blob: 6a893d484cf7038f306eca6851beff4c84740864 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* GPADC driver for sunxi platforms (D1, T113-S3 and R329)
* Copyright (c) 2023 Maksim Kiselev <bigunclemax@gmail.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/reset.h>
#include <linux/iio/iio.h>
#define SUN20I_GPADC_DRIVER_NAME "sun20i-gpadc"
/* Register map definition */
#define SUN20I_GPADC_SR 0x00
#define SUN20I_GPADC_CTRL 0x04
#define SUN20I_GPADC_CS_EN 0x08
#define SUN20I_GPADC_FIFO_INTC 0x0c
#define SUN20I_GPADC_FIFO_INTS 0x10
#define SUN20I_GPADC_FIFO_DATA 0X14
#define SUN20I_GPADC_CB_DATA 0X18
#define SUN20I_GPADC_DATAL_INTC 0x20
#define SUN20I_GPADC_DATAH_INTC 0x24
#define SUN20I_GPADC_DATA_INTC 0x28
#define SUN20I_GPADC_DATAL_INTS 0x30
#define SUN20I_GPADC_DATAH_INTS 0x34
#define SUN20I_GPADC_DATA_INTS 0x38
#define SUN20I_GPADC_CH_CMP_DATA(x) (0x40 + (x) * 4)
#define SUN20I_GPADC_CH_DATA(x) (0x80 + (x) * 4)
#define SUN20I_GPADC_CTRL_ADC_AUTOCALI_EN_MASK BIT(23)
#define SUN20I_GPADC_CTRL_WORK_MODE_MASK GENMASK(19, 18)
#define SUN20I_GPADC_CTRL_ADC_EN_MASK BIT(16)
#define SUN20I_GPADC_CS_EN_ADC_CH(x) BIT(x)
#define SUN20I_GPADC_DATA_INTC_CH_DATA_IRQ_EN(x) BIT(x)
#define SUN20I_GPADC_WORK_MODE_SINGLE 0
struct sun20i_gpadc_iio {
void __iomem *regs;
struct completion completion;
int last_channel;
/*
* Lock to protect the device state during a potential concurrent
* read access from userspace. Reading a raw value requires a sequence
* of register writes, then a wait for a completion callback,
* and finally a register read, during which userspace could issue
* another read request. This lock protects a read access from
* ocurring before another one has finished.
*/
struct mutex lock;
};
static int sun20i_gpadc_adc_read(struct sun20i_gpadc_iio *info,
struct iio_chan_spec const *chan, int *val)
{
u32 ctrl;
int ret = IIO_VAL_INT;
mutex_lock(&info->lock);
reinit_completion(&info->completion);
if (info->last_channel != chan->channel) {
info->last_channel = chan->channel;
/* enable the analog input channel */
writel(SUN20I_GPADC_CS_EN_ADC_CH(chan->channel),
info->regs + SUN20I_GPADC_CS_EN);
/* enable the data irq for input channel */
writel(SUN20I_GPADC_DATA_INTC_CH_DATA_IRQ_EN(chan->channel),
info->regs + SUN20I_GPADC_DATA_INTC);
}
/* enable the ADC function */
ctrl = readl(info->regs + SUN20I_GPADC_CTRL);
ctrl |= FIELD_PREP(SUN20I_GPADC_CTRL_ADC_EN_MASK, 1);
writel(ctrl, info->regs + SUN20I_GPADC_CTRL);
/*
* According to the datasheet maximum acquire time(TACQ) can be
* (65535+1)/24Mhz and conversion time(CONV_TIME) is always constant
* and equal to 14/24Mhz, so (TACQ+CONV_TIME) <= 2.73125ms.
* A 10ms delay should be enough to make sure an interrupt occurs in
* normal conditions. If it doesn't occur, then there is a timeout.
