blob: 6d56428e623d820a12572f25ae18f67ee47abbf9 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices Generic AXI DAC IP core
* Link: https://wiki.analog.com/resources/fpga/docs/axi_dac_ip
*
* Copyright 2016-2024 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/limits.h>
#include <linux/kstrtox.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/units.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/iio/backend.h>
#include <linux/iio/buffer-dmaengine.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
/*
* Register definitions:
* https://wiki.analog.com/resources/fpga/docs/axi_dac_ip#register_map
*/
/* Base controls */
#define AXI_DAC_REG_CONFIG 0x0c
#define AXI_DDS_DISABLE BIT(6)
/* DAC controls */
#define AXI_DAC_REG_RSTN 0x0040
#define AXI_DAC_RSTN_CE_N BIT(2)
#define AXI_DAC_RSTN_MMCM_RSTN BIT(1)
#define AXI_DAC_RSTN_RSTN BIT(0)
#define AXI_DAC_REG_CNTRL_1 0x0044
#define AXI_DAC_SYNC BIT(0)
#define AXI_DAC_REG_CNTRL_2 0x0048
#define ADI_DAC_R1_MODE BIT(4)
#define AXI_DAC_DRP_STATUS 0x0074
#define AXI_DAC_DRP_LOCKED BIT(17)
/* DAC Channel controls */
#define AXI_DAC_REG_CHAN_CNTRL_1(c) (0x0400 + (c) * 0x40)
#define AXI_DAC_REG_CHAN_CNTRL_3(c) (0x0408 + (c) * 0x40)
#define AXI_DAC_SCALE_SIGN BIT(15)
#define AXI_DAC_SCALE_INT BIT(14)
#define AXI_DAC_SCALE GENMASK(14, 0)
#define AXI_DAC_REG_CHAN_CNTRL_2(c) (0x0404 + (c) * 0x40)
#define AXI_DAC_REG_CHAN_CNTRL_4(c) (0x040c + (c) * 0x40)
#define AXI_DAC_PHASE GENMASK(31, 16)
#define AXI_DAC_FREQUENCY GENMASK(15, 0)
#define AXI_DAC_REG_CHAN_CNTRL_7(c) (0x0418 + (c) * 0x40)
#define AXI_DAC_DATA_SEL GENMASK(3, 0)
/* 360 degrees in rad */
#define AXI_DAC_2_PI_MEGA 6283190
enum {
AXI_DAC_DATA_INTERNAL_TONE,
AXI_DAC_DATA_DMA = 2,
};
struct axi_dac_state {
struct regmap *regmap;
struct device *dev;
/*
* lock to protect multiple accesses to the device registers and global
* data/variables.
*/
struct mutex lock;
u64 dac_clk;
u32 reg_config;
bool int_tone;
};
static int axi_dac_enable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
unsigned int __val;
int ret;
guard(mutex)(&st->lock);
ret = regmap_set_bits(st->regmap, AXI_DAC_REG_RSTN,
AXI_DAC_RSTN_MMCM_RSTN);
if (ret)
return ret;
/*
* Make sure the DRP (Dynamic Reconfiguration Port) is locked. Not all
* designs really use it but if they don't we still get the lock bit
* set. So let's do it all the time so the code is generic.
