
| |
| sge->offset += prot->prepend_size; |
| sge->length -= prot->prepend_size; |
| |
| msg_en->sg.curr = start; |
| |
| aead_request_set_tfm(aead_req, ctx->aead_send); |
| aead_request_set_ad(aead_req, prot->aad_size); |
| aead_request_set_crypt(aead_req, rec->sg_aead_in, |
| rec->sg_aead_out, |
| data_len, rec->iv_data); |
| |
| aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| tls_encrypt_done, sk); |
| |
| /* Add the record in tx_list */ |
| list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); |
| atomic_inc(&ctx->encrypt_pending); |
| |
| rc = crypto_aead_encrypt(aead_req); |
| if (!rc || rc != -EINPROGRESS) { |
| atomic_dec(&ctx->encrypt_pending); |
| sge->offset -= prot->prepend_size; |
| sge->length += prot->prepend_size; |
| } |
| |
| if (!rc) { |
| WRITE_ONCE(rec->tx_ready, true); |
| } else if (rc != -EINPROGRESS) { |
| list_del(&rec->list); |
| return rc; |
| } |
| |
| /* Unhook the record from context if encryption is not failure */ |
| ctx->open_rec = NULL; |
| tls_advance_record_sn(sk, prot, &tls_ctx->tx); |
| return rc; |
| } |
| |
| static int tls_split_open_record(struct sock *sk, struct tls_rec *from, |
| struct tls_rec **to, struct sk_msg *msg_opl, |
| struct sk_msg *msg_oen, u32 split_point, |
| u32 tx_overhead_size, u32 *orig_end) |
| { |
| u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; |
| struct scatterlist *sge, *osge, *nsge; |
| u32 orig_size = msg_opl->sg.size; |
| struct scatterlist tmp = { }; |
| struct sk_msg *msg_npl; |
| struct tls_rec *new; |
| int ret; |
| |
| new = tls_get_rec(sk); |
| if (!new) |
| return -ENOMEM; |
| ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + |
| tx_overhead_size, 0); |
| if (ret < 0) { |
| tls_free_rec(sk, new); |
| return ret; |
| } |
| |
| *orig_end = msg_opl->sg.end; |
| i = msg_opl->sg.start; |
| sge = sk_msg_elem(msg_opl, i); |
| while (apply && sge->length) { |
| if (sge->length > apply) { |
| u32 len = sge->length - apply; |
| |
| get_page(sg_page(sge)); |
| sg_set_page(&tmp, sg_page(sge), len, |
| sge->offset + apply); |
| sge->length = apply; |
| bytes += apply; |
| apply = 0; |
| } else { |
| apply -= sge->length; |
| bytes += sge->length; |
| } |
| |
| sk_msg_iter_var_next(i); |
| if (i == msg_opl->sg.end) |
| break; |
| sge = sk_msg_elem(msg_opl, i); |
| } |
| |
| msg_opl->sg.end = i; |
| msg_opl->sg.curr = i; |
| msg_opl->sg.copybreak = 0; |
| msg_opl->apply_bytes = 0; |
| msg_opl->sg.size = bytes; |
| |
| msg_npl = &new->msg_plaintext; |
| msg_npl->apply_bytes = apply; |
| msg_npl->sg.size = orig_size - bytes; |
| |
| j = msg_npl->sg.start; |
| nsge = sk_msg_elem(msg_npl, j); |
| if (tmp.length) { |
| memcpy(nsge, &tmp, sizeof(*nsge)); |
| sk_msg_iter_var_next(j); |
| nsge = sk_msg_elem(msg_npl, j); |
| } |
| |
| osge = sk_msg_elem(msg_opl, i); |
| while (osge->length) { |
| memcpy(nsge, osge, sizeof(*nsge)); |
| sg_unmark_end(nsge); |
| sk_msg_iter_var_next(i); |
| sk_msg_iter_var_next(j); |
| if (i == *orig_end) |
| break; |
| osge = sk_msg_elem(msg_opl, i); |
| nsge = sk_msg_elem(msg_npl, j); |
| } |
| |
| msg_npl->sg.end = j; |
| msg_npl->sg.curr = j; |
| msg_npl->sg.copybreak = 0; |
| |
| *to = new; |
| return 0; |
| } |
| |
| static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, |
| struct tls_rec *from, u32 orig_end) |
| { |
| struct sk_msg *msg_npl = &from->msg_plaintext; |
| struct sk_msg *msg_opl = &to->msg_plaintext; |
| struct scatterlist *osge, *nsge; |
| u32 i, j; |
| |
| i = msg_opl->sg.end; |
| sk_msg_iter_var_prev(i); |
| j = msg_npl->sg.start; |
| |
| osge = sk_msg_elem(msg_opl, i); |
| nsge = sk_msg_elem(msg_npl, j); |
| |
| if (sg_page(osge) == sg_page(nsge) && |
| osge->offset + osge->length == nsge->offset) { |
| osge->length += nsge->length; |
| put_page(sg_page(nsge)); |
| } |
| |
| msg_opl->sg.end = orig_end; |
| msg_opl->sg.curr = orig_end; |
| msg_opl->sg.copybreak = 0; |
| msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; |
| msg_opl->sg.size += msg_npl->sg.size; |
| |
| sk_msg_free(sk, &to->msg_encrypted); |
| sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); |
| |
| kfree(from); |
| } |
| |
| static int tls_push_record(struct sock *sk, int flags, |
| unsigned char record_type) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec, *tmp = NULL; |
| u32 i, split_point, orig_end; |
| struct sk_msg *msg_pl, *msg_en; |
| struct aead_request *req; |
| bool split; |
| int rc; |
| |
| if (!rec) |
| return 0; |
| |
| msg_pl = &rec->msg_plaintext; |
| msg_en = &rec->msg_encrypted; |
| |
| split_point = msg_pl->apply_bytes; |
| split = split_point && split_point < msg_pl->sg.size; |
| if (unlikely((!split && |
| msg_pl->sg.size + |
| prot->overhead_size > msg_en->sg.size) || |
| (split && |
| split_point + |
| prot->overhead_size > msg_en->sg.size))) { |
| split = true; |
| split_point = msg_en->sg.size; |
| } |
| if (split) { |
| rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, |
| split_point, prot->overhead_size, |
| &orig_end); |
| if (rc < 0) |
| return rc; |
| /* This can happen if above tls_split_open_record allocates |
| * a single large encryption buffer instead of two smaller |
| * ones. In this case adjust pointers and continue without |
| * split. |
| */ |
| if (!msg_pl->sg.size) { |
| tls_merge_open_record(sk, rec, tmp, orig_end); |
| msg_pl = &rec->msg_plaintext; |
| msg_en = &rec->msg_encrypted; |
| split = false; |
| } |
| sk_msg_trim(sk, msg_en, msg_pl->sg.size + |
| prot->overhead_size); |
| } |
| |
| rec->tx_flags = flags; |
| req = &rec->aead_req; |
| |
| i = msg_pl->sg.end; |
| sk_msg_iter_var_prev(i); |
| |
| rec->content_type = record_type; |
| if (prot->version == TLS_1_3_VERSION) { |
| /* Add content type to end of message. No padding added */ |
| sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); |
| sg_mark_end(&rec->sg_content_type); |
| sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, |
| &rec->sg_content_type); |
| } else { |
| sg_mark_end(sk_msg_elem(msg_pl, i)); |
| } |
| |
| if (msg_pl->sg.end < msg_pl->sg.start) { |
| sg_chain(&msg_pl->sg.data[msg_pl->sg.start], |
| MAX_SKB_FRAGS - msg_pl->sg.start + 1, |
| msg_pl->sg.data); |
| } |
| |
| i = msg_pl->sg.start; |
| sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); |
| |
| i = msg_en->sg.end; |
| sk_msg_iter_var_prev(i); |
| sg_mark_end(sk_msg_elem(msg_en, i)); |
| |
| i = msg_en->sg.start; |
| sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); |