*/
if (!wait_for_completion_timeout(&info->completion, msecs_to_jiffies(10))) {
ret = -ETIMEDOUT;
goto err_unlock;
}
/* read the ADC data */
*val = readl(info->regs + SUN20I_GPADC_CH_DATA(chan->channel));
err_unlock:
mutex_unlock(&info->lock);
return ret;
}
static int sun20i_gpadc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct sun20i_gpadc_iio *info = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
return sun20i_gpadc_adc_read(info, chan, val);
case IIO_CHAN_INFO_SCALE:
/* value in mv = 1800mV / 4096 raw */
*val = 1800;
*val2 = 12;
return IIO_VAL_FRACTIONAL_LOG2;
default:
return -EINVAL;
}
}
static irqreturn_t sun20i_gpadc_irq_handler(int irq, void *data)
{
struct sun20i_gpadc_iio *info = data;
/* clear data interrupt status register */
writel(GENMASK(31, 0), info->regs + SUN20I_GPADC_DATA_INTS);
complete(&info->completion);
return IRQ_HANDLED;
}
static const struct iio_info sun20i_gpadc_iio_info = {
.read_raw = sun20i_gpadc_read_raw,
};
static void sun20i_gpadc_reset_assert(void *data)
{
struct reset_control *rst = data;
reset_control_assert(rst);
}
static int sun20i_gpadc_alloc_channels(struct iio_dev *indio_dev,
struct device *dev)
{
unsigned int channel;
int num_channels, i, ret;
struct iio_chan_spec *channels;
struct fwnode_handle *node;
num_channels = device_get_child_node_count(dev);
if (num_channels == 0)
return dev_err_probe(dev, -ENODEV, "no channel children\n");
channels = devm_kcalloc(dev, num_channels, sizeof(*channels),
GFP_KERNEL);
if (!channels)
return -ENOMEM;
i = 0;
device_for_each_child_node(dev, node) {
ret = fwnode_property_read_u32(node, "reg", &channel);
if (ret) {
fwnode_handle_put(node);
return dev_err_probe(dev, ret, "invalid channel number\n");
}
channels[i].type = IIO_VOLTAGE;
channels[i].indexed = 1;
channels[i].channel = channel;
channels[i].info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
channels[i].info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
i++;
}
indio_dev->channels = channels;
indio_dev->num_channels = num_channels;
return 0;
}
static int sun20i_gpadc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct iio_dev *indio_dev;
struct sun20i_gpadc_iio *info;
struct reset_control *rst;
struct clk *clk;
int irq;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*info));
if (!indio_dev)
return -ENOMEM;
info = iio_priv(indio_dev);
info->last_channel = -1;
mutex_init(&info->lock);
init_completion(&info->completion);
ret = sun20i_gpadc_alloc_channels(indio_dev, dev);
if (ret)
return ret;
indio_dev->info = &sun20i_gpadc_iio_info;
indio_dev->name = SUN20I_GPADC_DRIVER_NAME;
info->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(info->regs))
return PTR_ERR(info->regs);
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "failed to enable bus clock\n");
rst = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(rst))
return dev_err_probe(dev, PTR_ERR(rst), "failed to get reset control\n");
ret = reset_control_deassert(rst);
if (ret)
return dev_err_probe(dev, ret, "failed to deassert reset\n");
ret = devm_add_action_or_reset(dev, sun20i_gpadc_reset_assert, rst);
if (ret)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(dev, irq, sun20i_gpadc_irq_handler, 0,
dev_name(dev), info);
if (ret)
return dev_err_probe(dev, ret, "failed requesting irq %d\n", irq);
writel(FIELD_PREP(SUN20I_GPADC_CTRL_ADC_AUTOCALI_EN_MASK, 1) |
FIELD_PREP(SUN20I_GPADC_CTRL_WORK_MODE_MASK, SUN20I_GPADC_WORK_MODE_SINGLE),
info->regs + SUN20I_GPADC_CTRL);
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret, "could not register the device\n");
return 0;
}
static const struct of_device_id sun20i_gpadc_of_id[] = {
{ .compatible = "allwinner,sun20i-d1-gpadc" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sun20i_gpadc_of_id);
static struct platform_driver sun20i_gpadc_driver = {
.driver = {
.name = SUN20I_GPADC_DRIVER_NAME,
.of_match_table = sun20i_gpadc_of_id,
},
.probe = sun20i_gpadc_probe,
};
module_platform_driver(sun20i_gpadc_driver);
MODULE_DESCRIPTION("ADC driver for sunxi platforms");
MODULE_AUTHOR("Maksim Kiselev <bigunclemax@gmail.com>");
MODULE_LICENSE("GPL");