*/
ret = regmap_read_poll_timeout(st->regmap, AXI_DAC_DRP_STATUS, __val,
__val & AXI_DAC_DRP_LOCKED, 100, 1000);
if (ret)
return ret;
return regmap_set_bits(st->regmap, AXI_DAC_REG_RSTN,
AXI_DAC_RSTN_RSTN | AXI_DAC_RSTN_MMCM_RSTN);
}
static void axi_dac_disable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
guard(mutex)(&st->lock);
regmap_write(st->regmap, AXI_DAC_REG_RSTN, 0);
}
static struct iio_buffer *axi_dac_request_buffer(struct iio_backend *back,
struct iio_dev *indio_dev)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
const char *dma_name;
if (device_property_read_string(st->dev, "dma-names", &dma_name))
dma_name = "tx";
return iio_dmaengine_buffer_setup_ext(st->dev, indio_dev, dma_name,
IIO_BUFFER_DIRECTION_OUT);
}
static void axi_dac_free_buffer(struct iio_backend *back,
struct iio_buffer *buffer)
{
iio_dmaengine_buffer_free(buffer);
}
enum {
AXI_DAC_FREQ_TONE_1,
AXI_DAC_FREQ_TONE_2,
AXI_DAC_SCALE_TONE_1,
AXI_DAC_SCALE_TONE_2,
AXI_DAC_PHASE_TONE_1,
AXI_DAC_PHASE_TONE_2,
};
static int __axi_dac_frequency_get(struct axi_dac_state *st, unsigned int chan,
unsigned int tone_2, unsigned int *freq)
{
u32 reg, raw;
int ret;
if (!st->dac_clk) {
dev_err(st->dev, "Sampling rate is 0...\n");
return -EINVAL;
}
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_4(chan);
else
reg = AXI_DAC_REG_CHAN_CNTRL_2(chan);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
raw = FIELD_GET(AXI_DAC_FREQUENCY, raw);
*freq = DIV_ROUND_CLOSEST_ULL(raw * st->dac_clk, BIT(16));
return 0;
}
static int axi_dac_frequency_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
unsigned int freq;
int ret;
scoped_guard(mutex, &st->lock) {
ret = __axi_dac_frequency_get(st, chan->channel, tone_2, &freq);
if (ret)
return ret;
}
return sysfs_emit(buf, "%u\n", freq);
}
static int axi_dac_scale_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
unsigned int scale, sign;
int ret, vals[2];
u32 reg, raw;
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_3(chan->channel);
else
reg = AXI_DAC_REG_CHAN_CNTRL_1(chan->channel);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
sign = FIELD_GET(AXI_DAC_SCALE_SIGN, raw);
raw = FIELD_GET(AXI_DAC_SCALE, raw);
scale = DIV_ROUND_CLOSEST_ULL((u64)raw * MEGA, AXI_DAC_SCALE_INT);
vals[0] = scale / MEGA;
vals[1] = scale % MEGA;
if (sign) {
vals[0] *= -1;
if (!vals[0])
vals[1] *= -1;
}
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
vals);
}
static int axi_dac_phase_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
u32 reg, raw, phase;
int ret, vals[2];
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_4(chan->channel);
else
reg = AXI_DAC_REG_CHAN_CNTRL_2(chan->channel);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
raw = FIELD_GET(AXI_DAC_PHASE, raw);
phase = DIV_ROUND_CLOSEST_ULL((u64)raw * AXI_DAC_2_PI_MEGA, U16_MAX);
vals[0] = phase / MEGA;
vals[1] = phase % MEGA;
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
vals);
}
static int __axi_dac_frequency_set(struct axi_dac_state *st, unsigned int chan,
u64 sample_rate, unsigned int freq,
unsigned int tone_2)
{
u32 reg;
u16 raw;
int ret;
if (!sample_rate || freq > sample_rate / 2) {
dev_err(st->dev, "Invalid frequency(%u) dac_clk(%llu)\n",
freq, sample_rate);
return -EINVAL;
}
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_4(chan);
else
reg = AXI_DAC_REG_CHAN_CNTRL_2(chan);
raw = DIV64_U64_ROUND_CLOSEST((u64)freq * BIT(16), sample_rate);
ret = regmap_update_bits(st->regmap, reg, AXI_DAC_FREQUENCY, raw);
if (ret)
return ret;
/* synchronize channels */
return regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_1, AXI_DAC_SYNC);
}
static int axi_dac_frequency_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
unsigned int freq;
int ret;
ret = kstrtou32(buf, 10, &freq);
if (ret)
return ret;
guard(mutex)(&st->lock);
ret = __axi_dac_frequency_set(st, chan->channel, st->dac_clk, freq,
tone_2);
if (ret)
return ret;
return len;
}
static int axi_dac_scale_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
int integer, frac, scale;
u32 raw = 0, reg;
int ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
if (ret)
return ret;
scale = integer * MEGA + frac;
if (scale <= -2 * (int)MEGA || scale >= 2 * (int)MEGA)
return -EINVAL;
/* format is 1.1.14 (sign, integer and fractional bits) */
if (scale < 0) {