| |
| tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, |
| tls_ctx->tx.rec_seq, prot->rec_seq_size, |
| record_type, prot->version); |
| |
| tls_fill_prepend(tls_ctx, |
| page_address(sg_page(&msg_en->sg.data[i])) + |
| msg_en->sg.data[i].offset, |
| msg_pl->sg.size + prot->tail_size, |
| record_type, prot->version); |
| |
| tls_ctx->pending_open_record_frags = false; |
| |
| rc = tls_do_encryption(sk, tls_ctx, ctx, req, |
| msg_pl->sg.size + prot->tail_size, i); |
| if (rc < 0) { |
| if (rc != -EINPROGRESS) { |
| tls_err_abort(sk, EBADMSG); |
| if (split) { |
| tls_ctx->pending_open_record_frags = true; |
| tls_merge_open_record(sk, rec, tmp, orig_end); |
| } |
| } |
| ctx->async_capable = 1; |
| return rc; |
| } else if (split) { |
| msg_pl = &tmp->msg_plaintext; |
| msg_en = &tmp->msg_encrypted; |
| sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); |
| tls_ctx->pending_open_record_frags = true; |
| ctx->open_rec = tmp; |
| } |
| |
| return tls_tx_records(sk, flags); |
| } |
| |
| static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, |
| bool full_record, u8 record_type, |
| ssize_t *copied, int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct sk_msg msg_redir = { }; |
| struct sk_psock *psock; |
| struct sock *sk_redir; |
| struct tls_rec *rec; |
| bool enospc, policy; |
| int err = 0, send; |
| u32 delta = 0; |
| |
| policy = !(flags & MSG_SENDPAGE_NOPOLICY); |
| psock = sk_psock_get(sk); |
| if (!psock || !policy) { |
| err = tls_push_record(sk, flags, record_type); |
| if (err && sk->sk_err == EBADMSG) { |
| *copied -= sk_msg_free(sk, msg); |
| tls_free_open_rec(sk); |
| err = -sk->sk_err; |
| } |
| if (psock) |
| sk_psock_put(sk, psock); |
| return err; |
| } |
| more_data: |
| enospc = sk_msg_full(msg); |
| if (psock->eval == __SK_NONE) { |
| delta = msg->sg.size; |
| psock->eval = sk_psock_msg_verdict(sk, psock, msg); |
| delta -= msg->sg.size; |
| } |
| if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && |
| !enospc && !full_record) { |
| err = -ENOSPC; |
| goto out_err; |
| } |
| msg->cork_bytes = 0; |
| send = msg->sg.size; |
| if (msg->apply_bytes && msg->apply_bytes < send) |
| send = msg->apply_bytes; |
| |
| switch (psock->eval) { |
| case __SK_PASS: |
| err = tls_push_record(sk, flags, record_type); |
| if (err && sk->sk_err == EBADMSG) { |
| *copied -= sk_msg_free(sk, msg); |
| tls_free_open_rec(sk); |
| err = -sk->sk_err; |
| goto out_err; |
| } |
| break; |
| case __SK_REDIRECT: |
| sk_redir = psock->sk_redir; |
| memcpy(&msg_redir, msg, sizeof(*msg)); |
| if (msg->apply_bytes < send) |
| msg->apply_bytes = 0; |
| else |
| msg->apply_bytes -= send; |
| sk_msg_return_zero(sk, msg, send); |
| msg->sg.size -= send; |
| release_sock(sk); |
| err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); |
| lock_sock(sk); |
| if (err < 0) { |
| *copied -= sk_msg_free_nocharge(sk, &msg_redir); |
| msg->sg.size = 0; |
| } |
| if (msg->sg.size == 0) |
| tls_free_open_rec(sk); |
| break; |
| case __SK_DROP: |
| default: |
| sk_msg_free_partial(sk, msg, send); |
| if (msg->apply_bytes < send) |
| msg->apply_bytes = 0; |
| else |
| msg->apply_bytes -= send; |
| if (msg->sg.size == 0) |
| tls_free_open_rec(sk); |
| *copied -= (send + delta); |
| err = -EACCES; |
| } |
| |
| if (likely(!err)) { |
| bool reset_eval = !ctx->open_rec; |
| |
| rec = ctx->open_rec; |
| if (rec) { |
| msg = &rec->msg_plaintext; |
| if (!msg->apply_bytes) |
| reset_eval = true; |
| } |
| if (reset_eval) { |
| psock->eval = __SK_NONE; |
| if (psock->sk_redir) { |
| sock_put(psock->sk_redir); |
| psock->sk_redir = NULL; |
| } |
| } |
| if (rec) |
| goto more_data; |
| } |
| out_err: |
| sk_psock_put(sk, psock); |
| return err; |
| } |
| |
| static int tls_sw_push_pending_record(struct sock *sk, int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| struct sk_msg *msg_pl; |
| size_t copied; |
| |
| if (!rec) |
| return 0; |
| |
| msg_pl = &rec->msg_plaintext; |
| copied = msg_pl->sg.size; |
| if (!copied) |
| return 0; |
| |
| return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, |
| &copied, flags); |
| } |
| |
| int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) |
| { |
| long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| bool async_capable = ctx->async_capable; |
| unsigned char record_type = TLS_RECORD_TYPE_DATA; |
| bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); |
| bool eor = !(msg->msg_flags & MSG_MORE); |
| size_t try_to_copy; |
| ssize_t copied = 0; |
| struct sk_msg *msg_pl, *msg_en; |
| struct tls_rec *rec; |
| int required_size; |
| int num_async = 0; |
| bool full_record; |
| int record_room; |
| int num_zc = 0; |
| int orig_size; |
| int ret = 0; |
| int pending; |
| |
| if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | |
| MSG_CMSG_COMPAT)) |
| return -EOPNOTSUPP; |
| |
| mutex_lock(&tls_ctx->tx_lock); |
| lock_sock(sk); |
| |
| if (unlikely(msg->msg_controllen)) { |
| ret = tls_proccess_cmsg(sk, msg, &record_type); |
| if (ret) { |
| if (ret == -EINPROGRESS) |
| num_async++; |
| else if (ret != -EAGAIN) |
| goto send_end; |
| } |
| } |
| |
| while (msg_data_left(msg)) { |
| if (sk->sk_err) { |
| ret = -sk->sk_err; |
| goto send_end; |
| } |
| |
| if (ctx->open_rec) |
| rec = ctx->open_rec; |
| else |
| rec = ctx->open_rec = tls_get_rec(sk); |
| if (!rec) { |
| ret = -ENOMEM; |
| goto send_end; |
| } |
| |
| msg_pl = &rec->msg_plaintext; |
| msg_en = &rec->msg_encrypted; |
| |
| orig_size = msg_pl->sg.size; |
| full_record = false; |
| try_to_copy = msg_data_left(msg); |
| record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; |
| if (try_to_copy >= record_room) { |
| try_to_copy = record_room; |
| full_record = true; |
| } |
| |
| required_size = msg_pl->sg.size + try_to_copy + |
| prot->overhead_size; |
| |
| if (!sk_stream_memory_free(sk)) |
| goto wait_for_sndbuf; |
| |
| alloc_encrypted: |
| ret = tls_alloc_encrypted_msg(sk, required_size); |
| if (ret) { |
| if (ret != -ENOSPC) |
| goto wait_for_memory; |
| |
| /* Adjust try_to_copy according to the amount that was |
| * actually allocated. The difference is due |
| * to max sg elements limit |
| */ |
| try_to_copy -= required_size - msg_en->sg.size; |
| full_record = true; |
| } |
| |
| if (!is_kvec && (full_record || eor) && !async_capable) { |
| u32 first = msg_pl->sg.end; |
| |
| ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, |
| msg_pl, try_to_copy); |