raw = FIELD_PREP(AXI_DAC_SCALE_SIGN, 1);
scale *= -1;
}
raw |= div_u64((u64)scale * AXI_DAC_SCALE_INT, MEGA);
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_3(chan->channel);
else
reg = AXI_DAC_REG_CHAN_CNTRL_1(chan->channel);
guard(mutex)(&st->lock);
ret = regmap_write(st->regmap, reg, raw);
if (ret)
return ret;
/* synchronize channels */
ret = regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_1, AXI_DAC_SYNC);
if (ret)
return ret;
return len;
}
static int axi_dac_phase_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
int integer, frac, phase;
u32 raw, reg;
int ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
if (ret)
return ret;
phase = integer * MEGA + frac;
if (phase < 0 || phase > AXI_DAC_2_PI_MEGA)
return -EINVAL;
raw = DIV_ROUND_CLOSEST_ULL((u64)phase * U16_MAX, AXI_DAC_2_PI_MEGA);
if (tone_2)
reg = AXI_DAC_REG_CHAN_CNTRL_4(chan->channel);
else
reg = AXI_DAC_REG_CHAN_CNTRL_2(chan->channel);
guard(mutex)(&st->lock);
ret = regmap_update_bits(st->regmap, reg, AXI_DAC_PHASE,
FIELD_PREP(AXI_DAC_PHASE, raw));
if (ret)
return ret;
/* synchronize channels */
ret = regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_1, AXI_DAC_SYNC);
if (ret)
return ret;
return len;
}
static int axi_dac_ext_info_set(struct iio_backend *back, uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (private) {
case AXI_DAC_FREQ_TONE_1:
case AXI_DAC_FREQ_TONE_2:
return axi_dac_frequency_set(st, chan, buf, len,
private == AXI_DAC_FREQ_TONE_2);
case AXI_DAC_SCALE_TONE_1:
case AXI_DAC_SCALE_TONE_2:
return axi_dac_scale_set(st, chan, buf, len,
private == AXI_DAC_SCALE_TONE_2);
case AXI_DAC_PHASE_TONE_1:
case AXI_DAC_PHASE_TONE_2:
return axi_dac_phase_set(st, chan, buf, len,
private == AXI_DAC_PHASE_TONE_2);
default:
return -EOPNOTSUPP;
}
}
static int axi_dac_ext_info_get(struct iio_backend *back, uintptr_t private,
const struct iio_chan_spec *chan, char *buf)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (private) {
case AXI_DAC_FREQ_TONE_1:
case AXI_DAC_FREQ_TONE_2:
return axi_dac_frequency_get(st, chan, buf,
private - AXI_DAC_FREQ_TONE_1);
case AXI_DAC_SCALE_TONE_1:
case AXI_DAC_SCALE_TONE_2:
return axi_dac_scale_get(st, chan, buf,
private - AXI_DAC_SCALE_TONE_1);
case AXI_DAC_PHASE_TONE_1:
case AXI_DAC_PHASE_TONE_2:
return axi_dac_phase_get(st, chan, buf,
private - AXI_DAC_PHASE_TONE_1);
default:
return -EOPNOTSUPP;
}
}
static const struct iio_chan_spec_ext_info axi_dac_ext_info[] = {
IIO_BACKEND_EX_INFO("frequency0", IIO_SEPARATE, AXI_DAC_FREQ_TONE_1),
IIO_BACKEND_EX_INFO("frequency1", IIO_SEPARATE, AXI_DAC_FREQ_TONE_2),
IIO_BACKEND_EX_INFO("scale0", IIO_SEPARATE, AXI_DAC_SCALE_TONE_1),
IIO_BACKEND_EX_INFO("scale1", IIO_SEPARATE, AXI_DAC_SCALE_TONE_2),
IIO_BACKEND_EX_INFO("phase0", IIO_SEPARATE, AXI_DAC_PHASE_TONE_1),
IIO_BACKEND_EX_INFO("phase1", IIO_SEPARATE, AXI_DAC_PHASE_TONE_2),
{}
};
static int axi_dac_extend_chan(struct iio_backend *back,
struct iio_chan_spec *chan)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
if (chan->type != IIO_ALTVOLTAGE)
return -EINVAL;
if (st->reg_config & AXI_DDS_DISABLE)
/* nothing to extend */
return 0;
chan->ext_info = axi_dac_ext_info;
return 0;
}
static int axi_dac_data_source_set(struct iio_backend *back, unsigned int chan,
enum iio_backend_data_source data)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (data) {
case IIO_BACKEND_INTERNAL_CONTINUOS_WAVE:
return regmap_update_bits(st->regmap,
AXI_DAC_REG_CHAN_CNTRL_7(chan),
AXI_DAC_DATA_SEL,
AXI_DAC_DATA_INTERNAL_TONE);
case IIO_BACKEND_EXTERNAL:
return regmap_update_bits(st->regmap,
AXI_DAC_REG_CHAN_CNTRL_7(chan),
AXI_DAC_DATA_SEL, AXI_DAC_DATA_DMA);
default:
return -EINVAL;
}
}
static int axi_dac_set_sample_rate(struct iio_backend *back, unsigned int chan,
u64 sample_rate)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
unsigned int freq;
int ret, tone;
if (!sample_rate)
return -EINVAL;
if (st->reg_config & AXI_DDS_DISABLE)
/* sample_rate has no meaning if DDS is disabled */
return 0;
guard(mutex)(&st->lock);
/*
* If dac_clk is 0 then this must be the first time we're being notified
* about the interface sample rate. Hence, just update our internal
* variable and bail... If it's not 0, then we get the current DDS
* frequency (for the old rate) and update the registers for the new
* sample rate.
*/
if (!st->dac_clk) {
st->dac_clk = sample_rate;
return 0;
}
for (tone = 0; tone <= AXI_DAC_FREQ_TONE_2; tone++) {
ret = __axi_dac_frequency_get(st, chan, tone, &freq);
if (ret)
return ret;
ret = __axi_dac_frequency_set(st, chan, sample_rate, tone, freq);
if (ret)
return ret;
}
st->dac_clk = sample_rate;
return 0;
}
static const struct iio_backend_ops axi_dac_generic = {
.enable = axi_dac_enable,
.disable = axi_dac_disable,
.request_buffer = axi_dac_request_buffer,
.free_buffer = axi_dac_free_buffer,
.extend_chan_spec = axi_dac_extend_chan,
.ext_info_set = axi_dac_ext_info_set,
.ext_info_get = axi_dac_ext_info_get,
.data_source_set = axi_dac_data_source_set,
.set_sample_rate = axi_dac_set_sample_rate,
};
static const struct regmap_config axi_dac_regmap_config = {
.val_bits = 32,
.reg_bits = 32,
.reg_stride = 4,
.max_register = 0x0800,
};
static int axi_dac_probe(struct platform_device *pdev)
{
const unsigned int *expected_ver;
struct axi_dac_state *st;
void __iomem *base;
unsigned int ver;
struct clk *clk;
int ret;
st = devm_kzalloc(&pdev->dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
expected_ver = device_get_match_data(&pdev->dev);
if (!expected_ver)
return -ENODEV;
clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(&pdev->dev, PTR_ERR(clk),
"failed to get clock\n");
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
st->dev = &pdev->dev;
st->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&axi_dac_regmap_config);
if (IS_ERR(st->regmap))
return dev_err_probe(&pdev->dev, PTR_ERR(st->regmap),
"failed to init register map\n");
/*
* Force disable the core. Up to the frontend to enable us. And we can
* still read/write registers...
*/
ret = regmap_write(st->regmap, AXI_DAC_REG_RSTN, 0);
if (ret)
return ret;
ret = regmap_read(st->regmap, ADI_AXI_REG_VERSION, &ver);
if (ret)
return ret;
if (ADI_AXI_PCORE_VER_MAJOR(ver) != ADI_AXI_PCORE_VER_MAJOR(*expected_ver)) {
dev_err(&pdev->dev,
"Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n",
ADI_AXI_PCORE_VER_MAJOR(*expected_ver),
ADI_AXI_PCORE_VER_MINOR(*expected_ver),
ADI_AXI_PCORE_VER_PATCH(*expected_ver),
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return -ENODEV;
}
/* Let's get the core read only configuration */
ret = regmap_read(st->regmap, AXI_DAC_REG_CONFIG, &st->reg_config);
if (ret)
return ret;
/*
* In some designs, setting the R1_MODE bit to 0 (which is the default
* value) causes all channels of the frontend to be routed to the same
* DMA (so they are sampled together). This is for things like
* Multiple-Input and Multiple-Output (MIMO). As most of the times we
* want independent channels let's override the core's default value and
* set the R1_MODE bit.
*/
ret = regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_2, ADI_DAC_R1_MODE);
if (ret)
return ret;
mutex_init(&st->lock);
ret = devm_iio_backend_register(&pdev->dev, &axi_dac_generic, st);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"failed to register iio backend\n");
dev_info(&pdev->dev, "AXI DAC IP core (%d.%.2d.%c) probed\n",
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return 0;
}
static unsigned int axi_dac_9_1_b_info = ADI_AXI_PCORE_VER(9, 1, 'b');
static const struct of_device_id axi_dac_of_match[] = {
{ .compatible = "adi,axi-dac-9.1.b", .data = &axi_dac_9_1_b_info },
{}
};
MODULE_DEVICE_TABLE(of, axi_dac_of_match);
static struct platform_driver axi_dac_driver = {
.driver = {
.name = "adi-axi-dac",
.of_match_table = axi_dac_of_match,
},
.probe = axi_dac_probe,
};
module_platform_driver(axi_dac_driver);
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices Generic AXI DAC IP core driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(IIO_DMAENGINE_BUFFER);
MODULE_IMPORT_NS(IIO_BACKEND);