| if (ret) |
| goto fallback_to_reg_send; |
| |
| num_zc++; |
| copied += try_to_copy; |
| |
| sk_msg_sg_copy_set(msg_pl, first); |
| ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, |
| record_type, &copied, |
| msg->msg_flags); |
| if (ret) { |
| if (ret == -EINPROGRESS) |
| num_async++; |
| else if (ret == -ENOMEM) |
| goto wait_for_memory; |
| else if (ctx->open_rec && ret == -ENOSPC) |
| goto rollback_iter; |
| else if (ret != -EAGAIN) |
| goto send_end; |
| } |
| continue; |
| rollback_iter: |
| copied -= try_to_copy; |
| sk_msg_sg_copy_clear(msg_pl, first); |
| iov_iter_revert(&msg->msg_iter, |
| msg_pl->sg.size - orig_size); |
| fallback_to_reg_send: |
| sk_msg_trim(sk, msg_pl, orig_size); |
| } |
| |
| required_size = msg_pl->sg.size + try_to_copy; |
| |
| ret = tls_clone_plaintext_msg(sk, required_size); |
| if (ret) { |
| if (ret != -ENOSPC) |
| goto send_end; |
| |
| /* Adjust try_to_copy according to the amount that was |
| * actually allocated. The difference is due |
| * to max sg elements limit |
| */ |
| try_to_copy -= required_size - msg_pl->sg.size; |
| full_record = true; |
| sk_msg_trim(sk, msg_en, |
| msg_pl->sg.size + prot->overhead_size); |
| } |
| |
| if (try_to_copy) { |
| ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, |
| msg_pl, try_to_copy); |
| if (ret < 0) |
| goto trim_sgl; |
| } |
| |
| /* Open records defined only if successfully copied, otherwise |
| * we would trim the sg but not reset the open record frags. |
| */ |
| tls_ctx->pending_open_record_frags = true; |
| copied += try_to_copy; |
| if (full_record || eor) { |
| ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, |
| record_type, &copied, |
| msg->msg_flags); |
| if (ret) { |
| if (ret == -EINPROGRESS) |
| num_async++; |
| else if (ret == -ENOMEM) |
| goto wait_for_memory; |
| else if (ret != -EAGAIN) { |
| if (ret == -ENOSPC) |
| ret = 0; |
| goto send_end; |
| } |
| } |
| } |
| |
| continue; |
| |
| wait_for_sndbuf: |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| wait_for_memory: |
| ret = sk_stream_wait_memory(sk, &timeo); |
| if (ret) { |
| trim_sgl: |
| if (ctx->open_rec) |
| tls_trim_both_msgs(sk, orig_size); |
| goto send_end; |
| } |
| |
| if (ctx->open_rec && msg_en->sg.size < required_size) |
| goto alloc_encrypted; |
| } |
| |
| if (!num_async) { |
| goto send_end; |
| } else if (num_zc) { |
| /* Wait for pending encryptions to get completed */ |
| spin_lock_bh(&ctx->encrypt_compl_lock); |
| ctx->async_notify = true; |
| |
| pending = atomic_read(&ctx->encrypt_pending); |
| spin_unlock_bh(&ctx->encrypt_compl_lock); |
| if (pending) |
| crypto_wait_req(-EINPROGRESS, &ctx->async_wait); |
| else |
| reinit_completion(&ctx->async_wait.completion); |
| |
| /* There can be no concurrent accesses, since we have no |
| * pending encrypt operations |
| */ |
| WRITE_ONCE(ctx->async_notify, false); |
| |
| if (ctx->async_wait.err) { |
| ret = ctx->async_wait.err; |
| copied = 0; |
| } |
| } |
| |
| /* Transmit if any encryptions have completed */ |
| if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { |
| cancel_delayed_work(&ctx->tx_work.work); |
| tls_tx_records(sk, msg->msg_flags); |
| } |
| |
| send_end: |
| ret = sk_stream_error(sk, msg->msg_flags, ret); |
| |
| release_sock(sk); |
| mutex_unlock(&tls_ctx->tx_lock); |
| return copied > 0 ? copied : ret; |
| } |
| |
| static int tls_sw_do_sendpage(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags) |
| { |
| long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| unsigned char record_type = TLS_RECORD_TYPE_DATA; |
| struct sk_msg *msg_pl; |
| struct tls_rec *rec; |
| int num_async = 0; |
| ssize_t copied = 0; |
| bool full_record; |
| int record_room; |
| int ret = 0; |
| bool eor; |
| |
| eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); |
| sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); |
| |
| /* Call the sk_stream functions to manage the sndbuf mem. */ |
| while (size > 0) { |
| size_t copy, required_size; |
| |
| if (sk->sk_err) { |
| ret = -sk->sk_err; |
| goto sendpage_end; |
| } |
| |
| if (ctx->open_rec) |
| rec = ctx->open_rec; |
| else |
| rec = ctx->open_rec = tls_get_rec(sk); |
| if (!rec) { |
| ret = -ENOMEM; |
| goto sendpage_end; |
| } |
| |
| msg_pl = &rec->msg_plaintext; |
| |
| full_record = false; |
| record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; |
| copy = size; |
| if (copy >= record_room) { |
| copy = record_room; |
| full_record = true; |
| } |
| |
| required_size = msg_pl->sg.size + copy + prot->overhead_size; |
| |
| if (!sk_stream_memory_free(sk)) |
| goto wait_for_sndbuf; |
| alloc_payload: |
| ret = tls_alloc_encrypted_msg(sk, required_size); |
| if (ret) { |
| if (ret != -ENOSPC) |
| goto wait_for_memory; |
| |
| /* Adjust copy according to the amount that was |
| * actually allocated. The difference is due |
| * to max sg elements limit |
| */ |
| copy -= required_size - msg_pl->sg.size; |
| full_record = true; |
| } |
| |
| sk_msg_page_add(msg_pl, page, copy, offset); |
| sk_mem_charge(sk, copy); |
| |
| offset += copy; |
| size -= copy; |
| copied += copy; |
| |
| tls_ctx->pending_open_record_frags = true; |
| if (full_record || eor || sk_msg_full(msg_pl)) { |
| ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, |
| record_type, &copied, flags); |
| if (ret) { |
| if (ret == -EINPROGRESS) |
| num_async++; |
| else if (ret == -ENOMEM) |
| goto wait_for_memory; |
| else if (ret != -EAGAIN) { |
| if (ret == -ENOSPC) |
| ret = 0; |
| goto sendpage_end; |
| } |
| } |
| } |
| continue; |
| wait_for_sndbuf: |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| wait_for_memory: |
| ret = sk_stream_wait_memory(sk, &timeo); |
| if (ret) { |
| if (ctx->open_rec) |
| tls_trim_both_msgs(sk, msg_pl->sg.size); |
| goto sendpage_end; |
| } |
| |
| if (ctx->open_rec) |
| goto alloc_payload; |
| } |
| |
| if (num_async) { |
| /* Transmit if any encryptions have completed */ |
| if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { |
| cancel_delayed_work(&ctx->tx_work.work); |
| tls_tx_records(sk, flags); |
| } |
| } |
| sendpage_end: |
| ret = sk_stream_error(sk, flags, ret); |
| return copied > 0 ? copied : ret; |
| } |
| |
| int tls_sw_sendpage_locked(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags) |
| { |
| if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | |
| MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | |
| MSG_NO_SHARED_FRAGS)) |
| return -EOPNOTSUPP; |
| |
| return tls_sw_do_sendpage(sk, page, offset, size, flags); |
| } |
| |
| int tls_sw_sendpage(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| int ret; |
| |
| if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | |
| MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) |
| return -EOPNOTSUPP; |
| |
| mutex_lock(&tls_ctx->tx_lock); |
| lock_sock(sk); |
| ret = tls_sw_do_sendpage(sk, page, offset, size, flags); |
| release_sock(sk); |
| mutex_unlock(&tls_ctx->tx_lock); |
| return ret; |
| } |
| |
| static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, |
| int flags, long timeo, int *err) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct sk_buff *skb; |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| |
| while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { |
| if (sk->sk_err) { |
| *err = sock_error(sk); |
| return NULL; |
| } |
| |
| if (sk->sk_shutdown & RCV_SHUTDOWN) |
| return NULL; |
| |
| if (sock_flag(sk, SOCK_DONE)) |
| return NULL; |
| |
| if ((flags & MSG_DONTWAIT) || !timeo) { |
| *err = -EAGAIN; |
| return NULL; |
| } |
| |
| add_wait_queue(sk_sleep(sk), &wait); |
| sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| sk_wait_event(sk, &timeo, |
| ctx->recv_pkt != skb || |
| !sk_psock_queue_empty(psock), |
| &wait); |
| sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| remove_wait_queue(sk_sleep(sk), &wait); |
| |
| /* Handle signals */ |
| if (signal_pending(current)) { |
| *err = sock_intr_errno(timeo); |
| return NULL; |
| } |
| } |
| |
| return skb; |
| } |
| |
| static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, |
| int length, int *pages_used, |
| unsigned int *size_used, |
| struct scatterlist *to, |
| int to_max_pages) |
| { |
| int rc = 0, i = 0, num_elem = *pages_used, maxpages; |
| struct page *pages[MAX_SKB_FRAGS]; |
| unsigned int size = *size_used; |
| ssize_t copied, use; |
| size_t offset; |
| |
| while (length > 0) { |
| i = 0; |
| maxpages = to_max_pages - num_elem; |
| if (maxpages == 0) { |
| rc = -EFAULT; |
| goto out; |
| } |
| copied = iov_iter_get_pages(from, pages, |
| length, |
| maxpages, &offset); |
| if (copied <= 0) { |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| iov_iter_advance(from, copied); |
| |
| length -= copied; |
| size += copied; |
| while (copied) { |
| use = min_t(int, copied, PAGE_SIZE - offset); |
| |
| sg_set_page(&to[num_elem], |
| pages[i], use, offset); |
| sg_unmark_end(&to[num_elem]); |
| /* We do not uncharge memory from this API */ |
| |
| offset = 0; |
| copied -= use; |
| |
| i++; |
| num_elem++; |
| } |
| } |
| /* Mark the end in the last sg entry if newly added */ |
| if (num_elem > *pages_used) |
| sg_mark_end(&to[num_elem - 1]); |
| out: |
| if (rc) |
| iov_iter_revert(from, size - *size_used); |
| *size_used = size; |
| *pages_used = num_elem; |
| |
| return rc; |
| } |
| |
| /* This function decrypts the input skb into either out_iov or in out_sg |
| * or in skb buffers itself. The input parameter 'zc' indicates if |
| * zero-copy mode needs to be tried or not. With zero-copy mode, either |
| * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are |
| * NULL, then the decryption happens inside skb buffers itself, i.e. |
| * zero-copy gets disabled and 'zc' is updated. |
| */ |
| |
| static int decrypt_internal(struct sock *sk, struct sk_buff *skb, |
| struct iov_iter *out_iov, |
| struct scatterlist *out_sg, |
| int *chunk, bool *zc, bool async) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct strp_msg *rxm = strp_msg(skb); |
| int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; |
| struct aead_request *aead_req; |
| struct sk_buff *unused; |
| u8 *aad, *iv, *mem = NULL; |
| struct scatterlist *sgin = NULL; |
| struct scatterlist *sgout = NULL; |
| const int data_len = rxm->full_len - prot->overhead_size + |
| prot->tail_size; |
| int iv_offset = 0; |
| |
| if (*zc && (out_iov || out_sg)) { |
| if (out_iov) |
| n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; |
| else |
| n_sgout = sg_nents(out_sg); |
| n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, |
| rxm->full_len - prot->prepend_size); |
| } else { |
| n_sgout = 0; |
| *zc = false; |
| n_sgin = skb_cow_data(skb, 0, &unused); |
| } |
| |
| if (n_sgin < 1) |
| return -EBADMSG; |
| |
| /* Increment to accommodate AAD */ |
| n_sgin = n_sgin + 1; |
| |
| nsg = n_sgin + n_sgout; |
| |
| aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); |
| mem_size = aead_size + (nsg * sizeof(struct scatterlist)); |
| mem_size = mem_size + prot->aad_size; |
| mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); |
| |
| /* Allocate a single block of memory which contains |
| * aead_req || sgin[] || sgout[] || aad || iv. |
| * This order achieves correct alignment for aead_req, sgin, sgout. |
| */ |
| mem = kmalloc(mem_size, sk->sk_allocation); |
| if (!mem) |
| return -ENOMEM; |
| |
| /* Segment the allocated memory */ |
| aead_req = (struct aead_request *)mem; |
| sgin = (struct scatterlist *)(mem + aead_size); |
| sgout = sgin + n_sgin; |
| aad = (u8 *)(sgout + n_sgout); |
| iv = aad + prot->aad_size; |
| |
| /* For CCM based ciphers, first byte of nonce+iv is always '2' */ |
| if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { |
| iv[0] = 2; |
| iv_offset = 1; |
| } |
| |
| /* Prepare IV */ |
| err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, |
| iv + iv_offset + prot->salt_size, |
| prot->iv_size); |
| if (err < 0) { |
| kfree(mem); |
| return err; |
| } |
| if (prot->version == TLS_1_3_VERSION) |
| memcpy(iv + iv_offset, tls_ctx->rx.iv, |
| crypto_aead_ivsize(ctx->aead_recv)); |
| else |
| memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); |
| |
| xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); |
| |
| /* Prepare AAD */ |
| tls_make_aad(aad, rxm->full_len - prot->overhead_size + |
| prot->tail_size, |
| tls_ctx->rx.rec_seq, prot->rec_seq_size, |
| ctx->control, prot->version); |
| |
| /* Prepare sgin */ |
| sg_init_table(sgin, n_sgin); |
| sg_set_buf(&sgin[0], aad, prot->aad_size); |
| err = skb_to_sgvec(skb, &sgin[1], |
| rxm->offset + prot->prepend_size, |
| rxm->full_len - prot->prepend_size); |
| if (err < 0) { |
| kfree(mem); |
| return err; |
| } |
| |
| if (n_sgout) { |
| if (out_iov) { |
| sg_init_table(sgout, n_sgout); |
| sg_set_buf(&sgout[0], aad, prot->aad_size); |
| |
| *chunk = 0; |
| err = tls_setup_from_iter(sk, out_iov, data_len, |
| &pages, chunk, &sgout[1], |
| (n_sgout - 1)); |
| if (err < 0) |
| goto fallback_to_reg_recv; |
| } else if (out_sg) { |
| memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); |
| } else { |
| goto fallback_to_reg_recv; |
| } |
| } else { |
| fallback_to_reg_recv: |
| sgout = sgin; |
| pages = 0; |
| *chunk = data_len; |
| *zc = false; |
| } |
| |
| /* Prepare and submit AEAD request */ |
| err = tls_do_decryption(sk, skb, sgin, sgout, iv, |
| data_len, aead_req, async); |
| if (err == -EINPROGRESS) |
| return err; |
| |
| /* Release the pages in case iov was mapped to pages */ |
| for (; pages > 0; pages--) |
| put_page(sg_page(&sgout[pages])); |
| |
| kfree(mem); |
| return err; |
| } |
| |
| static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, |
| struct iov_iter *dest, int *chunk, bool *zc, |
| bool async) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct strp_msg *rxm = strp_msg(skb); |
| int pad, err = 0; |
| |
| if (!ctx->decrypted) { |
| if (tls_ctx->rx_conf == TLS_HW) { |
| err = tls_device_decrypted(sk, tls_ctx, skb, rxm); |
| if (err < 0) |
| return err; |
| } |
| |
| /* Still not decrypted after tls_device */ |
| if (!ctx->decrypted) { |
| err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, |
| async); |
| if (err < 0) { |
| if (err == -EINPROGRESS) |
| tls_advance_record_sn(sk, prot, |
| &tls_ctx->rx); |
| else if (err == -EBADMSG) |
| TLS_INC_STATS(sock_net(sk), |
| LINUX_MIB_TLSDECRYPTERROR); |
| return err; |
| } |
| } else { |
| *zc = false; |
| } |
| |
| pad = padding_length(ctx, prot, skb); |
| if (pad < 0) |
| return pad; |
| |
| rxm->full_len -= pad; |
| rxm->offset += prot->prepend_size; |
| rxm->full_len -= prot->overhead_size; |
| tls_advance_record_sn(sk, prot, &tls_ctx->rx); |
| ctx->decrypted = 1; |
| ctx->saved_data_ready(sk); |
| } else { |
| *zc = false; |
| } |
| |
| return err; |
| } |
| |
| int decrypt_skb(struct sock *sk, struct sk_buff *skb, |
| struct scatterlist *sgout) |
| { |
| bool zc = true; |
| int chunk; |
| |
| return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); |
| } |
| |
| static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, |
| unsigned int len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| if (skb) { |
| struct strp_msg *rxm = strp_msg(skb); |
| |
| if (len < rxm->full_len) { |
| rxm->offset += len; |
| rxm->full_len -= len; |
| return false; |
| } |
| consume_skb(skb); |
| } |
| |
| /* Finished with message */ |
| ctx->recv_pkt = NULL; |
| __strp_unpause(&ctx->strp); |
| |
| return true; |
| } |
| |
| /* This function traverses the rx_list in tls receive context to copies the |
| * decrypted records into the buffer provided by caller zero copy is not |
| * true. Further, the records are removed from the rx_list if it is not a peek |
| * case and the record has been consumed completely. |
| */ |
| static int process_rx_list(struct tls_sw_context_rx *ctx, |
| struct msghdr *msg, |
| u8 *control, |
| bool *cmsg, |
| size_t skip, |
| size_t len, |
| bool zc, |
| bool is_peek) |
| { |
| struct sk_buff *skb = skb_peek(&ctx->rx_list); |
| u8 ctrl = *control; |
| u8 msgc = *cmsg; |
| struct tls_msg *tlm; |
| ssize_t copied = 0; |
| |
| /* Set the record type in 'control' if caller didn't pass it */ |
| if (!ctrl && skb) { |
| tlm = tls_msg(skb); |
| ctrl = tlm->control; |
| } |
| |
| while (skip && skb) { |
| struct strp_msg *rxm = strp_msg(skb); |
| tlm = tls_msg(skb); |
| |
| /* Cannot process a record of different type */ |
| if (ctrl != tlm->control) |
| return 0; |
| |
| if (skip < rxm->full_len) |
| break; |
| |
| skip = skip - rxm->full_len; |
| skb = skb_peek_next(skb, &ctx->rx_list); |
| } |
| |
| while (len && skb) { |
| struct sk_buff *next_skb; |
| struct strp_msg *rxm = strp_msg(skb); |
| int chunk = min_t(unsigned int, rxm->full_len - skip, len); |
| |
| tlm = tls_msg(skb); |
| |
| /* Cannot process a record of different type */ |
| if (ctrl != tlm->control) |
| return 0; |
| |
| /* Set record type if not already done. For a non-data record, |
| * do not proceed if record type could not be copied. |
| */ |
| if (!msgc) { |
| int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, |
| sizeof(ctrl), &ctrl); |
| msgc = true; |
| if (ctrl != TLS_RECORD_TYPE_DATA) { |
| if (cerr || msg->msg_flags & MSG_CTRUNC) |
| return -EIO; |
| |
| *cmsg = msgc; |
| } |
| } |
| |
| if (!zc || (rxm->full_len - skip) > len) { |
| int err = skb_copy_datagram_msg(skb, rxm->offset + skip, |
| msg, chunk); |
| if (err < 0) |
| return err; |
| } |
| |
| len = len - chunk; |
| copied = copied + chunk; |
| |
| /* Consume the data from record if it is non-peek case*/ |
| if (!is_peek) { |
| rxm->offset = rxm->offset + chunk; |
| rxm->full_len = rxm->full_len - chunk; |
| |
| /* Return if there is unconsumed data in the record */ |
| if (rxm->full_len - skip) |
| break; |
| } |
| |
| /* The remaining skip-bytes must lie in 1st record in rx_list. |
| * So from the 2nd record, 'skip' should be 0. |
| */ |
| skip = 0; |
| |
| if (msg) |
| msg->msg_flags |= MSG_EOR; |
| |
| next_skb = skb_peek_next(skb, &ctx->rx_list); |
| |
| if (!is_peek) { |
| skb_unlink(skb, &ctx->rx_list); |
| consume_skb(skb); |
| } |
| |
| skb = next_skb; |
| } |
| |
| *control = ctrl; |
| return copied; |
| } |
| |
| int tls_sw_recvmsg(struct sock *sk, |
| struct msghdr *msg, |
| size_t len, |
| int nonblock, |
| int flags, |
| int *addr_len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct sk_psock *psock; |
| unsigned char control = 0; |
| ssize_t decrypted = 0; |
| struct strp_msg *rxm; |
| struct tls_msg *tlm; |
| struct sk_buff *skb; |
| ssize_t copied = 0; |
| bool cmsg = false; |
| int target, err = 0; |
| long timeo; |
| bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); |
| bool is_peek = flags & MSG_PEEK; |
| bool bpf_strp_enabled; |
| int num_async = 0; |
| int pending; |
| |
| flags |= nonblock; |
| |
| if (unlikely(flags & MSG_ERRQUEUE)) |
| return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); |
| |
| psock = sk_psock_get(sk); |
| lock_sock(sk); |
| bpf_strp_enabled = sk_psock_strp_enabled(psock); |
| |
| /* Process pending decrypted records. It must be non-zero-copy */ |
| err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, |
| is_peek); |
| if (err < 0) { |
| tls_err_abort(sk, err); |
| goto end; |
| } else { |
| copied = err; |
| } |
| |
| if (len <= copied) |
| goto recv_end; |
| |
| target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); |
| len = len - copied; |
| timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); |
| |
| while (len && (decrypted + copied < target || ctx->recv_pkt)) { |
| bool retain_skb = false; |
| bool zc = false; |
| int to_decrypt; |
| int chunk = 0; |
| bool async_capable; |
| bool async = false; |
| |
| skb = tls_wait_data(sk, psock, flags, timeo, &err); |
| if (!skb) { |
| if (psock) { |
| int ret = __tcp_bpf_recvmsg(sk, psock, |
| msg, len, flags); |
| |
| if (ret > 0) { |
| decrypted += ret; |
| len -= ret; |
| continue; |
| } |
| } |
| goto recv_end; |
| } else { |
| tlm = tls_msg(skb); |
| if (prot->version == TLS_1_3_VERSION) |
| tlm->control = 0; |
| else |
| tlm->control = ctx->control; |
| } |
| |
| rxm = strp_msg(skb); |
| |
| to_decrypt = rxm->full_len - prot->overhead_size; |
| |
| if (to_decrypt <= len && !is_kvec && !is_peek && |
| ctx->control == TLS_RECORD_TYPE_DATA && |
| prot->version != TLS_1_3_VERSION && |
| !bpf_strp_enabled) |
| zc = true; |
| |
| /* Do not use async mode if record is non-data */ |
| if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) |
| async_capable = ctx->async_capable; |
| else |
| async_capable = false; |
| |
| err = decrypt_skb_update(sk, skb, &msg->msg_iter, |
| &chunk, &zc, async_capable); |
| if (err < 0 && err != -EINPROGRESS) { |
| tls_err_abort(sk, EBADMSG); |
| goto recv_end; |
| } |
| |
| if (err == -EINPROGRESS) { |
| async = true; |
| num_async++; |
| } else if (prot->version == TLS_1_3_VERSION) { |
| tlm->control = ctx->control; |
| } |
| |
| /* If the type of records being processed is not known yet, |
| * set it to record type just dequeued. If it is already known, |
| * but does not match the record type just dequeued, go to end. |
| * We always get record type here since for tls1.2, record type |
| * is known just after record is dequeued from stream parser. |
| * For tls1.3, we disable async. |
| */ |
| |
| if (!control) |
| control = tlm->control; |
| else if (control != tlm->control) |
| goto recv_end; |
| |
| if (!cmsg) { |
| int cerr; |
| |
| cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, |
| sizeof(control), &control); |
| cmsg = true; |
| if (control != TLS_RECORD_TYPE_DATA) { |
| if (cerr || msg->msg_flags & MSG_CTRUNC) { |
| err = -EIO; |
| goto recv_end; |
| } |
| } |
| } |
| |
| if (async) |
| goto pick_next_record; |
| |
| if (!zc) { |
| if (bpf_strp_enabled) { |
| err = sk_psock_tls_strp_read(psock, skb); |
| if (err != __SK_PASS) { |
| rxm->offset = rxm->offset + rxm->full_len; |
| rxm->full_len = 0; |
| if (err == __SK_DROP) |
| consume_skb(skb); |
| ctx->recv_pkt = NULL; |
| __strp_unpause(&ctx->strp); |
| continue; |
| } |
| } |
| |
| if (rxm->full_len > len) { |
| retain_skb = true; |
| chunk = len; |
| } else { |
| chunk = rxm->full_len; |
| } |
| |
| err = skb_copy_datagram_msg(skb, rxm->offset, |
| msg, chunk); |
| if (err < 0) |
| goto recv_end; |
| |
| if (!is_peek) { |
| rxm->offset = rxm->offset + chunk; |
| rxm->full_len = rxm->full_len - chunk; |
| } |
| } |
| |
| pick_next_record: |
| if (chunk > len) |
| chunk = len; |
| |
| decrypted += chunk; |
| len -= chunk; |
| |
| /* For async or peek case, queue the current skb */ |
| if (async || is_peek || retain_skb) { |
| skb_queue_tail(&ctx->rx_list, skb); |
| skb = NULL; |
| } |
| |
| if (tls_sw_advance_skb(sk, skb, chunk)) { |
| /* Return full control message to |
| * userspace before trying to parse |
| * another message type |
| */ |
| msg->msg_flags |= MSG_EOR; |
| if (ctx->control != TLS_RECORD_TYPE_DATA) |
| goto recv_end; |
| } else { |
| break; |
| } |
| } |
| |
| recv_end: |
| if (num_async) { |
| /* Wait for all previously submitted records to be decrypted */ |
| spin_lock_bh(&ctx->decrypt_compl_lock); |
| ctx->async_notify = true; |
| pending = atomic_read(&ctx->decrypt_pending); |
| spin_unlock_bh(&ctx->decrypt_compl_lock); |
| if (pending) { |
| err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); |
| if (err) { |
| /* one of async decrypt failed */ |
| tls_err_abort(sk, err); |
| copied = 0; |
| decrypted = 0; |
| goto end; |
| } |
| } else { |
| reinit_completion(&ctx->async_wait.completion); |
| } |
| |
| /* There can be no concurrent accesses, since we have no |
| * pending decrypt operations |
| */ |
| WRITE_ONCE(ctx->async_notify, false); |
| |
| /* Drain records from the rx_list & copy if required */ |
| if (is_peek || is_kvec) |
| err = process_rx_list(ctx, msg, &control, &cmsg, copied, |
| decrypted, false, is_peek); |
| else |
| err = process_rx_list(ctx, msg, &control, &cmsg, 0, |
| decrypted, true, is_peek); |
| if (err < 0) { |
| tls_err_abort(sk, err); |
| copied = 0; |
| goto end; |
| } |
| } |
| |
| copied += decrypted; |
| |
| end: |
| release_sock(sk); |
| if (psock) |
| sk_psock_put(sk, psock); |
| return copied ? : err; |
| } |
| |
| ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, |
| struct pipe_inode_info *pipe, |
| size_t len, unsigned int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sock->sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct strp_msg *rxm = NULL; |
| struct sock *sk = sock->sk; |
| struct sk_buff *skb; |
| ssize_t copied = 0; |
| int err = 0; |
| long timeo; |
| int chunk; |
| bool zc = false; |
| |
| lock_sock(sk); |
| |
| timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); |
| |
| skb = tls_wait_data(sk, NULL, flags, timeo, &err); |
| if (!skb) |
| goto splice_read_end; |
| |
| if (!ctx->decrypted) { |
| err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); |
| |
| /* splice does not support reading control messages */ |
| if (ctx->control != TLS_RECORD_TYPE_DATA) { |
| err = -EINVAL; |
| goto splice_read_end; |
| } |
| |
| if (err < 0) { |
| tls_err_abort(sk, EBADMSG); |
| goto splice_read_end; |
| } |
| ctx->decrypted = 1; |
| } |
| rxm = strp_msg(skb); |
| |
| chunk = min_t(unsigned int, rxm->full_len, len); |
| copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); |
| if (copied < 0) |
| goto splice_read_end; |
| |
| if (likely(!(flags & MSG_PEEK))) |
| tls_sw_advance_skb(sk, skb, copied); |
| |
| splice_read_end: |
| release_sock(sk); |
| return copied ? : err; |
| } |
| |
| bool tls_sw_stream_read(const struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| bool ingress_empty = true; |
| struct sk_psock *psock; |
| |
| rcu_read_lock(); |
| psock = sk_psock(sk); |
| if (psock) |
| ingress_empty = list_empty(&psock->ingress_msg); |
| rcu_read_unlock(); |
| |
| return !ingress_empty || ctx->recv_pkt || |
| !skb_queue_empty(&ctx->rx_list); |
| } |
| |
| static int tls_read_size(struct strparser *strp, struct sk_buff *skb) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(strp->sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; |
| struct strp_msg *rxm = strp_msg(skb); |
| size_t cipher_overhead; |
| size_t data_len = 0; |
| int ret; |
| |
| /* Verify that we have a full TLS header, or wait for more data */ |
| if (rxm->offset + prot->prepend_size > skb->len) |
| return 0; |
| |
| /* Sanity-check size of on-stack buffer. */ |
| if (WARN_ON(prot->prepend_size > sizeof(header))) { |
| ret = -EINVAL; |
| goto read_failure; |
| } |
| |
| /* Linearize header to local buffer */ |
| ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); |
| |
| if (ret < 0) |
| goto read_failure; |
| |
| ctx->control = header[0]; |
| |
| data_len = ((header[4] & 0xFF) | (header[3] << 8)); |
| |
| cipher_overhead = prot->tag_size; |
| if (prot->version != TLS_1_3_VERSION) |
| cipher_overhead += prot->iv_size; |
| |
| if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + |
| prot->tail_size) { |
| ret = -EMSGSIZE; |
| goto read_failure; |
| } |
| if (data_len < cipher_overhead) { |
| ret = -EBADMSG; |
| goto read_failure; |
| } |
| |
| /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ |
| if (header[1] != TLS_1_2_VERSION_MINOR || |
| header[2] != TLS_1_2_VERSION_MAJOR) { |
| ret = -EINVAL; |
| goto read_failure; |
| } |
| |
| tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, |
| TCP_SKB_CB(skb)->seq + rxm->offset); |
| return data_len + TLS_HEADER_SIZE; |
| |
| read_failure: |
| tls_err_abort(strp->sk, ret); |
| |
| return ret; |
| } |
| |
| static void tls_queue(struct strparser *strp, struct sk_buff *skb) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(strp->sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| ctx->decrypted = 0; |
| |
| ctx->recv_pkt = skb; |
| strp_pause(strp); |
| |
| ctx->saved_data_ready(strp->sk); |
| } |
| |
| static void tls_data_ready(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct sk_psock *psock; |
| |
| strp_data_ready(&ctx->strp); |
| |
| psock = sk_psock_get(sk); |
| if (psock) { |
| if (!list_empty(&psock->ingress_msg)) |
| ctx->saved_data_ready(sk); |
| sk_psock_put(sk, psock); |
| } |
| } |
| |
| void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| |
| set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); |
| set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); |
| cancel_delayed_work_sync(&ctx->tx_work.work); |
| } |
| |
| void tls_sw_release_resources_tx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec, *tmp; |
| |
| /* Wait for any pending async encryptions to complete */ |
| smp_store_mb(ctx->async_notify, true); |
| if (atomic_read(&ctx->encrypt_pending)) |
| crypto_wait_req(-EINPROGRESS, &ctx->async_wait); |
| |
| tls_tx_records(sk, -1); |
| |
| /* Free up un-sent records in tx_list. First, free |
| * the partially sent record if any at head of tx_list. |
| */ |
| if (tls_ctx->partially_sent_record) { |
| tls_free_partial_record(sk, tls_ctx); |
| rec = list_first_entry(&ctx->tx_list, |
| struct tls_rec, list); |
| list_del(&rec->list); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } |
| |
| list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { |
| list_del(&rec->list); |
| sk_msg_free(sk, &rec->msg_encrypted); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } |
| |
| crypto_free_aead(ctx->aead_send); |
| tls_free_open_rec(sk); |
| } |
| |
| void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| |
| kfree(ctx); |
| } |
| |
| void tls_sw_release_resources_rx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| kfree(tls_ctx->rx.rec_seq); |
| kfree(tls_ctx->rx.iv); |
| |
| if (ctx->aead_recv) { |
| kfree_skb(ctx->recv_pkt); |
| ctx->recv_pkt = NULL; |
| skb_queue_purge(&ctx->rx_list); |
| crypto_free_aead(ctx->aead_recv); |
| strp_stop(&ctx->strp); |
| /* If tls_sw_strparser_arm() was not called (cleanup paths) |
| * we still want to strp_stop(), but sk->sk_data_ready was |
| * never swapped. |
| */ |
| if (ctx->saved_data_ready) { |
| write_lock_bh(&sk->sk_callback_lock); |
| sk->sk_data_ready = ctx->saved_data_ready; |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| } |
| } |
| |
| void tls_sw_strparser_done(struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| strp_done(&ctx->strp); |
| } |
| |
| void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| kfree(ctx); |
| } |
| |
| void tls_sw_free_resources_rx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| |
| tls_sw_release_resources_rx(sk); |
| tls_sw_free_ctx_rx(tls_ctx); |
| } |
| |
| /* The work handler to transmitt the encrypted records in tx_list */ |
| static void tx_work_handler(struct work_struct *work) |
| { |
| struct delayed_work *delayed_work = to_delayed_work(work); |
| struct tx_work *tx_work = container_of(delayed_work, |
| struct tx_work, work); |
| struct sock *sk = tx_work->sk; |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx; |
| |
| if (unlikely(!tls_ctx)) |
| return; |
| |
| ctx = tls_sw_ctx_tx(tls_ctx); |
| if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) |
| return; |
| |
| if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) |
| return; |
| mutex_lock(&tls_ctx->tx_lock); |
| lock_sock(sk); |
| tls_tx_records(sk, -1); |
| release_sock(sk); |
| mutex_unlock(&tls_ctx->tx_lock); |
| } |
| |
| void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) |
| { |
| struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); |
| |
| /* Schedule the transmission if tx list is ready */ |
| if (is_tx_ready(tx_ctx) && |
| !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) |
| schedule_delayed_work(&tx_ctx->tx_work.work, 0); |
| } |
| |
| void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| write_lock_bh(&sk->sk_callback_lock); |
| rx_ctx->saved_data_ready = sk->sk_data_ready; |
| sk->sk_data_ready = tls_data_ready; |
| write_unlock_bh(&sk->sk_callback_lock); |
| |
| strp_check_rcv(&rx_ctx->strp); |
| } |
| |
| int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_crypto_info *crypto_info; |
| struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; |
| struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; |
| struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; |
| struct tls_sw_context_tx *sw_ctx_tx = NULL; |
| struct tls_sw_context_rx *sw_ctx_rx = NULL; |
| struct cipher_context *cctx; |
| struct crypto_aead **aead; |
| struct strp_callbacks cb; |
| u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; |
| struct crypto_tfm *tfm; |
| char *iv, *rec_seq, *key, *salt, *cipher_name; |
| size_t keysize; |
| int rc = 0; |
| |
| if (!ctx) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (tx) { |
| if (!ctx->priv_ctx_tx) { |
| sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); |
| if (!sw_ctx_tx) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| ctx->priv_ctx_tx = sw_ctx_tx; |
| } else { |
| sw_ctx_tx = |
| (struct tls_sw_context_tx *)ctx->priv_ctx_tx; |
| } |
| } else { |
| if (!ctx->priv_ctx_rx) { |
| sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); |
| if (!sw_ctx_rx) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| ctx->priv_ctx_rx = sw_ctx_rx; |
| } else { |
| sw_ctx_rx = |
| (struct tls_sw_context_rx *)ctx->priv_ctx_rx; |
| } |
| } |
| |
| if (tx) { |
| crypto_init_wait(&sw_ctx_tx->async_wait); |
| spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); |
| crypto_info = &ctx->crypto_send.info; |
| cctx = &ctx->tx; |
| aead = &sw_ctx_tx->aead_send; |
| INIT_LIST_HEAD(&sw_ctx_tx->tx_list); |
| INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); |
| sw_ctx_tx->tx_work.sk = sk; |
| } else { |
| crypto_init_wait(&sw_ctx_rx->async_wait); |
| spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); |
| crypto_info = &ctx->crypto_recv.info; |
| cctx = &ctx->rx; |
| skb_queue_head_init(&sw_ctx_rx->rx_list); |
| aead = &sw_ctx_rx->aead_recv; |
| } |
| |
| switch (crypto_info->cipher_type) { |
| case TLS_CIPHER_AES_GCM_128: { |
| nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; |
| tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; |
| iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; |
| iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; |
| rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; |
| rec_seq = |
| ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; |
| gcm_128_info = |
| (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; |
| keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; |
| key = gcm_128_info->key; |
| salt = gcm_128_info->salt; |
| salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; |
| cipher_name = "gcm(aes)"; |
| break; |
| } |
| case TLS_CIPHER_AES_GCM_256: { |
| nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; |
| tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; |
| iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; |
| iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; |
| rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; |
| rec_seq = |
| ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; |
| gcm_256_info = |
| (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; |
| keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; |
| key = gcm_256_info->key; |
| salt = gcm_256_info->salt; |
| salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; |
| cipher_name = "gcm(aes)"; |
| break; |
| } |
| case TLS_CIPHER_AES_CCM_128: { |
| nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; |
| tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; |
| iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; |
| iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; |
| rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; |
| rec_seq = |
| ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; |
| ccm_128_info = |
| (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; |
| keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; |
| key = ccm_128_info->key; |
| salt = ccm_128_info->salt; |
| salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; |
| cipher_name = "ccm(aes)"; |
| break; |
| } |
| default: |
| rc = -EINVAL; |
| goto free_priv; |
| } |
| |
| /* Sanity-check the sizes for stack allocations. */ |
| if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || |
| rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { |
| rc = -EINVAL; |
| goto free_priv; |
| } |
| |
| if (crypto_info->version == TLS_1_3_VERSION) { |
| nonce_size = 0; |
| prot->aad_size = TLS_HEADER_SIZE; |
| prot->tail_size = 1; |
| } else { |
| prot->aad_size = TLS_AAD_SPACE_SIZE; |
| prot->tail_size = 0; |
| } |
| |
| prot->version = crypto_info->version; |
| prot->cipher_type = crypto_info->cipher_type; |
| prot->prepend_size = TLS_HEADER_SIZE + nonce_size; |
| prot->tag_size = tag_size; |
| prot->overhead_size = prot->prepend_size + |
| prot->tag_size + prot->tail_size; |
| prot->iv_size = iv_size; |
| prot->salt_size = salt_size; |
| cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); |
| if (!cctx->iv) { |
| rc = -ENOMEM; |
| goto free_priv; |
| } |
| /* Note: 128 & 256 bit salt are the same size */ |
| prot->rec_seq_size = rec_seq_size; |
| memcpy(cctx->iv, salt, salt_size); |
| memcpy(cctx->iv + salt_size, iv, iv_size); |
| cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); |
| if (!cctx->rec_seq) { |
| rc = -ENOMEM; |
| goto free_iv; |
| } |
| |
| if (!*aead) { |
| *aead = crypto_alloc_aead(cipher_name, 0, 0); |
| if (IS_ERR(*aead)) { |
| rc = PTR_ERR(*aead); |
| *aead = NULL; |
| goto free_rec_seq; |
| } |
| } |
| |
| ctx->push_pending_record = tls_sw_push_pending_record; |
| |
| rc = crypto_aead_setkey(*aead, key, keysize); |
| |
| if (rc) |
| goto free_aead; |
| |
| rc = crypto_aead_setauthsize(*aead, prot->tag_size); |
| if (rc) |
| goto free_aead; |
| |
| if (sw_ctx_rx) { |
| tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); |
| |
| if (crypto_info->version == TLS_1_3_VERSION) |
| sw_ctx_rx->async_capable = 0; |
| else |
| sw_ctx_rx->async_capable = |
| !!(tfm->__crt_alg->cra_flags & |
| CRYPTO_ALG_ASYNC); |
| |
| /* Set up strparser */ |
| memset(&cb, 0, sizeof(cb)); |
| cb.rcv_msg = tls_queue; |
| cb.parse_msg = tls_read_size; |
| |
| strp_init(&sw_ctx_rx->strp, sk, &cb); |
| } |
| |
| goto out; |
| |
| free_aead: |
| crypto_free_aead(*aead); |
| *aead = NULL; |
| free_rec_seq: |
| kfree(cctx->rec_seq); |
| cctx->rec_seq = NULL; |
| free_iv: |
| kfree(cctx->iv); |
| cctx->iv = NULL; |
| free_priv: |
| if (tx) { |
| kfree(ctx->priv_ctx_tx); |
| ctx->priv_ctx_tx = NULL; |
| } else { |
| kfree(ctx->priv_ctx_rx); |
| ctx->priv_ctx_rx = NULL; |
| } |
| out: |
| return rc; |
| } |